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1 IntroductionAn algorithm for a given graph problem is said to be dynamic if it can main-tain the solution to the problem as the graph undergoes changes. Thesechanges could be additions or deletions of edges, or a change in the cost ofsome edge (if applicable). In such a setting an update denotes an incrementalchange to the input, and a query is a request for some information about thecurrent solution. We expect the dynamic algorithm to handle both queriesand updates quickly i.e. in time that is substantially less than it would taketo solve the problem from scratch every time the input changes. An algo-rithm is said to be fully dynamic if it supports both additions and deletions ofedges. while it is said to be semidynamic if it supports only one of them. Un-fortunately, due to the requirement that the query and update times be verysmall, designing fully dynamic algorithms seems to be considerably harderthan designing sequential algorithms, and very few graph problems have fullydynamic solutions.In this paper we consider the problem of maintaining shortest-path in-formation in planar graphs. This is a fundamental optimization problemsince many applications can be formulated as shortest-path problems. Fur-thermore, a number of more complex problems can be solved by procedureswhich use shortest-path algorithms as subroutines.Given a graph G with n nodes and m edges (with non-negative weights)the shortest path between any two nodes can be computed e�ciently byusing Dijkstra's algorithm [1, 2] in O(m+ n log n) time. For planar graphs afaster algorithm due to Frederickson [3] runs inO(nplog n) time. Recently injoint work with Rao and Rauch [4] we have given an O(n)-time algorithm forcomputing single-source shortest paths. However, in the dynamic realm thisproblem is much less well-understood. Though there are many algorithmsfor the dynamic problem (see for example [5, 6, 7], see also [8]), none of themcan simultaneously handle both updates and queries in time that is sublinearin the input size.De�nition 1 Let G be an n-node planar undirected graph with nonnegativeintegral edge-lengths. Let D be the sum of lengths. The length of a path �from u to v (denoted as l(�)) is simply the sum of the lengths of the edgesin �. A minimum-length path from u to v is called a shortest path.The all-pairs shortest path problem is the problem of �nding shortest paths1



between all pairs of nodes in G.Given the di�culty in constructing dynamic algorithms for shortest paths,in this paper, we focus on constructing dynamic algorithms for maintaining\approximate shortest paths."De�nition 2 A path � is an �-approximate shortest-path if its length is atmost 1 + � times the distance (the length of the shortest path) between itsendpoints.In this paper we show that if we are willing to settle for approximate answersthen substantial improvements are possible in both the query and updatetimes for maintaining shortest paths in a planar graph. In particular, wegive a fully dynamic data structure that maintains �-approximate shortest-paths. Both query and update times for maintaining our data structure aresublinear in n when ��1 is no more than a poly-logarithmic function of n.Theorem 1 Let G be an undirected n-node planar graph with non neg-ative weights on its edges such that the sum of the edge weights Dis O(exponential(n)). Then, for any 0 < � � 1 such that ��1 isO(polynomial(n), there exists a fully dynamic data structure to maintain�-approximate all-pairs shortest-path information in G. The time per op-eration is O(��1n2=3 log2 n logD). The time for queries, edge-deletion, andchanging lengths is worst-case, while the time for adding edges is amortized.Our approximation algorithm is based upon a novel technique for com-pactly representing approximate all-pairs shortest paths among a set of kselected nodes by a substitute graph with the following properties:� Each edge uv in the substitute graph corresponds to a path � from uto v in G.� Each shortest path between selected nodes in G is approximated towithin a 1 + � factor by a two-edge path in the substitute graph.The size of the substitute graph depends both on the number of selectednodes and on their distribution over the faces in G. In particular, given ann-node undirected planar graph with nonnegative edge-lengths that sum toD, we have the following bounds on the size of sparse substitutes:2



Theorem 2 (Face-boundary substitute) If there are k = O(pn se-lected nodes, all on the boundaries of a constant number of faces of G thenthere exists a sparse substitute graph having O(��1k log k logD) edges andO((��1+ k) log k) nodes that approximates the all-selected-node-pair shortestpaths in G to within a 1 + � factor. Furthermore, the substitute graph can beconstructed in O(��1n log2 n logD) time.2 PreliminariesIn this section we introduce some basic terminology regarding planar graphs.More details and related background can be found in [18, 9, 3, 11]De�nition 3 A graph G is said to be planar if we can embed the nodes andedges of the graph on the plane such that no two edges cross each other.De�nition 4 A cycle in G is a set of nodes u1; u2; � � � ; uk such that u1 = ukand ui is connected to ui�1 and ui+1. A cycle C = fu1; u2; � � � ; ukg is a simplecycle if all the nodes u1 through uk�1 are distinct. Given an embedding of Gon the plane a simple cycle c = fu1; � � � ; ukg is called a face if no other nodesof g are topologically embedded inside c in the embedding.De�nition 5 A set X of nodes in G is called a separator if the removal of Xdivides G into two or more disconnected pieces. The nodes of X are calledboundary nodes.Lipton and Tarjan [12] showed that given an n-node planar graph G andgiven a subset B of the nodes of G, in linear time one can �nd a separatorsuch that jXj = O(pn), and none of the pieces created by the removal ofX has more than 23 of the nodes from B. Such a separator X is called abalanced separator of B. Miller [13] showed that if G is two-connected andtriangulated then we can �nd a balanced separator X that is a simple cycle.If G is not two-connected we can �rst two-connect it in the following manner:� MakeG connected by adding edges between all the disconnected pieces.� Add one dummy node per face of the original graph, with dummyedges connecting the dummy node to the nodes on the boundary of theoriginal face. 3



After this process none of the faces will have more than 3 boundary nodes;thus the resulting graph is triangulated.Lemma 1 Given a planar graph G the process of adding dummy nodes andedges described above results in a triangulated two-connected graph.Proof : The second step results in a triangulated graph as noted above. Toprove that it is two-connected assume for a contradiction that G is not two-connected after the addition of the dummy nodes and edges. This impliesthat there is a node u that is a separator. Let the two components that useparates be C1 and C2. Let f be the outer face containing u and nodesfrom C1 and C2. By construction f can have only 3 nodes. Therefore C1and C2 (since they are both non-empty) each contribute one node (x1 andx2 respectively) to f . This implies C1 and C2 must contain only one nodeeach. Otherwise more than one node of C1, and C2 will be on the face f .However, this leads us to our base case since one of u, x1, or x2 is a dummynode. Thus the resulting graph is two-connected and triangulated. 2Thus we can use Miller's algorithm to �nd cycle separators for graphs thatare not necessarily two-connected and triangulated.2.1 Cluster DecompositionsFrederickson [9, 3] showed how to construct dynamic algorithms for graphproblems by dividing a graph into clusters. Such a division is called a clusterdecomposition. Frederickson [9] used the clustering idea to construct a fullydynamic data structure for maintaining minimum spanning trees in generalgraphs. In the context of planar graphs [3] he used a separator based clusterdecomposition (obtained by repeated division of the graph using separators)to derive improved sequential algorithms for single-source shortest paths.Galil, Italiano, and Sarnak [10, 11] used the separator algorithm due toLipton and Tarjan [12] to repeatedly divide the underlying planar graph intoclusters. Galil and Italiano [10] used such a decomposition to derive a fullydynamic data structure for maintaining two and three-vertex connectivityinformation in planar graphs. Galil, Italiano, and Sarnak [11] used clusterdecompositions to develop a fully dynamic planarity-testing algorithm. Weborrow this technique and their terminology. For reasons that will be ap-parent soon, in this paper we will use the planar separator algorithm by4



Miller [13] to construct our decomposition. Our dynamic shortest-path datastructure will require the decomposition of the given planar graph G intoclusters. However, we will use a somewhat restrictive notion of what is adecomposition of a planar graph G into clusters.De�nition 6 A cluster partition of a graph G is a partition of the edgesof G into edge-induced subgraphs. A node of G is a boundary node of thepartition if it belongs to more than one subgraph. A num-cluster partitionof an n-node planar graph G is a cluster partition of G into r = O(num)subgraphs G1; G2; � � � ; Gr with the following properties:1. Each subgraph Gi contains O(n=num) edges.2. The number of boundary nodes in each Gi is O(qn=num).3. In each subgraph Gi, the boundary nodes all lie on the boundaries ofa constant number of faces. (Note that a face of Gi need not be a faceof G.)Note that because the subgraphs of a cluster partition are edge-induced,a node belongs to such a subgraph only if an edge incident to the nodebelongs to the subgraph. The next lemma follows from the arguments ofFrederickson [3].Lemma 2 Given a planar graph G, a num-cluster partition can be obtainedin O(n log n) time.Proof : To create a cluster decomposition of G we two-connect and triangu-late it as described above by adding dummy nodes and edges. By applyingMiller's algorithm to this graph, we can obtain a cycle separator that dividesthe non-dummy nodes of the graph into pieces none of which have more than23n nodes. The separator is a cycle that contains both dummy and non-dummy nodes. The set X of non-dummy nodes of the separator need notform a cycle in the original graph. However, it does divide the graph into twopieces G1 and G2 such that such that, in the induced subgraph Hi = Gi [Xthe nodes of X all lie on the boundary of a single face. The dummy nodesdo not play any role in the data structure, and are used only to divide upthe graph. 5



To obtain a num cluster partition we start with with G and repeatedlydivide it using a planar cycle separator [13] (as discussed above) until allthe pieces have O(n=num) edges. We re-triangulate subgraphs when facesget too big so that we are guaranteed to have small cycle separators. Asmentioned earlier, these dummy nodes and edges are transient and play norole in the actual data structure.Using techniques due to Frederickson [3] we can also make sure that noneof the pieces have too many boundary nodes. This is accomplished as follows:The separator algorithm can be used to separate a node-weighted version ofthe graph into pieces none of which has more than two-thirds the originalweight. In order to split the boundary nodes we give all the non-boundarynodes weight 0 and give weight 1 to the boundary nodes. We then runthe separator algorithm to �nd a weighted separation. This automaticallygives us a division of the boundary nodes. Proceeding in this fashion we cangenerate a num-cluster partition. 2De�nition 7 Consider a num-cluster partition of G. In such a partitionwe de�ne the parent of edge uv (denoted by Guv) to be the subgraph Githat contains it. Similarly, if u is a non-boundary node, we de�ne its parent(denoted Gu) to be the subgraph Gi containing it. If u is a boundary node,we arbitrarily select one of the subgraphs Gi that contains u, and assign itto be u's parent (denoted by Gu).The remainder of the paper is organized as follows: In Section 3 wedescribe our dynamic data structure for mainitaining approximate shortestpaths. In Section 4 we address the issue of constructing face-boundary sub-stitutes and in Section 5 we discuss some extensions of our algorithm.3 A fully dynamic data structure for approx-imate shortest pathsIn this section we describe our dynamic data structure for maintaining ap-proximate shortest paths that satis�es the bounds of Theorem 1. Our datastructure uses the face-boundary substitutes of Theorem 2. Section 4 givesthe details of how the face-boundary substitutes are constructed.Throughout this paper we assume that all the edge-additions areplanarity-preserving. To see whether edge-additions preserve planarity we6



procedure preprocess(G;num)[Division]Find a num-cluster partition of G into regions G1; G2; � � � ; Greach with n=num nodes and O(qn=num) boundary nodes.[Local Computation]for each region Gi doconstruct a substitute graph Ĝi representingboundary-to-boundary shortest paths in Gi.[Forming the Skeleton]S  Ĝ1 [ Ĝ2 [ � � � [ Ĝr.end [procedure preprocess]Figure 1: The generic preprocessing step.can run the planarity-testing algorithm from [11] in the background to pre-vent addition of edges that destroy planarity. Doing this only increases thetime-complexity of our update operations by a constant factor. In the de-scriptions of our algorithms we will not explicitly mention these additionalsteps.Our data structure supports the following operations:1. distance(u; v): Find the approximate distance between u and v in G.2. add(u; v; w): Add a new edge uv of length w.3. change(uv;w): Change the length of the edge uv to w.4. delete(uv): Delete edge uv.5. remove(u): Remove an isolated node (a node that has no edges) u.Figures 1, 2, and 3 give the preprocessing, query, and update routines. Theprocedure for removing an isolated node u involves no change to the datastructure. We just remove it from the corresponding parent cluster Gu7



To initialize or data structure, we �nd an num-cluster partition of G(the optimal value for num will be derived later), and precompute substi-tute graphs Ĝ1; Ĝ2; � � � ; Ĝr that approximately represent the boundary-to-boundary shortest paths in the respective subgraphs G1; G2; � � � ; Gr. The Ĝiare face-boundary substitutes as described in Theorem 2 that approximatethe boundary-to-boundary shortest paths inGi to within a 1+� factor. Thesesubstitute graphs are then unioned to form a skeletal graph S.The skeletal graph S is a compact representation for the shortest-pathsamong the boundary nodes and is used in the query-stage to compute thedistance between the two query points.To answer a query concerning the distance between two given nodes uand v, we form an auxiliary graph H by unioning the regions Gu and Gv alongwith the skeletal graph S. We then run a sequential shortest-path algorithmon the auxiliary graph H to compute the distance between u and v. SeeFigure 2 for the query-procedure distance.procedure distance(u; v)[Forming the auxiliary graph]H  Gu [Gv [ S.[The Query]1. Run Dijkstra's algorithm in H with u as the source node.2. Return the distance between u and v found in the previous step.end [procedure distance]Figure 2: Performing a query using the skeleton S constructed in the pre-processing step.To prove the correctness of our query-procedure we need to show thatthe distance between u and v in H is an accurate estimate of the distancebetween u and v in G, consider a path � of minimum length from u to v in G.Mark all the boundary nodes in �. This marking divides � into a sequence ofsubpaths such that the �rst and the last subpaths lie entirely within Gu andGv respectively, and each intermediate subpath is a boundary-to-boundarypath that lies entirely within one of the subgraphs G1 through Gr. Since theboundary-to-boundary shortest paths in Gi are estimated by the substitutegraph Ĝi to within a 1 + � factor, it follows that H contains a path from u8



to v whose length is no more than 1 + � times the length of �.To perform an add operation we add a new edge uv of length w to theparent region Gu of u. Similarly to delete an edge uv we simply remove itfrom its parent region Guv. To implement the change operation we simplychange the weight of uv in Guv to w. For each of these three operationswe need to recompute the substitute graphs of the a�ected regions. We dothis using a procedure update that recomputes the substitute graphs for allthe regions that are a�ected by the change. Figure 3 gives the pseudocodefor procedure update. Lemma 3 shows that only a constant number ofsubgraphs are a�ected during a single add, delete, or change operation.procedure update(u; v)[Changing the boundary information]if u or v change their boundary status thenchange their labels in Gu and/or Gv;[ Rebuilding the skeletal graph]1. Remove Ĝu, Ĝv, and Ĝuv from S;2. Recompute the substitutes Ĝu, Ĝv, and Ĝuv;3. Add these substitutes to S and rebuild itend [procedure update]Figure 3: Updating the data structureLemma 3 Adding, deleting, or changing the length of an edge a�ects onlya constant number of subgraphs in the cluster partition. Therefore, only aconstant number of substitute graphs need to be recomputed to modify theskeletal graph S.Proof : We discuss the case of a delete operation. The arguments for additionand changing edge-lengths are similar. Consider deleting the edge uv. Thisresults in a change in the subgraph Guv . Furthermore, it is possible thatdeleting this edge could make either u (or v) a non-boundary node (thiscould happen if all the remaining edges incident at u (v) now lie in a singlesubgraph). Such a change in the boundary-status can a�ect only Gu and Gv.Therefore, to modify S we need only recompute Ĝuv , Ĝu, and Ĝv. 29



As we continue to add edges more and more nodes will become boundarynodes, since every time an edge uv is added either u or v may become aboundary node. This will cause the skeletal graph S to grow in size thusincreasing the query time. Also the cluster decomposition will start losingits properties, since all the added edges could end up in the same region. Wetherefore recompute the cluster partition after the number of add operationsexceeds the value of a preset parameter limit. This will imply that the timefor the add operation is amortized.We are now ready to discuss our bounds for maintaining approximateshortest paths. We �rst discuss the query time assuming the substitutegraphs and the skeletal graphs obey the restrictions of Theorem 2. Subsec-tion 3.1 discusses the details of the periodic re-computation of the clusterdecompositions and the time required for the update operations.To maintain approximate shortest paths we set both num and limit tobe n1=3. For each Gi we let the substitute graph Ĝi be the face-boundary-substitute that represents the all-boundary pair shortest paths inGi to withina 1 + � factor.To maintain approximate shortest paths we follow the description ofthe generic algorithm except for one di�erence: Since the size of the face-boundary substitutes depends on the distribution of the boundary nodes wemodify our updating procedure slightly. Whenever the number of boundaryfaces (faces that contain boundary nodes) in some cluster Gi exceeds three,we apply Miller's separator algorithm to the graph with dummy nodes added.In order to reduce the number of boundary faces, we �rst give two-connectand triangulate the graph as before. We then give a weight of 1 to thedummy nodes corresponding to the boundary faces. All the other nodes aregiven weight 0. We then use Miller's algorithm to �nd a separator X thatdivides up the dummy nodes corresponding to boundary faces. Each of thetwo resulting pieces has at most two-thirds of the four boundary faces, henceat most two old boundary faces. The new separator introduces an additionalboundary face, for a total of three per piece. If the separator includes dummynodes corresponding to old boundary faces, then in the resulting pieces thesefaces are merged with the new boundary face. Hence each piece ends up withat most three boundary faces. This modi�cation of the update procedure isshown in Figure 4.To bound the time taken for a query let us consider the size of the skele-tal graph S at any time during the computation. Initially S is composed10



[ Modi�ed version of skeletal graph rebuilding]1. Remove Ĝu, Ĝv, and Ĝuv from S.2. if Gu(Gv) has more than 3 boundary-faces thenUse a cycle separator to split them into smaller subgraphswith boundary nodes on at most 3 faces.3. Construct substitute graphs for Guv, Gu, and Gv,or for their pieces if they were divided in the previous step.4. Add these substitutes to S and rebuild it.end [modi�cation]Figure 4: Modifying the rebuilding step in procedure updateof the face-boundary substitute graphs Ĝ1; Ĝ2; � � � ; Ĝr. Since num = n1=3,the size of Gi for 1 � i � r is O(n2=3). Also by the de�nition of a num-cluster partition the number of boundary nodes in Gi is O(n1=3). There-fore the size of Ĝi = O(��1(n1=3 log n logD) (see Theorem 2). By def-inition of the num-cluster partition r = O(num) = O(n1=3). ThereforejSj = O(��1n2=3 log n logD). Also the number of edges in the regions Gu andGv isO(n2=3. Therefore the size of H = S[Gu[Gv = O((��1n2=3 log n logD).Running Dijkstra's algorithm onH therefore requiresO((��1n2=3 log2 n logD)time.3.1 Recomputing the Cluster Decomposition aftermultiple additionsAs discussed earlier successive add operations cause new nodes to be la-beled boundary nodes, increasing the size of S. If an add operation re-sults in a split as described, then we have to recompute the face-boundarysubstitutes of up to three subgraphs Gu; Gv, and Guv. The edge addi-tions preserve planarity therefore each of the corresponding substitutes addsat most O(��1n1=3 log n logD) edges to S. Since limit = n1=3 the to-tal number of edges added before the cluster partition is recomputed isO(��1n2=3 log n logD). Since the auxiliary graph H is constructed fromS by unioning S with Gu and Gv, it also obeys the same bound on thenumber of edges. Thus an execution of Dijkstra's algorithm on H takesO(��1n2=3 log n logD(log n + log logD + log(��1)) time. If we assume that11



��1 is at most a polynomial in n and that D is no more than exponential inn then we get the bounds of the query time in Theorem 1.To bound the update time we note that by Theorem 2 the face-boundarysubstitute for any region Gi can be found in O(��1jGij log2 jGij logD) time.Since limit = O(n1=3) the size of Gi at any time in between two globalcomputations of the cluster partition is O(n2=3+n1=3) = O(n2=3). Therefore,the substitute graph Ĝi can be constructed in O(��1n2=3 log n2n logD) time.Thus, the time needed to modify the data structure for any update operationis O(��1n2=3 log2 n logD).We also recompute the cluster-partition and all the substitute graphs onceevery n1=3 add operations. The time taken to recompute the cluster partitionand to build all the substitute graphs is O(n1=3)�O(��1n2=3 log2 n logD) =O(��1n log2 n logD). Amortizing this over n1=3 add operations gives us thebounds of Theorem 1.4 Constructing a face-boundary sparse sub-stituteIn this section we address the issue of constructing a face-boundary substituteto approximately represent the all-pairs shortest paths in G among a set Nof O(pn) selected nodes (distributed over a constant number of faces).In Subsection 4.1 we describe a basic sparsi�cation technique that is thekey to the construction of our substitutes, and in Subsection 4.2 we give asimple divide-and-conquer procedure that repeatedly uses the sparsi�cationtechnique to construct a face-boundary substitute.4.1 A basic sparsi�cation techniqueLet � an error parameter and d a distance parameter, and let P be a pathin G of length O(d). In this subsection we show how to sparsely representselected node-pair shortest paths that intersect P and are between d and 2din length. In particular, we show that there exists a substitute graph withO(��1k) edges that approximates these shortest paths to within a 1+� factor.We call this substitute a crossing substitute.To construct the crossing substitute we proceed as follows: We �rst divideP into O(��1) node-disjoint segments of length at most �d=2 each. The �rst12



procedure basic-sparse[Dividing the separating path �]1. Partition � into O(��1) segments s1; s2; : : : ; sk of length at most �d=2.2. let xi be the �rst node of segment si.3. for 1 � i � k do[Sparsifying paths that cross segment si]a. Compute shortest paths from xi.b. For each boundary node u add the edge uxi (to the substitute),with the shortest-path length found in Step a.end [ Sparsi�cation]end [procedure basic-sparse]Figure 5: The basic sparsi�cation techniquenode xi in each segment si is called the segment node of that segment. Wenow perform single-source shortest-path computations in G from each of theO(��1) segment nodes. Our crossing substitute consists of a collection ofstars, one for each segment. The star for segment si has xi as its center andthe selected nodes as its leaves. The edge between a selected node u and xiis labeled with the length of the shortest path from xi to u. A pseudocodeversion of the basic sparsi�cation procedure is given in Figure 5.Lemma 4 Let CS be the crossing substitute constructed as described above.Then, for any path � 2 G j d � l(�) � 2d between selected nodes that in-tersects P there is a corresponding two-edge path �̂ 2 CS between the sameendpoints, such that l(�̂) � (1 + �)l(�). Furthermore, jCSj = O(��1k) andthe time required to compute CS is O(��1n).Proof : To prove our claim let the endpoints of � be the selected nodes uand v. Since � intersects P , as shown in Figure 6, there is an alternate pathbetween the endpoints u and v that detours through xi along si. Since thelength of si is �d=2 the additional length acquired because of the detour is atmost 2�d=2 = �d.In the substitute we approximate � by two edges, uxi and xiv. Sinceuxi and xiv represent shortest paths between their respective endpoints, thelength of the two-edge path �̂ = uxi; xiv is no more than the alternate path13
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Figure 6: Approximating a path that passes through segment siof Figure 6. Therefore, �̂ is at most �d longer than �. This combined with thefact that � is at least d in length implies that �̂ is a 1+� factor approximationof �.To bound the number of edges in our substitute we note that it consistof O(��1) stars each of which has at most k edges. The bound on the sizetherefore follows. To bound the time required to compute the crossing sub-stitute we note that the most expensive step is the single-source shortestpath computations from the segment nodes. Since there are O(��1) segmentnodes, the entire computation can be carried out in O(��1n) time using theshortest-path algorithm of [4]. 24.2 Face-boundary substitutesLet N be a set of k selected nodes in G that lie on a constant number offaces, and let � > 0 be an error parameter. In this section we show how toconstruct a face-boundary substitute that approximates the all-pairs shortestpaths between selected nodes to within a 1 + � factor.Here we describe a procedure for sparsi�cation when all the selected nodes14



lie on the boundary of a single face f . The case of multiple faces is simi-lar. Our sparsi�cation algorithm uses a divide-and-conquer mechanism andmakes use of the basic sparsi�cation technique from subsection 4.1. The ba-sic sparsi�cation technique works best with paths that are all roughly of thesame length. To accommodate this, we use a grouping technique (see, e.g.,[14]).We consider the selected-node-pair shortest paths in logD di�erentgroups and for each group we build a di�erent substitute. The ith sub-stitute approximates selected-node-pair shortest paths in the range [d; 2d],where d = 2i. These logD substitutes are unioned to get a substitute thatsparsely represents paths of all lengths.To sparsely represent selected-node-pair shortest paths with lengths inthe range [d; 2d] we use the divide-and-conquer procedure described below.A pseudocode version of the sparsi�cation procedure is give in Figure 8.1. Find separating paths: We use a procedure called separate thatgives a separating set Z consisting of one or two paths of length atmost 4d. These paths divide N into subsets N1 and N2 of size at most3jN j=4 each such that every path of length at most 4d between themintersects some path in Z (see Figure 7).2. Sparsify intersecting paths: To sparsely represent shortest pathsthat cross one of the separating paths we use the basic sparsi�cationtechnique from subsection 4.1.3. Divide G for the recursion: For each node x in G we determinewhether there is a path of length at most 2d between x and some nodein N1 (respectively N2) that does not intersect any of the separatingpaths in Z. If there is such a path then we place x in V1 (respectivelyV2). We construct G1 and G2 by taking node-induced subgraphs of V1and V2 respectively.Note that no node can be in both V1 and V2 at the same time. Oth-erwise, we would get a path of length at most 4d between N1 and N2that does not intersect any separating path.To �nd the nodes of G that go into V1 we combine all the nodes of N1into a single supernode S and �nd the nodes of G that are within adistance 2d from S in G � Z. The set V2 is determined similarly.15
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procedure sparsify[Initializing the global substitute sub ]sub �;[Grouping the paths]for each value of i in [0; logD] do[Group i sparsi�es the paths in the range [2i; 2i+1]]let d 2i;[ Sparsifying the paths in group i]1. Use separate to �nd a set Z of one or two O(d)-length paths suchthat Z divides N into two (roughly) equal sets N1 and N2,and cuts all group i paths between N1 and N2;2. Recursively construct substitutes R1 and R2 for the group i pathsthat have both their endpoints in N1 and N2 respectively;3. Use basic-sparse to construct a substitute R3 for the pathsthat have one endpoint in each of N1 and N2;4. Union R1, R2, and R3 to get subi, the substitute for group i;[ Adding to the global substitute]5. sub  sub [ subi;end [ for ]end [ procedure sparsify]Figure 8: Procedure sparsifyregions R1, R2, and R3. Any path between N1 and N2 that has one of itsendpoints in R1 or R2 is forced to cross one of the separating paths. Also,by the maximality of the separation between ai and bi there is no path fromN1 to N2 of length at most 4d that lies entirely in R3.These paths can be easily found by performing O(log k) single-sourceshortest-path computations from the nodes onA1,A2,A3, and A4. Therefore,using the shortest-path algorithm of [4] we can �nd the separating paths inO(n log k) time.To bound the size of the substitute we note that the substitute for shortestpaths in any range [d; 2d] is constructed in O(log k) stages. Furthermore, ateach level in the recursion the sum of the sizes of all crossing substitutes is17



O(��1k). Hence the total size of the substitute for group d is O(��1k log k).This combined with the fact there are O(logD) groups implies that the sizeof the substitute is O(��1k log k logD).To bound the running time of our sparsi�cation procedure we note thatthe time required for constructing the crossing substitute in step 2 is O(��1n)and the time required to �nd the separating paths is O(n log k). Thisin conjunction with the fact that the recursion depth is O(log k) and thefact that there are logD groups implies the total time for the procedure isO(��1n log2 k logD).For the case when the selected nodes are on a constant number of facesf1; f2; � � � ; fr to �nd a substitute for paths in the range [d; 2d] we proceed asfollows:To �nd a substitute for paths that go between faces fi and fj (for 1 �i; j � r) we �rst �nd a path of length at most 2d between fi and fj. If nosuch path exists then there are no paths in the range [d; 2d] between fi andfj. Otherwise let � be one such path. We �rst �nd a substitute S� for allthe paths in the range [d; 2d] that cross � by using the basic sparsi�cationtechnique from Section 4.1. Let x 2 fi and y 2 fj be the two end points of�. For the purposes of the paths in the range [d; 2d] that don't cross � wecan conceptually think of the selected nodes of fi and fj to be located on acomposite face fij constructed as follows:Duplicate all the nodes on the path � creating two paths �0 and �00 onebelow the other with endpoints x0; y0 and x00; y00 respectively. The face fij isthe single face formed in this fashion. See Figure 9. The substitute for allthe paths that don't intersect � can now be computed in the same manner asbefore by assuming fij as the conceptual single face containing the selectednodes. Since there are only a constant number of such faces we get thebounds of Theorem 2.5 ExtensionsA similar technique has proved useful in solving the dynamic reachabilityproblem in planar digraphs [15]. These techniques can also be used to de-velop a dynamic data structure for maintaining shortest paths in planardirected graphs. However, for that data structure we need some additionaltechniques[15, 16]. Details can be found in [17].18
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