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Abstract

In this paper, we present a highly data-driven ap-
proach to the task of single image super-resolution. Super-
resolution is a challenging problem due to its massively
under-constrained nature - for any low-resolution input
there are numerous high-resolution possibilities. Our key
observation is that, even with extremely low-res input im-
ages, we can use global scene descriptors and Internet-
scale image databases to find similar scenes which provide
ideal example textures to constrain the image upsampling
problem. We quantitatively show that the statistics of scene
matches are more predictive than internal image statistics
for the super-resolution task. Finally, we build on recent
patch-based texture transfer techniques to hallucinate tex-
ture detail and compare our super-resolution with other re-
cent methods.

1. Introduction

Single image super-resolution is a well-studied problem
where one tries to estimate a high-resolution image from
a single low-resolution input. Unlike multi-frame super-
resolution where a sequence of low-resolution images of
the same scene aligned to subpixel shifts reveal some high
frequency detail signals, it is impossible to unambiguously
restore high frequencies in a single image super-resolution
framework. Single image super-resolution is an extremely
under-constrained problem: there are many plausible natu-
ral images that would downsample exactly to a given low-
resolution input. As a result, existing works in the field
present intelligent ways to hallucinate plausible image con-
tent instead of recovering the ground truth.

Over the past decades there has been impressive work
on single image super-resolution, but no method is able to
address the fundamental problem of synthesizing novel ob-
ject and texture detail. Many methods can sharpen edges,
but the long term challenge in this field is to produce realis-
tic, context-appropriate texture, material, and object detail.
This limitation becomes more apparent as the desired mag-
nification factor increases. State-of-the-art methods [11, 31]

James Hays
Brown University

hays@cs.brown.edu

bicubic 8x

ours 8x

b.-

Sun t al. 8x

T

Figure 1. Super-resolution results for 8x upsampling. The input
image is 128 pixels wide. We compare our results to those of Sun
and Tappen [31] and Glasner et al. [11].

can sometimes synthesize convincing detail for blurs equiv-
alent to a 2x or 3x loss of resolution, but we compare algo-
rithms with a more challenging task — 8x super-resolution.
While 8x magnification might seem extreme, the equivalent
amount of detail loss is commonly caused by imaging arti-
facts such as defocus or motion blur.

How can an algorithm synthesize appropriate detail for
an arbitrary, low-resolution scene? Our visual experience is
extraordinarily varied and complex — photos depict a huge
variety of scene types with different viewpoints, scales, il-
luminations, and materials. How can an algorithm have im-
age appearance models specific to each possible scene con-
figuration? Recent works [6, 13, 14, 16] show that with
diverse, “Internet scale” photo collections containing mil-
lions of scenes, for most query photos there exist numerous



examples of very similar scenes. A key insight of this pa-
per is that research in scene representation and matching
has advanced such that one can find similar enough scenes
even when a query is very low-resolution and then use these
matching scenes as a context-specific high-resolution ap-
pearance model to enhance the blurry scene. This lets us
convincingly enhance image detail at magnification factors
beyond previous super-resolution methods.

Our primary contributions are that: (1) We examine
scene matching in a low-resolution regime that has rarely
been studied. The notable exception is “Tiny Images” [33]
which limited experiments to an intentionally impoverished
representation. (2) We quantify the expressiveness and pre-
dictive power of matched scenes and show that they are
competitive with single-image priors. This contrasts with
and expands upon the findings of Zontak and Irani [38]. (3)
We produce super-resolution results with plausible image
detail beyond the capabilities of existing super-resolution
method for diverse photographic scenes. Compared to pre-
vious work, our results are especially convincing for tex-
ture transitions which challenge previous region-matching
super-resolution methods.

1.1. Repairing Image Blur

There is an enormous body of research aimed at alle-
viating the effects of blur-inducing imaging phenomena —
defocus, motion, and scattering to name a few. Photo-
graphic blur can not be unambiguously inverted in realistic
imaging conditions [3], therefore “...the central challenge

is to develop methods to disambiguate solutions and
bias the processes toward more likely results given some
prior information”[17]. Deblurring algorithms tend to use
relatively compact, parametric image priors, often learned
from natural image statistics, that encode principles such as
“edges should be sharp”, “gradients should be rare”, “colors
should be locally smooth” [37, 26, 27, 4, 35, 17, 5]. These
parametric models are helpful but limited. Their assump-
tions, such as a heavy-tailed gradient distribution, are not
universally true [5]. In general, these models can sharpen
edges but will not enhance texture, material, or object detail
because these phenomena are too complex for the models.

1.2. Super-resolution

Unlike the previous causes of blur in which inverting
a point spread function can sometimes yield useful detail,
with single image super-resolution it is clearer which de-
tail can be “recovered” (none of it) and what detail must be
“hallucinated” or “synthesized” (all of it). This ambiguity
makes super-resolution a demanding application for statis-
tical image models or priors.

While some recent super-resolution methods use para-
metric image priors similar to those used in deblurring ap-
plications (e.g. [8, 22]), many super-resolution methods in

the last decade utilize data-driven image priors, starting
with the seminal work of Freeman et al. [10, 9]. Such data-
driven methods implicitly or explicitly “learn” the mapping
between low and high-resolution image patches [19, 12, 32,
31]. A data-driven prior does not make the super-resolution
problem any less ambiguous — it is simply a more expres-
sive model for proposing high-frequency versions of low-
resolution image content.

Consider a hypothetical, ideal super-resolution algo-
rithm. When presented with a low-resolution mountain, it
would insert details only appropriate to mountains. When
presented with a face, it would insert details specific to
faces. This idea led to the development of very effective do-
main specific face super-resolution algorithms [3, 21]. But
for real scenes, to insert the most plausible detail, one must
first recognize the context!. The seminal work of Baker and
Kanade [3] refers to this process as “recogstruction”, a port-
manteau of “recognition” and “reconstruction”.

To achieve “recogstruction” one needs to go beyond
compact, parametric models or data-driven models trained
from tiny image patches that are not expressive enough for
recognition or reconstruction. Recent works [12, 31] add
explicit or implicit material/texture recognition to help al-
leviate the limits of these local, compact representations.
In both methods, low-resolution input images are seg-
mented and each segment is constrained to synthesize de-
tails by drawing patches from matched material or texture
regions which are hopefully semantically and visually sim-
ilar. These methods are very promising, but in both cases
the material matching is not reliable — material recognition
is very hard [20] and it is even harder at low-resolution.
[12] alleviates this difficulty with manual intervention. An-
other difficulty with these approaches is handling bound-
aries between texture regions. [12] resorts to self-similarity
for edge refinement because they do not have training ex-
amples of texture transitions. In [31], the segments do not
capture the diverse texture transition scenarios either, and
their algorithm relies on an edge smoothness prior to pro-
duce sharp edges. Our algorithm requires no such special
case because our matched scenes typically contain the same
texture transitions as our query scene.

One complementary and surprisingly effective way to
synthesize scene-appropriate detail is to build a statisti-
cal image model from the low-resolution input image it-
self [11]. This only works when a scene exhibits self-
similarity across scales, but this is common because per-
spective projection causes surfaces to span many scales.
More recently, Zontak and Irani [38] argue that these “inter-
nal” image statistics are often a better prior than “external”
image databases for image restoration tasks. One of our key

I'The “recognition” does not need to be explicit — an algorithm needs to
establish correspondence among visually and semantically similar image
content, whether that involves explicit classification or not.



results is to use the evaluation protocol of [38] to show that
it is possible to compete with single-image internal statis-
tics by intelligently leveraging a large image database (Sec-
tion 3.1).

The methods by Sun and Tappen [31] and Glasner et
al. [11] are representative of the state-of-the-art in automatic
super-resolution, but they still do not reliably insert texture
or object detail into photographs. More often than not the
results show sharper edges but are not convincing beyond
magnification factors of 2 or 3. We compare our results to
these algorithms in Section 5.

Beyond single image super-resolution, there is ongoing
research for which the input is multiple photographs of the
same physical scene. For instance, “Photozoom” [7] re-
lates photographs with a hierarchy of homographies and
then transfers details. Lastly, image enhancement methods
such as “CG2Real” [16] can be modified to perform super-
resolution by inputting blurry scenes. However, CG2Real
assumes that the input is corrupted in some way and thus
is not faithful to the input image, as is desirable in super-
resolution.

1.3. Super-resolution Goals and Evaluation

In typical image restoration and super-resolution litera-
ture (e.g. [17, 5]) the formal goal is to recover “clean” scene
x given blurred scene y, a known PSF (or blur kernel) k2,
and a known downsampling function D. These variables
have the following relationship: y = D(z ® k) + n where
® is the convolution operator and n is a noise term. One
can then evaluate a result by comparing the estimated = to
the known, “ground truth” x which generated y.

This evaluation makes sense when (1) & is small or in-
vertible and (2) you are interested in forensically accurate
reconstructions. But when either £ or the downsampling
factor becomes large, the possible values for = grow enor-
mously. For 8x super-resolution, the output space is 64
times higher-dimension than the observed low-resolution
input. There is an enormous space of detailed and plausible
output images that are faithful to the low-resolution input.
Why should one penalize a convincing result just because it
doesn’t resemble the observed “ground truth”? Recogniz-
ing this problem, recent work has adopted a more forgiving
comparison between the estimated x and “ground truth” —
SSIM [34] — which rewards local structural similarity rather
than exact pixel to pixel correspondence. However, SSIM
and other existing measurements of reconstruction error pe-
nalize texture hallucination (See Figure 2 for an example).

Rather than evaluating reconstruction error, an alterna-
tive is to perform human perceptual studies [22]. Such ex-
periments are difficult, though, because of the subjective bi-
ases of individual, non-expert observers. In Section 5 we

2For super-resolution a Gaussian blur of appropriate width can be used
as the PSF [11].
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Figure 2. SSIM scores calculated with respect to the reference
patch on the left. The middle patch, cropped from the same tex-
ture, scores poorly while the patch on the right, a blurred version
of the reference, scores very highly. Because SSIM and other re-
construction measures favor blur over texture misalignment, they
favor conservative algorithms which do not insert texture details.

perform such a study. However, we think the most diagnos-
tic results are qualitative in nature — in Section 5 we show
that our approach is able to insert edge and texture detail in
diverse scenes where previous methods could not.

2. Algorithm Overview

Our algorithm (Figure 3) first finds matching scenes
from a large Internet database (Section 3). The input image
and each matching scene are segmented and a correspon-
dence is found between each segment in the input and sev-
eral best matching segments from the similar scenes (Sec-
tion 4.1). Finally, each input segment is upsampled by
matching low-resolution patches and transferring in high-
resolution details from its corresponding segments (Sec-
tion 4.2).

The local patch matching at the heart of most data-driven
super-resolution algorithms is fundamentally ambiguous —
it is hard to match to semantically similar texture based on
local image evidence regardless of the size of the training
database. Our pipeline follows a coarse-to-fine structure not
just to reduce computational complexity, but also to alle-
viate this ambiguity by constraining matching to segments
from scenes which are hopefully semantically similar. In-
stead of making decisions entirely locally, we make easier
decisions at the scene and segment level first. Constrain-
ing the synthesis process to a small number of regions from
similar scenes also increases perceived texture coherence.

3. Scene Matching

Our proposed detail synthesis pipeline can be thought of
as taking the data-driven super-resolution trend to its ex-
treme by using a massive, “Internet-scale” photo collection
as an extremely detailed statistical image model. While the
state-of-the-art method of [31] uses a training set of four
thousand images, the largest to date, our algorithm uses
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Figure 3. Our proposed pipeline. From left to right, for a low-resolution input we find most similar scenes from a large database. Each
input segment is corresponded with best matching segments in these similar scenes. Then a patch-based super-resolution algorithm is used

to insert detail from the matched scene segments.

more than six million images. We follow in the footsteps
of several successful massively data-driven scene matching
algorithms, e.g. [13, 29, 6, 28, 16], which sample the space
of scenes so densely that for most query scenes one can find
semantically and structurally similar scenes.

A key insight for this paper is that while other super-
resolution representations and models can not understand
the context presented by low-resolution scenes, scene
matching can succeed even in the presence of extreme blur.
If we can find very similar scenes for a low-resolution query
then those scenes provide an ideal set of context-appropriate
textures of similar scale, illumination, and viewpoint to use
for detail synthesis.

However, our application of scene matching is especially
difficult because the input images are low-resolution and
thus have degraded textures, which are the most discrim-
inative scene features [36]. To make the most of what
scene statistics remain we use a combination of scene de-
scriptors — color histograms, tiny images [33], gist descrip-
tors [24], dense texton histograms [23], sparse bags-of-
visual-words [30] built with “soft assignment” [25], geo-
metric layout [15], and surface-specific color and texton
histograms [36]. The distances in each feature space are
weighted such that each feature contributes roughly equally
to the ranking of top scene matches.

For accurate scene matching, the scene features in our
photo collection need to be computed at the same resolu-
tion as a query scene. However, the query scene can be
of arbitrarily low resolution and recomputing features for
an entire database is computationally expensive. Therefore
we use a hierarchical scene matching process where initial
matches are found at a low, fixed resolution, then for each
initial match the scene descriptors are recomputed at the
query resolution and the matches are re-ranked. Figure 4
shows examples of scene matches for several queries where
each input image is only 128 pixels wide.

To find similar scenes we need a diverse photo collection
with millions of example scenes. We use the Flickr-derived

database of [14] which contains over 6 million high res-
olution photographs. Because we use this photo database
to learn the relationship between low-resolution scenes and
high-frequency details, it is important that all scenes actu-
ally contain high-frequency details. Therefore we filter out
all blurry photographs using the “blur” classifier of [18].
This disqualifies about 1% of photographs. We use the top
20 matches for each input image as a scene-specific training
database for detail enhancement.

3.1. Understanding the Quality of Scene Matches

Data-driven super-resolution methods estimate a high-
resolution image by matching to a database of low and high
resolution pairs of patches. In our case, the database is a
set of query-specific scene matches. Recently, Zontak and
Irani [38] proposed criteria to assess the value of training
databases for image restoration tasks. First, expressiveness
quantifies how well patch matches from a database could
possibly reconstruct the ground truth. Second, predic-
tive power quantifies how effective patch matches from a
database are at constraining the solution toward the ground
truth. Expressiveness is similar to the “reconstruction er-
ror” examined in [2] for image databases with trillions of
patches.

In the following subsections, we analyze two “exter-
nal” databases: (1) our query-specific scene matches and
(2) random scenes from the Berkeley Segmentation Dataset
(BSD) [23], and two “internal” databases: (1) a database
of all scales of the full resolution ground truth, except for
a 21x21 window around the current patch under considera-
tion and (2) a limited internal database of all scales of the
input image. Of the two internal databases, only the “lim-
ited” variant is applicable to the task of super-resolution be-
cause one does not have access to the full-resolution ground
truth during super-resolution. Internal databases include
patches at scales of 0.8°,i = {0,1,2,3,4,5,6} while ex-
ternal databases are not multi-scale.

We use a test set of 80 diverse scenes and evaluate ex-



Figure 4. For four low-resolution query scenes, we show six of the
top twenty scene matches that our algorithm will use to insert high-
frequency detail. The last row shows an example of scene match
failure. For a small portion of test cases the scene matching finds
some instance-level matches, as in the Venice image, but generally
this is not the case. We will explicitly indicate when a result was
generated using instance-level matches.

pressiveness and predictive power for the task of 2x super-
resolution. We analyze 2x super-resolution to be consis-
tent with [38] even though we show results for 8x super-
resolution in Section 5. At higher levels of magnifica-
tion the internal image statistics are increasingly unhelp-
ful for super-resolution. Even though the task is 2x super-
resolution, scene matches are found from input images at
1/8 resolution. We resize all images to a maximum dimen-
sion of 512 pixels and convert to grayscale. Query patches
are sampled uniformly across all gradient magnitudes from
input images.

3.1.1 Expressiveness

Expressiveness provides an upper-bound for image restora-
tion tasks if there were an oracle guiding selection of high-
resolution patches out of a database. An infinite database
of random patches would have perfect expressiveness (but
poor predictive power). Expressiveness is defined by the
average Lo distance between each ground truth patch and

its nearest neighbor in a database. Patch comparisons are
made with 5 x 5 patches with DC removed. Figure 5 com-
pares the expressiveness of the ground truth high resolution
image, the limited internal scales derived from the input im-
age itself, 20 random images from BSD [23], and the 20
best scene matches for each query.

Zontak and Irani [38] show that it is favorable to ex-
ploit the stability of single image statistics for tasks such
as denoising and super-resolution because the same level of
expressiveness can only be achieved by external databases
with hundreds of random images. Indeed, the “internal (all
scales)” database outperforms 20 random images and 20
scene matches. But the “internal (limited)” scenario which
simulates the super-resolution task is less expressive than
both external databases. The 20 scene matches are only
slightly more expressive than 20 random images. We be-
lieve this is because expressiveness favors variety. How-
ever, this variety causes the random BSD images to have
less predictive power. Overall, this analysis shows that,
compared to other approaches, our scene matches contain
slightly more relevant appearance statistics to drive a super-
resolution algorithm.
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Figure 5. Comparison of expressiveness of internal vs external
databases. Using up to 20 scene matches, the expressiveness of
external database can be significantly better than internal. The
“limited” internal database is the low frequencies of the input im-
age that would be usable for a super-resolution algorithm. 150,000
query patches from 80 query images were sampled to generate the
plots.

3.1.2 Predictive Power

The predictive power involves two measurements: (i) pre-
diction error and (ii) prediction uncertainty. For each 5 X 5
low-resolution query patch [ (DC removed), we find the
9 most similar low-res patches {/;}{ and set the predicted

high-res patch to h = %, where h; is the high-res
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Figure 6. Comparison of prediction error and uncertainty of internal vs external databases. A total of 180,000 query patches sampled

uniformly from our 80 test cases are used for this experiment.

patch corresponding to [;, and w; is a similarity score de-
fined by w; = exp{—%}. Then, prediction error is
simply the SSD between the ground truth and estimated
high-res patch: ||hgr — h||2; and prediction uncertainty
is approximated by trace(covy(hs, h;), using the same
weighting scheme. In our experiments, we set o2 = 50.

Figure 6 plots the prediction error (left) and prediction
uncertainty (right) against the mean gradient magnitude
per patch. Prediction error is arguably the most important
metric for a super-resolution database, and here our scene
matches outperform the internal and random external super-
resolution databases. In fact, the “internal (all scales)” con-
dition which is something of an upper-bound for this task is
only slightly more predictive than the scene matches.

In the prediction uncertainty evaluation, an unexpected
observation is that toward high gradient magnitude the
curve starts to drop. We speculate the reason is that (1)
high gradient patches contain sufficient information (even at
low-res) to make the matching unambiguous, and (2) high
gradient patches are rare, thus there are fewer patches to
possibly match to.

Overall, our external database of scene matches is more
expressive, has lower prediction error, and comparable
prediction uncertainty compared with single image statis-
tics (the “limited” scenario which corresponds to super-
resolution).

However, the relative expressiveness and prediction
power of these strategies can change depending on which
transformations are considered and which representation is
used for the matching. For instance, expressiveness can
be improved significantly by considering transformations
of each database such as rotations, scalings, mirroring, and
contrast scaling. However, enriching a database in this man-
ner tends to decrease predictive power. Therefore we did
not apply these transformations to our external databases.

In [38] the internal database includes rotated versions of the
input, but adding rotations did not significantly impact our
evaluations. Also note that while these plots are a valuable
quantitative evaluation of the training database, they are not
a direct predictor of synthesis quality. For instance, a good
patch-based synthesis algorithm will overcome prediction
uncertainty by considering spatial overlap between patches
and this analysis intentionally ignores that.

4. Super-resolution Method

Our detail synthesis algorithm is similar to the method
proposed in [31]. The significant difference is that our syn-
thesis method is constrained to sample from a small set of
scene matches while [31] uses a universal database of image
segments. We also differ from [31] in that we use a greedy
texture transfer method which considers high frequency co-
herence instead of picking candidate patches independently.

4.1. Segmentation and Texture Correspondence

While our scene matches provide expressive, context-
specific image content for hallucination, we want to con-
strain the local patch matching further. An exhaustive
search over all scene matches while synthesizing textures
is inefficient, but more importantly it leads to texture inco-
herence as each local patch could potentially draw textures
from very different sources. Constraining the local texture
search by first matching at the region level significantly re-
duces output incoherence and helps push back against the
prediction uncertainty observed in Figure 6.

We use a recent hierarchical segmentation algorithm [1]
to segment our input and matched scenes. Extremely small
segments are merged to nearby ones to provide more stable
segment matching results. Each segment is represented by
color histograms and texton histograms, and the top 5 most
similar scene match segments for each input segment are



found using chi-square distance. These segments provide a
relevant yet highly constrained search space for detail inser-
tion. An example segment-level correspondence is shown in
Figure 7.

input query
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Figure 7. Counter-clockwise from upper left: Input image, top 20
scene matches, and the top 5 matching segments for the largest
input segments. Each input segment is restricted to draw texture
from slightly expanded versions of these matched segments.

Using non-overlapping segments presents a problem at
segment transitions. By definition, segments tend not to
contain these transition zones. Such transitions are also hard
to find in a universal database of image segments [12, 31].
E.g., even if each region is correctly matched to brick, veg-
etation, sky, etc., there may be no examples of the transi-
tions between those regions. For this reason, previous meth-
ods rely on single-image self-similarity [12] or parametric
priors [31] to handle segment boundaries. Alternatively,
scene matches allow us to elegantly handle texture transi-
tions and boundaries because our scene matches often con-
tain the same transitions (e.g. building to grass, tree to sky)
as a query scene. We simply expand each segmented region
to include the transition region of textures and boundaries.
Thus our segmentations are actually overlapping and not a
strict partitioning of the images.

4.2. Segment-level Synthesis of Coherent Textures

As shown in [38] and Figure 6, the under-constrained na-
ture of super-resolution causes large uncertainty in the miss-
ing high frequencies in the image. When the upsampling
factor is large, i.e. 8x, finding appropriate patches based on
local evidence alone is fundamentally ambiguous [3].

We use a greedy tiling procedure similar to the “single-
pass” algorithm of [9], allowing each subsequent patch
choice to be conditioned on existing high frequencies and
thus providing a well-constrained environment for synthe-
sizing details. We do not expect this step to generate per-
fect textures, but allow for opportunistic insertion of details
while remaining faithful to the low frequencies. Let P! be a
low-resolution input patch with DC removed and let 1", I"

Y
be the existing image gradient of the output image in the

x and y direction respectively. Initially 17/, I} are set to 0.
Let Sp be the segment containing patch P, and S(Sp) be
the top 5 most similar example segments to Sp. We seek
to find among S(Sp) a patch @ (with DC removed) that is

both faithful and coherent:

= in Dg(P,Q D (I 1", 1
Q arg min F(PLQY + BD(12, 1), Q") (1)

where

)= ZIPl(i) —Q'(i)] 2
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j€E€overlap
+ 10 (5) = VQL ()| 3)

Then we update the existing high frequencies by a weighted
average of the gradients copied from Q", with the weights
for each @ defined by w = (D s+ £D,) 8. Query patches
are sampled over a half-overlapping grid while database
patches are densely sampled.

After we have our set of overlapped patches, we carry out
the super-resolution optimization described in [31], using
the set of patches {Q} to generate the pixel candidates for
the hallucination term, so that neighboring pixels in the out-
put image will be collectively constrained by a group of co-
herent pixel values. Similar to other super-resolution meth-
ods, we find it advantageous to incrementally upsample the
image, so we upsample the input image by a factor 2 three
times to achieve 8x magnification. We make no effort to op-
timize the running time of our algorithm so it is quite slow
— roughly four hours per image, most of which is spent on
the last 2x upsampling.

5. Results

We compare our algorithm against two recent meth-
ods which we consider exemplary of the state-of-the-art
in super-resolution — [31] uses segment-level matching to
a database of thousands of images, and [11] uses internal
image statistics. We also show bicubic interpolation as a
baseline. Figure 8 and figure 9 show results on man-made
scenes and natural scenes, respectively. Figure 10 shows
results where some of our scene matches are instance-level
matches. Finally, figure 11 shows cases in which our algo-
rithm produces undesirable artifacts. To help visualize the
level of detail achieved by each method we zoom in on three
crops from each result. In general, out results exhibit sharp
edges, natural transition of textures and distinctive details.

Figure 12 compares results from our algorithm, which
draws texture from matched scenes, against a baseline
which instead uses random scenes from our database. This
“random scene” baseline is similar to the early data-driven
super-resolution method of [9] in which patches were
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Figure 8. Results on man-made scenes. Appropriate textures/materials can be observed among the trees in (c) and surfaces in (a). Edges

appear realistic and detailed in (b).

matched in a small, universal image database. The diverse
random scenes still guide the algorithm to produce sharper
edges than bicubic interpolation, but there is no further de-
tail added.

To help evaluate the quality of our results and to further
evaluate the contribution of scene matching, we perform
a comparative perceptual study with 22 participants. We
use 20 test cases for the study — 10 which have good scene
matches and 10 which have bad scene matches, as evalu-
ated by the authors. As in [22], we show participants pairs
of super-resolution outputs from the same input image but
different algorithms and ask them to select “the image they
think has better quality”. We also allow a participant to indi-
cate that the images are equally good. The left/right place-
ment of outputs is randomized. In a pilot study we found
that that our results and those of Sun and Tappen [31] were
almost universally favored over [11] and bicubic, so we ex-
clude them from the main study. Figure 13 shows the pref-

without
scene
matches

[
; 1 .
Figure 12. From top to bottom: super-resolution results using ran-

dom scenes rather than matching scenes, zoomed in crops, and the
corresponding crops from our algorithm using matched scenes.

erence of participants towards each algorithm for the test
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Figure 9. Results on natural scenes. Our results show successful hallucination of details in water, grass and sand. Some of the details might
actually violate the downsampling reconstruction to some extent, but they certainly appear reasonable and appropriate.

cases with “good” and “bad” scene matches. While partic-
ipants seem to favor our algorithm when the scene match-
ing is successful, the task is quite subjective — a few users
preferred our algorithm on almost all outputs while some
users exclusively preferred [31]. We believe this discrep-
ancy arises because our results tend to have more detail but
also more artifacts and individual participants weigh these
factors differently. We experimented with study designs
which ask users about “detail” and “realism” separately, but
we find that observers have trouble disentangling these fac-
tors.

6. Discussion

Our algorithm is somewhat more likely to introduce ar-
tifacts than other state-of-the-art algorithms because it is
more aggressive about inserting texture detail. Most algo-
rithms err on the side of caution and avoid committing to
texture details because a single bad patch-level correspon-
dence can produce a glaring artifact which ruins a result.

User preference for super-resolution results
T

[ 1our algorithm
BT J
Il Sun and Tappen [31]

s
o
T

e
i
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Proportion of votes received
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N w
;

e

"Good" scene matches "Bad" scene matches

Figure 13. The breakdown of votes when participants compared
our results to those of Sun and Tappen [31]. For scenes where
the scene matches offered very similar textures to the input (left),
participants favor our results. For scenes where the scene matches
are spurious or mismatched in scale neither algorithm is favored.

Only with a large database and our scene matching pipeline
can we safely insert textures for many low-resolution im-
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Figure 10. Results where we have at least one instance level scene match. Our algorithm is able to hallucinate salient image structures. For
example, the ferry and arches in (c) are successfully hallucinated. In this case, they also approximate the ground truth.

ages. We do not claim that our algorithm represents the
unambiguous state-of-the-art in super-resolution. The al-
gorithms we compare against perform well, especially at
lower levels of magnification. Existing algorithms are less
likely to make mistakes for inputs where our scene match-
ing algorithm may have trouble, such as indoor or rarely
photographed scenes. However, we expect scene matching
to perform more reliably as better image descriptors are de-
veloped and larger image databases become commonplace.
We also think that our approach is complementary to prior
methods which make use of internal image statistics, but we
think that the quality of “external” databases is likely to in-
crease faster than the quality of “internal” databases which
are fundamentally quite limited.

While scene matching quality is important, we believe
that the quality of our results is strongly bottlenecked by
the well-studied texture transfer problem. Even for scenes
with excellent scene matches our algorithm can produce
surprisingly poor results. For example, when the scene
consists of highly intricate textures without dominant struc-
ture it is hard to synthesize coherent textures, as shown in

Figure 14. Such difficulties persist with alternative texture
transfer schemes such as those based on Markov Random
fields [10] or texture optimization [12]. While the super-
resolution task is certainly “vision hard”, it seems as if there
is much progress to be made by improving relatively low-
level texture transfer optimizations.
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