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Abstract 

 

For the military and civilian first responders heat injury is a very real concern. 

Several real-time physiological monitoring systems exist that can utilize heat strain 

indexes [e.g. physiological strain index (PSI)] and provide alerts to medical personnel. 

However, these systems depend on core temperature measurement using ingested pill 

thermometers which can suffer inaccuracies from ingested water.  In order to find a better 

solution and to overcome this problem we suggest the use of a layered heat strain 

management system which identifies individuals “at risk” from heat injury using non-

invasive measures.  The intent is to identify individuals that need closer monitoring or 

heat injury mitigation strategies.  This paper proposes a logistic regression classification 

model built from a data set containing 81 bouts of exercise from 49 subjects with and 

without personal protective equipment.  Labels of “at risk” and “not at risk” were 

determined a priori based upon a PSI threshold of 7.5.  The model has a classification 

error rate of 10% with only one false negative.  An earlier classification model and a least 

squares regression model had classification errors of 21% and 14%, respectively.  In 

addition classifying “at risk” subjects the model provides a decision boundary that can be 

set based upon mission needs and risk.  We conclude that the logistic regression model 

would provide a valuable tool in a layered heat strain management system.  

  

 



Introduction 

 

The ability to prevent or reduce the incidence of heat injury using cost effective physiological 

monitoring technologies would enhance occupational safety measures for workers engaged in 

physically demanding tasks in high heat strain environments.  Heat injury is a concern to both 

military and first responders. In 2005, the US Army reported over 1100 cases of heat injury, with 

204 cases of heat stroke (US Army 2006).  Heat strain has also been suggested as a possible 

contributing factor in the sudden cardiac death of firefighters - the leading cause of US firefighter 

deaths (Fahy and LeBlanc 2006) - where the cardiovascular system is stressed from the 

competing needs of thermo-regulation and metabolic requirements (Smith et al., 2001).  

Additionally the effect of heat strain on workers encapsulated in personal protective equipment 

(PPE) has long been viewed as a problem (Muza et al 2001; Givoni and Goldman 1972).  Finding 

the appropriate physiological indicators that identify impending heat strain and which are also 

simple to measure is key to producing a practical heat injury prevention tool. 

Various techniques have been proposed to monitor and assess heat strain.  The National 

Institute for Occupational Safety and Health (NIOSH) suggest the monitoring of core body 

temperature, skin temperature, sweat, and heart rate may be appropriate to indicate heat strain 

(NIOSH 1986).  Moran et al (1998) developed a comprehensive heat strain indicator that 

combines two of these parameters – heart rate and core body temperature – into a single 

measurement that they termed the physiological strain index (PSI).  The PSI has demonstrated 

efficacy in identifying individuals with heat strain in both hot-dry and hot-wet environments with 

or without PPE (Moran 2000).  Recent technological advances have also provided the possibility 

of real time monitoring of PSI for both warfighters and first responders [e.g., U. S. Army 

Warfighter Physiological Status Monitoring (WPSM) system, (Buller et al 2007)].  These 

physiological monitoring systems could be used to reduce the incidence of heat injury by setting 

mission specific PSI thresholds.  When a threshold is obtained heat strain mitigation strategies 

can be adopted. However, the use of PSI in this way is dependent on obtaining reliable core body 

temperatures. 

While ingestible core temperature thermometer pills (e.g., Mini Mitter Inc. Bend, OR; 

O’Brien et al 1998) have been used successfully to measure core temperature in ambulatory 

settings (Hoyt et al 2001) they have a downside for use in a heat injury prevention system.  After 

a core temperature pill is ingested measurements suffer from inaccuracies from ingested fluids 

until the pill transits the upper portion of the gastro-intestinal tract (Wilkinson et al 2008).   If a 

pill has been in the body for less than 8 hours impending heat casualties can be missed as the true 

core temperature may be masked by recent cold drinks.  However, by simplifying the problem 

from continuously measuring PSI to determining “at risk” individuals, it may be possible to 

remove the need for continuous core temperature monitoring and use measurements not 

influenced by drinking behavior. 

The WPSM system proposes a layered architecture (Buller et al 2005; Tatbul et al 2004) 

where multiple algorithms of differing complexity are used to assess heat strain based upon risk 

level. In this architecture, a PSI measurement may only be needed when closer monitoring is 

called for as a worker enters an “at risk” status.  The criteria to enter an “at risk” status could be 

influenced by mission characteristics, environmental conditions, clothing requirements, or 

previous heat injury.  The key to the success of this type of layered system is to have a reliable 

method to determine whether an individual is “at risk” or “not at risk”.  In 2005, Yokota et al 

constructed such an algorithm to serve this purpose for the WPSM system.  The algorithm was 

based upon determining heat strain risk from heart rate, skin temperature, and body mass index 

where risk was determined from core temperature (“at risk” ≥ 38.5 ºC and “not at risk” <38.5 ºC).  

While the algorithm classification error rate was high, ~ 21%, the work, as a pilot study, showed 

that the relationship of skin temperature and heart rate to heat strain showed promise.  



The purpose of this study was to construct a new model for use in a layered heat strain 

management system which will identify individual’s who are “at risk” from heat strain.  The 

model will be derived directly from heart rate, skin temperature, and PSI data using statistical 

classification techniques.  The intent is to provide a model that produces the lowest number of 

classification errors, while allowing classification thresholds to be adjusted based upon mission 

needs and risk. 

 

Methods 

 

Two different data sets of approximately equal size containing examples of exercising individuals 

with and without PPE were assembled.  Both data sets contained the same variables of heart rate, 

core body temperature, and chest skin temperature taken at the end point in a bout of exercise.  

One data set was used to develop the initial model while the second data set was used for 

validation.  

 

Subjects and data sets 

  

Group 1 Training Data: comprised of 40 distinct bouts of exercise assembled from eight different 

male subjects (Age = 23 ± 6 yr, body mass index = 24.5 ± 4.1), who participated in a series of 

trials involving two bouts of exercise without PPE and three bouts of exercise with PPE (Latzka 

et al 1997; Latzka et al 1998).  Exercise sessions without PPE were conducted on a treadmill 

individually set for each subject to work at ~45% of VO2max (1.56 – 1.65 m/s @ 4-9% grade).  

Exercise sessions with PPE were conducted on a treadmill individually set for each subject to 

work at ~55% of VO2max .  For all sessions environmental conditions were set at ambient 

temperature = 34.9 ± 0.1 ºC, dew point = 25.9 ± 0.6 ºC.  All subjects were acclimatized to 

exercising in these temperatures.  

 

Group 2 Validation Data: comprised of thirty four male and seven female subjects assembled 

from four different studies (Age = 22 ± 3 yr, body mass index = 24.2 ± 3.2).  Table 1 presents the 

exercise regime, environmental conditions and clothing for each of the referenced studies. 

 

 
Table 1. Validation data drawn from four different studies, showing environmental conditions; walking speed and 

grade; and clothing.  PPE = personal protective equipment, and PT = shorts and T-shirt.  

 

Reference N Environment Walking Exercise Clothing Duration 

Levine et al 2003 5 38ºC, 30%RH 0.89 m·s-1, 0% grade PPE 240 min 

Cheuvront et al 2003 5 30ºC, 30%RH 1.46 m·s-1, 2% grade PPE 80 min 

Stephenson et al 1999 7 30ºC, 38%RH 1.34 m·s-1, 2% grade PPE 45–90 min 

Moran et al 2004 24 40oC, 40%RH 1.39 m·s-1, 2% grade PT 120 min 

 
Measures 

 

Physiological Strain Index (PSI): A PSI (Moran et al 1998) threshold was used to classify both 

the training and validation data a priori into “at risk” and “not at risk” heat strain groups.  The PSI 

categorizes physiological strain in a scale from 0 – 10, and was calculated for all subjects using 

core body temperature (Tcore) and heart rate (HR) with the following formula: 
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As initial resting values of  Tcore(0)  and HR(0) were not available for most subjects these values 

were set to Tcore(0)  = 37.12 ºC and HR(0) = 71 beats/min - the mean resting values for 100 subjects 

presented in Moran et al (1998).  

With a desire to make the model conservative we chose a PSI threshold value of 7.5 with 

the following rationale: (1) Our human use review guidelines set core temperature and heart rate 

thresholds that are exceeded at a PSI value of 8, and (2) Moran labels a PSI of 7 to be “High” 

strain. Thus, to identify the transition from “High” physiological strain, to a physiological strain 

that exceeds our human use review safety limits we chose a threshold value of PSI = 7.5.   

Classification labels were assigned based upon PSI ≥ 7.5 = “at risk” and PSI < 7.5 = “not at risk”. 

 

Skin Temperature: While data were available for several skin temperature locations chest skin 

temperature was chosen for two main reasons.  First, most ambulatory monitoring devices that 

measure heart rate also provide a measure of chest skin temperature (e.g., Equivital System 

Hidalgo Ltd, Cambridge UK; VivoResponder, VivoMetrics Inc. Ventura CA.); and second, in an 

earlier unpublished mutual information analysis of the Group 2 data, chest skin temperature 

explained more of the variance in core body temperature than thigh skin temperature or mean 

weighted skin temperature. 

 

Modeling approach 

 

The goal of this analysis was to develop a classification model that provides a physiological 

reasonable decision boundary for identifying individuals “at risk” and “not at risk” of heat strain.  

An idealized boundary would have three properties and appear similar in shape to Yokota et al’s 

“Red Zone” threshold, taking the form of an inverted “S” (see figure 1).  From figure 1 the three 

properties would be: (1) the top right quadrant of figure would represent the “at risk” class, where 

subjects have both high heart rate and high skin temperature; (2) subjects with high heart rates 

from exercise and lower skin temperatures would be classified as “not at risk”; and (3) Subjects 

just having high skin temperatures regardless of heart rate would be classified as “at risk”.  The 

assumption here is that in general, high skin temperatures are likely to indicate high heat strain.  

When this is not the case context can be used to ignore the “at risk” classification.  

Logistic regression is used to derive our decision boundary directly from the data.  

Logistic regression has an advantage that the derived decision boundary is probabilistic in nature, 

allowing the classifications to be modified based upon the level of risk or certainty.  To ensure 

that the logistic regression approach does not over fit the data we initially generated a model from 

Group 1, and then applied this model to Group 2. Finally a logistic regression model is generated 

from the combined data set of Groups 1 and 2. The classification performance of our final model 

is compared to a multivariate least squares linear regression model also generated from the 

combined Group 1 & 2 data, also estimating PSI from chest skin temperature and heart rate.  

Additionally subjects were also classified as “at risk” or “not at risk” using Yokota et al’s (2005) 

“Red Zone” threshold algorithm. 

In logistic regression the optimal decision boundary is given where the log-odds ratio 

equates to 0. This is shown in equation (2) where y=1 is the “at risk” class and y=0 is the “not at 

risk” class. Here, given x (in our case a vector of the input data) the probability (p) that the 

classification is “at risk” (y=1) is equal to the probability that the classification is “not at risk” 

(y=0):  
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Figure 1.  Idealized form of the heat strain “at risk” / “not at risk” decision boundary. 

 

 

The decision boundary is modeled directly by the dot product of a vector of weighting 

coefficients (w) and a vector of input variables (x) given by the following linear algebra 

expression: 
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The probability that a data point x is in class “at risk” (y=1) is given by the following 

logistic model: 
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Given a set of training data the weighting coefficients for the decision boundary are 

learned by finding the maximum likelihood (ML) solution for the logistic model shown in 

equation (4). The mathematics of finding the ML solution are beyond the scope of this paper, 

however, Bishop (2006) provides more detail of this topic. 

Specifically in our model the “at risk” group (PSI ≥ 7.5) is defined as the class y = 1, and 

the “not at risk” group (PSI < 7.5) is defined as the class y = 0.  Our model contains two input 

variables; heart rate and chest skin temperature which form the vector:  x = [x1, x2], where x1 = 

heart rate (beats/min), and x2 = chest skin temperature (ºC).  To achieve our idealized 

decision boundary we map our input data into a cubic polynomial. Thus, our input data vector x 

takes the form: 
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 When a data point is evaluated, the model equation (4) returns the probability that the 

data point x is in the “at risk” category.  Since a probability is returned, the threshold to classify a 



point as “at risk” or “not at risk” can be set based upon the desired risk level. An example of this 

calculation is given in the addendum. 

 

Results 

 

Group 1: training data 

 

A logistic regression model was developed on the group 1 training data and the decision 

boundary was set at a probability of 50%. Figure 2 depicts the training data by class (“at risk” or 

“not at risk”), the logistic regression decision boundary, and the classification errors. There was 

only one false positive classification error. 

 
 

Figure 2. Training data by class (“at risk” or “not at risk”), logistic regression decision boundary and classification 

errors. 

 

Group 2: validation data 

 

Next we applied the logistic model generated from Group 1 to Group 2.  Figure 3 shows 

the Group 2 data by class (“at risk” or “not at risk”), the classification errors with the logistic 

regression decision boundary set at 2%, and the decision boundaries for 50, 40, 30, 20, and 5%. 

Table 2 shows the number of false negatives and false positives for a number of decision 

boundaries. This table shows the classification results as the decision boundary is moved from 

50% (where a point is classified “at risk” if it has ≥ 50% probability of being in the at risk class) 

to a conservative 2% decision boundary (where a point is classified “at risk” if it has ≥ 2% 

probability of being in the “at risk” class). 

 



 
Figure 3. Group 2 data by class (“at risk” or “not at risk”), with the classification errors with the logistic regression 

decision boundary learned from Group 1 set at 2%, and additional decision boundaries at: 50, 40, 30, 20, and 5%.  

 

 

 
Table 2. The number of false negative or false positives in the Group 2 validation data using the logistic regression 

model generated from the Group 1 with the decision boundary set at 50, 40, 30, 20, 5, and 2%. 

 
 Decision Boundary 

 50% 40% 30% 20% 5% 2% 

At Risk (N=14)   5 (35.7%) 5 (35.7%) 4 (28.6%) 3 (21.4%) 2 (14.2%) 1 (7.1%) 

Not At Risk 

(N=27) 
2 (7.4%) 2 (7.4%) 2 (7.4%) 2 (7.4%) 4 (18.8%) 4 (18.8%) 

Total Errors 7 (17.1%) 7 (17.1%) 6 (14.6%) 5 (12.2%) 6 (14.6%) 5 (12.2%) 

 
The model generated from the Group 1 data had the least number of misclassifications at both the 

20% and 2% decision boundary with 5 classification errors. However, as a heat risk indicator the 

model performed best at the conservative 2% decision boundary with only 1 false negative error 

compared to 3 with the 20% boundary.



Combined model 

 

A new logistic regression model was developed on the combined data of Groups 1 and 2.  Figure 

4 shows the combined data set by class, the classification errors with the decision boundary set at 

40%, and the decision boundaries at 50, 30, 20, and 10%.  Table 4 presents the confusion matrix 

generated using decision boundaries of 50% and 40% on the combined data set and the 

classification results of the multivariate linear least-squares regression model, and the 

classification results using the “Red Zone” threshold model. 

 

 
 
Figure 4. Data pooled from Group 1 and Group 2 by class (“at risk” or “not at risk”), with classification errors for the 

logistic regression decision boundary learned from the combined data set at 40%. Additional decision boundary 

contours are shown at: 50, 30, 20 and 10%. 

 
 

Table 4. Confusion matrix for classifications based upon the logistic regression model derived from the pooled data of 

Groups 1 and 2, the linear regression model, and the “Red Zone” model. 

 
 Decision Boundary = 

50% 

 Decision Boundary = 

40% 

 Linear Regression 

Model 

 “Red Zone” Model  

Actual Class 

classified 

“at risk” 

classified 

“not at 

risk” 

 classified  

“at risk” 

classified 

“not at 

risk” 

 classified 

“at risk” 

classified 

“not at 

risk” 

 classified 

“at risk” 

classified 

“not at 

risk” 

“at risk” 

(N=37) 

34 

(91.9%) 

3   

(8.1%) 

 36 

(97.3%) 

1   

(2.7%) 

 30 

(81.1%) 

7 

(18.9%) 

 35 

(94.6%) 

2 

(5.4%) 

“not at risk” 

(N=44) 

7 

(15.9%) 

37 

(84.1%) 

 7   

(15.9%) 

37 

(84.1%) 

 4     

(9.1%) 

40 

(90.9%) 

 15 

(34.1%) 

29 

(65.9%) 



Discussion 

 

The purpose of this investigation was to generate a model that could distinguish between subjects 

“at risk” of thermal injury and subjects “not at risk” of thermal injury using non-invasive and 

readily available measures of heart rate and chest skin temperature.  The logistic regression model 

generated from group 1 provided a model that correctly distinguished all “at risk” subjects while 

mislabeling one “not at risk” individual as “at risk”.  The decision boundary, while not perfect, 

did meet two of the three idealized criteria:  (1) subjects with high heart rates and high chest skin 

temperature are classified “at risk”; and (2) subjects with only high heart rates are classified as 

“not at risk”.  

Initially when this model is applied to the Group 2 data using a 50% classification 

threshold, performance seems poor with an overall misclassification rate of 17.1% comprising of 

5 false negative errors and 2 false positive errors.  However, when the classification threshold is 

adjusted to be more conservative at 2%, the performance improves in two ways.  Compared to the 

50% classification boundary the total number of errors decreases to 12.2%; and the number of 

false negative classification errors decreases to 1.  As would be expected, when the threshold is 

reduced the number of false negatives decreases while the number of false positives increases. 

However, for our intended use we would prefer to bias the model to correctly identify the “at 

risk” people while tolerating a few extra false positives.  Thus, to ensure that we identify all the 

“at risk” subjects it is not unreasonable to set a more conservative or lower classification 

threshold value. 

While the model generated from Group 1 performs increasingly well as the classification 

threshold value is reduced, the decision boundary increasingly suffers deformation from our 

idealized pattern (see figures 1 and 3).  Applying this model to new data would not be wise as 

subjects with heart rates between 155 - 165 beats/min with relatively moderate chest skin 

temperatures (33 - 35 ºC) would generate artificial false positives.  Additionally, the model would 

also incorrectly classify workers with very high skin temperatures (> 38.0 ºC) and heart rates < 

165 BPM as “not at risk”.  In order to improve the model and generate a decision boundary more 

like our idealized pattern we pooled our data from both groups and trained a new logistic 

regression model. 

The new suggested model performs similarly against the whole data set as compared to 

the best performance of the original model trained on the Group 1 data (9.9% compared to 7.4%). 

However, we suggest that the new model has the advantage of a decision boundary that closely 

resembles our idealized pattern (see figure 1), allowing it to be applied more generally. In 

addition, the new model performs best when the classification threshold is set to 40% rather than 

the 2% needed by the original model.  

Compared to the baseline models the combined data logistic regression model performs 

better than both.  The least squares regression has a total of 11 (13.6%) classification errors 

including 4 false negatives, and the “Red Zone” model has a total of 17 errors (21.0%) compared 

to the logistic regression model’s 8 errors (9.9%). Additionally the logistic regression model 

identifies almost all of the “at risk” population with only 1 false negative classification and 

provides a classification boundary that can be adjusted based upon the level of risk or confidence.  

This ability is not available with either the least-squares regression or the “Red Zone” techniques.  

Importantly, the logistic regression model also meets all three of our idealized decision boundary 

properties.  

  

Limitations 

 

While we understand that the suggested model is more generalizable it was generated 

using the combined data set and thus has had no independent validation. The model was also 

generated from a fit young population, and it is likely that the decision boundary may differ with 



an older subject pool with lower maximal heart rates.  Additionally, the model does not explicitly 

include individual differences, but the differential response of heart rate may provide some 

insight into how larger, less fit subjects may respond to work loads in the heat (Gisolfi and 

Robinson 1969). Since the model can provide false negative errors it should not replace any 

existing heat injury prevention measures but be used as an additional tool.  

 

Conclusion 

 

The data suggest that the logistic regression model generated from the combined data is effective 

at identifying subjects with a PSI ≥ 7.5 with minimal false negative errors, and presents a decision 

boundary that could be used to assess risk of heat injury.  As this model uses two easy-to measure 

parameters it could be simply implemented as an additional tool to ensure the health and welfare 

of workers exposed to thermally stressful environments.  Heat strain warnings could be used by 

medical personnel to monitor “at risk” individuals or allow team members to be managed or 

rotated based upon heat strain risk.  This new model allows medical and command personnel to 

change the classification threshold to be more conservative or liberal depending upon mission 

demands.  The model has the advantage of using PSI as a basis for determining heat strain 

making it applicable in encapsulated and un-encapsulated situations. In addition it also has the 

advantage of using two parameters that are easily measured with today’s ambulatory 

physiological monitoring technologies.  Thus, we conclude that the model has the potential to be 

used as a real time non-invasive indicator of heat stress for first responders or military personnel 

in a comprehensive heat casualty prevention system. 

 

Disclaimer 

 

The opinions or assertions contained herein are the private views of the authors and are not to be 

construed as official or as reflecting the views of the Army or the Department of Defense.  The 

investigators have adhered to the policies for protection of human subjects as prescribed in Army 

Regulation 70-25, and the research was conducted in adherence with the provisions of 32 CFR 

Part 219.  Citations of commercial organizations and trade names in this report do not constitute 

an official Department of the Army endorsement or approval of the products or services of these 

organizations. 
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Addendum: Logistic Regression Model Example 

 

Equation 6, given below, is used to calculate the probability that an individual is in the “at risk” 

group versus the “not at risk” group.  
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Where y = 1 is class “at risk”. 

 

The logistic regression model is captured in the weighting coefficients (w) shown in table 5. 
 

 

 

Table 5. Model weighting coefficients, and mapped input data 

Model Coefficients 

 

 

 w 

Input Parameters 

Mapped 

Into A Polynomial 

X 

Example Input 

Parameters 

 

x 

-0.0296505547 1 1 

-1.4168313955 x1 (Heart Rate) 176 

-0.4039704255 x2 (Skin Temp.) 37.94 

-0.0746402042 x1
2 30976 

-1.6203228042 x2
2 1439.4436 

0.0000356471 x1
3 5451776 

0.0400047846 x2
3 54612.4902 

0.7706539390 x1x2 6677.44 

0.0015188307 x1
2x2 1175229.44 

-0.0173642989 x1x2
2 253342.0736 

 

 

w
T
x = (-0. 0296505547* 1) + (-1. 4168313955* 176) + (-0. 4039704255* 37.94) + 

(-0. 0746402042* 30976) + (-1. 6203228042* 1439.4436) + (0. 0000356471* 5451776) + 

(0. 0400047846* 54612.4902) + (0. 7706539390* 6677.44) +  

(0. 0015188307* 1175229.44) + (-0. 0173642989* 253342.0736) 

 

w
T
x = 1.8276 

 

Substituting in equation 69: 

 

)8276.1exp(1

1
)|1(


 xyp  

 

 )|1( xyp 0.8615 


