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Abstract

Given an undirected graph with edge lengths and a
subset of nodes (called the terminals), the multiway
cut (also called the multi-terminal cut) problem asks for
a subset of edges, with minimum total length, whose
removal disconnects each terminal from all others. The
problem generalizes minimum s-t cut, but is NP-hard
for planar graphs and APX-hard for general graphs [11].
In this paper, we present a PTAS for multiway cut on
planar graphs.

1 Introduction

In the multiway cut problem (a.k.a. multi-terminal cut
problem), given an undirected graph with edge lengths
and a subset of nodes called the terminals, the goal
is to disconnect the terminals from one another using
a subset of edges of minimum total length. With k
denoting the cardinality of the set of terminals, the
problem is sometimes also called the k-terminal cut
problem or the k-way cut problem.

It is a natural problem: it generalizes the problem
of finding a minimum-length st-cut. A variant was first
proposed in T. C. Hu’s 1969 book [15]. The study of
its computational complexity was inaugurated in 1983
by Dahlhaus, Johnson, Papadimitriou, Seymour, and
Yannakakis [11]1. Their results, already highlighting
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the case of planar graphs, have guided the agenda for
subsequent research:

1. For general graphs, there is a simple 2-
approximation algorithm disconnecting each termi-
nal from the others by a minimum cut, but for any
fixed k ≥ 3, the problem is APX-hard, and so no
polynomial-time approximation scheme (PTAS) ex-
ists if P 6= NP.

2. For planar graphs, the problem can be solved in
polynomial time for fixed k but is NP-hard when k
is unbounded.

Result 1 led to a sequence of constant-factor approx-
imation algorithms with improved approximation fac-
tors; see, e.g., [8, 10, 17]. Result 2 spawned papers
giving improved running times for the case of planar
graphs and fixed k; see, e.g., [3, 9, 14, 16]. In this pa-
per, we provide a result that complements Result 2; we
show there is a polynomial-time approximation scheme
for multiway cut on planar graphs.

Theorem 1.1. There is a polynomial-time approxima-
tion scheme (PTAS) for the multiway cut problem on
planar graphs. Its running time is O(f(ε)nc), where
f(ε) is a function of ε independent of n and c is an
absolute constant independent of ε.

Theorem 1.1 is in the continuation of a sequence
of results designing PTASes for planar graph instances
of progressively harder optimization problems with con-
nectivity constraints: TSP [18, 19, 20], Steiner tree [4,
5, 7], and Steiner forest [2]. Our new algorithm builds
on the brick decomposition technique from [5] (which in
turn builds on [19]) and the prize-collecting-clustering
technique from [2], as well as a technique for find-
ing short cycles enclosing prescribed amounts of weight
from a paper by Park and Phillips [21].

In [18, 20], Klein stated a strategy in two forms,
a primal form and a dual form. In the dual form,
which applies here, the strategy is as follows: Step 1:
contract edges from the input graph Gin to get a graph
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Figure 1: This figure shows a multiway-cut solution in the
planar dual. The line segments are the edges of the planar
dual that belong to the solution, and the black dots denote
the terminals (which are faces in the dual). A feasible
solution has the property that each region contains at most
one terminal. Note that the solution need not be connected,
that there is arbitrary nesting of connected components, and
that regions need not be simply connected (i.e. a region’s
boundary need not be connected). However, with respect to
a designated infinite face, each region except the outermost
does have a simple enclosing cycle; for the terminal t
inhabiting the region, this cycle is the minimally enclosing
cycle in the solution that encloses t. For example, for
the terminal represented by the oversize dot, the minimally
enclosing cycle is indicated with thicker line segments.

Ĝin whose length is O(OPT ) and that approximately
preserves OPT. Step 2: for a given constant ζ, find
a set of edges of weight at most 1

ζ length(H) whose

deletion from Ĝin yields a graph of branchwidth O(ζ).
Step 3: Solve the problem in the bounded-branchwidth
graph. Step 4: Lift the solution to the original graph,
incorporating some of the edges deleted. The value of
ζ is chosen so that the length of the deleted edges is a

small fraction of the length of Ĝin and therefore an ε
fraction of OPT .

This strategy has been used for the aforementioned
optimization problems. The hardest part for multiter-
minal cut (as for most problems addressed with the

framework) is Step 1. The graph Ĝin obtained in Step 1
is called a spanner by analogy to distance spanners. Our
main contribution in this paper is a spanner construc-
tion for multiterminal cut.

The starting point for our spanner construction is
that, in the planar dual, a multiterminal cut resembles
a Steiner tree in structure. This suggests that the tech-
niques used for Steiner tree (brick decompositions and
portal-respecting solutions) could be used here. (These
techniques are summarized in Section 3.4.) However,
as shown in Figure 1, the solution in the dual need not
be connected. In this way, the problem is similar to
Steiner forest, in which the solution need not be con-
nected. This suggests we employ a method used for
Steiner forest, prize-collecting clustering. This method,
given a graph with edge-lengths and vertex-potentials,

finds a forest F whose length is at most twice the sum
of potentials and such that any low-cost forest L does
not connect distinct trees in F , if we disregard a set of
vertices whose total potential is at most the length of
L. (This method is summarized in Section 3.3.)

There are two additional difficulties, however. In
Steiner tree and Steiner forest, an instance specifies a
set of vertices, the terminals, that must be connected
up by the edges forming the solution network. In
multiterminal cut, an instance specifies terminals, but
these must be separated by the network. In particular,
in the planar dual, where terminals become faces, the
terminals can be quite far from the edges forming the
solution. To address this problem, we introduce a
technique of choosing, for each terminal t, a set of simple
cycles in the dual that enclose t, such that at least
one of these cycles intersects the part of a near-optimal
solution that separates t from the infinite face.

Another difficulty is as follows. (Again, refer to
Figure 1.) Consider a multiterminal cut solution in
the dual, and consider a connected component K. This
component serves to separate some terminals t1, . . . , tp
from each other. However, one of these terminals is not
enclosed in K. It lies outside K, and so must in turn
be separated from other terminals by another connected
component. Thus the connected components cannot be
handled independently from each other. To address
this, we give an algorithm to construct a subgraph,
called the skeleton. The nesting structure of connected
components of the skeleton approximates the nesting
structure of connected components of a near-optimal
solution. This enables us to construct the spanner.

2 Overview

We denote the input graph by Gin. The set of terminals
is denoted T , and the assignment of lengths to edges is
length(·). We give an algorithm that, for a given error
tolerance ε, finds a multiterminal cut of length at most
1 + cε times optimal, where c is a constant.

For notational simplicity, we consider T , length(·),
and ε as global variables so we don’t have to pass them
as arguments to the procedures we define. For a graphG
derived from Gin by deletions and contractions, we use
the notation OPT(G) to refer to the minimum length
of a multiterminal cut in G separating the terminals
T ∩ V (G).

The algorithm for finding an approximate multiway
cut follows the strategy discussed in the introduction.

In Line 1, the graph Ĝin is obtained from Gin by
edge contractions but still contains all of the terminals.

Therefore the edges forming a multiterminal cut in Ĝin
also form a multiterminal cut in Gin. By averaging, in



Algorithm 1 MultiwayCut (Gin, Tin, length(·))
Input: planar graph Gin, terminals T , length
assignment length(·)

Output: a (1 + (c + 1) ε)-approximate multiterminal
cut where c is a constant

1: Ĝin ←MainSpanner(Gin)

2: comment: length(Ĝin) ≤ f(ε)OPT(Gin) and

OPT(Ĝin) ≤ (1 + cε)OPT(Gin)

3: r ← some vertex of Ĝin
4: ζ = ε−1f(ε)
5: for i = 0, . . . , r − 1, let Ei be the set of edges e of

Ĝin such that breadth-first search distance from r
to e is congruent mod ζ to i.

6: let Ei∗ be the set of minimum length.

7: construct a branch decomposition of Ĝin − Ei∗ of
width 2ζ

8: M ← optimal multiterminal cut for Ĝin − Ei∗
9: return Ei∗ ∪M

Line 6,

length(Ei∗) ≤ 1

ζ
length(Ĝin)

≤ εOPT(Gin)

Since

OPT(Ĝin − Ei∗) ≤ OPT(Ĝin)

≤ (1 + c′ε)OPT(Gin)

it follows that the solution Ei∗ ∪M returned in Line 9
has length at most (1 + c′ε)OPT(Gin) + εOPT(Gin).

We briefly review the notion of branchwidth. Two
sets A and B cross if A−B,B−A,A∩B are nonempty.
A carving C of a ground set S is a maximal collection
of noncrossing subsets of S. A branch decomposition
of a graph is a carving C of the edges of the graph.
The boundary of a set A of edges is the set of A vertex
v is on the boundary of a set A if the edges in A
that are incident to v form a nonempty proper subset
of the edges incident to v. The width of a branch-
decomposition C is the maximum size of the boundary
of a set A ∈ C.

The argument that, in Line 7, Ĝin − Ei∗ has
bounded branchwidth (or treewidth) dates back to the
work of Baker [1].2 It is a simple exercise to show that,
given an m-edge graph G and a branch-decomposition

2Baker’s work predated the notions of branchwidth or
treewidth were formulated; see [12, 20] for arguments using these
notions.

of width w, an optimal multiterminal cut can be found
in 2O(w)m time.

In order to prove Theorem 1.1, it remains to give
the algorithm used in Line 1.

Theorem 2.1. There is a constant d such that, for
any constant ε > 0, there is an O(nd)-time algorithm
that, given an instance (Gin, T, length(·)) of multiter-

minal cut, constructs a subgraph Ĝin of Gin such that

length(Ĝin) ≤ 2poly(1/ε)OPT(Gin) and OPT(Ĝin) ≤
(1 + cε)OPT(Gin)

Outline of the proof of Theorem 2.1 The rest
of the paper is devoted to proving Theorem 2.1. Here
we provide an overview of the algorithm.

Each terminal t is assigned a weight equal to the
minimum length of a cut separating t from all other
terminals. The procedure MainSpanner(Gin) uses
short simple cuts to decompose Gin into graphs G in
which (almost) any cut δ(S) has length at least ε times
the total weight of S. For each such graphG, a subgraph
H (the skeleton) is computed, and a spanner for G
is constructed from G and its skeleton H. Finally,
MainSpanner returns the union of these spanners with
the short simple cuts used to decompose Gin.

The procedure Skeleton for finding the skeleton
operates on the planar dual G∗ of G, as follows.

• For each terminal t, the algorithm selects several
cycles in the planar dual (cuts in the primal) that
enclose t, such that at least one of those cycles
intersects the component that immediately encloses
t in a near-optimal solution.

• The algorithm iteratively adds paths we call ears
to each face of each connected component of the
skeleton so far. An ear must separate two terminals
each of weight at least ε3 times the length of the
ear.

• The algorithm runs prize-collecting clustering (de-
scribed in Section 3.3) to augment the skeleton so
far with some additional edges.

Now we describe the construction of the spanner for G.
It too operates on the planar dual G∗.

• For each connected component K of the skeleton,
the algorithm constructs a brick decomposition (de-
scribed in Section 3.4) starting from K. This de-
fines a subgraph M of G that includes K. For each
face of M , the part of G embedded within the face
is called a brick.

• For each brick, the algorithm designates as portals
a constant number of evenly spaced vertices on the
boundary of the brick (the face of M). The al-
gorithm identifies a constant number of important



terminals in the brick. computes minimum-length
portal-respecting partial solutions, subgraphs of the
brick that separate parts of the brick from each
other and from a single important terminal. Be-
cause the number of portals is constant and the
number of important terminals is constant, only a
(large) constant number of partial solutions need
to be computed.

• The spanner for G is defined to be the the union
of all the min-cuts of ther terminals, all the brick
decompositions (which include all the skeletons),
and all the portal-respecting partial solutions.

3 Background

3.1 Terminology We use the notation G[V ′] for the
subgraph of G induced by a subset V ′ of the vertex set
of G.

In a graph G, the cut defined by a set S of
vertices, denoted by δG(S), is the set of edges having
one endpoint in S and one endpoint not in S. It is
simple if G[S] and G[V −S] are both connected graphs.

For every connected planar embedded graph G,
there is another planar embedded graph G∗, called the
planar dual of G. The vertices of G∗ are the faces of
G, and vice versa. For each edge e of G, there is an
edge in G∗ (which we also call e) between the two faces
bordering e in G. A classical result in graph theory
states that, for a planar graph G, a subset of edges
form a simple cut in G if the same edges form a simple
cycle in G∗. Contracting a (non-self-loop) edge in G
corresponds to deleting the edge in G∗ and vice versa.

We can think of a planar graph being embedded
either on a plane or on a sphere. On the plane, there is
one face that is infinite. We prefer to think of the graph
being embedded on the sphere, so the choice of the
“infinite” face is arbitrary. With respect to a designated
infinite face, we say a simple cycle C in G∗ encloses a
face of G∗ if in G the edges of C separate f from the
infinite face. We say C encloses a vertex or edge if C
encloses some face incident to the vertex or edge. We
say C encloses a subgraph if C encloses every edge of
the subgraph. We say C strictly encloses the subgraph
if in addition no vertex of the subgraph lies on C. We
say a subgraph H encloses a subgraph H ′ if some cycle
of H encloses H ′. The outer boundary of H is the set
of edges that are part of H and not strictly enclosed by
H.

3.2 Finding short cycles and paths Let G be an
undirected planar embedded graph with edge-lengths
and face-weights. Let T be a spanning tree of G. Park
and Phillips [21] give a technique for turning weight
enclosed by a cycle into total weight assigned to the
cycle. Root T at a node r. Each edge of G corresponds
to two oppositely directed darts. Assign weights to

the darts as follows. The weight of a dart belonging
to an edge of T is zero. For a dart uv not in T ,
there is a unique simple cycle consisting of uv and the
u-to-v path in T , called the fundamental cycle of uv
with respect to T . If the fundamental cycle of uv is
clockwise, the weight of uv is defined to be the sum
of the weights of the faces enclosed by the elementary
cycle, and the weight of vu, the oppositely directed dart,
is the negative of this sum.

It is easy to verify that, for any simple clockwise
cycle C, the weight of the darts forming C equals the
weight enclosed by C (and the weight of the darts
forming the reverse cycle is the negative of the weight
enclosed).

3.3 Prize-collecting clustering In our algorithm,
we use the PC-Clustering algorithm of Bateni et
al. [2] as a subroutine. Theorem 3.1 summarizes its
guarantees, which we will use in the following way.
There is a cost weight(v) associated with ignoring
each vertex v (vertex v might be itself a supervertex
obtained by contracting a connected subgraph). We
let φ(v) = ε−2weight(v) for all vertices v, invoke
the procedure, and apply the theorem on a near-
optimal solution L to obtain Q. Then, the total cost
of Q is

∑
v∈Q weight(v) ≤ ε2length(L) ≈ ε2OPT.

Thus, all these vertices are going to be ignored from
consideration, paying only a negligible cost.

Theorem 3.1. (prize-collecting) Let G be a graph
with edge lengths such that each vertex v has a potential
φ(v), and let H be the subgraph of G output by the PC-
Clustering algorithm executed on (G,φ). Then

1. length(H) ≤ 2
∑
v φ(v).

2. For any subgraph L of G, there is a set Q of vertices
such that
(a)

∑
v∈Q φ(v) ≤ length(L); and

(b) If two vertices v1, v2 6∈ Q are connected by L,
they are in the same connected component of H.

Proof. (See Figure 4 for an example application). The
reader is referred to [2] for details of the algorithm itself.

The PC-Clustering algorithm builds a forest F ,
and produces a vector y satisfying∑

S:e∈δ(S)

∑
v∈S

yS,v ≤ ce ∀e ∈ E(3.1)

∑
S3v

yS,v = φ(v) ∀v ∈ V(3.2)

yS,v ≥ 0 ∀v ∈ S ⊆ V.(3.3)

The analysis takes advantage of the connection between
F and y. Consider a topological structure in which
vertices of the graph are represented by points, and
each edge is a curve connecting its endpoints whose



length is equal to the weight of the edge. We assume
that each vertex v has a unique color. The algorithm
paints by color v a connected portion with length yS,v
of all the edges in δ(S). In particular, each edge e gets
exactly

∑
C:e∈δ(S) yS,v units of color v. Property 1 of

the statement of the theorem follows directly from the
following lemma.

Lemma 3.1. ([2]) The length of F is at most
2
∑
v φ(v).

In the rest of the proof, we establish the second
property of the statement. We say a graph G′(V,E′)
exhausts a color u if and only if E′ ∩ δ(S) 6= ∅ for any
S : yS,u > 0. Note that this does not imply that all
edges with color u are part of E′.

Lemma 3.2. ([2]) If a subgraph L of G connects two
vertices u1, u2 from different components of F , then L
exhausts the color corresponding to at least one of u1
and u2.

We can also relate the length of a subgraph to the
potential value of the colors it exhausts.

Lemma 3.3. ([2]) Let X be the set of colors exhausted
by a subgraph L of G. Then length(L) is at least∑
v∈X φ(v).

We add to Q any vertex whose color is exhausted
by L. Lemma 3.3 gives Property 2a. For Property 2b,
suppose L connects two vertices u1, u2 that are in
different connected components of H. By Lemma 3.2,
L exhausts the color of at least one of u1, u2, so it is
placed in Q. �

3.4 Brick decomposition In our algorithm, we use,
as a subroutine, the brick decomposition algorithm of [6]
based on the spanner construction of [19]. Given a
connected subgraph K of a planar embedded graph G
and given parameters ε > 0, κ > 1, there is an O(n log n)
algorithm to compute a connected subgraph M of G,
called the mortar graph. For each face f of M , the
subgraph of G enclosed by ∂f (including the boundary)
is called a brick.

For any ε > 0 and κ > 1, there is an O(n log n)
algorithm that, given a planar embedded graph G and a
connected subgraph K of G, finds a connected subgraph
M of G that contains K. For each face of M , the
subgraph of G enclosed by the boundary of the face
is called a brick. The brick includes the boundary of
the face, which is called the boundary of the brick.
The boundary of a brick B consists of four paths,
WB ∪ SB ∪ EB ∪NB (west, south, east, north).

The brick decomposition satisfies two length prop-
erties: the length of M is a constant times the length of
K:

(3.4) length(M) ≤ (1 + 1/ε+ 1/(κε2))length(K)

and the east and west boundaries represent a small
fraction of this:

(3.5)
∑
B

(length(WB) + length(EB)) ≤ 1

εκ
length(M)

Now we come to the most significant property of
the brick decomposition. For a brick B and a subgraph
F of B, a joining vertex of F with the boundary of B
is a vertex of the boundary that is the endpoint of an
edge of F not in the boundary. The theorem stated
below is a slight refinement of Theorem 10.7 of [7]. The
main point is that, given a subgraph F of a brick, a
replacement subgraph (not too much longer than F )
spans the same boundary vertices but has few joining
vertices.

Theorem 3.2. Let B be a brick with boundary W ∪S∪
E∪N , let F be a set of edges in B, and let U = {u0, u1}
be a set of at most two nodes of F . Then there exists a
forest F ′ of B with the following properties:

• F ′ has O(ε−2.5κ) joining vertices.

• If two vertices of U∪{boundary of B} are connected
in F , then they are also connected in F ′.

• length(F ′) ≤ (1 + ε)length(F ) + length(E ∪W )

• All edges of F ′ are in the subgraph of B enclosed
by F ∪NF ∪ SF , where NF (resp. SF ) denotes the
subpath of N (resp. S) spanned by F .

4 Simplifying the problem

In this section, we give the procedure
MainSpanner(Gin) for finding a spanner for Gin. The
procedure computes a weight for each vertex, and then
uses small simple cuts to decompose Gin into smaller
graphs in which there is no simple cut whose length is
small compared to the weight on one side of the cut.
Combining spanners for these smaller graphs with the
small simple cuts used in the decomposition yields a
spanner for Gin.

4.1 Vertex weights For each terminal t ∈ T , the
algorithm computes the minimum cut mincut(t) sepa-
rating t from T − {t} (the rest of the terminals). The
algorithm assigns weights to the vertices. For each ter-
minal t, weight(t) ← length(mincut(t)), and for each
nonterminal vertex v, weight(v) ← 0. Let Win denote
the sum of weights. For a set S of vertices, weight(S)
denotes

∑
v∈S weight(v).

Lemma 4.1. ([11]) OPT(Gin) ≤Win ≤ 2OPT(Gin)

The vertex weights will not change for the duration
of the algorithm, and so we consider the weight assign-
ment weight(·) as a global.



4.2 Graphs without short simple cuts Let G be
a graph with edge-lengths and vertex-weights. Let
v∞ be a nonterminal vertex. For a vertex subset
S ( V − {v∞}, the length-weight ratio is defined to be
length(δG(S))/weight(S). We say G is ε-short-cut-free
with respect to v∞ if the length-weight ratio of every
S ( V − {v∞} is at least ε.

The algorithm now essentially reduces the problem
of finding a spanner to the ε-short-cut-free case. To
do this, it repeatedly looks for a set S with a small
length-weight ratio, finds a spanner for the S part
of the graph (loosely speaking), and chops S out of
the graph. The overall spanner is the union of these
spanners together with the small length-weight-ratio
cuts δ(S). The pseudocode below specifies this more
precisely, using subroutines Skeleton and Spanner
described later.

Algorithm 2 MainSpanner(Gin)

Input: planar graph Gin with edge-lengths length(·),
vertex-weights weight(·), and terminals T

Output: a spanner Ĝin for the Multiway Cut in-
stance

1: Initialize G0 ← Gin, Ĝin ← ∅
2: v0 ← some nonterminal vertex.
3: while there exists S ⊂ V (G0)−{v0} whose length-

weight ratio is less than ε do
4: let S be a minimal such set such that δG0

(S) is a
simple cut

5: Let G be the graph obtained from G0 by merging
all vertices not in S to a single vertex v∞

6: Ĝ← Spanner(G, v∞,Skeleton(G, v∞))

7: Ĝin ← Ĝin ∪ Ĝ ∪ δ(S)
8: Delete vertices of S from G0

9: G← G0 and v∞ ← v0
10: Ĝin ← Ĝ ∪ Spanner(G, v∞,Skeleton(G, v∞))

11: return Ĝin

It is easy to see that the existence of a set S ⊂
V (G0) − {v∞} with length-weight ratio less than ε
implies the existence of such a set with the additional
restriction that δG0

(S) is a simple cut. This justifies
imposing the restriction in Line 4. The algorithm for
Line 4 uses planarity; we describe it in Section 4.4.

4.3 Correctness of MainSpanner(·) Suppose
MainSpanner runs for k iterations, and, for
i = 1, . . . , k, in the ith iteration, Si is the set
chosen in Line 4, Ci = δG(Si) is the corresponding
simple cut, and Gi and vi,∞ are the graph G and the
vertex v∞ obtained in Line 5. Let Gk+1 and vk+1,∞ be
the graph and vertex assigned to G and v∞ in Line 9,
after the k iterations.

Lemma 4.2.
∑k
i=1 length(Ci) ≤ εWin

Proof. In each iteration, length(δG0
(S)) < εweight(S).

At the end of each iteration, the vertices of S are
removed from G0, so the sum of lengths of the cuts
is less than ε times Win. �

Lemma 4.3. For i = 1, . . . , k+ 1, Gi is ε-short-cut-free
with respect to vi,∞.

Proof. There are two cases. Suppose i 6= k + 1. In this
case, V (Gi)−{vi,∞} = Si, so the property holds by the
minimality of Si.

Suppose i = k + 1. In this case, due to the while
condition, there is no subset S of V (Gk+1)−{v∞} whose
length-weight ratio is less than ε �

Having established Lemma 4.3, we avoid undoing
it by not recomputing the weights for the terminals
in each graph Gi. Let Wi =

∑
v∈V (Gi)

weight(v).

Since we don’t recompute the weights for Gi, Wi is
not necessarily a lower bound on 2OPT(Gi, length(·)).
However, since each terminal appears in only one graph

Gi,
∑k+1
i=1 Wi is a lower bound on 2OPT(Gin, length(·)).

In finding the spanner for each subgraph Gi, therefore,
we can tolerate an error of O(ε)Wi.

Lemma 4.4. Assume that the result of calling Spanner

on Gi is a subgraph Ĝi of Gi such that

• length(Ĝi) ≤ 2poly(1/ε)Wi, and

• Ĝi contains a multiway cut for Gi whose length is
at most OPT(Gi) + cεWi

Then MainSpanner returns a subgraph Ĝin of Gin
such that

• length(Ĝin) ≤ 2poly(1/ε)OPT(Gin), and

• Ĝin contains a multiway cut for Gin whose length
is at most (1 + c′ε)OPT(Gin)

Proof. We have Ĝin =
⋃k
i=1(Ĝi∪Ci)∪Ĝk+1. Lemma 4.2

and our assumption on length(Ĝi) imply

length(Ĝin) ≤ 2poly(1/ε)Win

≤ 2poly(1/ε)OPT(Gin)

where the last inequality uses Lemma 4.1.
Let L be an optimal solution to the original graph

Gin. Define Li = (L ∩ E(G[Si])) ∪ Ci. Clearly Li is a
feasible solution for Gi.

Let Lk+1 = L∩E(Gk+1). Clearly Lk+1 is a feasible
solution for Gk+1.

Lemma 4.2 implies

(4.6)
∑
i

length(Li) < length(L) + εWin



For i = 1, . . . , k+ 1, let L′i be a solution for Gi such

that L′i ⊂ Ĝi and length(L′i) ≤ OPT(Gi) + cεWi.
Then

⋃
i(L
′
i ∪ Ci) is a solution for Gin, is a subset

of Ĝin, and has length∑
i

(length(L′i) + length(Ci))

≤
∑
i

(length(Li) + cεWi + length(Ci))

≤ length(L) + cεWin + 2
∑
i

length(Ci)

by definition of Li

≤ OPT(Gin) + cε 2OPT(Gin) + 4εOPT(Gin)

by Lemmas 4.2 and 4.1

≤ (1 + (4 + c)ε)OPT(Gin)

which shows that it is a near-optimal solution. �

4.4 Interpretation of cuts δG0
(S) in the dual

Recall that the edges of a simple cut δG0
(S) in the

planar primal form a simple cycle in the planar gual G∗0.
Interpreting v0 as the infinite face of G∗0, the vertices in
S are exactly the faces of G∗0 enclosed by this simple
cycle.

This interpretation enables us to efficiently im-
plement Line 4 of MainSpanner. Use the transfer-
function technique of Section 3.2 to assign weights to
the darts of G∗0 so that the weight of a clockwise simple
cycle equals the weight of the enclosed faces. Define the
length of a dart to be the length of its edge. For each
dart d, assign cost cost(d) ← length(d) − εweight(d).
With this assignment, the cost of a clockwise cycle is
negative iff the corresponding simple cut has length-
weight ratio less than ε. To carry out Line 4, the al-
gorithm therefore needs to find a minimally enclosing
negative-cost cycle. This can be computed iteratively
with the help of a subroutine for testing for the exis-
tence of a negative-cost cycle.

Lemma 4.3 in terms of dual cycles is:

Lemma 4.5. For i = 1, . . . , k + 1, interpreting vi,∞ as
the infinite face of the planar dual G∗i of Gi, for any
simple cycle C that is not the boundary of the infinite
face, the weight enclosed by C is at most ε−1length(C).

5 Building a skeleton

We recommend that the reader review Figure 1 to recall
the structure of a solution in the dual, because the
algorithm Skeleton (G, v∞) and its properties address
primarily not G but its planar dual G∗. In G∗, v∞ is
considered the infinite face. The terminals are faces as
well, so we refer to them as terminal faces. We interpret
a subset L of edges as a subgraph of the dual G∗; e.g.
when we discuss connected components of L, we mean

v0

v3

v2
v1

v4

t

v∞

Figure 2: On the left is shown part of G∗. Shown in thick
gray is a shortest path from a vertex of the face t to a vertex
of the face v∞. The dashed edges form a shortest cycle that
encloses t and crosses the path at v2. On the right is shown
the graph G′ obtained by cutting along the shortest path,
duplicating its edges and vertices. This merges the faces t
and v∞. The cycle enclosing t is now a shortest path between
the two copies of v2.

connected components of the corresponding subgraph
of G∗.

We present the algorithm in Section 5.1 and we
present the correctness properties in Section 5.2.

5.1 The skeleton algorithm Refer to the pseu-
docode on the next page.

Step 1: Cycles. For each terminal t, the algo-
rithm includes in the skeleton some cycles enclosing t,
selected as follows. Find a shortest path P = v0v1 · · · vk
connecting an arbitrary vertex on the face t to an arbi-
trary vertex on the infinite face v∞. For each vertex vi
of P , we find a shortest cycle crossing P only at vi, and
include some of those cycles in the skeleton.

In order to find these cycles, cut the planar embed-
ded dual graph G∗ along P by duplicating the edges
and vertices of P . Let G′

∗
be the result. For each ver-

tex vi of P , find a shortest path Pi in G′ between the
two copies of vi. The edges of Pi form a cycle Ci in G
that crosses P exactly one, and encloses t. The cycles
can be chosen so that each (nonstrictly) encloses all the
previous cycles.

To decide which of those cycles to add to the skele-
ton, for each ` = 0, 1, 2, . . . , 3ε−2, the algorithm consid-
ers the integers i for which length(Ci) ≤ ε `weight(t).
Let these integers be i1 < i2 < · · · < iq. The algorithm
includes cycle Cij in the skeleton if (wij−1

, wij ] con-
tains an integer multiple of weight(t)ε or wij+1

− wij >
weight(t)ε.

Step 2: Ears. Let H1 be the result of Step 1. H1

has the property that every connected component is 2-
edge-connected. Step 2 preserves this property. An ear
E of G with respect to H is a path in G that starts and
ends on a connected component K of H and that does



Algorithm 3 Skeleton (G, v∞)

Input: graph G and vertex v∞ such that G is ε-short-cut-free with respect to v∞
Output: skeleton H, a subset of the edges of G, with each edge of H marked as either a blob edge or a cluster edge.

Step 1 (cycles):

1: initialize H1 := ∅
2: for each terminal face t in the dual G∗ do
3: v0v1 . . . vk ← shortest path in G∗ from a vertex v0 on face t to a vertex vk on face v∞.
4: for i = 0, . . . , k do
5: Ci ← shortest cycle in G∗ that encloses t and crosses v0v1 . . . vk at vi, chosen so that Ci encloses Ci−1

and Ci 6= boundary of v∞
6: wi ← weight enclosed by Ci
7: for ` = 0, 1, . . . , ε−2 do
8: let i1 < i2 < · · · < iq be the integers i for which length(Ci) ≤ ε `weight(t)
9: for each j such that (wij−1

, wij ] contains an integer multiple of εweight(t) or wij+1
− wij > εweight(t)

do
10: H1 ← H1 ∪ Cij

Step 2 (ears):

H2 := H1

while there is a component K of H2 and an ear E of K such that
E separates terminals t, t′ and length(E) ≤ ε−3 min{weight(t),weight(t′)}, or
E separates terminal t from v∞, and length(E) ≤ ε−3weight(t)

add E to H2

Step 3 (clustering):

let G∗′ := G∗/H2, obtained from G∗ by contracting the edges of H2

comment: each vertex v of G∗′ is the result of merging the vertices of some connected component of H2

(possibly a one-vertex component)
for each vertex v of G∗′ do
φ(v)← ε−2length(the connected component merged to form v)
unless this connected component contains the boundary of the face v∞, in which case φ(v)← ε−2length(G∗)

H ′3 ← PC-Clustering(G∗′, φ)
H3 := H2 ∪H ′3, where the edges of H ′3 are viewed as the corresponding edges of G∗.
return H3



t t'

C P
K

Figure 3: The dashed green path P is an ear that separates
t from t′. Note that t, t′ are already separated but not by
the connected component K.

not cross H (though it can share edges with H).3 We
say an ear E separates a pair of faces f1, f2 of G if the
faces are in the same face of K but not of K ∪E. Refer
to Figure 3 for an illustration.

The algorithm repeatedly adds ears whose lengths
are small compared to the weights of terminals they
separate4. The ear step also tries to separate terminals
from the infinite face v∞. The shortest ear separating
a given pair of terminals can be found using a simple
variant of the transfer-function technique reviewed in
Section 3.2.

Step 3: Clustering. H2 is defined to be H1

together with the ears added in Step 2. A connected
component of H2 is called a blob. Note that each
connected component is 2-edge-connected.

A blob that contains the boundary of the infinite
face is called the outer blob, if it exists. Let G∗′ :=
G∗/H2 be the graph obtained from G by contracting
the edges of H2 (ignoring the planar embedding). The
algorithm assigns a potential φ(v) to each vertex of G∗′

Each vertex v of G∗′ is either a vertex of G∗ (in which
case φ(v) = 0 or is the result of contracting a blob B.
(in which case φ(v) = ε−2length(B) or, if B contains
the boundary of v∞, φ(v) = ε−2length(G∗)..

The algorithm runs the PC-Clustering algorithm
on (G∗′, φ) to obtain a forest H ′3 connecting some of the
blobs to each other. The skeleton is then defined as
H3 := H2∪H ′3, where the edges of H ′3 are viewed as the
corresponding edges of G.

3This definition of ears differs from the traditional definition.
4Beware that those terminals might already be separated, but

the ear is attached to a particular connected component, and
“separates” means that those terminals were not separated by
that component until the ear was added.

K1

K3

K2

K4

K1

K3

K2

K4

Figure 4: The figure on the left shows the four clusters found
by PC-Clustering. The circles represent blobs (resulting
from the cycles and ears steps). The thin green edges
connecting the blobs into clusters were added to the skeleton
during the cluster step. The figure on the right illustrates
Property C of Lemma 5.4. The thick red lines form a
connected component K̂ of a near-feasible near-optimal
solution L. The circles that are filled in are designated as
special blobs. Note that the only nonspecial blobs connected
by K̂ belong to the same cluster.

A connected component of H3 after completion of
the clustering step is called a cluster. The edges selected
in this step are called cluster edges. We say a blob is of
a cluster or belongs to a cluster if the blob is a subset of
the cluster.

5.2 Structure of the skeleton and a near-opti-
mum solution

Definition of C(L, t) and of K(L, t) Let L be
a set of edges of G (a feasible multiway cut for G
and some subset of terminals). We consider L as a
subset of the edges of the planar dual G∗. Let t be
a terminal face of G∗. Among the simple cycles in G∗

that consist of edges of L, we use C(L, t) to denote the
minimally enclosing cycle that encloses t (if such exists,
see Figure 1). C(L, t) is called the cycle of t in L.
Among the connected components of L considered as a
subgraph of G∗, the component that contains C(L, t) is
denoted by K(L, t).

Definition of W , of R-feasible, and of near-op-
timal Let W denote the sum of weights of vertices of
G. For a subset T ′ of T , we say that a set of edges
of G is a T ′-feasible solution if the edges form a feasi-
ble multiway cut for all terminals in T ′ ∩ V (G). We
say it is a near-optimal T ′-feasible solution if in addi-
tion weight(T − T ′) ≤ cεW and the set of edges has
length at most (1 + cε)OPT + cεW where OPT refers
to the optimal length of a true solution (and, again, c
is a constant).

Lemma 5.1. There exists a subset R of terminals and
a near-optimal (T −R)-feasible solution L such that,

Property A: for each terminal t 6∈ R, at
least one cycle added for t in the cycles step
intersects K(L, t).

Proof. We give an algorithm that, given an optimal
solution L0, computes sets L1 and R1 such that L1



is a near-optimal (T − R1)-feasible solution. Initially
L1 ← L0 and R1 ← ∅. For each teminal t, we process
t as follows. Consider the cycle C(L1, t) minimally
enclosing t in L1. Denote this cycle by Ct.

Assume Ct does not intersect any of the cycles
added to the skeleton when considering t. In this case,
we will modify L1. Let `∗ be the integer such that
ε−1length(Ct)/weight(t) ∈ (`∗ − 1, `∗]. If `∗ > ε−2, we
add t to R1. Else, let vi∗ denote a vertex at which Ct

crosses the shortest path v0v1 . . . vk in the cycles step.
It follows that length(Ci∗) ≤ ε−1weight(t), so during
i∗ = iq for some q in Line 8 of the cycles step during
iteration `∗. Let p and r be the integers such that

1. p < q < r,

2. Cip and Cir were added to H1 in Line 10, and

3. for every integer s in the interval (p, r), Cis was not
added.

We modify L1 by adding all the edges of Cir and
deleting all the edges of Ct and deleting any connected
components that are strictly enclosed by Cik and not
enclosed by Ct. Since length(Cik) ≤ ε−1`∗ weight(t)
and length(Ct) ≥ (`∗ − 1)εweight(t), the increase in
length(L1) is at most εweight(t).

After the modification, K(L1, t) includes Cir so the
modification achieves Property A for t. We show below
that it preserves it for terminals that have already been
processed.

To preserve the (T−R1)-feasibility of L1, we add to
R1 all the terminals enclosed by Cir but not by Ct. The
weight of these terminals is wir − wip . Cir encloses vi
but by assumption does not intersect Ct so must enclose
Ct. Similarly, Cip must be enclosed by Ct. Hence the
weight of all terminals enclosed by Cir but not by Ct is
at most wir −wip . By Property 3, (wip , wir−1

] contains
no integer multiple of εweight(t), and wir − wir−1

<
εweight(t), so wir − wip < 2εweight(t). Thus the
increase in weight(R1) is at most 2εweight(t).

We must show that Property A continues to hold for
each previously processed terminal t′. If t′ is enclosed
by Cir but not by Ct then t′ is added to R1 so the
property holds trivially. Suppose t′ is enclosed by
Ct. Then before the modification K(L1, t

′) is strictly
enclosed by Ct, so the modification does not change
K(L1, t

′). Suppose t′ is not enclosed by Cir . Then
K(L1 before modification, t) cannot be strictly enclosed
by Cir so none of it is removed by the modification, and
the addition of Cir to L1 only adds to K(L1, t).

Summing over all iterations of the outer for-loop,
the total increase in length(L1) is at most ε

∑
t weight(t)

and weight(R1) is at most 2ε
∑
t weight(t).

�

We use C(t) to refer to the cycle whose existence is
asserted in Property A.

Lemma 5.2. There exists a subset R of a terminals and
a near-optimal (T −R)-feasible solution L that satisfies
Property A and also

Property B: Let B be a blob and let F be a
finite face of B. Then there is at most one
terminal t 6∈ R enclosed by F such that there
is no blob B′ enclosed by F that intersects
K(L, t).

Proof. Let R1 be the set of terminals defined in
Lemma 5.1 and let L1 be the near-optimal (T − R1)-
feasible solution of that lemma. We define a set R2 of
terminals by the the following algorithm. For each blob
B and each face F of B in turn, let TF denote the set of
terminals t enclosed by F , not in R, and such that there
is no blob B′ enclosed by F that intersects K(L1, t). If
TF has size 2 or more, add all the terminals of TF to
R2. At the end, we let R = R1 ∪R2.

By construction, the second property holds. It
remains to bound the weight of R2. Consider a blob
B and a face F of B such that TF has size at least 2.

Let t, t′ be two distinct terminals of TF . Since L1 is
feasible, it separates t from t′, and up to exchanging the
role of t and t′ we can assume that C(L1, t) separates t
from t′. Then some edges of C(L1, t) must be inside F .
But C(L1, t) also intersects C(t), which encloses F , so
C(L1, t) intersects the boundary of F , forming an ear E
that separates t from t′. Since this ear was not added
in the ears step,

min(weight(t)),weight(t′)) < ε3length(E).

Let tmin be the terminal in TF of minimum
weight. The cycle C(tmin) encloses F and there-
fore encloses all terminals in TF , so weight(TF ) ≤
weight enclosed by C(tmin). By Lemma 4.5 (and since
C(tmin) is not the boundary of the infinite face),
weight enclosed by (C(tmin)) ≤ ε−1length(C(tmin)).
By definition of the cycle step, length(C(tmin)) ≤
ε−1weight(tmin). Thus

weight(TF ) ≤ ε−2weight(tmin).

Combining, weight(TF ) ≤ ε length(E). By definition of
TF , no blob in F encloses any edge of E . Thus as we
sum over all B and F , the ears are all disjoint sets of
edges, and we obtain weight(R2) ≤ ε length(L1). �

The algorithm does not know L or R, so cannot
uniquely identify the one terminal t mentioned in Prop-
erty B. However, the following lemma gives us a tech-
nique to identify a bounded number of possible candi-
dates.

Lemma 5.3. Let Y be a subgraph. Let T̃Y denote the
set of terminals t enclosed by Y such that some cycle
C chosen for t in the cycle step encloses Y . Then
|T̃Y | ≤ ε−2.



Proof. Let tmin be the terminal in T̃Y of minimum
weight. Then

|T̃Y | ≤ weight(T̃Y )/weight(tmin).

Let C be the cycle chosen for tmin that encloses Y .
C therefore encloses all terminals in T̃Y , so weight(T̃Y )
is at most the weight enclosed by C. By Lemma 4.5
(and since C is not the boundary of the infinite face),
weight(C) ≤ ε−1length(C). By definition of the cycle
step, length(C) ≤ ε−1weight(tmin). Thus

weight(T̃Y ) ≤ ε−2weight(tmin).

�

Lemma 5.4. There exists a subset R̂ of terminals and
a near-optimal (T − R̂)-feasible solution L̂ that satisfies
Properties A and B and also

Property C: There is a set of special blobs
such that (i) if L̂ connects two blobs in different
clusters then at least one is special, (ii) no edge

of L̂ is properly enclosed by a special blob, and
(iii) R contains every terminal enclosed by a
special blob

Proof. Let R2 be the set of terminals defined in
Lemma 5.2, and let L2 be the near-optimal (T − R2)-
feasible solution defined in that lemma. Let L′2 be ob-
tained from L2 by contracting each blob B of H2. The
cluster step runs PC-Clustering on (G∗′, φ), obtain-
ing the subgraph H ′3. We apply part 2 of Theorem 3.1
to the subgraph L′2 of G′ This part asserts the existence
of a set Q of vertices of G∗′, which correspond to blobs
in G∗.

We say a blob B is outer if it contains all the edges
of the infinite face v∞ of G∗. We designate a blob B
as special if the corresponding vertex of G∗′ belongs
to Q. Part 2a of Theorem 3.1 implies that no outer
blob is special. We define R3 as the set of all terminals
that in G∗ are enclosed by special blobs, and we set
R̂ = R2 ∪ R3. Finally, we define L̂ to include edges in
L2 not strictly enclosed by special blobs, and also all
the edges on the outer boundaries of special blobs. This
ensures that L̂ is (T − R̂)-feasible, and implies Parts (ii)
and (iii) of the present lemma. Part 2b of Theorem 3.1

implies that L̂ satisfies part (i).
Part 2a of Theorem 3.1 implies that

length(L3)− length(L2)

≤
∑

B special

length(B)

≤ ε2
∑
v∈Q

φ(v) ≤ ε2length(L2)

since no outer blob is special.

Additionally, by Lemma 4.5 and since an outer blob
is not special,

weight(R3) ≤ ε−1
∑

B special

length(∂B) ≤ ε length(L2).

Finally, it is easy to verify that Property A of
Lemma 5.1 still holds for L̂, and Property B of
Lemma 5.2 holds as a matter of course. �

The clusters and enclosure relation between clusters
naturally induce a nesting forest of clusters. Let
Enclosed(K) denote the terminals enclosed by cluster
K.

Definition of structured solution A struc-
tured solution with respect to a subset R of termi-
nals is a multiset of edges S that can be partitioned
into sets, S = ∪K clusterSK , in such a way that for ev-
ery K, ∪{SK′ : K ′ enclosed by K} is a feasible multi-
way cut for Enclosed(K) − R. Moreover, if no clus-
ter properly encloses K, then in addition ∪{SK′ :
K ′ enclosed by K} also separates Enclosed(K) − R
from t∞.

For each cluster K of the skeleton H, define

L̂K =
⋃
{K̂ : K̂ a connected component of L̂
that intersects some non-special blob of K}.

Theorem 5.1. (L̂K)K is a partition of L̂ that is a

structured solution with respect to R̂. Moreover, for each
cluster K of the skeleton H, we have:

1. Every edge of L̂K is reachable from cluster K
without crossing into a blob of any other cluster.
(Equivalently: L̂K is in a single face of H −K.)

2. If some terminal t in Enclosed(K) − R̂ is not
separated from t∞ by⋃

{L̂K′ : K ′ properly enclosed by K}

then C(t) encloses the face F of K that encloses t.

3. Let Mandate(L̂K) be the set of pairs {t, t′} of

terminals in {t∞} ∪ Enclosed(K) − R̂ that are

separated by L̂K and that are not already separated
by ⋃

{L̂K′ : K ′ properly enclosed by K}

Then {t : t appears in Mandate(L̂K)} has at most
one terminal per face of K.



Proof. To prove that we have a structured solution, con-
sider two terminals t1, t2 that are not in R̂ and are en-
closed by some cluster K. Since L̂ is feasible for ter-
minals not in R̂, up to exchanging the roles of t1 and
of t2 we can assume that KL̂(t1) separates t1 from t2.

By Property A (Lemma 5.1), K(L̂, t1) intersects a cycle
C(t) that is part of a blob of some cluster K1 of the

skeleton H (a non-special blob, since t1 /∈ R̂ and all ter-

minals enclosed by special blobs are in R̂ by Property C
of Lemma 5.4). If cluster K1 is enclosed by K then

K(L̂, t1) is in
⋃
{L̂K′ : K ′ properly enclosed by K}

and so t1 and t2 are separated by that union, as de-
sired. If K1 encloses K, then K(L̂, t1) simultaneously
intersects a non-special blob of K1 but also separates
two terminals enclosed by K, hence must also intersect
a non-special blob of K: that contradicts Lemma 5.4.

In terms of separation from t∞, we know that L̂ is
feasible, so every t /∈ R̂ must be separated from t∞ by
some K(L̂, t), that (by Property A) intersects the non-
special blob of C(t), so if K denotes the cluster of that

blob, then K encloses t and K(L̂, t) is in L̂K , hence L̂K
separates t from t∞, as desired. This proves that L̂ is a
structured solution with respect to R̂.

To prove Property 1, consider a connected compo-
nent K̂ of L̂K . By definition it intersects a non-special
blob of K. By Lemma 5.4 it does not intersect any other
non-special blob and does not enter into any L-special
blob. This implies the desired property.

To prove Property 2, let t be in Enclosed(K) −
R̂ and not separated from t∞ by ∪{L̂K′ : K ′

properly enclosed by K}. In other words, K(L̂, t) is

not in L̂K′ for K ′ enclosed by K. By Lemma 5.1,
K(L̂, t) intersects cycle C(t) of the skeleton. This cycle
is part of a blob of a cluster, call it K1, and by definition
of L̂K1

, K(L̂, t) is in L̂K1
. So K1 is not any K ′ enclosed

in K, and so C(t) must enclose the face F of K that
encloses t.

To prove Property 3, consider a cluster K and a face
F of K and study the terminals pairs of Mandate(L̂K)
that involve at least one terminals in F . By Lemma 5.2,
every terminal t′ in F except at most 1 (call that special
terminal tF ) is in a blob B′ (part of someK ′) enclosed in

F and that intersects K(L̂, t′), so K(L̂, t′) is in L̂K′ , and

it encloses t′; moreover by Lemma 5.4 K(L̂, t′) cannot
intersect any blob of K, so it has to stay enclosed by
F , so L̂K′ separates t′ from everyone outside F , and so
Mandate(L̂K) does not contain any pair (t′, t”) with t”
outside F . Any two terminals t′1, t

′
2 6= tF that are in F

are separated by at least one of K(L̂, t′1) and K(L̂, t′2),

hence separated by L̂K′1 ∪ L̂K′2 , so that pair also cannot

appear in Mandate(L̂K). For t′ and tF , since we already

have K(L̂, t′) in L̂K′ , the only way in which tF and t′

could be not separated would be if K(L̂, t′) enclosed

both t′ and tF , and then K(L̂, tF ) would have to be

enclosed in K(L̂, t′). But that would contradict the fact

that K(L̂, t′) is enclosed in F whereas K(L̂, tF ) must
intersect a blob by Lemma 5.1, and that has to be F or
outside F . This proves the theorem. �

Theorem 5.2. The length of the output H of the skele-
ton algorithm is O(ε−8)W .

Proof. First we analyze H1, the result of the cycle
step. Consider the iteration for a terminal t. A cycle
Ci cannot enclose more than length(Ci)/ε weight by
Lemma 4.5. Since length(Ci) ≤ ε `weight(t) and ` ≤
ε−2, the enclosed weight is at most ε−2 weight(t). For
each condition in Line 9, the enclosed weight changes by
at least εweight(t) from one selected cycle to the next,
so there are at most 2ε−3 cycles added for each value of
t and of `. There are ε−2 values of `, and each cycle has
length at most ε−1weight(t), so the total length added
for terminal t is at most 2ε6weight(t). Summing over t
yields

length(H1) ≤ 2ε−6W.

Now we analyze H2. Just for for this part of
the proof, to avoid the special case of E separating a
terminal from v∞, we imagine that v∞ is a terminal
and that it has the largest weight. Whenever the
algorithm adds an ear E to a component K, consider
the terminals t, t′ separated by E that have maximum
weight, and charge the length of E to whichever of the
two terminals has minimum weight, resolving ties in
a consistent manner, assuming for example, up to an
infinitesimal perturbation, that all weights are distinct.

We claim that each terminal gets charged at most
once. To see this, assume, for a contradiction, that t0
gets charged, first by an ear E (in face F of component
K) separating t0 from t1, and then later by an ear E ′
(in face F ′ of component K ′) separating t0 from t2.
By the definition of charging, weight(t0) < weight(t1)
and weight(t0) < weight(t2). Ear E splits F into two
faces, F0 and F1, containing t0 and t1 respectively. Ear
E ′ splits F ′ into two faces, F ′0 and F ′1, containing t0
and t2 respectively. Face F ′ either is enclosed in F0

(possibly with equality), or encloses K. In the first
case, t2 is in face F0, contradicting the maximality of
weight(t0) among terminals in F0; in the second case, t1
is in face F ′0, contradicting the maximality of weight(t0)
among terminals in F ′0. Thus the claim holds. Finally,
since v∞ has the largest weight, it never gets charged,
and so the total length of the ears added is at most
ε−3

∑
t6=v̂ weight(t) = ε−3W , so

length(H2) ≤ length(H1) + ε−3W.

Finally we analyze H3. By construction
length(H3) ≤ length(H2) + length(H ′3). Using Theo-



rem 3.1 and the definition of potential:

length(H ′3) ≤ 2
∑
v

φ(v)

≤ 4
∑

ε−2{length(K) : K a blob}

= 4ε−2length(H2)

where the second inequality follows since each blob B
is counted once for its own potential an d possibly once
for the outer blob.

Combining,

length(H3) ≤ (4ε−2 + 1)(2ε−6W + ε−3W ) ≤ cε−8W.

for a constant c. �

6 Building a spanner

Like the skeleton algorithm, the spanner algorithm
operates in the planar dual.

6.1 The spanner algorithm Algorithm Spanner
outlines the spanner algorithm. We use the brick
decomposition algorithm from Section 3.4. For each
connected component K of the skeleton, the spanner
algorithm constructs a brick decomposition. Let MK

be the mortar graph. By Inequality 3.4, length(MK) is
O(ε−1)length(K). Therefore, by Theorem 5.2, summing
over all clusters K, the total length of all the brick
decompositions is O(ε−c2)W where c2 is a constant. By
Inequality 3.5, we can choose a constant c1 so that,
when we set κ = ε−c1 for every brick decomposition,
we ensure that the east and west boundaries have total
length O(ε)W .

For a constant c3 to be determined at the end of
this section, we set θ = ε−c3 . For each brick B, the
algorithm selects θ portals along the boundary ∂B of
B. The simple greedy selection rule is described in [7].
It ensures that, for any vertex x on ∂B, there is a portal
y such that the x-to-y subpath of ∂B has length at most
length(∂B)/θ.

The portals divide ∂B into a set Pb of θ subpaths.
A configuration is a pair (π, S) where π is a partition of
the subpaths Pb and S either is one of the parts of π or
is ∅.

The following definitions are illustrated by Figures 5
and 6. A set E of edges of brick B is consistent with
partition π if the following condition holds:

if two edges e1, e2 of ∂B that are in subpaths
in different parts of π, then they are separated
by E .

Given a terminal t, E is consistent with (π, S) if in
addition the following condition holds:

if e ∈ ∂B is in a subpath not in part S of π,
then e and t are separated by E .

A B C

D

E

F

GHIJ

K

L

Figure 5: The figure on the left represents a brick b.
The big dots are the portals, and the thick red lines
consist of edges in E. The subpaths of ∂B are labeled
by the letters A through L. The corresponding partition
π is {{A,C,D,K}, {B}, {E,H}, {F,G}, {I, J}, {L}}. The
figure on the righ illustrates the definition of consistency.
The thinner green lines represent paths in the dual. (The
outgoing edges all lead to the vertex representing the infinite
face but that vertex is not shown.)
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Figure 6: A terminal is indicated by the circle. The figure on
the left is consistent with the pair (π, {A,C,D,K}) where
π is the partition of Figure 5. The second element of the
pair is the part that corresponds to the region containing
the terminal. The figure on the right is consistent with the
pair (π, ∅) since there is no way to get from an edge of ∂B
to the terminal while avoiding E.

A portal-respecting solution is a multiway cut that,
in the planar dual, only crosses brick boundaries at
portals. We later show that, in a sense, it is possible
to restrict our attention to portal-respecting solutions.
The spanner algorithm therefore proceeds as follows.
For each brick B, the algorithm identifies the set T̃B
of terminals in B for which some cycle selected in the
cycle step encloses B. By Lemma 5.3, |T̃B | ≤ ε−2.

For each terminal t ∈ T̃B , the algorithm enumerates
the configurations of B and t. For each configuration,
the algorithm finds an approximately minimum-length
set E of edges consistent with the configuration, and
includes E in the spanner. The spanner consists of all
these edge-sets, together with the brick decomposition
and the min-cuts of all terminals.

Given a configuration in the brick B and given
a terminal t, Spanner uses the following auxiliary
algorithm to find an near-optimal set of edges that
is consistent with that configuration, and Spanner
adds that set of edges to the spanner. Let p denote
a shortest path from ∂B to t. Let pnear denote the
part of p closest to ∂B, such that length(pnear) =
min(length(∂B), length(p)), and let pfar denote the rest



Algorithm 4 Spanner (G, v∞, H)

Input: instance (G, v∞) equipped with skeleton H (a subgraph of the planar dual G∗)
Output: spanner

include in the spanner the min-cuts for all terminals.
for each connected component K of the skeleton H,

define a subgraph GK of G as follows:
retain an edge iff it is on a path that starts on K and that does not cross H.

find a brick decomposition M of GK with respect to K, with κ = ε−c1

include M in the spanner
for each brick B,

select θ = ε−c3 portals on ∂B

let T̃B := {t ∈ B : some cycle selected for t encloses B}
for each configuration of B,

for each terminal t ∈ T̃B and for the no-terminal case,
include in the spanner a near-optimal solution for that brick
that is consistent with the configuration

of path p. The auxiliary algorithm places a collection
of θ′ = ε−c4 equidistant portals along pnear, thus
partitioning p into subpaths Pb,t. (The choice of c4 will
be made presently.)

We claim that there exists a near-optimal set of
edges that only crosses pnear at portals. To see this, first
observe that the solution has length at most length(∂B),
since otherwise we could always replace it by ∂B;
thus it can only cross pnear, not pfar. We modify the
solution by adding detours through portals, to get a
solution that only crosses pnear at portals. Theorem 3.2
ensures that we can restrict our attention to solutions
with O(ε−2.5κ) joining vertices (plus possibly one single
cycle), so we can restrict our attention to solutions
consisting of O(ε−2.5κ) shortest paths. Each crosses
pnear at most once, so the total cost of the detours
is O(ε−2.5κ)length(∂B)/θ′. By Theorem 5.2, there is
a choice of c4 so that the total cost of the detours is
O(ε)W .

To find the best solution that crosses pnear at
portals only, we make two copies p(1) and p(2) of p,
duplicating every vertex except t, thus drawing a slit
into b. For each possible extension of partition π into
a partition of Pb ∪Pb,t, we solve the problem optimally
via a dynamic program inside the brick (the details are
omitted here since an analogous dynamic program has
been described in [7, 13]). The runtime of the dynamic
program is 2poly(1/ε)nb log nb. Among all solutions thus
constructed, it only remains to pick the one of minimum
cost.

Summing over all bricks and all connected compo-
nents of the skeleton, the runtime to build a spanner
given the skeleton is 2poly(1/ε)nd for a constant d.

6.2 Structure of the spanner and a near-opti-
mum solution We transform the near-optimal solu-

tion L̂ of Lemma 5.4 into a portal-respecting, yet al-
most as good, solution L̂′′. To do so, for each cluster
K, the subset L̂K of L̂ as defined before Theorem 5.1, we
construct a new subset L̂′′K that respects the mandates

defined for L̂K .
The proof of the theorem relies on the facts that

(1) each brick of the decomposition contains at most

one terminal of Mandate(L̂K); (2) each connected com-

ponent of L̂K is connected to K (and therefore to
brick boundaries: i.e., there is no component floating
unattached inside a brick); and (3) the skeleton has
length O(W ). Given these, the subsection is an adap-
tation of [6].

To analyze the brick decomposition, we use Theo-
rem 3.2 to prove the following theorem.

Theorem 6.1. For each cluster K, there exists a set of
edges L̂′′K that

1. is portal-respecting,

2. has length at most (1 + cε)length(L̂K) +
O(ε−2.5)κ

θ length(MK) for some constant c,

3. still satisfies Properties 1 and 2 of Theorem 5.1,

4. still intersects the non-special blobs intersected by
L̂K , and

5. still separates every pair {t, t′} in Mandate(L̂K).

Proof. We will show how to transform L̂K into a
solution L̂′K that, for each brick B, crosses B’s boundary

only O(ε−2.5κ) times. To build L̂′′K from L̂′K , we simply
take, for each crossing, a detour to the nearest portal
and back. A detour along the boundary of brick B
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Figure 7: The three subcases in the proof of Theorem 6.1.

has length 1
θ length(∂B). Thus the total increase due

to detours is O(ε−2.5κ
θ length(MK)

In reducing the number of crossings, we consider
two cases. In the first case, there is no terminal
of Mandate(L̂K) inside the brick. Inside the brick,
the near-optimal solution is a forest F . We apply
Theorem 3.2 to F with U = ∅. Since the new forest
F ′ preserves connectivity, it also preserves separation:
if some interior path from some x ∈ ∂B to some y ∈ ∂B
crosses F , then it also crosses F ′. Thus, replacing F by
F ′ preserves feasibility of our multiway cut solution.

In the second case, there is a single terminal t of
Mandate(L̂K) inside the brick. The proof uses the
following definition. Given a forest F in the brick B,
by NF (resp. SF ) we denote the subpath of N (resp.
S) spanning the vertices of F ∩N (resp. F ∩S). Given a
terminal t, we say that t is outside F if t is not enclosed
by F ∪NF ∪SF . We say that F is north of t (resp. south
of t) if t is outside F and SF = ∅. We say that F is east
of t (resp. west of t) if t is outside F and F separates
t from E (resp. from W ). Then we can decompose F
into at most four forests, FN , FS , FW , FE , respectively
North, South, West and East of t. More precisely, there
are three subcases. See Figure 7.

In the first subcase, the cell of t intersects both N
and S.

In the second subcase, the cell of t intersects just

one side, S for example. Then there exist two vertices
u0 and u1 in B such that u0 is a leaf of FW and of FN ,
and u1 is a leaf of FE and of FN .

In the third subcase, the cell of t intersects neither
S nor N , and then there exist two vertices u0 and u1 in
B such that u0 is a leaf of FW , FN and FS , and u1 is a
leaf of FE , FN and FS .

It only remains to apply Theorem 3.2 to each of the
four forests with U ⊆ {u0, u1}, defined appropriately
for each forest. Thanks to the fourth property of The-
orem 3.2, the mandates of our solution are preserved.
�

Consider the set of edges put to the spanner when
guessing configuration and terminals correctly. A new
problem may arise: that collection still respects the
mandates of each L̂K , but it is not necessarily a
feasible solution overall. The following theorem patches
the solution by identifying more terminals as being of
negligible weight.

Theorem 6.2. There exist a set R̂′ of weight at most
O(ε)W such that L̂′′ is a (T − R̂′)-feasible solution.

Proof. We start as in the proof of Lemma 5.4. Let L̃ be
obtained from L̂′′ by contracting each blobB ofH2. The
cluster step runs PC-clustering on (G∗′, φ), obtaining
the graph H ′3. We apply Part 2 of Theorem 3.1 to the

subgraph L̃ of G′.5 This part asserts the existence of a
set Q̃ of vertices ofG∗′, which correspond to blobs inG∗.
We designate a blob B as special if the corresponding
vertex of G∗′ belongs to Q̃. We define R1 as the set of
all terminals that in G∗ are enclosed by special blobs.

Part 2a of Theorem 3.1 and Lemma 4.5 imply that

weight(R1) ≤ 2εW

By Part 2b of Theorem 3.1, if two non-special blobs are
connected by L̂′′, then they are in the same connected
component of the skeleton.

We claim that every terminal pair of T − (R̂ ∪ R1)
is separated, except for a set R2 of small weight. The
proof has several cases.

First, consider the case in which one of the two
terminals in the pair is t∞. Let t1 denote the other
terminal. By Theorem 5.1, L̂ is (T − R̂)-feasible, so t1
and t∞ are separated in L̂, and we can consider a cluster
K minimally enclosing t1, separating t1 from t∞. By
definition of mandates, {t1, t∞} is in Mandate(K), so
Theorem 6.1, Part 5, ensures t1, t∞ are still separated
in L̂′′K and hence in L̂′′.

Second, consider the case in which neither of the two
terminals t1, t2 is t∞. Let B1 be the blob enclosing t1
in the cluster K1 of the skeleton that (from Lemma 5.1)

5Note that we do not need to run PC-Clustering again.



has a cycle intersecting the component of S = L̂
minimally enclosing t1. We define B2 and K2 similarly.

Consider the subcase where K1 = K2. Then {t1, t2}
is in Mandate(K1) and so they are separated in L̂′′.

Consider the subcase where K1 6= K2 and K1 and
K2 do not enclose each other. Since L̂K1

minimally sep-

arates t1 from t∞, we have {t1, t∞} ∈ Mandate(L̂K1).

Hence, L̂′′K1
also separates t1 from t∞ (due to Theo-

rem 6.1, Part 5). By Theorem 6.1 Part 4, L̂′′K1
still

intersects B1. Similarly L̂′′K2
separates t2 from t∞ and

still intersects B2. Assume, for a contradiction, that t1
and t2 are not separated by L̂”. Then L̂′′K1

and L̂′′K2

must intersect each other (this observation is the core

of the proof). Together they define a path in L̂′′ con-
necting B1 to B2, so (due to Theorem 3.1) one of the
two blobs must be special, hence t1 or t2 is in R1, a
contradiction.

Finally, consider the subcase where K1 6= K2 and
K1 contains K2 in one of its faces F . Then L̂K2

is also
contained in F (because it does not cross any skeleton

cycle other than K2). Then L̂′′K2
is also contained in F

(by Theorem 6.1, Part 3). The only possibility for it not

to separate t1 from t2 is if t1 is in face F and L̂′′K2
also

encloses t1. Note that L̂′′K2
still intersects B2. Then, we

put t1 in R2.
It only remains to bound the weight of R2. We use

the fact that a candidate ear was not added in the ear
step, to infer a bound on the weight of t1. No part
of L̂′′K2

or L̂K2
was added in the ear step as a K2-to-

K2 path separating t1 from t∞. Yet L̂′′K2
would have

given a candidate ear (since by definition of K1, we
know that the clusters enclosed by K2 do not separate
t1 from t∞.) Since it was not selected, it must be that

weight(t1) ≤ ε3length(L̂′′K2
). We bound as follows the

number of such terminals added to R2 for each K2.
Notice that K1 is the parent of K2 in the nesting forest,
t1 is a terminal in the same face F of K1 as K2, and
C(t1) encloses F . All terminals added to R2 due to K2

are part of T̃F by definition. Lemma 5.3 bounds their
number to be at most ε−2, hence the total weight of R2

is at most ε length(L̂′′). �

Theorem 6.3. The call Spanner (G, v∞, H) returns

a subgraph Ĝ such that

1. length(Ĝ) ≤ 2poly(1/ε)W , and

2. Ĝ contains a multiway cut for G whose length is at
most OPT(G) + cεW

Proof. Consider the set of edges formed by L̂(3) =
L̂′′ ∪

⋃
{mincut(t) : t ∈ R̂′}. From Theorem 6.2, it

follows that L̂(3) is a feasible solution. Let us prove
that it is near-optimal. By Theorem 6.1 and Inequal-
ity 3.4, the length of L̂′′ is at most (1+O(ε))length(L̂)+

O(ε−3.5)κ
θ length(H) where H is the skeleton. By Theo-

rem 5.4, L̂ is near-optimal. Theorem 5.2 bounds length
of H by O(ε−9W ). By the bound on the weight of R̂′

in Theorem 6.2,
∑
t∈R̂′ mincut(t) = O(ε)W . Therefore,

overall L̂(3) has length OPT(G) +O(ε)W .
Finally, we bound the length of the spanner itself.

Theorem 5.2 bounds the length of the skeleton H by
ε−9W . By Inequality 3.4, the total length of mor-
tar graphs is O(ε−1)length(H). Fix a brick B. By
Lemma 5.3, there are at most ε−2 terminals consid-
ered by the spanner algorithm when dealing with B.
There are θ portals, so the number of configurations
is bounded by 2poly(θ) = 2poly(1/ε). Each solution has
length at most the length of the boundary of the brick.
Therefore, the sum of lengths of all solutions for a brick
B is 2poly(1/ε) times the length of the brick boundary.
Altogether the length of the spanner is 2poly(1/ε)W . �

Combining Theorem 6.3 with Lemma 4.4 yields
Theorem 2.1.
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