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Abstract

Hallucinating high frequency image details in single image super-
resolution is a challenging task. Traditional super-resolution meth-
ods tend to produce oversmoothed output images due to the am-
biguity in mapping between low and high resolution patches. We
build on recent success in deep learning based texture synthesis and
show that this rich feature space can facilitate successful transfer
and synthesis of high frequency image details to improve the vi-
sual quality of super-resolution results on a wide variety of natural
textures and images.

Keywords: detail synthesis, texture transfer, image synthesis,
super-resolution

1 Introduction

Single image super-resolution (SISR) is a challenging problem due
to its ill-posed nature–there exist many high resolution images (out-
put) that could downsample to the same low resolution input image.
Given moderate scaling factors, high contrast edges might warrant
some extent of certainty in the high resolution output image, but
smooth regions are impossible to recover unambiguously. As a re-
sult, most methods aim to intelligently hallucinate image details
and textures while being faithful to the low resolution image [Free-
man et al. 2002; Sun and Tappen 2010; HaCohen et al. 2010; Sun
and Hays 2012]. While recent state-of-the-art methods [Yang and
Yang 2013; Timofte et al. 2014; Dong et al. 2014; Wang et al.
2015] are capable of delivering impressive performance in term of
PSNR/SSIM metrics, the improvement in visual quality compared
to earlier successful methods such as [Yang et al. 2008] are not as
apparent. In particular, the amount of image textural details are still
lacking in these leading methods. We build on traditional and recent
deep learning based texture synthesis approaches to show that reli-
able texture transfer can be achieved in the context of single image
super-resolution and hallucination.

Being able to model and represent natural image content is often
a required first step towards recovering and hallucinating image
details. Natural image models and priors have come a long way,
from simple edge representations to more complex patch based
models. Image restoration applications such as image super-
resolution, deblurring, and denoising, share a similar philosophy
in their respective framework to address the ill-posed nature of
these tasks. A common strategy is to introduce image priors as a
constraint in conjunction with the image formation model. Natural
image content spans a broad range of spatial frequencies, and it
is typically easy to constrain the restoration process to reliable
recover information in the low frequency bands. These typically
include smoothly varying regions without large gradients (edges,
sky). In fact, a Gaussian or Laplacian prior would suit well for
most image restoration task. This family of image priors have been
shown to work in a variety of settings, in [Fergus et al. 2006; Levin
and Weiss 2007; Levin et al. 2009; Cho and Lee 2009; Xu and Jia
2010], to name a few. More advanced prior models have also been
developed such as FRAME [Zhu et al. 1998], the Fields of Experts
model [Roth and Black 2009], and the GMM model [Zoran and
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Weiss 2011]. It is known that the filters learned in these higher
order models are essentially tuned low high-pass filters [Weiss
and Freeman 2007]. As a result, no matter how these priors are
formulated, they work under the same principle by penalizing high
frequency image content, imposing the constraint that “images
should be smooth” unless required by the image reconstruction
constraint. When these priors are universally applied to every pixel
location in the image, it is bound to yield over-smoothed output.
But smoothness is just another form of blur, which is exactly what
we are trying to avoid in the solution space in super-resolution.

To achieve sharpness in the upsampled image, successful methods
usually learn a statistical mapping between low resolution (LR) and
high resolution (HR) image patches. The mapping itself can be
non-parametric [Freeman et al. 2002; Huang et al. 2015], sparse
coding [Yang et al. 2008], regression functions [Kim and Kwon
2010; Yang and Yang 2013], random forest [Schulter et al. 2015],
and convolutional neural networks [Dong et al. 2014; Wang et al.
2015; Johnson et al. 2016]. There are pros and cons of both para-
metric and non-parametric representations. Parametric methods
typically offer much faster performance at test time and produce
higher PSNR/SSIM scores. But no matter how careful one engi-
neers the loss function during training, the learned mapping will
suffer from the inherent ambiguity in low to high resolution patch
mapping (many-to-one), and end up with a conservative mapping
to minimize loss (typically MMSE). This regression-towards-the-
mean problem suppresses high frequency details in the HR output.
Non-parametric methods are bound to the available example patch
pairs in the training process, hence unable to synthesize new im-
age content besides simple blending of patches. As a result, more
artifacts can be found in the output image due to misalignment of
image content in overlapping patches. However, non-parametric
methods tend to be more aggressive in inserting image textures and
details [HaCohen et al. 2010; Sun and Hays 2012].

More recently, deep learning based approaches have been adopted
with great success in many image restoration and synthesis tasks.
The key is to use well-established deep networks as an extremely
expressive feature space to achieve high quality results. In partic-
ular, a large body of work on image and texture synthesis have
emerged and offer promising directions for single image super-
resolution. By constraining the Gram matrix at different layers
in a large pre-trained network, Gatys et al. showed that it is pos-
sible to synthesize a wide variety of natural image textures with
almost photo-realistic quality [Gatys et al. 2015b]. Augmenting the
same constraint with another image similarity term, they showed
that artistic styles can be transfered [Gatys et al. 2015a; Gatys et al.
2016] from paintings to photos in the same efficient framework.
Recent work [Sajjadi et al. 2016; Johnson et al. 2016] show that by
training to minimize perceptual loss in the feature space, superior
visual quality can be achieved for SISR. However, their success at
synthesizing natural textures is still limited as shown in their exam-
ples.

In this work, we build on the same approach from [Gatys et al.
2015a] and adapt it handle SISR. We focus on synthesis and trans-
fer aspect of natural image textures, and show that high frequency
details can be reliably transfered and hallucinated from example
images to render convincing HR output.
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2 Related Work

2.1 Single Image Super-resolution (SISR)

Single image super-resolution is a long standing challenge in com-
puter vision and image processing due to its extremely ill-posed
nature. However, it has attracted much attention in recent research
due to new possibilities introduced by big data and deep learning.
Unlike traditional multi-frame SR, it is impossible to unambigu-
ously restore high frequencies in a SISR framework. As a result,
existing methods hallucinate plausible image content by relying on
carefully engineered constraints and optimization procedures.

Over the past decade, SISR methods have evolved from interpola-
tion based and edge oriented methods to learning based approaches.
Such methods learn a statistical model that maps low resolution
(LR) patches to high resolution (HR) patches [Yang et al. 2008;
Kim and Kwon 2010; Yang and Yang 2013; Timofte et al. 2013;
Timofte et al. 2014; Schulter et al. 2015], with deep-learning frame-
works being the state-of-the-art [Dong et al. 2014; Wang et al.
2015]. While these methods perform well in terms of PSNR/SSIM,
high frequency details such as textures are still challenging to hal-
lucinate because of the ambiguous mapping between LR and HR
image patches. In this respect, non-parameteric patch-based meth-
ods have shown promising results [Freeman et al. 2002; Sun et al.
2010; HaCohen et al. 2010; Sun and Hays 2012; Huang et al. 2015].
These methods introduce explicit spatial [Freeman et al. 2002] and
contextual [Sun et al. 2010; HaCohen et al. 2010; Sun and Hays
2012] constraints to insert appropriate image details using exter-
nal example images. On the other hand, internal image statistics
based methods have also shown great success [Freedman and Fat-
tal 2011; Glasner et al. 2009; Yang et al. 2013; ?; Huang et al.
2015]. These methods directly exploit self-similarity within and
across spatial scales to achieve high quality results.

More recently, new SISR approaches have emerged with an em-
phasis on synthesizing image details via deep networks to achieve
better visual quality. Johnson et al. [Johnson et al. 2016] show that
the style transfer framework of [Gatys et al. 2015a] can be made
real-time, and show that networks trained based on perceptual loss
in the feature space can produce superior super-resolution results.
Sajjadi et al. [Sajjadi et al. 2016] consider the combination of sev-
eral loss functions for training deep networks and compare their
visual quality for SISR.

2.2 Texture and Image synthesis

In texture synthesis, the goal is to create an output image that
matches the textural appearance of an input texture to minimize
perceptual differences. Early attempts took a parametric ap-
proach [Heeger and Bergen 1995; Portilla and Simoncelli 2000]
by matching statistical characteristics in a steerable pyramid. Non-
parametric methods [Bonet 1997; Efros and Leung 1999; Efros and
Freeman 2001; Kwatra et al. 2003; Wei and Levoy 2000; Kwatra
et al. 2005] completely sidestep statistical representation for tex-
tures, and synthesize textures by sampling pixels or patches in a
nearest neighbor fashion. More recently, Gatys et al. [Gatys et al.
2015b] propose Gram matrix based constraints in the rich and com-
plex feature space of the well-known VGG network [Simonyan and
Zisserman 2014], and show impressive synthesized results on a
diverse set of textures and images. This deep learning based ap-
proach shares many connections with earlier parametric models
such as [Heeger and Bergen 1995; Portilla and Simoncelli 2000],
but relies on orders of magnitudes more parameters, hence is capa-
ble of more expressive representation of textures.

Synthesizing an entire natural image from scratch is an extremely

difficult task. Yet, recent advances in deep learning have shown
promising success. Goodfellow et al. [Goodfellow et al. 2014]
introduced the Generative Adversarial Network (GAN) to pair a
discriminative and generative network together to train deep gen-
erative models capable of synthesizing realistic images. Follow-up
works [Denton et al. 2015; Radford et al. 2016; Nguyen et al. 2016]
extended the GAN framework to improve the quality and resolution
of generated images. However, the focus of this line of work has
been to generate realistic images consistent with semantic labels
such as object and image classes, in which low and mid level image
features typically play a more crucial role, whereas the emphasis on
high resolution image details and textures is not the primary goal.

2.3 Image Style and Detail Transfer

Many works exist in the domain of style and detail transfer between
images. [Johnson et al. 2010] enhance the realism of computer gen-
erated scenes by transfering color and texture details from real pho-
tographs. [Shih et al. 2013] consider the problem of hallucinating
time of day for a single photo by learning local affine transforms in
a database of time-lapse videos. [Laffont et al. 2014] utilize crowd-
sourcing to establish an annotated webcam database to facilitate
transfering high level transient attributes among different scenes.
Style transfer for specific image types such as portraits is also ex-
plored by [Shih et al. ], in which multi-scale local transforms in a
Laplacian pyramid are used to transfer contrast and color styling
from exemplar professional portraits.

More recently, [Gatys et al. 2015a] propose a style transfer system
using the 19-layer VGG network [Simonyan and Zisserman 2014].
The key constraint is to match the Gram matrix of numerous fea-
ture layers between the output image and a style image, while high
level features of the output is matched that of a content image. In
this way, textures of the style image is transfered to the output im-
age as if painted over the content image, similar to Image Quilt-
ing [Efros and Freeman 2001]. Drawing inspirations from texture
synthesis methods, [Li and Wand 2016] propose to combine a MRF
with CNN for image synthesis. This CNNMRF model adds addi-
tional layers in the network to enable resampling ‘neural patches’,
namely, each local window of the output image should be similar to
some patch in the style image in feature space in a nearest neighbor
sense. This has the benefit of more coherent details should the style
image be sufficiently representative of the content image. How-
ever, this copy-paste resampling mechanism is unable to synthesize
new content. In addition, this method is prone to produce ‘washed
out’ artifacts due the blending/averaging of neural patches. This
is a common problem to patch-based synthesis methods [Efros and
Freeman 2001; Freeman et al. 2002; Kwatra et al. 2005]. Other
interesting deep learning based applications such as view synthe-
sis [Zhou et al. 2016] and generative visual manipulation [Zhu et al.
2016] have also been proposed. These methods allow us to better
understand how to manipulate and transfer image details without
sacrificing visual quality.

3 Method

Our method is based on [Gatys et al. 2015a; Gatys et al. 2015b],
which encodes feature correlations of an image in the VGG network
via the Gram matrix. The VGG-Network is a 19-layer CNN that
rivals human performance for the task of object recognition. This
network consists of 16 convolutional layers, 5 pooling layers, and a
series of fully connected layers for softmax classification.

A latent image x is to be estimated given constraints such as con-
tent similarity and style similarity. We assume a style or example
image s is available for the transfer of appropriate textures from s
to x, and that x should stay similar to a content image c in terms
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Figure 1: A sample comparison of various algorithms applied to upsampling texture images for a factor of ×3. Two example images are
provided in both (a) and (b) for example-based approaches. It can be seen that the example image has significant impact on the appearance
of the hallucinated details in the output images, indicating effectiveness of the texture transfer process.
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of mid to high level image content. The feature space representa-
tions with the network are X , S and C respectively. At each layer
l, a non-linear filter bank of Nl filters is convolved with the previ-
ous layer’s feature map to produce an encoding in the current layer,
which can be stored in a feature matrix Xl ∈ RNl×Ml , where Ml

is the number of elements in the feature map (height times width).
We use Xl

ij to denote the activation of the ith filter at position j in
layer l generated by image x.

In [Gatys et al. 2015a], the goal is to solve for an image x that is
similar to a content image c but takes on the style or textures of
s. Specifically, the following objective function is minimized via
gradient descent to solve for x:

x = argmin
x

(αEcontent(c, x) + βEstyle(s, x)) (1)

where Econtent is defined as:

Econtent(c, x) =
1

2

∑
l

∑
ij

(
Cl

ij −Xl
ij

)2
(2)

The content similarity term is simply a L2 loss given the differ-
ence between the feature map of the latent image in layer l and the
corresponding feature map from the content image.

The definition of Estyle is based on the the L2 loss between the
Gram matrix of the latent image and the style image in a set of cho-
sen layers. The Gram matrix encodes the correlations between the
filter responses via the inner product of vectorized feature maps.
Given a feature map Xl for image x in layer l, the Gram matrix
G(Xl) ∈ RNl×Ml has entries Gl

ij =
∑

kX
l
ikX

l
jk, where i, j in-

dex through pairs of feature maps, and k indexes through positions
in each vectorized feature map. Then the style similarity compo-
nent of the objective function is defined as:

Estyle(s, x) =
∑
l

wl

4N2
l M

2
l

(∑
i,j

(
G(Sl)ij −G(Xl)ij

)2)
(3)

where wl is a relative weight given to a particular layer l. The
derivatives of the above energy terms can be found in [Gatys et al.
2015a]. To achieve best effect, the energy components are typically
enforced over a set of layers in the network. For example, the con-
tent layer can be a single conv4 2 layer, while the style layers can be
over a larger set {conv1 1, conv2 1, conv3 1, conv4 1, conv5 1} to
allow consistent texture appearances across all spatial frequencies.

This feature space constraint has been shown to excel at represent-
ing natural image textures for texture synthesis, style transfer, and
super-resolution. We introduce a few adaptations to the task of sin-
gle image super-resolution and examine its effectiveness in terms
of transfering and synthesizing natural textures.

3.1 Basic Adaptation to SR

The objective function in Equation 1 consists of a content similarity
term and a style term. The content term is analogous to the faith-
fulness term in SISR frameworks. The style term can be seen as
a natural image prior derived from a single example image, which
is assumed to represent the desired image statistics. A first step in
our experiments is to replace the content similarity term Econtent

with a faithfulness term Efaithfulness = |G ∗ x ↓f −c|2, where f
is the downsampling factor, G a Gaussian lowpass filter, and c the
low resolution input image that we would like to upsample. These
variables associated with the downsampling process are assumed
known a-priori (non-blind SR). In the subsequent discussion, we
refer to this basic adaptation as our global, since the Gram matrix

constraint is globally applied to the whole image. Formally, the our
global method solves the following objective via gradient descent:

x = argmin
x

(αEfaithfulness(c, x) + βEstyle(s, x)) (4)

We further make the following changes to the original setup:

• All processing is done in gray scale. The original work of
[Gatys et al. 2015a] computes the feature maps using RGB
images. However, this requires strong similarity among color
channel correlations between the example and input image,
which is hard to achieve. For transfering artistic styles, this is
not a problem. We drop the color information to allow better
sharing of image statistics between the image pair.

• We use the layers {conv1 1, pool1 1, pool2 1, pool3 1,
pool4 1, pool5 1} to capture the statistics of the example im-
age for better visual quality, as done in [Gatys et al. 2015b].

We show that the above setup, while simple and basic, is capable of
transfering texture details reliably for a wide variety of textures (see
Fig.1 and Fig.6), even if the textures are structured and regular (see
Fig.5). However, for general natural scenes, this adaptation falls
short and produces painterly artifacts or inappropriate image details
for smooth image regions, because their global image statistics no
longer matches each other.

3.2 Local Texture Transfer via Masked Gram Matrices

Natural images are complex in nature, usually consisting of a large
number of segments and parts, some of which might contain homo-
geneous and stochastic textures. Clearly, globally matching image
statistics for such complex scenes cannot be expected to yield good
results. However, with carefully chosen local correspondences, we
can selectively transfer image details by pairing image parts of the
same or similar textures via two sets of binary masks {mk

s}K1 and
{mk

x}K1 . To achieve this, we introduce an outer summation to the
Estyle term to loop over each corresponding pair of components in
the masks (see Eq(5)).

In this setup, Rl
x is an image resizing operator that resamples an

image (a binary mask in this case) to the resolution of feature map
xl using nearest neighbor interpolation. The normalization constant
also reflects that we are aggregating image statistics over a subset
of pixels in the images. The parameter β from Eq.1 is divided by
the number of masks K to ensure the same relative weight between
Efaithfulness andEstylelocal. Note that these binary masks are not
necessarily exclusive, namely, pixels can be explained by multiple
masks if need be.

The sparse correspondences are non-trivial to obtain. We examine
two cases for the correspondence via masks: manual masks, and
automatic masks via the PatchMatch [Barnes et al. 2009] algorithm.

Manual Masks For moderately simple scenes with large areas of
homogeneous textures such as grass, trees, sky, etc. , we manually
generate 2 to 3 masks per image at the full resolution to test out the
local texture transfer. We refer to this setup as our local manual.
A visualization of the images and masks can be found in Figure 2.

PatchMatch Masks To automatically generate the masks, we ap-
ply the PatchMatch algorithm to the LR input image c and a LR
version of the style image s after applying the same downsampling
process used to generate c. Both images are grayscale. Once the
nearest-neighbor field (NNF) is computed at the lower resolution,
we divide the output image into cells and pool and dilate the inter-
polated offsets at the full resolution to form the mask pairs. Each
mk

x contains a square cell of 1’s, and its corresponding mask mk
s

4



Estylelocal =
∑
k

Estyle(s⊗mk
s , x⊗mk

x) =
∑
k

∑
l

wl

4N2
l |Rl

x(mk
x)|2

(∑
i,j

(
G(Sl ⊗Rl

s(m
k
s ))ij −G(Xl ⊗Rl

x(m
k
x))ij

)2)
(5)

Figure 3: Visualization of the masks automatically generated using the PatchMatch algorithm. PatchMatch is applied to the low resolution
grayscale input and example images to compute a dense correspondence. The HR output image is divided into cells, and all correspondences
contained in the input cell are aggregated to form the example image mask.

Figure 2: Sample images and their corresponding masks, each one
is manually generated.

will be the union of numerous of binary patches. We refer to this
variation as our local. A sample visualization is given in Figure 3.

4 Experimental Results

4.1 Baseline Methods

For comparison, we first describe several baseline methods from
recent literature on super-resolution and texture transfer, and com-
pare to our methods. These baseline methods are representative of
state-of-the-art performance in their respective tasks, and form the
basis of comparison for Section 4.2.

ScSR [Yang et al. 2008; Yang et al. 2010] is one of the most widely
used methods for comparison in recent SISR literature. It is a
sparse coding based approach, using a dictionary of 1024 atoms
learned over a training set of 91 natural images. Sparse coding is a
well studied framework for image reconstruction and restoration, in
which the output signal is assumed to be a sparse linear activation
of atoms from a learned dictionary. We use the Matlab implementa-
tion provided by the authors 1 as a baseline method for comparison.

SRCNN [Dong et al. 2014] is a CNN based SISR method that
produces state-of-the-art performance for PSNR/SSIM measures
among recent methods. It combines insights from sparse coding
approaches and findings in deep learning. A 3-layer CNN architec-
ture is proposed as an end-to-end system. We can view this rep-
resentation as a giant non-linear regression system in neural space,
mapping LR to HR image patches. For subsequent comparisons,
we use the version of SRCNN learned from 5 million of 33 × 33
subimages randomly sampled from ImageNet. The Matlab code
package can be found on the author’s website2.

Gatys [Gatys et al. 2015a; Gatys et al. 2015b] first consider refor-
mulating the texture synthesis problem within a CNN framework.

1We use the Matlab ScSR code package from http://www.ifp.illinois.
edu/∼jyang29/codes/ScSR.rar

2We use the SRCNN code package from http://mmlab.ie.cuhk.edu.hk/
projects/SRCNN.html
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In both work, the VGG network is used for feature representation
and modeling image space, and the correlation of feature maps at
each layer is the key component in encoding textures and struc-
tures across spatial frequencies. The Gram matrix representation is
compact and extremely effective at synthesizing a wide variety of
textures [Gatys et al. 2015b]. We use a Lasagne and Theano based
implementation of [Gatys et al. 2015a] as a baseline method for
comparison3.

CNNMRF [Li and Wand 2016] address the loss of spatial informa-
tion due to the Gram matrix representation by introducing an MRF
style layer on top of the VGG hidden layers to constrain local sim-
ilarity of neural patches, where each local window in the output
image feature map is constrained to be similar to the nearest neigh-
bor in the corresponding layer of the style image feature maps. We
use the torch based implementation from the authors4.

To adapt the code from Gatys et al. and CNNMRF for our experi-
ments, we upsample the LR input image bicubicly to serve as the
content image. All other processing remain identical to their re-
spective implementation.

We show a sample comparison of these methods in Figure 1, where
a low resolution texture image is upsampled by a factor of 3. For the
example based methods [Gatys et al. 2015a; Li and Wand 2016] and
ours, we provide two example images to test the algorithm’s ability
in transferring textures. Some initial observations can be made:

• ScSR [Yang et al. 2008] and SRCNN [Dong et al. 2014] pro-
duce nearly identical results qualitatively, even though their
model complexity is orders of magnitude apart. This repre-
sents half a decade of progress in the SISR literature.

• CNNMRF [Li and Wand 2016] produces painterly artifacts
due to averaging in neural space. The highest frequencies
among different color channels can be misaligned and appear
as colored halos when zoomed in.

• Our method produces convincing high frequency details while
being faithful to the LR input. The effect of the example im-
age can be clearly seen in the output image.

4.2 Comparison of Results

In this section we showcase the performance of the algorithm vari-
ants our global, our local (PatchMatch based) and our local man-
ual on a variety of textures and natural images. We also compare
against leading methods in single-image super-resolution such as
ScSR [Yang et al. 2008] and SRCNN [Dong et al. 2014], as well as
deep learning based style transfer methods including [Gatys et al.
2015a] and CNNMRF [Li and Wand 2016]

4.2.1 Test Data

We collect a variety of images from the Internet including natu-
ral and man-made textures, regular textures, black and white pat-
terns, text images, simple natural scenes consisting of 2 or 3 clearly
distinguishable segments, and face images. These test images are
collected specifically to test the texture transfer aspect of the algo-
rithms. As a result, we do not evaluate performance of single image
super-resolution in its traditional sense, namely, measuring PSNR
and SSIM.

3Our implementation is adapted from the art style transfer recipe
from Lasagne: https://github.com/Lasagne/Recipes/tree/master/examples/
styletransfer

4Chuan Li’s CNNMRF implementation is available at: https://github.
com/chuanli11/CNNMRF

4.2.2 Black and White Patterns

The simplest test images are texts and black and white patterns.
As shown in Figure 4, traditional SR algorithms do a decent job
at sharpening strong edges, with SRCNN producing slightly less
ringing artifacts than ScSR. As expected, the example based meth-
ods produce interesting hallucinated patterns based on the example
image. CNNMRF yields considerable amount of artifacts due to
averaging patches in neural space. Gatys and our global introduce
a bias in background intensity but are capable of keeping the edges
crisp and sharp. Much fine details and patterns are hallucinated for
the bottom example.

4.2.3 Textures

For homogeneous textures, most SISR methods simply cannot in-
sert meaningful high frequency content besides edges. On the other
hand, we see that the Gram matrix constraint from [Gatys et al.
2015a; Gatys et al. 2015b] works extremely well because it is co-
ercing image statistics across spatial frequencies in neural space,
and ensuring that the output image match these statistics. How-
ever it is less effective when it comes to non-homogeneous image
content such as edges and salient structures, or any type of image
phenomena that is spatially unexchangeable. Finally, CNNMRF
works reasonably well but still falls short in terms of realism. This
is because linear blending of neural patches inevitably reduces high
frequencies. Another artifact of this method is that this blending
process can produce neural patches from the null space of natural
image patches, introducing colored halos and tiny rainbows when
zoomed in.

The main benefits of the our global method are (1) better faithful-
ness to the input LR image, and (2) less color artifacts. The Gatys
transfer baseline operates in RGB color space, hence any correlated
color patterns from the style image will remain in the output im-
age. However, the style image might might not represent the correct
color correlation observed in the input image, e.g. , blue vs yellow
flowers against a background of green grass. Our global transfer
method operates in gray scale, relaxing the correlation among color
channels and allowing better sharing of image statistics. This re-
laxation helps bring out a more realistic output image, as shown in
Figure 5, 6, 7.

Comparisons on regular textures are shown in Figure 5. our global
produces better details and color faithfulness, whereas traditional
SISR methods do not appear too different from bicubic interpola-
tion. Figure 6 shows results on numerous stochastic homogeneous
textures. Example based methods exhibit strong influence from ex-
ample images and can produce an output image visually different
from the input, such as the fur image (third row). However, bet-
ter details can be consistently observed throughout the examples.
Gatys can be seen to produce a typical flat appearance in color
(e.g. , rock, first row), this is because of the color processing con-
straint.

Going beyond homogeneous textures, we test these algorithms on
simple natural images in Figure 7. Realistic textures and details can
be reasonably well hallucinated by our global, especially the roots
in the roil (first row) and the patterns on the butterfly wings (bottom
row). The pipes (second row) are synthesized well locally, however,
the out output image becomes too ‘busy’ when viewed globally. It
is worth pointing out that CNNMRF essentially produces a paint-
ing for the forest image (third row), this is a clear example of the
disadvantages of averaging/blending patches.

6

https://github.com/Lasagne/Recipes/tree/master/examples/styletransfer
https://github.com/Lasagne/Recipes/tree/master/examples/styletransfer
https://github.com/chuanli11/CNNMRF
https://github.com/chuanli11/CNNMRF


bicubic x3 Gatys our globalSRCNN CNNMRFexample ScSR ground truth

Figure 4: Example comparisons on a Chinese text image (top) and black and white pattern image (bottom). Example based methods can
hallucinate edges in interesting ways, but also produce biases in background intensity, copied from the example image. Other artifacts are
also present. Best viewed electronically and zoomed in.

bicubic x3 Gatys our globalSRCNN CNNMRFexample ground truthScSR

Figure 5: Example comparisons on regular textures. Best viewed electronically and zoomed in.
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Figure 6: Example comparisons on various types of textures. Best viewed electronically and zoomed in.

bicubic x3 Gatys our globalSRCNN CNNMRFexample ScSR ground truth

Figure 7: Example comparisons on simple natural images. Best viewed electronically and zoomed in.
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Figure 8: Example comparisons on moderately complex natural images. CNNMRF, Gatys and ‘our local’ consistently synthesize more high
frequencies appropriate to the scene. CNNMRF and Gatys suffer from color artifacts due to mismatching colors between the example and the
input image. CNNMRF also produces significant amount of color artifacts when viewed more closely, especially in smooth regions and near
image borders. Gram matrix based methods such as Gatys and ‘our local’ outperform other methods in terms of hallucinating image details,
however also produce more artifacts in a few test cases. Best viewed electronically and zoomed in.
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Figure 9: Example comparisons on natural scenes with manually supplied masks. Best viewed electronically and zoomed in.
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4.2.4 Natural Scenes

Natural images exhibit much more complexity than homogeneous
textures, here we only consider scenarios where the image can be
clearly divided into several types of textures, mostly homogeneous.
In this way, we can better test the effectiveness of the algorithm’s
performance on synthesizing and hallucinating texture details. One
complication that arises here is that texture transitions and borders
represent extremely non-homogeneous statistics that is not easily
handled by synthesis methods. Since the image now contains dif-
ferent types of statistics, we will apply our masked variants using
PatchMatch masks and manual masks to these test images. To bet-
ter deal with texture transitions, we dilate the manually generated
masks slightly to include pixels near texture borders.

In Figure 8, all results under our local are generated using our
PatchMatch based variant. These test images consist of moderately
complex natural scenes. It can be seen that CNNMRF, Gatys and
our local consistently synthesize more high frequencies appropri-
ate to the scene, traditional SISR methods appear similar to bicu-
bic interpolation. CNNMRF and Gatys suffer from color artifacts
due to mismatching colors between the example and the input im-
age. Again, CNNMRF produces significant amount of color arti-
facts when viewed more closely, especially in smooth regions and
near image borders. Gram matrix based methods such as Gatys and
our local outperform other methods in terms of hallucinating image
details, however also produce more artifacts in a few test cases.

PatchMatch is far from perfect for generating the masks suitable for
our application. This can be seen in many regions in the output im-
ages. For example, the trees in the pond image (second last row) is
hallucinated by water textures towards the left, even the tree on the
far left shows much water-like textures, clearly due to bad corre-
spondences generated by PatchMatch. Similar artifacts can be seen
in the crater lake image (last row). For natural scenes, our method
is capable of opportunistically inserting appropriate textures, but
cannot produce a perfect flaw-free output.

One would expect manually generated masks to be more suitable
than PatchMatch masks. Although there are two drawbacks:

• The entire masked example region would participate in the
Gram matrix computation, forcing the output image to take on
the exemplar statistics, even though it might be undesirable.
For example, when matching sky with slow intensity gradient
with a flat sky region. PatchMatch offers more freedom in this
regard, allowing certain regions to be completely discarded
(in the example image).

• Texture transitions are hard to account for. Even though we
dilate the masks hoping to include the borders, the pyramid
nature of the CNN architecture and pooling operations will
eventually introduce boundary artifacts.

Figure 9 shows comparisons using our manually generally masks
(c.r. Fig. 2). Clearly, there is less low frequency artifacts in color
biases. However, ringing artifacts become more prominent near
texture transitions and image borders.

4.3 Face Images

Another interesting scenario is to test the algorithms on face im-
ages. When the example image is sufficiently close the input, such
as in Figure 10, our method works well for hallucinating image
details. In this particular example, the facial features in the out-
put image remain similar to the input, and it is almost impossible
to tell who the example image is given just the output. However,
CNNMRF lacks the ability to synthesize new content (copy-paste

bicubic x3 SRCNN ground truth

CNNMRFexample our local manual

Figure 10: Example comparisons on a portrait image. Our method
is able to hallucinate appropriate details given the well-matched
image statistics. Most noticeably, plausible details are successfully
introduced to the eyebrows, hair, and eyes. CNNMRF produces
decent amount of details as well, however, it makes the output image
less recognizable as the person in the input image. Best viewed
electronically.

in neural space) and its output is more of a blend between the in-
put and example. The final output image somewhat falls into the
‘uncanny valley’, and is almost unrecognizable as De Niro.

In Figure 11, CNNMRF is able to produce a natural looking out-
put with decent high frequency details except for the mouth re-
gion, since the example image does not contain the best source
patches. On the other hand, our Gram matrix based method (our
global setup) fails completely for the face region, only synthesiz-
ing details on parts of the hat, which happens to be homogeneous
textures. This is because human faces are highly structured and far
from textures.

5 Discussion and Future Work

Recent works on the texture synthesis aspect of single image super-
resolution provide a promising direction that complements existing
methods which perform well in traditional image quality metrics.
We have shown that deep architectures can provide the appropriate
constraints in its rich feature space to model natural image content,
especially textures. We have shown that the Gram matrix constraint
from [Gatys et al. 2015b] can be easily adapted to achieve realistic
transfer of high frequency details for wide variety of natural tex-
tures and images. With sparse spatial correspondences, more local-
ized transfer of textures can be achieved to handle moderately com-
plex natural scenes. However, it is non-trivial to handle texture tran-
sitions by matching statistics in neural space. Non-homogeneous
textures, edges, and objects in natural images are also challenging
to handle by this framework. Future work may focus on combin-
ing texture and object synthesis with traditional SISR approach for
edge handling in a more unified framework.

References

BARNES, C., SHECHTMAN, E., FINKELSTEIN, A., AND GOLD-

11



bicubic x3 SRCNN

CNNMRFexample

ground truth

our global

Figure 11: Example comparisons on a face image. Our method
fails due to mismatch in global image statistics. It is interesting to
note that CNNMRF works extremely well for face images, however,
it cannot insert image details not present in the example image. In
this case, it cannot synthesize a closed mouth of the baby. Best
viewed electronically.

MAN, D. B. 2009. PatchMatch: A randomized correspondence
algorithm for structural image editing. ACM Transactions on
Graphics (Proc. SIGGRAPH) 28, 3 (Aug.).

BONET, J. S. D. 1997. Multiresolution sampling procedure for
analysis and synthesis of texture images. In ACM Transactions
on Graphics.

CHO, S., AND LEE, S. 2009. Fast motion deblurring. In ACM
Transactions on Graphics.

DENTON, E. L., CHINTALA, S., SZLAM, A., AND FERGUS, R.
2015. Deep generative image models using a laplacian pyramid
of adversarial networks. In NIPS.

DONG, C., LOY, C. C., HE, K., AND TANG, X. 2014. Learn-
ing a deep convolutional network for image super-resolution. In
ECCV.

EFROS, A. A., AND FREEMAN, W. T. 2001. Image quilting for
texture synthesis and transfer. Proceedings of SIGGRAPH 2001
(August), 341–346.

EFROS, A. A., AND LEUNG, T. K. 1999. Texture synthesis by
non-parametric sampling. In ICCV.

FERGUS, R., SINGH, B., HERTZMANN, A., ROWEIS, S. T., AND
FREEMAN, W. T. 2006. Removing camera shake from a single
photograph. In ACM Transactions on Graphics.

FREEDMAN, G., AND FATTAL, R. 2011. Image and video upscal-
ing from local self-examples. ACM Trans. Graph..

FREEMAN, W. T., JONES, T. R., AND PASZTOR, E. C. 2002.
Example-based super-resolution. In IEEE Computer Graphics
and Applications.

GATYS, L. A., ECKER, A. S., AND BETHGE, M. 2015. A neural
algorithm of artistic style.

GATYS, L. A., ECKER, A. S., AND BETHGE, M. 2015. Texture
synthesis using convolutional neural networks. In Advances in
Neural Information Processing Systems 28.

GATYS, L. A., ECKER, A. S., BETHGE, M., HERTZMANN, A.,
AND SHECHTMAN, E. 2016. Controlling perceptual factors in
neural style transfer. arXiv preprint arXiv:1611.07865.

GLASNER, D., BAGON, S., AND IRANI, M. 2009. Super-
resolution from a single image. In ICCV.

GOODFELLOW, I. J., POUGET-ABADIE, J., MIRZA, M., XU, B.,
WARDE-FARLEY, D., OZAIR, S., COURVILLE, A. C., AND
BENGIO, Y. 2014. Generative adversarial nets. In NIPS.

HACOHEN, Y., FATTAL, R., AND LISCHINSKI, D. 2010. Image
upsampling via texture hallucination. In ICCP.

HEEGER, D. J., AND BERGEN, J. R. 1995. Pyramid-based tex-
ture analysis/synthesis. In SIGGRAPH ’95: Proceedings of the
22nd annual conference on Computer graphics and interactive
techniques.

HUANG, J.-B., SINGH, A., AND AHUJA, N. 2015. Single image
super-resolution using transformed self-exemplars. In CVPR.

JOHNSON, M. K., DALE, K., AVIDAN, S., PFISTER, H., FREE-
MAN, W. T., AND MATUSIK, W. 2010. Cg2real: Improving the
realism of computer-generated images using a large collection of
photographs. IEEE Transactions on Visualization and Computer
Graphics.

JOHNSON, J., ALAHI, A., AND LI, F.-F. 2016. Perceptual losses
for real-time style transfer and super-resolution. ECCV .

KIM, K. I., AND KWON, Y. 2010. Single-image super-resolution
using sparse regression and natural image prior. IEEE Trans.
Pattern Analysis and Machine Intelligence 32, 6.

KWATRA, V., SCHODL, A., ESSA, I., TURK, G., AND BOBICK,
A. 2003. Graphcut textures: Image and video synthesis using
graph cuts. ACM Trans. Graph. 22, 3 (July), 277–286.

KWATRA, V., ESSA, I. A., BOBICK, A. F., AND KWATRA, N.
2005. Texture optimization for example-based synthesis. In
ACM Transactions on Graphics.

LAFFONT, P., REN, Z., TAO, X., QIAN, C., AND HAYS, J. 2014.
Transient attributes for high-level understanding and editing of
outdoor scenes. ACM Trans. Graph..

LEVIN, A., AND WEISS, Y. 2007. User assisted separation of
reflections from a single image using a sparsity prior. TPAMI 29,
9, 1647–1654.

LEVIN, A., WEISS, Y., DURAND, F., AND FREEMAN, W. T.
2009. Understanding and evaluating blind deconvolution algo-
rithms. In CVPR.

LI, C., AND WAND, M. 2016. Combining markov random fields
and convolutional neural networks for image synthesis. CVPR.

NGUYEN, A., YOSINSKI, J., BENGIO, Y., DOSOVITSKIY, A.,
AND CLUNE, J. 2016. Plug & play generative networks: Con-
ditional iterative generation of images in latent space. arXiv
preprint arXiv:1612.00005.

PORTILLA, J., AND SIMONCELLI, E. P. 2000. A parametric tex-
ture model based on joint statistics of complex wavelet coeffi-
cients. International Journal of Computer Vision 40, 1.

RADFORD, A., METZ, L., AND CHINTALA, S. 2016. Unsuper-
vised representation learning with deep convolutional generative
adversarial networks. In ICLR.

ROTH, S., AND BLACK, M. J. 2009. Fields of experts. Interna-
tional Journal of Computer Vision 82, 2.

12



SAJJADI, M. S. M., SCHLKOPF, B., AND HIRSCH, M. 2016.
Enhancenet: Single image super-resolution through automated
texture synthesis. arXiv preprint arXiv:1612.07919.

SCHULTER, S., LEISTNER, C., AND BISCHOF, H. 2015. Fast
and accurate image upscaling with super-resolution forests. In
CVPR.

SHIH, Y., PARIS, S., BARNES, C., FREEMAN, W. T., AND DU-
RAND, F. Style transfer for headshot portraits. ACM Trans.
Graph..

SHIH, Y., PARIS, S., DURAND, F., AND FREEMAN, W. T. 2013.
Data-driven hallucination of different times of day from a single
outdoor photo. ACM Trans. Graph..

SIMONYAN, K., AND ZISSERMAN, A. 2014. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556.

SUN, L., AND HAYS, J. 2012. Super-resolution from internet-scale
scene matching. In ICCP.

SUN, J., AND TAPPEN, M. F. 2010. Context-constrained halluci-
nation for image super-resolution. In CVPR.

SUN, J., ZHU, J., AND TAPPEN, M. F. 2010. Context-constrained
hallucination for image super-resolution. In CVPR.

TIMOFTE, R., SMET, V. D., AND GOOL, L. J. V. 2013. An-
chored neighborhood regression for fast example-based super-
resolution. In ICCV.

TIMOFTE, R., SMET, V. D., AND GOOL, L. J. V. 2014.
A+: adjusted anchored neighborhood regression for fast super-
resolution. In ACCV.

WANG, Z., LIU, D., YANG, J., HAN, W., AND HUANG, T. 2015.
Deep networks for image super-resolution with sparse prior. In
Proceedings of the IEEE International Conference on Computer
Vision.

WEI, L., AND LEVOY, M. 2000. Fast texture synthesis using tree-
structured vector quantization. In Proceedings of the 27th An-
nual Conference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH 2000, New Orleans, LA, USA, July 23-28,
2000.

WEISS, Y., AND FREEMAN, W. T. 2007. What makes a good
model of natural images? In CVPR.

XU, L., AND JIA, J. 2010. Two-phase kernel estimation for robust
motion deblurring. In ECCV.

YANG, C., AND YANG, M. 2013. Fast direct super-resolution by
simple functions. In ICCV.

YANG, J., WRIGHT, J., HUANG, T. S., AND MA, Y. 2008. Image
super-resolution as sparse representation of raw image patches.
In CVPR.

YANG, J., WRIGHT, J., HUANG, T. S., AND MA, Y. 2010. Image
super-resolution via sparse representation. IEEE Trans. Image
Processing.

YANG, J., LIN, Z., AND COHEN, S. 2013. Fast image super-
resolution based on in-place example regression. In CVPR.

ZHOU, T., TULSIANI, S., SUN, W., MALIK, J., AND EFROS,
A. A. 2016. View synthesis by appearance flow. In Proceedings
of European Conference on Computer Vision (ECCV).

ZHU, S. C., WU, Y. N., AND MUMFORD, D. 1998. Filters, ran-
dom fields and maximum entropy (frame): Towards a unified

theory for texture modeling. In International booktitle of Com-
puter Vision.
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