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Abstract

In this paper we give a fully dynamic approximation scheme for
maintaining all-pairs shortest paths in planar networks. Given an error
parameter € such that 0 < €, our algorithm maintains approximate all-
pairs shortest-paths in an undirected planar graph G with nonnegative
edge lengths. The approximate paths are guaranteed to be accurate
to within a 1+ ¢ factor. The time bounds for both query and update
for our algorithm is O(e_1n2/3 log® nlog D), where n is the number of
nodes in GG and D is the sum of its edge lengths. The time bound for
the queries is worst case, while that for the adds is amortized.

Our approximation algorithm is based upon a novel technique for
approximately representing all-pairs shortest paths among a selected
subset of the nodes by a sparse substitute graph.
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1 Introduction

An algorithm for a given graph problem is said to be dynamic if it can main-
tain the solution to the problem as the graph undergoes changes. These
changes could be additions or deletions of edges, or a change in the cost of
some edge (if applicable). In such a setting an update denotes an incremental
change to the input, and a query is a request for some information about the
current solution. We expect the dynamic algorithm to handle both queries
and updates quickly i.e. in time that is substantially less than it would take
to solve the problem from scratch every time the input changes. An algo-
rithm is said to be fully dynamic if it supports both additions and deletions of
edges. while it is said to be semidynamic if it supports only one of them. Un-
fortunately, due to the requirement that the query and update times be very
small, designing fully dynamic algorithms seems to be considerably harder
than designing sequential algorithms, and very few graph problems have fully
dynamic solutions.

In this paper we consider the problem of maintaining shortest-path in-
formation in planar graphs. This is a fundamental optimization problem
since many applications can be formulated as shortest-path problems. Fur-
thermore, a number of more complex problems can be solved by procedures
which use shortest-path algorithms as subroutines.

Given a graph G with n nodes and m edges (with non-negative weights)
the shortest path between any two nodes can be computed efficiently by
using Dijkstra’s algorithm [1, 2] in O(m + nlogn) time. For planar graphs a
faster algorithm due to Frederickson [3] runs in O(ny/logn) time. Recently in
joint work with Rao and Rauch [4] we have given an O(n)-time algorithm for
computing single-source shortest paths. However, in the dynamic realm this
problem is much less well-understood. Though there are many algorithms
for the dynamic problem (see for example [5, 6, 7], see also [§]), none of them
can simultaneously handle both updates and queries in time that is sublinear
in the input size.

Definition 1 Let (G be an n-node planar undirected graph with nonnegative
integral edge-lengths. Let D be the sum of lengths. The length of a path =
from u to v (denoted as {(7)) is simply the sum of the lengths of the edges
in 7. A minimum-length path from u to v is called a shortest path.

The all-pairs shortest path problem is the problem of finding shortest paths



between all pairs of nodes in (.

Given the difficulty in constructing dynamic algorithms for shortest paths,
in this paper, we focus on constructing dynamic algorithms for maintaining
“approximate shortest paths.”

Definition 2 A path 7 is an ¢-approximate shortest-path if its length is at
most 1 + € times the distance (the length of the shortest path) between its
endpoints.

In this paper we show that if we are willing to settle for approximate answers
then substantial improvements are possible in both the query and update
times for maintaining shortest paths in a planar graph. In particular, we
give a fully dynamic data structure that maintains e-approximate shortest-
paths. Both query and update times for maintaining our data structure are

sublinear in n when ¢! is no more than a poly-logarithmic function of n.

Theorem 1 Let G be an undirected n-node planar graph with non neg-
ative weights on its edges such that the sum of the edge weights D
is O(exponential(n)).  Then, for any 0 < ¢ < 1 such that €' is
O(polynomial(n), there exvists a fully dynamic data structure to maintain
e-approximate all-pairs shortest-path information in GG. The time per op-
eration is O(e"'n**log® nlog D). The time for queries, edge-deletion, and
changing lengths is worst-case, while the time for adding edges is amortized.

Our approximation algorithm is based upon a novel technique for com-
pactly representing approximate all-pairs shortest paths among a set of k
selected nodes by a substitute graph with the following properties:

e Each edge uv in the substitute graph corresponds to a path 7 from w
to v in (.

o Each shortest path between selected nodes in (i is approximated to
within a 1 + € factor by a two-edge path in the substitute graph.

The size of the substitute graph depends both on the number of selected
nodes and on their distribution over the faces in GG. In particular, given an
n-node undirected planar graph with nonnegative edge-lengths that sum to
D, we have the following bounds on the size of sparse substitutes:



Theorem 2 (Face-boundary substitute) If there are k = O(y/n se-
lected nodes, all on the boundaries of a constant number of faces of G then
there exists a sparse substitute graph having O(e 'klogklog D) edges and
O((e7* + k) log k) nodes that approzimates the all-selected-node-pair shortest
paths in G to within a 1 + € factor. Furthermore, the substitute graph can be
constructed in O(e *nlog®nlog D) time.

2 Preliminaries

In this section we introduce some basic terminology regarding planar graphs.
More details and related background can be found in [18, 9, 3, 11]

Definition 3 A graph (i is said to be planar if we can embed the nodes and
edges of the graph on the plane such that no two edges cross each other.

Definition 4 A cycle in GG is a set of nodes uy, ug, - - -, ug such that ul = uy
and wu; is connected to u;_; and w; 1. A cycle C = {uy, uq,- -+, ug} is a simple
cycle if all the nodes uy through u;_; are distinct. Given an embedding of (¢
on the plane a simple cycle ¢ = {uy, -+, ux} is called a face if no other nodes
of g are topologically embedded inside ¢ in the embedding.

Definition 5 A set X of nodes in G is called a separator if the removal of X
divides (G into two or more disconnected pieces. The nodes of X are called
boundary nodes.

Lipton and Tarjan [12] showed that given an n-node planar graph G and
given a subset B of the nodes of (G, in linear time one can find a separator
such that |X| = O(y/n), and none of the pieces created by the removal of
X has more than % of the nodes from B. Such a separator X is called a
balanced separator of B. Miller [13] showed that if (¢ is two-connected and
triangulated then we can find a balanced separator X that is a simple cycle.
If G is not two-connected we can first two-connect it in the following manner:

o Make G connected by adding edges between all the disconnected pieces.

e Add one dummy node per face of the original graph, with dummy
edges connecting the dummy node to the nodes on the boundary of the
original face.



After this process none of the faces will have more than 3 boundary nodes;
thus the resulting graph is triangulated.

Lemma 1 Given a planar graph G the process of adding dummy nodes and
edges described above results in a triangulated two-connected graph.

Proof: The second step results in a triangulated graph as noted above. To
prove that it is two-connected assume for a contradiction that ¢ is not two-
connected after the addition of the dummy nodes and edges. This implies
that there is a node u that is a separator. Let the two components that u
separates be ('; and (5. Let f be the outer face containing w and nodes
from 7 and C5. By construction f can have only 3 nodes. Therefore
and Cy (since they are both non-empty) each contribute one node (z; and
x4 respectively) to f. This implies C; and C3 must contain only one node
each. Otherwise more than one node of 'y, and (5 will be on the face f.
However, this leads us to our base case since one of u, x, or x5 is a dummy
node. Thus the resulting graph is two-connected and triangulated. O

Thus we can use Miller’s algorithm to find cycle separators for graphs that
are not necessarily two-connected and triangulated.

2.1 Cluster Decompositions

Frederickson [9, 3] showed how to construct dynamic algorithms for graph
problems by dividing a graph into clusters. Such a division is called a cluster
decomposition. Frederickson [9] used the clustering idea to construct a fully
dynamic data structure for maintaining minimum spanning trees in general
graphs. In the context of planar graphs [3] he used a separator based cluster
decomposition (obtained by repeated division of the graph using separators)
to derive improved sequential algorithms for single-source shortest paths.
Galil, Ttaliano, and Sarnak [10, 11] used the separator algorithm due to
Lipton and Tarjan [12] to repeatedly divide the underlying planar graph into
clusters. Galil and Italiano [10] used such a decomposition to derive a fully
dynamic data structure for maintaining two and three-vertex connectivity
information in planar graphs. Galil, Italiano, and Sarnak [11] used cluster
decompositions to develop a fully dynamic planarity-testing algorithm. We
borrow this technique and their terminology. For reasons that will be ap-
parent soon, in this paper we will use the planar separator algorithm by
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Miller [13] to construct our decomposition. Our dynamic shortest-path data
structure will require the decomposition of the given planar graph ' into
clusters. However, we will use a somewhat restrictive notion of what is a
decomposition of a planar graph GG into clusters.

Definition 6 A cluster partition of a graph G is a partition of the edges
of GG into edge-induced subgraphs. A node of (G is a boundary node of the
partition if it belongs to more than one subgraph. A num-cluster partition
of an n-node planar graph G is a cluster partition of GG into r = O(num)
subgraphs Gy, Gy, - -+, G with the following properties:

1. Each subgraph G, contains O(n/num) edges.

2. The number of boundary nodes in each G; is O(y/n/num).

3. In each subgraph G;, the boundary nodes all lie on the boundaries of
a constant number of faces. (Note that a face of (¢; need not be a face

of G.)

Note that because the subgraphs of a cluster partition are edge-induced,
a node belongs to such a subgraph only if an edge incident to the node
belongs to the subgraph. The next lemma follows from the arguments of

Frederickson [3].

Lemma 2 Given a planar graph G, a num-cluster partition can be obtained
in O(nlogn) time.

Proof: To create a cluster decomposition of G we two-connect and triangu-
late it as described above by adding dummy nodes and edges. By applying
Miller’s algorithm to this graph, we can obtain a cycle separator that divides
the non-dummy nodes of the graph into pieces none of which have more than
%n nodes. The separator is a cycle that contains both dummy and non-
dummy nodes. The set X of non-dummy nodes of the separator need not
form a cycle in the original graph. However, it does divide the graph into two
pieces (1 and G5 such that such that, in the induced subgraph H; = G; U X
the nodes of X all lie on the boundary of a single face. The dummy nodes
do not play any role in the data structure, and are used only to divide up

the graph.



To obtain a num cluster partition we start with with G and repeatedly
divide it using a planar cycle separator [13] (as discussed above) until all
the pieces have O(n/num) edges. We re-triangulate subgraphs when faces
get too big so that we are guaranteed to have small cycle separators. As
mentioned earlier, these dummy nodes and edges are transient and play no
role in the actual data structure.

Using techniques due to Frederickson [3] we can also make sure that none
of the pieces have too many boundary nodes. This is accomplished as follows:
The separator algorithm can be used to separate a node-weighted version of
the graph into pieces none of which has more than two-thirds the original
weight. In order to split the boundary nodes we give all the non-boundary
nodes weight 0 and give weight 1 to the boundary nodes. We then run
the separator algorithm to find a weighted separation. This automatically
gives us a division of the boundary nodes. Proceeding in this fashion we can
generate a num-cluster partition. O

Definition 7 Consider a num-cluster partition of G. In such a partition
we define the parent of edge uv (denoted by G,,) to be the subgraph G,
that contains it. Similarly, if v is a non-boundary node, we define its parent
(denoted G,) to be the subgraph ; containing it. If « is a boundary node,
we arbitrarily select one of the subgraphs G; that contains u, and assign it
to be u’s parent (denoted by G,).

The remainder of the paper is organized as follows: In Section 3 we
describe our dynamic data structure for mainitaining approximate shortest
paths. In Section 4 we address the issue of constructing face-boundary sub-
stitutes and in Section 5 we discuss some extensions of our algorithm.

3 A fully dynamic data structure for approx-
imate shortest paths

In this section we describe our dynamic data structure for maintaining ap-
proximate shortest paths that satisfies the bounds of Theorem 1. Our data
structure uses the face-boundary substitutes of Theorem 2. Section 4 gives
the details of how the face-boundary substitutes are constructed.
Throughout this paper we assume that all the edge-additions are
planarity-preserving. To see whether edge-additions preserve planarity we



procedure preprocess(G, num)
[Division]
Find a num-cluster partition of & into regions Gy, Gy, -+, G,

each with n/num nodes and O(y/n/num) boundary nodes.

[Local Computation]
for each region G; do
construct a substitute graph G representing
boundary-to-boundary shortest paths in G}.

Forming the Skeleton
g
SFG1UG2UUGT

end [procedure preprocess|

Figure 1: The generic preprocessing step.

can run the planarity-testing algorithm from [11] in the background to pre-
vent addition of edges that destroy planarity. Doing this only increases the
time-complexity of our update operations by a constant factor. In the de-
scriptions of our algorithms we will not explicitly mention these additional
steps.

Our data structure supports the following operations:

1. distance(u,v): Find the approximate distance between v and v in G.
2. add(u,v,w): Add a new edge uv of length w.

3. change(uv,w): Change the length of the edge uv to w.

4. delete(uv): Delete edge uv.

5. remove(u): Remove an isolated node (a node that has no edges) u.

Figures 1, 2, and 3 give the preprocessing, query, and update routines. The
procedure for removing an isolated node u involves no change to the data
structure. We just remove it from the corresponding parent cluster G,



To initialize or data structure, we find an num-cluster partition of GG
(the optimal value for num will be derived later), and precompute substi-
tute graphs él,éz, x -,ér that approximately represent the boundary-to-
boundary shortest paths in the respective subgraphs G, Gy, -+, G,.. The G
are face-boundary substitutes as described in Theorem 2 that approximate
the boundary-to-boundary shortest paths in G; to within a 1+¢€ factor. These
substitute graphs are then unioned to form a skeletal graph S.

The skeletal graph S is a compact representation for the shortest-paths
among the boundary nodes and is used in the query-stage to compute the
distance between the two query points.

To answer a query concerning the distance between two given nodes u
and v, we form an auxiliary graph H by unioning the regions (¢, and G, along
with the skeletal graph S. We then run a sequential shortest-path algorithm
on the auxiliary graph H to compute the distance between u and v. See
Figure 2 for the query-procedure distance.

procedure distance(u, v)
[Forming the auxiliary graph]
H«+G,UG,US.

[The Query]

1. Run Dijkstra’s algorithm in H with u as the source node.

2. Return the distance between u and v found in the previous step.
end [procedure distance]

Figure 2: Performing a query using the skeleton S constructed in the pre-
processing step.

To prove the correctness of our query-procedure we need to show that
the distance between u and v in H is an accurate estimate of the distance
between u and v in (¢, consider a path 7 of minimum length from u to v in G.
Mark all the boundary nodes in w. This marking divides 7 into a sequence of
subpaths such that the first and the last subpaths lie entirely within ¢, and
G, respectively, and each intermediate subpath is a boundary-to-boundary
path that lies entirely within one of the subgraphs G through G,.. Since the
boundary-to-boundary shortest paths in (&; are estimated by the substitute
graph G to within a 1 + ¢ factor, it follows that H contains a path from u



to v whose length is no more than 1 + € times the length of 7.

To perform an add operation we add a new edge uv of length w to the
parent region G, of u. Similarly to delete an edge uv we simply remove it
from its parent region G,. To implement the change operation we simply
change the weight of wv in G, to w. For each of these three operations
we need to recompute the substitute graphs of the affected regions. We do
this using a procedure update that recomputes the substitute graphs for all
the regions that are affected by the change. Figure 3 gives the pseudocode
for procedure update. Lemma 3 shows that only a constant number of
subgraphs are affected during a single add, delete, or change operation.

procedure update(u,v)
[Changing the boundary information]
if u or v change their boundary status then
change their labels in G, and/or G;

[ Rebuilding the skeletal graph]

1. Remove Gu, GU, and G, from S

2. Recompute the substitutes Gu, GU, and éw;

3. Add these substitutes to S and rebuild it
end [procedure update]

Figure 3: Updating the data structure

Lemma 3 Adding, deleting, or changing the length of an edge affects only
a constant number of subgraphs in the cluster partition. Therefore, only a
constant number of substitute graphs need to be recomputed to modify the
skeletal graph S.

Proof: We discuss the case of a delete operation. The arguments for addition
and changing edge-lengths are similar. Consider deleting the edge uv. This
results in a change in the subgraph G',,. Furthermore, it is possible that
deleting this edge could make either u (or v) a non-boundary node (this
could happen if all the remaining edges incident at u (v) now lie in a single
subgraph). Such a change in the boundary-status can affect only GG, and G,.
Therefore, to modify .S we need only recompute éw, éu, and G, O



As we continue to add edges more and more nodes will become boundary
nodes, since every time an edge uv is added either v or v may become a
boundary node. This will cause the skeletal graph S to grow in size thus
increasing the query time. Also the cluster decomposition will start losing
its properties, since all the added edges could end up in the same region. We
therefore recompute the cluster partition after the number of add operations
exceeds the value of a preset parameter (imit. This will imply that the time
for the add operation is amortized.

We are now ready to discuss our bounds for maintaining approximate
shortest paths. We first discuss the query time assuming the substitute
graphs and the skeletal graphs obey the restrictions of Theorem 2. Subsec-
tion 3.1 discusses the details of the periodic re-computation of the cluster
decompositions and the time required for the update operations.

To maintain approximate shortest paths we set both num and limit to
be n'/3. For each G; we let the substitute graph G be the face-boundary-
substitute that represents the all-boundary pair shortest paths in G; to within
a 1+ ¢ factor.

To maintain approximate shortest paths we follow the description of
the generic algorithm except for one difference: Since the size of the face-
boundary substitutes depends on the distribution of the boundary nodes we
modify our updating procedure slightly. Whenever the number of boundary
faces (faces that contain boundary nodes) in some cluster (; exceeds three,
we apply Miller’s separator algorithm to the graph with dummy nodes added.
In order to reduce the number of boundary faces, we first give two-connect
and triangulate the graph as before. We then give a weight of 1 to the
dummy nodes corresponding to the boundary faces. All the other nodes are
given weight 0. We then use Miller’s algorithm to find a separator X that
divides up the dummy nodes corresponding to boundary faces. Each of the
two resulting pieces has at most two-thirds of the four boundary faces, hence
at most two old boundary faces. The new separator introduces an additional
boundary face, for a total of three per piece. If the separator includes dummy
nodes corresponding to old boundary faces, then in the resulting pieces these
faces are merged with the new boundary face. Hence each piece ends up with
at most three boundary faces. This modification of the update procedure is
shown in Figure 4.

To bound the time taken for a query let us consider the size of the skele-
tal graph S at any time during the computation. Initially S is composed
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[ Modified version of skeletal graph rebuilding]
1. Remove Gu, GU, and Gw from S.
2. if G,(G,) has more than 3 boundary-faces then
Use a cycle separator to split them into smaller subgraphs
with boundary nodes on at most 3 faces.
3. Construct substitute graphs for G, G\, and G,
or for their pieces if they were divided in the previous step.
4. Add these substitutes to S and rebuild it.
end [modification]

Figure 4: Modifying the rebuilding step in procedure update

of the face-boundary substitute graphs Gl, Gz, R G,. Since num = n'/3,

the size of G; for 1 <1 < r is O(n2/3). Also by the definition of a num-
cluster partition the number of boundary nodes in G; is O(n'/?). There-
fore the size of G = O(e'(n'/*lognlog D) (see Theorem 2). By def-
inition of the num-cluster partition r = O(num) = O(n'/?). Therefore
S| = O(e'n?Plognlog D). Also the number of edges in the regions G, and
G, is O(n2/3. Therefore the size of H = SUG, UG, = O((6_1n2/3 log nlog D).
Running Dijkstra’s algorithm on H therefore requires O((e~'n?/®log® n log D)
time.

3.1 Recomputing the Cluster Decomposition after
multiple additions

As discussed earlier successive add operations cause new nodes to be la-
beled boundary nodes, increasing the size of S. If an add operation re-
sults in a split as described, then we have to recompute the face-boundary
substitutes of up to three subgraphs G,,G,, and G,. The edge addi-
tions preserve planarity therefore each of the corresponding substitutes adds
at most O(e"'n'/?lognlog D) edges to S. Since limit = n'/® the to-
tal number of edges added before the cluster partition is recomputed is
O(e'n?*lognlog D). Since the auxiliary graph H is constructed from
S by unioning S with G, and G,, it also obeys the same bound on the
number of edges. Thus an execution of Dijkstra’s algorithm on H takes
O(e~'n?lognlog D(logn + loglog D + log(e™!)) time. If we assume that
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¢! is at most a polynomial in n and that D is no more than exponential in
n then we get the bounds of the query time in Theorem 1.

To bound the update time we note that by Theorem 2 the face-boundary
substitute for any region G; can be found in O(e™!|G;|log? |G:|log D) time.
Since limit = O(n'/?) the size of G at any time in between two global
computations of the cluster partition is O(n?/® 4+n'/%) = O(n?/?). Therefore,
the substitute graph (i; can be constructed in O(e~'n?log n*nlog D) time.
Thus, the time needed to modify the data structure for any update operation
is O(e~'n**log? nlog D).

We also recompute the cluster-partition and all the substitute graphs once
every n'/ add operations. The time taken to recompute the cluster partition
and to build all the substitute graphs is O(n'/?) x O(¢~'n*/*log* nlog D) =
O(e~'nlog® nlog D). Amortizing this over n'/* add operations gives us the
bounds of Theorem 1.

4 Constructing a face-boundary sparse sub-
stitute

In this section we address the issue of constructing a face-boundary substitute
to approximately represent the all-pairs shortest paths in ¢ among a set NV
of O(y/n) selected nodes (distributed over a constant number of faces).

In Subsection 4.1 we describe a basic sparsification technique that is the
key to the construction of our substitutes, and in Subsection 4.2 we give a
simple divide-and-conquer procedure that repeatedly uses the sparsification
technique to construct a face-boundary substitute.

4.1 A basic sparsification technique

Let ¢ an error parameter and d a distance parameter, and let P be a path
in G of length O(d). In this subsection we show how to sparsely represent
selected node-pair shortest paths that intersect P and are between d and 2d
in length. In particular, we show that there exists a substitute graph with
O(e'k) edges that approximates these shortest paths to within a 1+e factor.
We call this substitute a crossing substitute.

To construct the crossing substitute we proceed as follows: We first divide
P into O(e™') node-disjoint segments of length at most ed/2 each. The first
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procedure basic-sparse
[Dividing the separating path p]
1. Partition p into O(e™!) segments sy, sq,. .., sg of length at most ed/2.
2. let z; be the first node of segment s;.
3. for1 <:<kdo

[Sparsifying paths that cross segment s;]
a. Compute shortest paths from z;.
b. For each boundary node u add the edge ux; (to the substitute),
with the shortest-path length found in Step a.
end [ Sparsification]
end [procedure basic-sparse]

Figure 5: The basic sparsification technique

node z; in each segment s; is called the segment node of that segment. We
now perform single-source shortest-path computations in G from each of the
O(e™!) segment nodes. Our crossing substitute consists of a collection of
stars, one for each segment. The star for segment s; has x; as its center and
the selected nodes as its leaves. The edge between a selected node u and z;
is labeled with the length of the shortest path from z; to u. A pseudocode
version of the basic sparsification procedure is given in Figure 5.

Lemma 4 Let C'S be the crossing substitute constructed as described above.
Then, for any path m € G|d < [(m) < 2d between selected nodes that in-
tersects P there is a corresponding two-edge path © € CS between the same
endpoints, such that [(7) < (1 + €)l(7). Furthermore, |CS| = O(e™ k) and
the time required to compute C'S is O(e™'n).

Proof: To prove our claim let the endpoints of m be the selected nodes u
and v. Since 7 intersects P, as shown in Figure 6, there is an alternate path
between the endpoints v and v that detours through x; along s;. Since the
length of s; is ed/2 the additional length acquired because of the detour is at
most 2ed/2 = ed.

In the substitute we approximate 7 by two edges, ux; and z;v. Since
ux; and ;v represent shortest paths between their respective endpoints, the
length of the two-edge path m = ux;, ;v is no more than the alternate path
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The aternate path from
utov

Figure 6: Approximating a path that passes through segment s;

of Figure 6. Therefore, 7 is at most ed longer than . This combined with the
fact that 7 is at least d in length implies that 7 is a 1+ € factor approximation
of m.

To bound the number of edges in our substitute we note that it consist
of O(e™!) stars each of which has at most k edges. The bound on the size
therefore follows. To bound the time required to compute the crossing sub-
stitute we note that the most expensive step is the single-source shortest
path computations from the segment nodes. Since there are O(¢™!) segment
nodes, the entire computation can be carried out in O(e~'n) time using the
shortest-path algorithm of [4]. 0

4.2 Face-boundary substitutes

Let N be a set of k selected nodes in G that lie on a constant number of
faces, and let € > 0 be an error parameter. In this section we show how to
construct a face-boundary substitute that approximates the all-pairs shortest
paths between selected nodes to within a 1 + ¢ factor.

Here we describe a procedure for sparsification when all the selected nodes
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lie on the boundary of a single face f. The case of multiple faces is simi-
lar. Our sparsification algorithm uses a divide-and-conquer mechanism and
makes use of the basic sparsification technique from subsection 4.1. The ba-
sic sparsification technique works best with paths that are all roughly of the
same length. To accommodate this, we use a grouping technique (see, e.g.,
14))

We consider the selected-node-pair shortest paths in log D different
groups and for each group we build a different substitute. The ith sub-
stitute approximates selected-node-pair shortest paths in the range [d,2d],
where d = 2. These log D substitutes are unioned to get a substitute that
sparsely represents paths of all lengths.

To sparsely represent selected-node-pair shortest paths with lengths in
the range [d,2d] we use the divide-and-conquer procedure described below.
A pseudocode version of the sparsification procedure is give in Figure 8.

1. Find separating paths: We use a procedure called separate that
gives a separating set Z consisting of one or two paths of length at
most 4d. These paths divide N into subsets N; and N, of size at most
3|N|/4 each such that every path of length at most 4d between them
intersects some path in Z (see Figure 7).

2. Sparsify intersecting paths: To sparsely represent shortest paths
that cross one of the separating paths we use the basic sparsification
technique from subsection 4.1.

3. Divide G for the recursion: For each node = in G we determine
whether there is a path of length at most 2d between = and some node
in N; (respectively Ny) that does not intersect any of the separating
paths in Z. If there is such a path then we place x in V] (respectively
Va). We construct (4 and (3 by taking node-induced subgraphs of V}
and V; respectively.

Note that no node can be in both V; and V5 at the same time. Oth-
erwise, we would get a path of length at most 4d between N; and N,
that does not intersect any separating path.

To find the nodes of G that go into V] we combine all the nodes of N,
into a single supernode S and find the nodes of (G that are within a
distance 2d from S in G — Z. The set V5 is determined similarly.

15



Figure 7: Using one or two paths to cut the boundary

4. Recursive computation: Recursively compute sparse substitutes for
[d, 2d]-shortest paths in (G; and G5 with both endpoints in N; and
N, respectively. Union the two recursive substitutes along with the
crossing substitute found in step 2 to get the face-boundary substitute
for all the selected nodes.

Before we analyze our procedure for sparsification we describe procedure
separate. Consider a division of N into four subsets Ay, A5, A3, and A4 as
shown in Figure 7. If there is a path of length at most 4d from A; to As or
Ay to A4 then we can use it to divide N into subsets N, and N, as shown in
Figure 7. Note that the nodes of N; are topologically separated from those
of N3 by the separator. Thus every path between N; and N, crosses the
separating path.

When there is no single path of the desired length that divides N into
roughly equal subsets we can use two paths as shown in Figure 7. Each of
the paths has length at most 4d, and their endpoints aq, by and ag, by satisfy
the following properties: Node a; is in A; while node ay is in Az; by and
by occur after a; and ay respectively in the cyclic order around f; and the
separation between a; and b;, 1 = 1,2 is the maximum possible (in terms of
their placement on the boundary of f) under the previous constraints. As
shown in Figure 7, the exterior of face f is topologically separated into three
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procedure sparsify
[Initializing the global substitute sub |
sub « ¢;
[Grouping the paths]
for each value of ¢ in [0,log D] do
[Group i sparsifies the paths in the range [2¢, 2+!]]
let d « 2¢;

[ Sparsifying the paths in group 1]

1. Use separate to find a set Z of one or two O(d)-length paths such
that 7 divides N into two (roughly) equal sets Ny and N,
and cuts all group ¢ paths between Ny and Ny;

2. Recursively construct substitutes Ry and Ry for the group ¢ paths
that have both their endpoints in Ny and N, respectively;

3. Use basic-sparse to construct a substitute Rs for the paths
that have one endpoint in each of N; and N,;

4. Union Ry, R, and Rj3 to get sub,, the substitute for group ¢;

[ Adding to the global substitute]
5. sub <« sub U sub;;
end [ for ]

end [ procedure sparsify]

Figure 8: Procedure sparsify

regions Ry, Ry, and R3. Any path between N; and N; that has one of its
endpoints in Ry or Ry is forced to cross one of the separating paths. Also,
by the maximality of the separation between a; and b; there is no path from
Nj to N, of length at most 4d that lies entirely in Rs.

These paths can be easily found by performing O(log k) single-source
shortest-path computations from the nodes on Ay, A, A3, and A4. Therefore,
using the shortest-path algorithm of [4] we can find the separating paths in
O(nlog k) time.

To bound the size of the substitute we note that the substitute for shortest
paths in any range [d, 2d] is constructed in O(log k) stages. Furthermore, at
each level in the recursion the sum of the sizes of all crossing substitutes is
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O(e™'k). Hence the total size of the substitute for group d is O(e™'klog k).
This combined with the fact there are O(log D) groups implies that the size
of the substitute is O(e™*k log klog D).

To bound the running time of our sparsification procedure we note that
the time required for constructing the crossing substitute in step 2 is O(e™'n)
and the time required to find the separating paths is O(nlogk). This
in conjunction with the fact that the recursion depth is O(logk) and the
fact that there are log D groups implies the total time for the procedure is
O(e nlog® klog D).

For the case when the selected nodes are on a constant number of faces
fi, f2,- -+, [ to find a substitute for paths in the range [d, 2d] we proceed as
follows:

To find a substitute for paths that go between faces f; and f; (for 1 <
i,7 < r) we first find a path of length at most 2d between f; and f;. If no
such path exists then there are no paths in the range [d, 2d] between f; and
fi. Otherwise let m be one such path. We first find a substitute S, for all
the paths in the range [d,2d] that cross m by using the basic sparsification
technique from Section 4.1. Let = € f; and y € f; be the two end points of
7. For the purposes of the paths in the range [d,2d] that don’t cross 7 we
can conceptually think of the selected nodes of f; and f; to be located on a
composite face f;; constructed as follows:

Duplicate all the nodes on the path 7 creating two paths 7" and 7" one
below the other with endpoints 2',y" and z”,y" respectively. The face fij 1s
the single face formed in this fashion. See Figure 9. The substitute for all
the paths that don’t intersect 7 can now be computed in the same manner as
before by assuming f;; as the conceptual single face containing the selected
nodes. Since there are only a constant number of such faces we get the
bounds of Theorem 2.

5 Extensions

A similar technique has proved useful in solving the dynamic reachability
problem in planar digraphs [15]. These techniques can also be used to de-
velop a dynamic data structure for maintaining shortest paths in planar
directed graphs. However, for that data structure we need some additional
techniques[15, 16]. Details can be found in [17].
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Figure 9: Creating the composite face f;;
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