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Abstract. We develop a new technique for computing maximum flow in
directed planar graphs with multiple sources and a single sink that sig-
nificantly deviates from previously known techniques for flow problems.
This gives rise to an O(diameter · n logn) algorithm for the problem.

1 Introduction

The study of maximum flow in planar graphs has a long history. In 1956, Ford
and Fulkerson introduced the max st-flow problem, gave a generic augmenting-
path algorithm, and also gave a particular augmenting-path algorithm for the
case of a planar graph where s and t are on the same face (that face is tra-
ditionally designated to be the infinite face). Researchers have since published
many algorithmic results proving running-time bounds on max st-flow for (a)
planar graphs where s and t are on the same face, (b) undirected planar graphs
where s and t are arbitrary, and (c) directed planar graphs where s and t are
arbitrary. The best bounds known are (a) O(n) [5], (b) O(n log log n) [6], and
(c) O(n log n) [2], where n is the number of nodes in the graph.

This paper is concerned with the maximum flow problem in the presence of
multiple sources. In max-flow applied to general graphs, multiple sources presents
no problem: one can reduce the problem to the single-source case by introducing
an artificial source and connecting it to all the sources. However, as Miller and
Naor [10] pointed out, this reduction violates planarity unless all the sources are
on the same face to begin with. Miller and Naor raise the question of computing
a maximum flow in a planar graph with multiple sources and multiple sinks.
Until recently, the best known algorithm for computing multiple-source max-
flow in a planar graph is to use the reduction in conjunction with a max-flow
algorithm for general graphs. That is, no planarity-exploiting algorithm was
known for the problem. A few months after developing the technique described
in this paper we developed with collaborators an algorithm for the more general
problem of maximum flow in planar graphs with multiple sources and sinks [3]
which runs in O(n log3 n) time and uses a recursive approach. Given these recent
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developments, the algorithm presented here is mostly interesting for the new
technique developed.

In this paper we present an alternative algorithm for the maximum flow
problem with multiple sources and a single sink in planar graphs that runs in
O(diameter · n log n) time. The diameter of a graph is defined as the maximum
over all pairs of nodes of the minimum number of edges in a path connecting the
pair. Essentially, we start with a non-feasible flow that dominates a maximum
flow, and convert it into a feasible maximum preflow by eliminating negative-
length cycles in the dual graph. The main algorithmic tool is a modification of an
algorithm of Klein [9] for finding multiple-source shortest paths in planar graphs
with nonnegative lengths; our modification identifies and eliminates negative-
length cycles. This approach is significantly different than all previously known
maximum-flow algorithms. While the relation between flow in the primal graph
and shortest paths in the dual graph has been used in many algorithms for
planar flow, considering fundamentally non-feasible flows and handling negative
cycles is novel. We believe that this is an interesting algorithmic technique and
are hopeful it will be useful beyond the current context.

1.1 Applications

Schrijver [12] has written about the history of the maximum-flow problem. Ford
and Fulkerson, who worked at RAND, were apparently motivated by a clas-
sified memo of Harris and Ross on interdiction of the Soviet railroad system.
That memo, which was declassified, contains a diagram of a planar network that
models the Soviet railroad system and has multiple sources and a single sink.

A more realistic motivation comes from selecting multiple nonoverlapping re-
gions in a planar structure. Consider, for example, the following image-segmentation
problem. A grid is given in which each vertex represents a pixel, and edges con-
nect orthogonally adjacent pixels. Each edge is assigned a cost such that the edge
between two similar pixels has higher cost than that between two very different
pixels. In addition, each pixel is assigned a weight. High weight reflects a high
likelihood that the pixel belongs to the foreground; a low-weight pixel is more
likely to belong to the background.

The goal is to find a partition of the pixels into foreground and background
to minimize the sum

weight of background pixels

+ cost of edges between foreground pixels and background pixels

subject to the constraints that, for each component K of foreground pixels, the
boundary of K forms a closed curve in the planar dual that surrounds all of K
(essentially that the component is simply connected).

This problem can be reduced to multiple-source, single-sink max-flow in a
planar graph (in fact, essentially the grid). For each pixel vertex v, a new vertex
v′, designated a source, is introduced and connected only to v. Then the sink
is connected to the pixels at the outer boundary of the grid. See [4] for similar
applications in computer vision.



1.2 Related Work

Most of the algorithms for computing maximum flow in general (i.e., non-planar)
graphs build a maximum flow by starting from the zero flow and iteratively
pushing flow without violating arc capacities. Traditional augmenting path al-
gorithms, as well as more modern blocking flow algorithms, push flow from the
source to the sink at each iteration, thus maintaining a feasible flow (i.e., a flow
assignment that respects capacities and obeys conservation at non-terminals)
at all times. Push-relabel algorithms relax the conservation requirement and
maintain a feasible preflow rather than a feasible flow. However, none of these
algorithms maintains a flow assignment that violates arc capacities.

There are algorithms for maximum flow in planar graphs that do use flow
assignments that violate capacities [11, 10]. However, these violations are not
fundamental in the sense that the flow does respect capacities up to a circulation
(a flow with no sources or sinks). In other words, the flow may over-saturate some
arcs, but no cut is over-saturated. We call such flows quasi-feasible flows.

The value of a flow that does over-saturate some cuts is higher than that of
a maximum flow. This situation can be identified by detecting a negative-length
cycle in the dual of the residual graph. One of the algorithms in [10] uses this
property in a parametric search for the value of the maximum flow. When a
quasi-feasible flow with maximum value is found, it is converted into a feasible
one. This approach is not suitable for dealing with multiple sources because the
size of the search space grows exponentially with the number of sources.

Our approach is the first to use and handle fundamentally infeasible flows.
Instead of interpreting the existence of negative cycles as a witness that a given
flow should not be used to obtain a maximum feasible flow, we use the negative
cycles to direct us in transforming a fundamentally non-feasible flow into a max-
imum feasible flow. A negative-length cycle whose length is −c corresponds to a
cut that is over saturated by c units of flow. This implies that the flow should
be decreased by pushing c units of flow back from the sink across that cut.

2 Preliminaries

In this section we provide basic definitions and notions that are useful in pre-
senting the algorithm. Additional definitions and known facts that are relevant
to the proof of correctness and to the analysis are presented later on.

We assume the reader is familiar with the basic definitions of planar em-
bedded graphs and their duals (cf. [2]). Let G = 〈V,A〉 be a planar embedded
graph with node-set V and arc-set A. For notational simplicity, we assume here
and henceforth that G is connected and has no parallel edges and no self-loops.
For each arc a in the arc-set A, we define two oppositely directed darts, one in
the same orientation as a (which we sometimes identify with a) and one in the
opposite orientation. We define rev(·) to be the function that takes each dart to
the corresponding dart in the opposite direction. It is notationally convenient to
equate the edges, arcs and darts of G with the edges, arcs and darts of the dual



G∗. It is well-known that contracting an edge that is not a self-loop corresponds
to deleting it in the dual, and that a set of darts forms a simple directed cycle
in G iff it forms a simple directed cut in the dual G∗ [13]; see Fig. 1.
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Fig. 1. A primal graph (black) and its dual (gray). The cut δ({u, v, w}) in the primal
corresponds to a counterclockwise dual cycle (dashed arcs).

Given a length assignment length(·) on the darts, we extend it to sets D of
darts by length(D) =

∑
d∈D length(d). For a set X of nodes, let δ(X) denote

the set of darts crossing the cut (X,V − X). Namely, δ(X) = {d : tail(d) ∈
X,head(d) /∈ X}. Let T be a rooted spanning tree of G∗. For a node v ∈ G∗, let
T [v] denote the unique root-to-v path in T . The reduced length of d with respect
to T is defined by

lengthT (d) = length(d) + length(T [tailG∗(d)])− length(T [headG∗(d)]) (1)

The edges of G not in T form a spanning tree τ of G. A dart d is unrelaxed if
lengthT (d) < 0. Note that, by definition, only darts not in T can be unrelaxed.
A leafmost unrelaxed dart is an unrelaxed dart d of τ such that no proper de-
scendant of d in τ is unrelaxed. For a dart d not in T , the elementary cycle of
d with respect to T in G∗ is the cycle composed of d and the unique path in T
between the endpoints of d.

2.1 Flow

Let S ⊂ V be a set vertices called sources, and let t /∈ S be vertex called sink.
A flow assignment f(·) in G is a real-valued function on the darts of G

satisfying antisymmetry:
f(rev(d)) = −f(d)

A capacity assignment c(·) is a real-valued function on darts. A flow assign-
ment f(·) is feasible or respects capacities if, for every dart d, f(d) ≤ c(d). Note
that, by antisymmetry, f(d) ≤ c(d) implies f(rev(d)) ≥ −c(d). Thus a negative
capacity on a dart acts as a lower bound on the flow on the reverse dart.



For a given flow assignment f(·), the net inflow (or just inflow) node v is
inflowf (v) =

∑
d∈A:head(d)=v f(d). 1 The outflow of v is outflowf (v) = −inflowf (v).

The value of f(·) is the inflow at the sink, inflowf (t). A flow assignment f(·) is
said to obey conservation at node v if inflowf (v) = 0. A flow assignment is a
circulation if it obeys conservation at all nodes. A flow assignment is a flow if it
obeys conservation at every node other than the sources and sink. It is a preflow
if for every node other than the sources, inflowf (v) ≥ 0.

For two flow assignments f, f ′, the addition f + f ′ is the flow that assigns
f(d) + f ′(d) to every dart d. A flow assignment f is a quasi-feasible flow if there
exists a circulation φ such that f + φ is a feasible flow. This concept is not new,
but it is so central to our algorithm that we introduce a name for it.

The residual graph of G with respect to a flow assignment f(·) is the graph
Gf with the same arc-set, node-set and sink, and with capacity assignment cf (·)
defined as follows. For every dart d, cf (d) = c(d)− f(d).

Given a feasible preflow f+ in a planar graph, there exists an O(n log n)-time
algorithm that converts f+ into a feasible flow f with the same value (cf. [7]).
In fact, this can be done in linear time by first canceling flow cycles using the
technique of Kaplan and Nussbaum [8], and then by sending any excess flow
from back to the sources in topological sort order.

2.2 Quasi-Feasible Flows and Negative-Length Dual Cycles

Miller and Naor prove that f is a quasi-feasible flow in G if and only if G∗f
contains no negative-length cycles. Intuitively, a negative-length cycle in the
dual corresponds to a primal cut whose residual capacity is negative. That is,
the corresponding cut is over-saturated. Since a circulation obeys conservation
at all nodes it does not change the total flow across any cut. Therefore, there
exists no circulation whose addition to f would make it feasible. Conversely, they
show that if G∗f has no negative-length cycles, then shortest path distances from
any arbitrary node in the dual define a feasible circulation in the primal.

Potentials, Clockwise and Left-of The set of circulations in a graph forms
a vector space, called the cycle space of the graph. For each face f , let uf be the
vector that assigns flow value 1 to each dart in the clockwise boundary of the
face. Each such vector is in the cycle space. Moreover, the set {uf : f 6= f∞}
is a basis for the cycle space. Therefore every circulation can be written as a
linear combination

∑
f pfuf . The coefficients pf are called face potentials. By

convention, the potential of f∞ is zero.

A circulation is clockwise (counterclockwise) if the corresponding potentials
are nonnegative (nonpositive). (A circulation can be neither.) For u-to-v paths P
and Q, we say P is left of (right of)Q if P rev(Q) is clockwise (counterclockwise).

1 an equivalent definition, in terms of arcs, is inflowf (v) =
∑

a∈A:head(a)=v f(a) −∑
a∈A:tail(a)=v f(a).



Price Functions and Reduced lengths For a directed graph G with arc-
lengths `(·), a price function is a function φ from the nodes of G to the reals. For
an arc uv, the reduced length with respect to φ is `φ(uv) = `(uv) + φ(u)− φ(v).
For any nodes s and t, for any s-to-t path P , `φ(P ) = `(P ) + φ(s)− φ(t). This
shows that an s-to-t path is shortest with respect to `φ(·) iff it is shortest with
respect to `(·). In particular, the reduced length of any cycle is the same as its
length.

Winding Numbers For a curve γ in the plane and a path P , the winding
number of P about γ is the number of times P crosses γ right-to-left, minus the
number of times it crosses γ left-to-right.

3 The Algorithm

We describe an algorithm that, given a graph G with n nodes, a sink t incident
to the infinite face f∞, and multiple sources, computes a maximum flow from
the sources to t in time O(diameter · n log n), where diameter is the diameter of
the face-vertex incidence graph of G. Initially, each dart d has a non-negative
capacity, which we denote by length(d) since we will interpret it as a length in
the dual. During the execution of the algorithm, the length assignment length(·)
is modified. Even though the algorithm does not explicitly maintain a flow at all
times, we will refer throughout the paper to the flow pushed by the algorithm.
At any given point in the execution of the algorithm we can interpret the lengths
of darts in the dual as their residual capacities in the primal. By the flow pushed
by the algorithm, we mean the flow that would induce these residual capacities.

The algorithm starts by pushing an infeasible flow that saturates δ(s) from
every source s to t (Line 4). It then starts to reduce that flow in order to make
it feasible. This is done by using a spanning tree τ of G and a spanning tree
T of G∗ such that each edge is in exactly one of these trees. The algorithm
repeatedly identifies a negative cycle C in G∗, which corresponds in G to an
over-saturated cut. Line 14 decreases the lengths of darts on a primal path in
τ that starts at the sink t and ends at some node v (a face in G∗) that is
enclosed by C. We call such a path a pushback path. This change corresponds to
pushing flow back from the sink to v along the pushback path, making the over-
saturated cut exactly saturated. We call the negative-turned-zero-length cycle C
a processed cycle. Processed cycles enclose no negative cycles. This implies that
there exists a feasible preflow that saturates the cut corresponding to a processed
cycle (see Lemma 5). The algorithm records that preflow (Line 16) and contracts
the source-side of the cut into a single node referred to as a super-source.

When no negative length cycles are left in the contracted graph, the flow
pushed by the algorithm is quasi-feasible. That is, the flow pushed by the algo-
rithm is equivalent, up to a circulation, to a feasible flow in the contracted graph.
Combining this feasible flow in the contracted graph and the preflows recorded
at the times cycles were processed yields a maximum feasible preflow for the



Algorithm 1 Multiple-source single-sink maximum flow (G,S, t, c0)

Input: planar directed graph G with capacities c0, source set S, sink t incident to f∞
Output: a maximum feasible flow f

1: length(d) := c0(d) for every dart d
2: initialize spanning tree T of G∗ rooted at f∞ using right-first-search
3: let τ be the spanning tree of G consisting of edges not in T , and root τ at t
4: for each source s ∈ S
5: for each dart d on the s-to-t path in τ
6: length(d) := length(d)− length(δ({s}))
7: length(rev(d)) := length(rev(d)) + length(δ({s}))
8: while there exist unrelaxed darts in G∗

9: let d̂ be an unrelaxed dart that is leafmost in τ
10: if d̂ is not a back-edge in T then //perform a pivot
11: remove from T the parent edge of headG∗(d̂) and insert d̂ into T
12: else // fix a negative cycle by pushing back flow
13: let C denote the elementary cycle of d̂ with respect to T in G∗

14: for each dart d of the d̂-to-t path of darts in the primal spanning tree τ

length(d) := length(d) + |length(C)|
length(rev(d)) := length(rev(d))− |length(C)|

15: for every dart d strictly enclosed by C
16: f(d) := c0(d)− lengthT (d)
17: in G, contract d //in G∗, delete d
18: f(d) := c0(d)− lengthT (d) for every dart d
19: convert the preflow f into a flow.

original uncontracted graph. In a final step, this feasible preflow is converted
into a feasible flow.

We now describe in more detail how negative cycles are identified and pro-
cessed by the algorithm. The algorithm maintains a spanning tree T of G∗ rooted
at the infinite face f∞ of G, and a spanning tree τ of G, rooted at the sink t.
The tree τ consists of the edges not in T . The algorithm tries to transform T
into a shortest-path tree by pivoting into T unrelaxed darts according to some
particular order (line 9). However, if an unrelaxed dart d̂ happens to be a back-
edge2 in T , the corresponding elementary cycle C is a negative-length cycle. To
process C, flow is pushed from t to head(d̂) along the t-to-d̂ path in τ (line 14).
The amount of flow the algorithm pushes is |length(C)|, so after C is processed

its length is zero, and d̂ is no longer unrelaxed. The algorithm then records a
feasible preflow for C, deletes the interior of C, and proceeds to find the next
unrelaxed dart. See Fig. 2 for an illustration. When all darts are relaxed, T is a
shortest-path tree, which implies no more negative-length cycles exist.

To control the number of pivots we initialize T to have a property called right-
shortness, and show it is preserved by the algorithm and that it implies that the

2 a non-tree dart d is a back edge of T if head(d) is an ancestor in T of tail(d).
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Fig. 2. Identifying and processing a negative cycle. On the left, the tree T is shown
in solid. Non-tree edges are dashed. The unrelaxed dart d̂ is dotted. The elementary
cycle of d̂ w.r.t. T has negative length. The primal pushback path is double-lined gray.
After the negative cycle is processed, its interior is deleted (on the right).

number of pivots of any dart is bounded by the diameter of the graph. We later
discuss how data structures enable the iterations to be performed efficiently.

4 Correctness and Analysis

We begin with a couple of basic lemmas. Consider the sink t as the infinite
face of G∗. By our conventions, any clockwise (counterclockwise) cycle C in G∗

corresponds to a primal cut (X,V −X) such that t ∈ X (t /∈ X); see Fig. 1.

Lemma 1. Consider the sink t as the infinite face of G∗. The length of any
clockwise (counterclockwise) dual cycle does not decrease (increase) when flow is
pushed to t. The length of any clockwise (counterclockwise) dual cycle does not
increase (decrease) when flow is pushed from t.

Proof. The change in the length of a dual cycle is equal to the change in the
residual capacity of the corresponding primal cut. Since clockwise cycles corre-
spond to cuts (X,V −X) s.t. t ∈ X, it follows that the residual capacity of a cut
corresponding to a clockwise dual cycle can only increase when flow is pushed
to t. The proofs of the other claims are similar.

The following is a restatement of a theorem of Miller and Naor [10].

Lemma 2. Let G be a planar graph. Let c0 be a capacity function on the darts
of G. Let f be a flow assignment. Define the length of a dart d to be its residual
capacity c0(d) − f(d). If f is quasi-feasible then f ′(d) = c0(d) − lengthT (d) is
a feasible flow assignment, where T is a shortest-path tree in G∗. Furthermore,
f ′ = f + φ for some circulation φ.



Proof. Miller and Naor [10] proved that there exist a feasible circulation in G
if and only if G∗ contains no negative-length cycles when residual capacities
in G are interpreted as lengths in G∗. Furthermore, they proved that the flow
assignment φ(d) = length(T [headG∗(d)])− length(T [tailG∗(d)]) is such a feasible
circulation in G.

Therefore, if f is quasi-feasible then φ(d) is a feasible circulation with respect
to the residual capacities c(d) = c0(d) − f(d). Thus, c(d) − φ(d) ≥ 0. Interpret
c(d) − φ(d) as residual capacity with respect to some flow f ′ in G. Namely,
c(d)−φ(d) = c0(d)−f ′(d). Therefore, f ′(d) = c0(d)− c(d) +φ(d) = f(d) +φ(d).
Furthermore,

f ′(d) = c0(d)− c(d) + φ(d)

= c0(d)− c(d) + length(T [headG∗(d)])− length(T [tailG∗(d)])

= c0(d)− (c(d) + length(T [tailG∗(d)])− length(T [headG∗(d)]))

= c0(d)− lengthT (d)

where the last equality follows from the definition of the reduced lengths with
respect to T .

Correctness To prove the correctness of the algorithm, we first show that an
elementary cycle w.r.t. a back-edge is indeed a negative-length cycle.

Lemma 3. Let d̂ be an unrelaxed back-edge w.r.t. T . The length of the elemen-
tary cycle of d̂ w.r.t. T is negative.

Proof. Consider the price function induced by from-root distances in T . Every
tree dart whose tail is closer to the root than its head has zero reduced length.
The reduced length of an unrelaxed dart is negative. Since d̂ is a back edge w.r.t.
T , its elementary cycle C uses darts of T whose length is zero. Therefore the
reduced length of C equals the reduced length of just d̂, which is negative. The
lemma follows since the length and reduced length of any cycle are the same.

Lemma 4. Let C be the negative-length cycle defined in line 13. After C is
processed in line 14, length(C) = 0 and d̂ is relaxed. Furthermore, the following
invariants hold just before line 14 is executed:

1. the flow pushed by the algorithm satisfies flow conservation at every node
other than the sources (including super-sources) and the sink.

2. the outflow at the sources is non-negative.
3. there are no clockwise negative-length cycles.

Proof. The proof is by induction on the number of iterations of the main while
loop of the algorithm. The initial flow pushed by the algorithm is from the sources
to the sink. Therefore, conservation is satisfied at every non-terminal, the outflow
at the sources is non-negative, and there is a one-to-one correspondence between



over-saturated cuts in the primal and counterclockwise negative-length cycles in
the dual.

For the inductive step, since by the inductive assumption there are no clock-
wise cycles, Lemma 4 implies that the cycle C in line 13 must be counterclock-
wise. Therefore, the unrelaxed dart d̂ in line 9 points in τ towards the root t.
Thus, the length of d̂ is increased in line 14 by |length(C)|, and the length of C
becomes zero. This shows the main claim of the lemma. To complete the proof
of the invariants, note that the interior of C is deleted in G∗, so the flow pushed
in line 14 is now a flow from the sink to the newly created super-source. This
shows that invariant (1) is preserved. Having length(C) = 0 implies that the
total flow pushed so far by the algorithm from the newly created super-source
is non-negative. This shows (2).

Since the outflow at all sources is non-negative after the pushback, the inflow
at the sink must still be non-negative and equals the sum of outflows at the
sources. Therefore, for any negative-length dual cycle, the corresponding primal
over-saturated cut Γ (X) must be such that t /∈ X. Hence any negative-length
cycle is counterclockwise. This shows (3).

We now prove properties of the flow computed by the algorithm. The follow-
ing lemma characterizes the flow recorded in line 16. Intuitively, this shows that
it is a saturating feasible flow for the cut corresponding to the processed cycle.

Lemma 5. Let C be a cycle currently being processed. Let (X,V − X) be the
corresponding cut, where t /∈ X. Let δc be the set of darts crossing the cut. The
flow assignment f computed in the loop in Line 16 satisfies:

1. f(d) ≤ c0(d) for all darts whose endpoints are both in X.
2. every node in X except sources and tails of darts of δc satisfies conservation.
3. for every d′ ∈ δc,

∑
d:head(d)=tail(d′) f(d) ≥

∑
d∈δc:tail(d)=tail(d′) c0(d)

Proof. let G∗c denote the region of G∗ enclosed by C. Let Gc denote the graph
obtained from G by contracting the sink side of Γc into a single node. Note
that G∗c is the dual of Gc. Let d̂ be the non-tree dart of C. Since d̂ is leafmost
unrelaxed, there are no unrelaxed darts in G∗c other than d̂. By Lemma 4, after
the loop in line 14 is executed d̂ is no longer unrelaxed as well. Therefore, the
restriction of T to G∗c is a shortest-path tree for G∗c, and G∗c contains no
negative cycles. The conditions of Lemma 2 are satisfied, so when f(d) is set to
c0(d)− lengthT (d) in Line 16, it respects the capacities c0(d) for all d ∈ Gc. This
shows 1.

By Lemma 4, just before C is processed, the restriction of the flow pushed
by the algorithm to Gc satisfies conservation everywhere except at the sources
and at the sink. In Line 14 flow is pushed back to tail(d̂), so there is more flow

entering tail(d̂) than leaving it. Therefore, the restriction of the flow pushed by
the algorithm to Gc satisfies conservation everywhere except at the sources, the
sink (which in Gc is the only node outside Γc) and tail(d̂). By Lemma 2, the
flow f(d) = c0(d)− lengthT (d) differs from the flow pushed by the algorithm by
a circulation, so f(·) satisfies conservation at all those nodes as well.



In particular, for every dart d′ ∈ δc, 0 ≤
∑
d:head(d)=tail(d′) c0(d)− lengthT (d)

(this is an inequality only for d′ = d̂). However, note that the darts of δc are
not strictly enclosed by C, and that lengthT (d) = 0 for every d ∈ C. Since
Line 16 assigns f(d) = c0(d) − lengthT (d) only to darts strictly enclosed by C
(and implicitly assigns zero to all other darts), we get that, for the darts of
δc, 0 ≤

∑
d:head(d)=tail(d′) f(d) +

∑
d∈Γc:head(d)=tail(d′) c0(d). Or alternatively, for

every d′ ∈ Γc,
∑
d:head(d)=tail(d′) f(d) ≥

∑
d∈Γc:tail(d)=tail(d′)

c0(d). This shows 2
and 3.

Lemma 6. The following invariant holds. In G∗ every source is enclosed by
some zero-length cycle that encloses no negative-length cycles.

Proof. Initially, the face of G∗ corresponding to each source is such a cycle. At
the time a cycle C is processed and a super-source s is created, C is a zero-length
cycle enclosing s that encloses no negative-length cycles. The length of C only
changes if the pushback path ends at a dart of C in the execution of Line 14
when processing a cycle C ′ at some later time. Since the interior of C is deleted
when C is processed, C ′ encloses C. At this time, the interior of C ′, is contracted
into a single new super-source which is enclosed by the zero-length cycle C ′ that
encloses no negative cycles.

The following lemma is an easy consequence of lemma 6.

Lemma 7. The following invariant holds. There exists no feasible flow f ′ s.t.
inflowf ′(t) is greater than inflowf (t), where f is the flow pushed by the algorithm.

Proof. Let fs be the amount of flow source s delivers to the sink in the flow
pushed by the algorithm. Consider a flow f ′ and let f ′s be the amount of flow
source s delivers to the sink in f ′. By Lemma 6, at any time along the execution
of the algorithm, every source is enclosed in a zero length cycle. Consider such a
zero-length cycle C. If

∑
s enclosed by C f

′(s) >
∑
s enclosed by C f(s) then the dual

of the residual graph w.r.t. f ′ contains a negative cycle, so f ′ is not feasible.

Lemma 8. The flow f computed in Line 18 is a maximum feasible flow in the
contracted graph G w.r.t. the capacities c0.

Proof. The flow pushed by the algorithm satisfies conservation by Lemma 4. By
Lemma 7, there is no feasible flow of greater value. Since there are no unre-
laxed darts, T is a shortest-path tree in G∗ and G∗ contains no negative cycles.
Therefore, the flow pushed by the algorithm is quasi-feasible. This shows that
the conditions of Lemma 2 are satisfied. It follows that f computed in Line 18
satisfies conservation, respects the capacities c0 and has maximum value.

Lemma 9. The flow assignment f(d) is a feasible maximum preflow in the (un-
contracted) graph G w.r.t. the capacities c0.

Proof. f is well defined since each dart is assigned a value exactly once; in
Line 16 at the time it is contracted, or in Line 18 if it was never contracted. By



Lemma 8 and by part 1 of Lemma 5, f(d) ≤ c0(d) for all darts d, which shows
feasibility. By Lemma 8 and by part 2 of Lemma 5, flow is conserved everywhere
except at the sources, the sink, and nodes that are tails of darts of processed
cycles. However, for a node v that is the tail of some dart of a processed cycle,∑
d:head(d)=v f(d) ≥ 0. This is true by part 3 of Lemma 5, and since f(d) ≤ c0(d)

for any dart. f(·) is therefore a preflow. Finally, the value of f(·) is maximum
by Lemma 8.

Lemma 9 completes the proof of correctness since line 19 converts the maxi-
mum feasible preflow into a feasible flow of the same value.

Efficient implementation The dual tree T is represented by a table parentD[·]
that, for each nonroot node v, stores the dart parentD[v] of T whose head in
G∗ is v. The primal tree τ is represented using a dynamic-tree data structure
such as self-adjusting top-trees [1]. Each node and each edge of τ is represented
by a node in the top-tree. Each node of the top-tree that represents an edge
e of τ has two weights, wL(e) and wR(e). The values of these weights are the
reduced lengths of the two darts of e, the one oriented towards leaves and the
one oriented towards the root.3 The weights are represented so as to support
an operation that, given a node x of the top-tree and an amount ∆, adds ∆ to
wR(e) and subtracts ∆ from wL(e) for all edges e in the x-to-root path in τ .

This representation allows each of the following operations be implemented
in O(log n) time: lines 9, 13, 11, 16, and 17, the loop of line 5, and the loop of
line 14.4

Running-Time Analysis Lines 16 and 17 are executed at most once per edge.
To analyze the running time it therefore suffices to bound the number of pivots
in line 11 and the number of negative cycles encountered by the algorithm.
Note that every negative length cycle strictly encloses at least one edge. This is
because the length of any cycle that encloses just a single source is initially set
to zero, and since the length of the cycle that encloses just a single super-source
is set to zero when the corresponding negative cycle is processed and contracted.

Since the edges strictly enclosed by a processed cycle are deleted, the number
of processed cycles is bounded by the number of edges, which is O(n).

It remains to bound the number of pivots. We will prove that at the tree T
satisfies a property called right-shortness. This property implies that the number
of times a given dart pivots into T is bounded by the diameter of the graph.

Definition 1. [9] A tree T is right-short if for all nodes v ∈ T there is no
simple root-to-v path P that is: as short as T [v] and strictly right of T [v]

3 Note that the length of the the cycle C in line 13 is exactly the reduced length of d̂.
4 The whole initialization in the loop of line 4 can instead be carried out in linear time

by working up from the leaves towards the root of τ .



Since T is initialized using right first search, initially, for every node v there is
no simple path in G∗ that is strictly right of T [v]. Therefore, initially, T is right-
short. The algorithm changes T in two ways; either by making a pivot (line 11)
or by processing a negative-length cycle (line 14). The following lemma was
proved in [9]:

Lemma 10. [9] leafmost dart relaxation (line 11) preserves right-shortness.

Lemma 11. Right-shortness is preserved when processing the counterclockwise
negative-length cycle C in line 14.

Proof. For a node v, let P be denote the tree path T [v]. Let Q be a simple path
that is strictly right of P . By right-shortness of T , before line 14 is executed
length(Q) > length(P ). We show that this is also the case after line 14 is exe-
cuted. By definition of right-of, P ◦rev(Q) is a clockwise cycle. Note that since C
is counterclockwise, the changes in lengths of darts in line 14 correspond to push-
ing back flow from the sink t. Therefore, by Lemma 1, the length of P ◦ rev(Q)
can only decrease. Since no dart of P changes its length (only darts of τ are
changed in line 14), this implies that rev(Q) can only decreases in length. By
antisymmetry, the length of Q can only increase, so length(Q) > length(P ) after
the execution as well.

We have thus established that

Corollary 1. T is right-short at all times.

f∞

v
d

γ
T1[v]

T2[v] T3[v]

Fig. 3. Bounding the number of pivots of dart d whose head is a node v of G∗. Three
tree paths to v at times t1 < t2 < t3 are shown. T3[v] (triple-lined) is left of T2[v]
(double-lined) and T2[v] is left of T1[v] (black) . The dart d is in T1[v] and T3[v], but
not in T2[v]. Therefore, it must have pivoted out of T and into T between time t1 and
t3. The curve γ (dashed) visits only nodes of G∗. The winding number of T1[v] about γ
is 0. The winding number of T3[v] must be greater than that of T1 (1 in this example).

Consider a dart d of G∗ with head v. Let γ be an arbitrary root(T )-to-v curve
on the sphere. Let T1[v] and T2[v] denote the tree path to v at two distinct times



in the execution of the algorithm. Since right-shortness is preserved throughout
the algorithm and since with every pivot length(T [v]) may only decrease, if T2[v]
occurs later in the execution than T1[v], then T2[v] is left of T1[v]. It follows that
the winding number of T [v] about γ between any two occurrences of d as the
pivot dart in line 11 must increase. See Fig. 3. Therefore, if we let T0 denote the
initial tree T , and Tt denote the tree T at the latest time node v appears in G∗,
then the number of times d may appear as the pivot dart in line 11 is bounded
by the difference of the winding numbers of Tt[v] and T0[v] about γ. Since γ is
arbitrary, we may choose it to intersect the embedding of G∗ only at nodes, and
to further require that it visit the minimum possible number of nodes of G∗.
This number is bounded by the diameter of the face-vertex incidence graph of
G, which is bounded by the minimum of the diameter of G and the diameter of
G∗. Since both T0 and T are simple, the absolute value of their winding number
about γ is trivially bounded by the number of nodes γ visits. Therefore, the
total number of pivots is bounded by

∑
d diameter = O(diameter · n). The total

running time of the algorithm is thus bounded by O(diameter · n log n).
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