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Abstract Steiner tree and TSP problems [9]. Concerning approx-

imation schemes, in addition to the work of Arora and
We give a randomized(n polylogn)-time approxima- Mitchell, others have built on similar ideas (e.g. [4, 7]).
tion scheme for the Steiner forest problem in the EU-The Steiner forest problem, a generalization of the
clidean plane. For every fixed> 0 and givem terminals - Steiner tree problem, is NP-hard [6] and max-SNP com-
in the plane with connection requests between some pgjiste [5, 10] in general graphs and high-dimensional
of terminals, our scheme findg &+ ¢)-approximationto Eyclidean space [11]. Therefore, no PTAS exists for
the minimum-length forest that connects every request@@se problems. The 2-approximation algorithm due to
pair of terminals. Agrawal, Klein and Ravi [1] can be adapted to Euclidean
problems by restricting the Steiner points to lie on a suffi-
ciently fine grid and converting the problem into a graph
problem. Prior to this work, no Steiner forest algorithm
was known that took advantage of the Euclidean plane to
get a better approximation ratio.

1 Introduction

1.1 Result and background

In the Steiner forest problem, we are givepairs ofter-
minals(s;,t;). The gc_)al is to fi_nd a minimum—cost fores§ 2  Recursive dissection
F such that every pair of terminals is connected by a path
in F'. We consider the problem where the terminals arelim Arora’s paradigm, the feasible space is recursively de-
the Euclidean plane. The solution may use points (calle@mposed bylissection squaressing a randomized vari-
Steiner pointsin the plane that are not in the termina&nt of the quadtree (Figure 1). The dissection is a 4-ary
set. The cost of a forest (path or graph) is given by thee whose root is a square box enclosing the input ter-
sum of its edge lengths in thle metric and is denoted byminals, whose width is twice the width of the smallest
length(-). Our main result is: square box enclosing the terminals, and whose lower left-
] ) hand corner of the root box is translated from the lower
Theorem 1.1. There is a randomized(n polylogn)- |eft-hand corner of the bounding box By a, —b), where
time approximation scheme for the Steiner forest probleynq4 are chosen uniformly at random from the range
in the Euclidean plane. [0, L/2). Each node in the tree corresponds thissection
There is a vast literature on algorithms for problems ffluare Each square is dissected into four child squares of
the Euclidean plane. This work builds on the approxgdual area by one vertical and one horizontigsection
mation scheme for geometric problems, such as Travelfffiff €ch spanning the breadth of the parent square. This
Salesman and Steiner tree, due to Arora [2]. (See [#3PCess continues until ea}ch square contains at most one
for a digest) Similar techniques were suggested Wmmal (or multiple terminals having the same coordi-

Mitchell [8] and improved by Rao and Smith for thé'a€S)- _ _ _
Feasible solutions are restricted to using a small num-
*This version is more recent than that appearing in the FO®S pper of portalson the boundary of each dissection square.

ceedings. The partition step has been corrected and inghrove . ] .
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Figure 1. The shifted quad-tree dissection. The shaded
box is the bounding box of the terminals.

decomposition.

In the problems considered by Arora, the solutions are
connected. However, the solution to a Steiner forest prob- ()
lem is in general disconnected, since only paired termi-
nals are required to be connected. It is not kn@npri-
ori how the connected components partition the terminal
pairs. For that reason, maintaining feasibility in the dY—‘igure 2: Why maintaining feasibility is not trivially
namic program requires a table that is is exponential in tBSIynomiaI-sized.
number of terminal pairs. In fact, Arora states [3] that his

approach yields an approximation scheme whose running, cjrcumvent the problem in this example, the idea is

time is exponential in the number of sets of terminals. to decompos®y, and Rz into two zonesone for each of
Nevertheless, here we use Arora’s approach to geti@ o portals. All terminals in a common zone use the
approximation scheme whose running time is polynomialgigned portal. Thus, instead of keeping track of each
in the number of sets of terminals. How so? We requiggyminay's choice of portal individually, the dynamic pro-
further structural restrictions on the set of feasible 5°|Bram can simply memorize the decompositiorRe# and
tions in order to limit the size of the dynamic progranks rp - into zones: this will be sufficient to check feasibil-
ming table (see Section 2.6). ity when combining solutions of the subproblems fo
and for Rg. We encode a zone by its boundary. In order

1.3 Small dynamic programming table to obtain a polynomial-size dynamic program, we prove

) ~_that we may restrict ourselves to zones whose boundaries
We will use Arora’s approach of a random recursive difaye a compact description (Figure 2(b), shaded regions):
section. Arora shows (ie. for Steiner tree) that the opfin encoding by a constant-size string over a 3-letter al-
mal solution can be perturbed (while increasing the lengiiapet. The zones are described more accurately in Sec-

only slightly) so that, for each box of the recursive dissepn 2.6, and the necessary property is formalized in The-
tion, the solution within the box interacts weakly and igrem 3.2.

a controlled way with the solution outside the box. In

particular, the perturbed solution crosses the boundary of

the box only a constant number of times, and only at &h  The al gor ithm

O(1)-sized subset aD(log n) selected points, callgobr-

tals. The optimal solution that has this property can bEhe input to the algorithm is a sét of terminal pairs. Let

found using dynamic programming. n be the number of terminals in all pairs @. Letd be
Unfortunately, for Steiner forest those restrictions atle maximum distance between a terminal pair.

not sufficient: maintaining feasibility constraints cabno

be done with a polynomially-sized dynamic program. T . .

see why, suppose the solution uses only 2 portals betheq'l Step 1: Partition

adjacent dissection squarBg andRyy . In order to Com- e start by finding a partition of the terminals according

bine the solutions iy and Rz in the dynamic program tg the following lemma.

into a feasible solution iy U Rg, we need to know, for

each pair(s, t) of terminals withs € Ry andt € Rg, Lemma 2.1. There exists a partition of) into indepen-

which portal connects and¢ (Figure 2(a)). This requiresdent instanceg§):, @2, . . ., such that the optimal solution




is the disjoint union of optimal solutions for ea¢h, and 2.3 Step 3: Scale

such that in eacl); the maximum distance between tw . . 4 .
terminals is at mosh2d. gcale all coordinates of terminals ¢f by 5. The grid

used in the previous step is now the grid of lines of equa-

Proof. Consider a minimal set of terminal pair requirdion « = 4j ory = 4j, andOPT is scaled by%_. Call
ments, such that satisfying them implies (by transitivitj!€ Néw instance thecaledinstance. In the shifted and
that all requirements if) are satisfied. There are at moscaled instance the terminals have integer coordinates of

n such requirements, and each can be satisfied at codfgform4; + 2. For a set of line segments and a grid
mostd, soOPT < nd. Thus, if two terminals; andy INe ¢, lett(F, ¢) denote the number of timgs crosseg.

are at distance greater thar, they must be in different |_emma 2.3. There is a solution to the shifted and scaled
connected components OfPT. Define a graph that hasinstance of lengttfl + £)OPT that satisfies

an edge between terminalsandv if and only if their

distance is less thamd, and partition the: terminals ac- 2t (F,0) <20PT )
cording to the connected components of that graph. Rgiere the sum is over all grid lines.

any terminal paifu, v), v andv must be in the same con-

nected component, and the optimal solution must be fRECf- Let £ be the optimal solution to the shifted (but
disjoint union of the optimal solutions of the subproblenf¥t Scaled) instance. There are at most 1 Steiner
induced by the pairs in each part of the partition: we haP@ints. Move each Steiner point to the nearest center of
reduced the problem to independentinstances correspéhg!id cell. As in Lemma 2.2, this adds length at most
ing to the connected components, as desired. By constrg@Y - Combined with the error given by Lemma 2.2,

tion, two terminals in the same connected component 4 results in; OPT additional length.

at distance at mosi2d. 0 Now scale the shifted solution tg/ The minimum dis-
tance between Steiner points and terminals is 4. An edge
of length s contributes at mos{/2s + 2 to the left-hand

2.2 Step 2: Perturb side. Sinces > 4, v/2s + 2 < 2s. Summing over all the

. ) edges proves the lemma. O
As in Arora’s scheme, we now perturb the terminals to

lie on a grid. The grid is chosen to be fine enough so t e4 Step 4: Di t
perturbation does not affect the length of the solution ep 4. DISsed
much. Let D; be the size of the smallest square box bounding
We define the granularity of the grid (distance betweeiose points, in the shifted and scaled instance obtained
consecutive vertical or consecutive horizontal lines) as:from @, that correspond to points @§;. Let L; be the
smallest power of 2 greater than or equali;. As de-
§= ﬁ 1) scribed in section 1.2, we perform a randomized dissec-
8n tion of the bounding box such that the root square has size
4 , . . . -
Move each terminal to the nearest point that is the celr’f'- x L;- This can be done it)(n 1Og2n) time [?]. 3
. . N By Lemma 2.1, we hav®); < n*d(4/6) = 32n°/e.
ter of a grid cell. Call the new instance tistiftedin- 3 : N .
stance ThusL; = O(n”/¢). Since the recursive dissection stops,
' at worst, when the dissection square has width 4, the quad-

Lemma 2.2. A solution for the unshifted instance can bf€€ must have depti(logn).
perturbed to one for the shifted instance, and vice versa,T0M NOW on we focus on just one subproblem asso-

while increasing length by at most4 times the optimum ciated _toQi for somei. In order to avoid carrying over
for the unshifted instance. subscriptsl;, L;, n; throughout the paper, from now on

we will drop the subscript and consider an instance given

Proof. Let F' be the optimal solution to the unshifted inby @, L, andn.
stance. For a single terminal, the shift (and therefore, the
additional length required) is at mogé. The total in- 2.5 Step 5: Portals
crease in length is therefore at meét; for Q;, summing ) ) ) ]
to 26n which is at moste/4)OPT by definition ofs and ~Or €ach dissection squakk for each sides' of 12 desig-
sinced < OPT. natem + 1 equally spaced points alorffj(including the

Of course, the converse construction also increases $RENErs) aportalsof 2 where
length by at mos2drn. O mis smallest power of 2 greater thaam ' log L. (3)



so R has4dm portals. Claim 2.5. Single-point connected componentsfoin

A portal of ani-square is called airportal, and a cor- ¢ added by SATISFYBOUNDARYCOMPONENTS are
ner of such a square is called anorner. depth{¢)-portals.

For a set of geometric pointg], | X| denotes the num-
ber of connected components . When we refer to a
component ofX, we mean a connected componenaf
For a subsef of a line, letclosure(S) denote the mini-
mum connected subset of the line spannshg

The first part of the following lemma uses a techniq

We analyze the expected increase in length resulting
from SATISFYBOUNDARYCOMPONENTS Within an it-
eration? of the outer loop, and an iteratighof the sec-
ond loop, letc,; denote the number of executions of
%e last stepadd closure(F' N S) to F: lengthS) =

) " J i i
of Arora. We require an additional property not used /27, Since each such execution reduces the number

Arora. We use a parametgrwhose value is selected in f connected components df 1 ¢ by at Ileastp, and
Equation (5). the number of connected components initially(i8p, ¢),

. t(Fo.t) i i
we havey_ - genme e < —,—. The increase in

Lemma2.4. ;rhere is a solutior” having expected lengthlength due to one iteration of the outer loop is at most
at most(1 + 5¢)OPT such that each dissection squdte ijdeptr(é) C&j%- Since Profdepth(¢) = i] = 2'/L,

satisfies the following two properties: the expected increase in length due to one iteration of the
. 9t L Ce.j %
Boundary Components Property For each sideS of R, ©OUter loop is)_; T 2j2iCtim S Dy g2t S
F N S has at mosp non-corner components. 2.2+ cey < 2p7 t(Fo, £) Summing over all dissection

lines, and using Equation (2), we infer that the total in-
Portal Property Each component o' N 9R contains a crease is at mostp~'OPT which is at mostieOPT
portal of R. when

_ -1
Moreover, there is a finite s&t C F N {dissection line p=16e"" ®)

of points and a functiow(-) such that for eacty € Y, we further augmen¥ to achieve the Portal Property:
¢(y) is a dissection line intersecting
SATISFYPORTAL:

YFN\{yeY : ¢(y) # £} <20PT (4) Foreach dissection ling
for each portal-free componest of F' N ¢,

and, for any dissection squa® whose boundary con- extendK to the nearest non-cormner defhportal.

tains a pointy € Y, ¢(y) is a line boundingR.

_ Using the fact that a/2-portal is also an-portal, we
Proof. Let Fy be the solution guaranteed by Lemma 2.3,ter that the Portal Property is satisfied.

To establish the first property, we augmént= Fy using

; We analyze the increase in length due \aSFYPOR-
the following procedure:

TAL. Consider a dissection liné By Claim 2.5, we

SATISFYBOUNDARYCOMPONENTS only add non-zero length té¢' for non-corner compo-
For each dissection liné@ nents. The number of length additions is therefore at most
for j = log L down to deptl¥), t(Fp,£). The length per iteration of the inner loop is at
for each sides of everyj-square withS C ¢, mostL/29¢P*%) . The total increase in length per outer-

if |[{non-corner components &f N S} > p, loop iteration is at most(Fy, ¢) L/zdeptf(f)m_
addclosure(FF N S) to F. Since Proldepti¢) = i] = 2'/L, the expected in-

Thi g tablishes the Bound c crease in length due to this iteration of the first loop is
is procedure establishes the Boundary omponegt:?;gL %t(Fo,E)ﬁ — 14(F,0)log L. Using Equa-

Eroperty. Cpn3|der a dissection squﬁ'rand a dlssgctlon tions (2) and (3), we infer that the total increase is at most
line ¢ containing a side&S' of R. The iteration involving 1.OPT

) — - 4
and; = dept{12) ensures that there are at mpsibmpo Now we address the second part of the lemma and de-

nents off"M § not mcludlng the gnd_pomts_ df, which A" fine the set” and the functior(-). Consider a dissection
corners ofR. Note that an iteration involving a perpendicr

; . . line £. Each addition of a segment éfto F' either joins
ular line ¢ could add a single-point componentkon S
. . . two components of'N ¢ or extends one component. Such
only if depth(¢) < depth{R), which means that the single_ . .
I additions therefore do not increase the number of compo-
point is at a corner of? (and hence does not count to- .
nents of FF N ¢. SetY will account for all other compo-
wards the Boundary Components Property). Such a point

. i ) nents, giving Equation (4).
is a deptii()-portal (by Step 5), so we get As we have seen, we may add a segmgrdf some

a component that does not include a corneRof dissection line/’ perpendicular td that containg N ¢'.




If at the end of both procedurdg N ¢’} is a connected A subsolutiorfor R is a setF’ of points of R consisting
component o’ N ¢, we add/ N ¢/ to Y and assig(¢ N of a finite number of line segments, with the property that,
o)y =1. for any terminak in R, F' connects to its mate or ta)R.

Refer to Figure 3 for an illustration of the following.Thelengthof £ is the sum of lengths of the line segments
Let R be a dissection region whose boundary contaipgmprising it.

¢ N ¢ and suppose, for a contradiction to the definition For a configuratior® and a subsolutio, we sayF

of (¢ N ¢'), that(" does not bound%/. Then? bou/qu andC arecompatibleif the following condition holds: for
R, so deptli) < depthi?) < deptt’). Thenl N l"is g0k connected componeht of F that intersects)R,
a deptli¢’)-corner. S could be added by eithemSISFY- o ais a paifP, Z) € C such that

PORTAL or SATISFYBOUNDARYCOMPONENTS In both

cases,S must be a portion of the boundary of a square K spanspP,

R’ contained byR. The point/ N ¢/ must be a corner e each connected component’éfdR contains a portal
of R’, but neither TISFYPORTAL nor SATISFYBOUND- p€ P,and

ARYCOMPONENTSsadds a corner oR’ to the forest. [0 o for each terminat contained ink,  is in Z.

See Figure 4

3 <

v o | ;

Figure 4: A compact configuration (round portals, grey
' zones) and compatible subsolution (square terminals,
. black forest).

Figure 3: lllustrating the proof of Lemma 2.4. In the dynamic program, we build a tatffa[ ], indexed

by compact configurations, for each dissection square
The goal of is to populate these tables so fAglC] is the
26 Sten 6: D . minimum length of a subsolution fak that is compatible
' €p b. Dynamic program with C. We claim that, for eacl, the number of compact
We use more parameters that are functions ofily: 5 configurations is small. Each zone can be specified by its
and-. Their exact values will be defined in Equations (joundary: a path following the edges of thex v grid.
and (13), respectively(is a power of two). his path is given by a start Iocatlon and a string over the
Let R be a dissection square. Divideinto a regular three-letter alphabet{left, right, straight). Slncen_and _
~ x ~ grid of cells We say thatR is the ownerof its 7 are const_ants, the total length of aI_I these :_stnngs_ is a
cells. Sincey andZ are powers of, eachcell of the grid constant. Since the number of portals in a configuration is

is either coincident with a dissection square or is small@Pnstant, the number of zones is constant. The number of
than the leaf dissection squares.zéneof R is a set of Ways of choosmg a set® of portals for a configuration
cells of R whose union is simply connected. We equate$ Pounded bym M. Sincem = O(logn), the total
zone with the set of points in the cells comprising it. number of compact configurations is polylogarithmic.

A configuratiorfor R is a set of pair$ P, Z) whereP is Since the depth of the quad-tree(iglog n), there are
a subset of portals d® andZ is a zone ofR. The config- O(nlogn) dissection squares. The running time of the
uration iscompacif the number of portals, summed ovedynamic program is therefor@(n log® n) where¢ de-
all pairs, is at most(p + 1) and the sum of the lengths ofpends ore. We omit further details of the dynamic pro-
the zone boundaries is at mdst+ 1)lengthoR). gram.



3 Structure Theorem

It remains to show that the dynamic program finds a solu "":If"i
tion that is not too much longer thanPT.

Theorem 3.1. For a random shift(a, b), with probability @) ) ©

at least one half, there is a solutidf of length at most

(1+¢€)OPT such that, for each dissection squdtethere Figure 5: The three cases (up to symmetry) of augmenting
is a compact configuratiofi of R that is compatible with .

FNR.

To prove Theorem 3.1, we use Theorem 3.2, which a@ATISFYZONE:
serts the existence of a solutidhwith properties that im- While there is an unhappy cell or a dissection square
ply the existence of compact compatible configurations. Violating the Zone Property,
The expected amount by which lengif) exceed©OPT 1 letR be a smallest such square.
is JcOPT. By Markov's Inequality, the total increase i~ LetA = {sidesS of R : depth(S) > depti{R) or
at moste OPT with probability at least one-half. SNFE#0}.

The argument for the following is a straightforward exd AddAtorF.

tension of the argument used in [4] for Steiner tree, andAﬁding A to F for a squareR is calledaugmentingR

analogous to Lemma 4 of [2]. . The choice ofA is illustrated in Figure 5. In cases (a)
For the next resqlt, we use new techniques (though ygy (b), the augmentatiod is not all of R so is open

draw on the analysis technique of [2]). at the ends. In (a)F intersects neither of the sides Bf

. . . that have depth less than that/®fso the augmentatiaos
Theorem 32. There is a solutiort” with expected length consists only of the two sides having depth equal to that

(1+1€)OPT that satisfies the Boundary Components an

: . . of R. In (b), one of the low-depth sides intersegtsso it
Por_ta! Properties a_nd such that each dissection Squarebelongs t04. In (), both low-depth sides intersekt so
satisfies the following

Ais all of OR.

ZoneProperty There is a setZx of openly disjoirt  [tiS €asy to prove the following.

zones off? such that: Lemma 3.3. Suppose that, at some time in the execu-

_ tion of SATISFYZONE, dissection squar® is augmented.
1. > zez,length0Z \ OR) < n lengthOR); Then for the remainder of the procedufehas the

2. for everyZ € Zp, for any two terminals;,t2 € Z Augmentation Property F' N OR is connected.

that are connected by’ to OR, t; andt, are con- . . .
nected inF": Supposer is a dissection square such tlian dR has

at most one connected component. It is easy to see that
3. for every terminat € F that is connected t¢R, R cannot be an unhappy cell. Furthermore, the singleton
teZc Zg. set{{all cells of R}} satisfies parts 1 and 2 of the Zone
Property. It follows that 8TiSFYZONE terminates, and
To prove Theorem 3.2, we start with a solutisrthat that, when it terminates, the Zone Property holds for every
satisfies the properties of Lemma 2.4. Recall that a zd#gSection square.
is the union of a set of simply connected cells. ~ Nextwe show that 8TISFYZONE preserves the proper-
Let C be a cell ofR. We sayC' is happywith respect to t|e$ of Lemma2.4. Consider an iteration in wh|c_h asquare
F if there is at most one connected componenfdhat 1% 1S augmented. LeR’ be a square that _satlsﬁes the_
touches bot®R andC. We use the following procedureBoundary Components and Portal Properties before this
to make every cell happy and every dissection square digration. Letl = 9RNOR'. If L consists at most of a sin-
isfy the Zone Property. The depth of a square (ie. a @Il)g',e point then this point is a corner of bathand 2" and
that is smaller than the leaf dissection squares is the defithcontinues to satisfy these properties. Otherwise, let
should the dissection be continued beyand 1 squares. > P€ a side of?’ that intersect®'/z at more than a single

We likewise define the depths of the sides of such cellsPOint. If FNS’NOR had at least one connected component
before Step 2 theA’'n.S’ NOR has at most one connected

2sharing only boundary points. component afterwards. Suppose thereforeHras’'NoR




was empty before the iteration. If depft() > deptH R) It remains to show that Equation (6) holds.

then after the step eithdr N .S’ N OR is still empty or  Let K, ..., K, be the connected componentsiofin

S" C F. Ifdepth R') < dept{R) then, as illustrated in (R; \ OR;) thattouchdR. Fork =1,...,¢q, letCy be the

Figure 5, we ensures that avoidsS’, soF'N S’ N OR set of cells ofR; that intersect<;,. Let Z, be the points

remains empty. In all cases, the Boundary Componeirtshe union of the cells i€, together with the points that

Property and the Portal Property continue to hold$tr are surrounded by cells @, (ie. the points in the “holes”
The remainder of the paper is devoted to bounding tb&C,). It follows thatZ; is a simply connected union of

increase in the length of’ due to \TISFYZONE. Let cells: Z; is a zone. LeZg, = {Z1,...,Z,}. We will

F; be the forest at the start of thi# iteration and let?; argue thatZy, satisfies the second and third parts of the

denote the dissection square selected inthéeration.  Zone Property with respect to the forgst

Lemma 3.4. Foranyi < j, R; is not contained ir;. Consider the seR of dissection squares that are con-

o ] tained in R and that were augmented due to a Zone-
Proof. We sketch the proof by contradiction:Af; is con-  property violation before iteration Let R be a maximal

tained inR;, thenz; must have been an unhappy cell agpset ofR such that eveny? € R is strictly contained
a Zone-Property-violating dissection square at the sfarttﬁ, no square irk. By the definition off;, we get:
the i*" iteration. This contradicts that; is the smallest

such square. [0 Claim3.6. ForeveryR € R, dR C E.

Lemma 3.5. The increase in length df due to iterations ~ For someR € R, letx be a pointinR that is connected
of SATISFYZONE where R violates the Zone Property isto OR; by F;. Let P be anx-to-0R; path inF;. Since this
at mostie OPT. path must interse@R, we have:

Proof. We inductively define’’;. For the basef} = Fy. Claim3.7. If z € R € R is connected td R; by F}, then
If R; violates the Zone Property ifi; thenF;; = (F;\ zisconnected tdR byFi.

R;) U OR;, otherwiseF; ., = F;. In the former case, we o .

will show that Let x be a point inR; that is connected tOR; by F;.

. If z € K} for somek, thenz is in some zone irZg,.
lengt(OR:) < gy length(£; N (R; — 9R;))  (6)  Otherwisex must be a point ink for someR € R. By
é.emma 3.7 is connected t@R for someR € R. By
Lemma3.60R C F; andOR is connected toR;: x isin
some zone irZg,. It follows that Zy, satisfies the third
art of the Zone Property.

Note thatA C OR;, so we are over-accounting for th
length added during the augmentationff We charge
this length to the portion of-} strictly enclosed byR;
and will not charge to this length again (since this pa[? X
is removed inFy,,). See Figure 6:F;,, is made of _ SUPPOS&r & Zj is connected t@R; by F;. If z €

the boundary of?; and the thick parts of;. So we get f;ﬁ;g%”ﬁt]’%’ Ie_egqmsau?[;gisltsa C&gﬂefﬁea;??g al_n:t gy
i+ 1o (BNGNE) — length( i) > length(OR,). be the cell that contains Since every cell ofz; is happy,

C'is happy and there is at most one connected component
that intersects bottv andoR. This connected component
must includer sincezr € F;, x € Kj,. We get:

Claim 3.8. For anyk and for a pointr € Zy, if F; con-
nectsr to 9R;, thenF; connects: to K.

It follows that Zg, satisfies the second part of the Zone
Property.

Let B be the boundary of the zones not including; .
Thatis, B = Uzez, lengthdZ — OR;) (and if a point
belongs to the boundary of two zones it is counted twice).
Since R; violates the Zone Property with respectip,

Figure 6: Charging for Zone Property violations. andZg, is a set of zones that satisfies the second and third
. parts of the Zone Property with respectiy Zr, must

Since lengthFy) < length(Fy) < (1 + 3¢)OPT, we violate part one of the Zone Property:
infer that the total increase in length due to iterations
whereR violates the Zone Property is at mgstOPT. length B) > n - length OR;) 7



We give an upper bound for lendtB). Consider all the are defined as follows:
cellsC that contribute taB. Say that a celC is traversed
: o Ke=Fini\{yeY : ¢(y) # ¢}
by F; if any pair of opposite sides @' are connected by £, — {endpoints of components ii;}

E; N (C\ OR). PartitionC into three sets: the s€t- of e i : :
cells that are traversed; the $b¢ 5 of cells that are not S¢ = {sides of 1t : It adissection squays C £}

K .. X = {é} X ,Cf7
tCraversed and are adjacentd® and the remaining cells Yo = {6} x & x {—,+} x {2,3,4}
NI Zy ={0} x Sg x {—,+} x {2,3,4}

At most three sides of each cell contributes to
Uzez,, 0Z \ OR;. It follows that the contribution to Before describing the charging scheme, we show that

lengthB) by Cr is at most3lengt(Z; N (R; \ oR)) Itlets us bound the expected increase in length. There
and the contribution to lengtl) by Cy 5 is at most &€ o methods of charging. The first uses the obser-
3length@R;). Now consider a celC’ € Cy ;. There Vation that making a cell happy reduces the number of
is a pointz € C that is connected tOR; by F;. Let P components in the forest. This will agcggnt for.charges
be anz-to-OR; path. Consider the s&® of eight cells to elements in setX, andY,. The definition relies on

surroundingC. P must enter and leave this set of eighf!® €U, whose size is bounded by Equation (4). The

cells in order to reaclWR; thereby travelling a distancesecond method compares the length added to some |ength

equal to the width of the cell. Lep be the portion of path already in the forest, and in particular a side®f This
P that is used to travel this distance and charge<h& will gccount fpr charges t,.
sides ofC that contribute taB to . @ is charged to at First consider charges to sef§, andY;. Let ¢y,

most 8 times. So the contribution lengB) by Cy  is at be the nqmber of chargings involving a d_issection _Iine
~ ' ¢ and aj-squareB. By (10), the total increase in
most24 length(F; N (R; \ OR)). We get Lo AL
length charged to ling is at most)_ qenie) Ce,i 575 -

- Since Profdepti{¢) = i] = 2¢/L (since we only con-
length( B) < 27length(F; N (R; \ OR 3length OR; . . ) .
g(B) < gt (7 \ OR)) + gt (8)) sider owners of cells which are dissection squares), the

We choose expected increase in length 5, D isi cz,j% <
4 Ce.j i i
X 200 5 e 20 < 5305 cr . We will show that each
n=3+27-4e (1 + =e). (9) element ofX, U Y, is charged at most once, giving an ex-
pected increase in length of at mG;%EE | Xe| + Y| <

8 8 H :
Equation (6) is obtained by combining Equations (7), @%i@'lszlntft'&' <5 2_¢13|K|. Using Equation (4),

and (9), completing the proof of Lemma 3.5. O 208

ZEOPT. (11)

) i When charging the addition ofC to F' to a 4-

Lemma 3.9. The expected increase in lengthiofdue to tuple (¢, S, H, A) of Z,, we will show thatS is a side

iterations of SATISFYZONE whereR; is an unhappy cell ¢ B the length added is at mosilength(S). We
!

i 1

is at most; ¢ OPT. will also show that the charging guarantees that, for
) ] ) ) any dissection ling and any pair(H, A), if there are

Proof. Throughout this proof, we consider iterations Oéharges to(¢, S1, H,A), (£, Sa, H,A), ..., (£, Sy, H, A)

the procedure &TISFYZONE that make a cell’ = Ri then g, S,,..., S, are openly disjoint. Consequently,

happy. We will §how that the expegted length of the um%; length(L;) < length(F; N ¢). Summing over all dis-

of the boundaries of all such cells is at mg=bPT. The gaction lines’ and all six pairs(H, D), the total length

length added per iteration is at most added toF by all such charges is at most
24 24
length 9C) = %Iengtr(aB) = j—ZLJ (10) = > length{Fy N¢) < 7(1 +¢)OPT. (12)
14
Where the owner w iS aj-squareB_ Combining Equations (ll) and (12) and Choosing
For the accounting we define three s&ts Yy, andZ, y = 9286*1(1 te) (13)

for each dissection liné When augmenting’, we chose

a dissection line bounding (C’s owner) and charge thewe bound the expected increase in Iength}IbyDPT.
additional length to an element &f, U Y, U Z,insucha  Now we give details for the charging scheme. We main-
way that each element is charged at most once. The gais labels of the connected componentgof ¢, for all



dissection lineg. We maintain the invariant that two comthat intersects one af and/,: this is an opportunity to
ponents have the same label if and onlyFifconnects charge according to Case 1, a contradiction.

them. Initially the label of a component is the compo- Supposel; # {¢». Since the lines are parallel, the
nentitself. These labels are used for charging to elemectsint A is the same, and, containsB;, depth{¢;) >

of X,. depth{¢z). By the choice of, depth{¢) > depth¢;), sot
Let K1,...,K, be the connected components Bf cannot bound3z, a contradiction. O

that touch bott® B andC. Because&”' is unhappyg > 1.

Forj =1,...,q, we choose a paif’;, K ;) where/; is a

line boundingB andK; = K; N ¢; and prefer to use the4 Open problems

same dissection line twice, if at all possible. (We avoid a . . . . . .
choice such thak; = {y} fory € Y ande(y) # ¢;.) Asin [2], it seems likely that this technique will extend to
We use case anali/sis. " any constant-dimension Euclidean space and can be de-

Case 1: £, — (,, for somej; # jo. Letl — ¢ randomized (while increasing the running time). Recently

. i — 1 1 2. = L4y . . . . .

In this casej\jve WinIQcharge to an elementXf. By tjhe polynomial-time approximation schemes have been given
A ~ 2 | . 9 .

invariant, /;, and K;, have different labels. We chargéorSUbset TSP and Steiner tree?, ] in planar graphs,

- . . using ideas inspired from their geometric counterparts. It
to (¢, K;,) and change tpe Iapellmg by repl:e\cmg ?"e%um be interesting to see if Steiner forest can also be
occurrence of the label df;, with the label ofK;,. This

. approximated in planar graphs.
ensures that each elementXf is charged only once.

Case 2: /y,...,¢, are all distinct. Choose two dis-
tinct lines¢;, and¢;, with depth(¢,,) > depti(/;,). Let References
¢ = ¢;,. Count sides going counterclockwise aroumd
starting at the side corresponding#@nd ending at the [1] A. Agrawal, P. Klein, and R. Ravi. When trees col-
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