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Abstract. This paper addresses the problem of probabilistically model-
ing 3D human motion for synthesis and tracking. Given the high dimen-
sional nature of human motion, learning an explicit probabilistic model
from available training data is currently impractical. Instead we exploit
methods from texture synthesis that treat images as representing an im-

plicit empirical distribution. These methods replace the problem of rep-
resenting the probability of a texture pattern with that of searching the
training data for similar instances of that pattern. We extend this idea
to temporal data representing 3D human motion with a large database
of example motions. To make the method useful in practice, we must
address the problem of eÆcient search in a large training set; eÆciency
is particularly important for tracking. Towards that end, we learn a low
dimensional linear model of human motion that is used to structure the
example motion database into a binary tree. An approximate probabilis-
tic tree search method exploits the coeÆcients of this low-dimensional
representation and runs in sub-linear time. This probabilistic tree search
returns a particular sample human motion with probability approximat-
ing the true distribution of human motions in the database. This sam-
pling method is suitable for use with particle �ltering techniques and is
applied to articulated 3D tracking of humans within a Bayesian frame-
work. Successful tracking results are presented, along with examples of
synthesizing human motion using the model.

1 Introduction

Probabilistic models of human motion provide a representation that can be
used both for synthesizing novel animations and for constraining the search
in Bayesian tracking algorithms [37]. While the learning of such models from
training sets of 3D human motions (e.g. joint angles over time) is an active area
of research, the problem is made diÆcult by the dimensionality of the human
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Fig. 1. Implicit probabilistic model of human motion (see text).

body, the variability in human motion, correlations among joint angles, and the
correlations in motion over time. While recent work has seen some success at
learning probabilistic models in small training sets or in supervised situations
where the activities are known and clearly delimited, the general problem re-
mains unsolved.

Rather than attempt to learn a general probabilistic model in the high di-
mensional space of human motions we exploit recent work on texture synthesis
that treats an image as an implicit probability distribution. As with human mo-
tion, there has been some limited success at learning probabilistic models of
the spatial statistics of images that allows texture synthesis [30, 32, 44]. Recent
synthesis methods, however, replace the problem of learning with that of search
[7{9, 14, 16, 40]. One incrementally constructs new textured regions by searching
in the training images for example textures that have a similar neighborhood
structure. The observation is that the important high order statistics are im-
plicitly represented in the data and it is easier to match regions with similar
statistics than it is to model them.

Here we extend these approaches to the problem of human motion modeling.
The key idea with our motion model is to replace the problem of probabilistic
learning with eÆcient probabilistic search. The idea is summarized in Figure 1.
Given a large set of example human motions, over a time window of length d, we
�rst construct a low dimensional model of the motion, by taking the time series
of joint angles of length d and reducing the dimensionality using principal com-
ponent analysis (PCA). Each length d subsequence in the set is then projected
onto the resulting low-dimensional representation to give a vector of coeÆcients
at each time instant. The database is then structured into a binary tree using
these coeÆcients with the top node in the tree corresponding to the coeÆcient
that captures the dimension of largest variance in the database. Lower levels in
the tree capture the �ner motion structure. Each of the leaf nodes contains an
index into the motion database. This index gives the location of a time series
corresponding to the body pose parameters (3D position and orientation of the
body and the relative angles of all the joints).
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Given a synthesized or observed motion from time t � d to t, the goal is to
predict (with the correct probability) the pose of the body at time t + 1. The
synthesized or observed motion history is projected onto the subspace learned
from the database examples. The coeÆcients obtained are then used to index
into the database in a probabilistic manner, which approximates sampling from
the distribution p(database example j synthesized motion). Once a example from
the database is found, the pose at the next time instant in the database is taken
to be the predicted motion at time t+1. The advantage of the tree representation
is that a sample can be drawn in sub-linear time. This is particularly important
for synthesis or tracking methods that exploit stochastic sampling such as the
Condensation algorithm [13, 18].

Below we relate this approach to recent work on texture synthesis and human
motion modeling. After brie
y presenting the Bayesian tracking framework in
which the model is employed, we describe the database and the probabilistic
tree search algorithm. We illustrate the implicit probabilistic model by using
it to synthesize realistic motion sequences and by using it to provide a prior
probability distribution over human motions for tracking. While our focus here
is on developing a rigorous probabilistic model for Bayesian tracking, we expect
the method to be useful for computer graphics applications and we will suggest
extensions to make it more practical for human motion synthesis.

2 Related Work

There have been many approaches for modeling human motion. For narrow
classes of motion such as walking, speci�c analytic functions of the joint angles
have been proposed [17, 34]. For more general human motion, dynamical systems
have been developed for tracking [41, 29] or animation (c.f. [5]). These systems
can be computationally expensive and they may lack a clear probabilistic inter-
pretation.

Instead of explicitly modeling the physics of the human body, one can learn
statistical properties of human motion from 3D motion capture data. This ap-
proach has been used both for synthesis and tracking.1 The learned statistical
properties may be captured by wavelets [33], PCA [22, 37, 42, 43], polynomial
basis functions of motion trajectories [12], or Hidden Markov Models (HMM)
[3, 4, 26]. Full probabilistic models, however, remain diÆcult to learn given the
dimensionality of the models and the limited availability of training data.

In contrast to traditional statistical learning methods, we make the most of
available 3D motion capture data by keeping all of it. The challenge for proba-
bilistic tracking is then to search it eÆciently and to do so in a way that captures
the underlying, implicit, probabilistic structure.

1 It is worth noting that the goals of synthesis and tracking are somewhat di�erent.
In synthesis, a good deal of e�ort is expended to make sure that transitions are
\smooth", visually pleasing, and physically meaningful. For tracking, what we need
is a representative set of plausible motions. Image data will tell us which of these
are reasonable.
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In formulating this implicit motion model, we exploit recent work in texture
synthesis. This work can be roughly viewed on a continuum from approaches
that attempt to learn statistical models of texture [15, 30, 32, 44] to those that
essentially treat an input texture as an implicit probabilistic model and use
search to �nd matches between similar textures [7{9, 14, 16, 40].

The non-parametric texture models most similar to the approach here gen-
erate new textures from an example texture in roughly the following way. Given
a randomly selected starting block of texture in the image, propagate out from
it generating new texture blocks. For each new block in the image, examine any
neighboring blocks that have already been generated and search the example
image (or images) for similar textures. Find the k best such matches and then
randomly choose the corresponding new texture patch from among them. The
methods [8, 9, 14, 16, 40] all vary in how the blocks are represented, how similarity
is determined, and how the search is performed.

The approach described here is a natural extension of this texture synthesis
idea to sequences of joint angles. Previous extensions to time have focused on
synthesis and prove unsuitable for Bayesian tracking [1, 35, 40]. For cyclic artic-
ulated motion, Pullen and Bregler [33] use a frequency decomposition of joint
angles with a learned, non-parametric, kernel density estimate of the conditional
statistics across frequency bands [7, 15]. Sampling from this model produces syn-
thetic repetitive motions with natural variation. More closely related to the work
described here is the work on video textures [35] which uses a pixel-based match
metric to construct a matrix of probabilities that captures the similarities be-
tween frames in a video sequence and that can be used to transition between
frames to construct an in�nitely looping video sequence with apparently nat-
ural variation. In contrast to our approach, the method uses relatively short
sequences of a single type of motion and, hence, all possible transitions can be
pre-computed (and even optimized for display). Molina and Hilton [26] use a
similar approach for modeling human motion. Since this type of motion is more
diverse and has structure over longer time intervals, it is not possible to learn
transition probabilities between all possible poses. Instead, a large set of ex-
ample poses are grouped using vector quantization, and transition probabilities
between the di�erent groups are learned using an HMM formulation. A pose in
the group found at each time step is selected based on constraints of smoothness
over time. Our approach di�ers in that we do not learn transition probabilities
between states. Instead, at each time step of the synthesis, we search among a
large set of previously observed motions to �nd a plausible motion that �ts with
the synthesized motion history. We have thus replaced the problem of learning
with that of searching a large database.

The most recent motion texture models for image sequences assume station-
ary statistics and use simple autoregressive models to capture temporal image
change [10, 39]. It is not clear whether these methods will scale to the problem
of representing general human motion where the assumption of stationarity is
violated.
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For general motions an example-based model such as ours will only be prac-
tical if eÆcient search methods can be employed. Moreover, if it is to be used
for Bayesian tracking, it must have a sound probabilistic interpretation. There
are two issues to be addressed: de�ning a match metric and a search procedure
[21, 40]. Exhaustive search in a large dataset is prohibitive and an algorithm
with sub-linear time complexity is required. Thus, the metric must be de�ned
so as to allow a hierarchical search in the dataset. Matching can be be per-
formed using wavelet coeÆcients [1, 21] and various pyramid representations [7,
15, 40]. Here we use a database-speci�c basis set learned using PCA. This pro-
vides an approximate representation of the data and has the property that the
basis functions provide a decomposition of the data ordered by the variance ac-
counted for. Various search approaches have been proposed and include kd-trees
[2, 14], approximate nearest neighbor search (ANN) with PCA coeÆcients [16,
24, 27], dynamic space partitioning [28] and tree-structured vector quantization
[16, 40]. Our approach extends these ideas to provide a probabilistic tree search
using PCA coeÆcients.

It is worth noting that Chenney and Forsyth [6] have shown that samples
such as those generated by our probabilistic tree search can be used to generate
motions satisfying various external constraints.

3 Probabilistic Tracking Framework

The motion model described in this paper is employed in a probabilistic tracking
framework. Given a model of a human, parameterized at time t � 1 by the m
parameters2 �t�1 = [�1;t�1; : : : ; �m;t�1]

T , the tracking of the model parameters
over time can be formulated using Bayes' rule as

p(�t j It) = � p(It j �t)

Z
p(�t j �t�1) p(�t�1 j It�1) d�t�1 (1)

where It is the image at time t, It the image sequence up to t, and � a normal-
izing constant independent of �t. At each time step, the posterior distribution
p(�t j It) is estimated. This distribution is represented by a set of samples or
particles, which are propagated in time using a particle �lter [13, 18]. Each par-
ticle i represents a certain pose �i

t of the human model, i.e. a certain location
in the parameter space.

The distribution p(It j �t) is the likelihood of observing the image It, con-
ditioned on model con�guration �t. In the particle representation, each model
con�guration �i

t is projected into the image It and assigned a likelihood accord-
ing to an image-model similarity measure. For details on the likelihood model
and the tracking framework, the reader is referred to [36, 37].

2 The model is a 3D articulated assembly of truncated cones, with 50 parameters
comprising the position and velocity of the torso, the joint angles between the cones
(limbs), and the angular velocities [36]. However, the framework applies to any pa-
rameterized model.
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The motion model presented here, is used to formulate the temporal prior
p(�t j �t�1). This conditional distribution is used to propagate the particles in
time so that the correct part of the parameter space is covered at each time
instant. Due to the particle representation, it is suÆcient to design a motion
model that allows drawing samples �s

t from the distribution p(�t j �t�1). Details
are described in the following section.

4 Implicit Probabilistic Motion Model

The motion database consists of multiple sequences of body pose parameters
recorded with a 3D motion capture system; sequences include two male and two
female actors walking, running, dancing, skipping and lifting.

Let  i = [ 1;i; : : : ;  m;i]
T be a recorded vector of m pose parameters of

the human model, stored at index location i in the database. More speci�-
cally, the pose parameters are the global position and orientation of the model,
as well as joint angles, and the velocities of all these parameters. Let 	i =
[ T

i ; : : : ; 
T
i�d]

T be the dm-dimensional vector containing the sequence of the d
vectors of parameters up to and including the angles at location i. Similarly, let
�t = [�1;t; : : : ; �m;t]

T represent the m pose parameters in a synthesized (or in

a tracking framework, estimated) pose at time t, and let �t = [�T
t ; : : : ;�

T
t�d]

T

be the synthesized (or estimated) sequence between time t � d and t. In all
experiments here we take d = 10 [22] which corresponds to 1=3 sec.

In the standard formulation of the probabilistic motion model, the temporal
prior p(�t j �t�1) satis�es a �rst-order Markov assumption. Here, instead of
drawing samples �s

t from the the Markov prior, we augment the state space to
store the history, �t�1, over the previous d time instants and draw samples from
a distribution p(�t j �t�1) 3. In the example based formulation, to draw samples
�s
t from p(�t j �t�1) we rewrite it as

p(�t j �t�1) = p(�t j 	i�1) p(	i�1 j �t�1);

where

p(�t j 	i�1) =
�
1 if �t =  i;
0 otherwise.

Thus, sampling from the prior p(�t j �t�1) corresponds to drawing samples 	s
i�1

from p(	i�1 j �t�1), and selecting �s
t =  

s
i , where  

s
i is the pose directly follow-

ing the stored motion 	s
i�1. The key idea is that sampling from p(	i�1 j �t�1)

is approximated by an eÆcient probabilistic search of the database of motions
as described below.

First, the variance of each pose parameter in the database is computed and
stored in an m � m diagonal covariance matrix � . Let �d be the dm � dm
covariance matrix created by storing d copies of � along the diagonal.

3 The violation of the Markov assumption in (1) can be dealt with by treating
p(�

t
j �t�1) as a proposal distribution and appropriately re-weighting samples in

our particle �ltering framework [19].
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Fig. 2. Indexing into the database (see text).

We de�ne a generative model that states that the stored human motion data
looks like the synthesized data plus Gaussian noise

	i = �t + �(�d) (2)

where �(�d) is an dm-dimensional vector of Gaussian noise. Then the probability
that any length d segment, 	i, in the database matches a synthesized sequence
�t is given by

p(	i j �t) = � e�
1

2
(	i��t)

T�
�1

d
(	i��t) (3)

where � = (2�)�
dm
2 (det(�d))

�
1

2 . For simplicity, we assume a diagonal covariance
matrix.

As illustrated in Figure 2a a naive approach to synthesis would compute
p(	i j �t) for every subsequence 	i in the database. Then, i = argmaxi p(	i j �t)
would be chosen and the index i + 1 would provide the new pose parameters,
 i+1. However, this search strategy would have a time complexity of O(n) where
n is the number of entries into the database, and would not scale to the large
databases needed for tracking of human motion in general. A search strategy per-
forming in sub-linear time has to be developed, which means that the database
has to be structured to avoid comparison with all database elements.

This search exploits a low-dimensional model of the data. Let �	 = (
Pn

i=1 	i)=n
be a length dm vector representing the mean of all subsequences in the database
of motions. Let Â = [	̂1; � � � ; 	̂n] be the dm�n matrix of all subsequences where
the mean motion has been subtracted; that is, 	̂i = 	i � �	 .

Performing singular value decomposition (SVD), we write Â as Â = U�V T

where the dm� n matrix U contains the principal components of Â and � is a
diagonal matrix in which the diagonal entries represent the standard deviation
�l accounted for by each of the principal components l = 1; : : : ; n.
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We select the �rst b principal components where b = blog2(n)c. Given our
training set of n � 50000 time points, b = 16 and accounts for 89% of the variance
in the training data; that is,

Pb

l=1 �
2
l =
Pn

l=1 �
2
l � 0:89. Let ~U be the b �rst

columns of U , and ~� the matrix with the b �rst singular values �l; l = 1; : : : ; b
along the diagonal. Using this sub-space representation, we can approximate any
subsequence, 	i, in the database as

	i � ~	i = �	 + ~U( ~UT 	̂i) = �	 + ~Uci : (4)

where the vector of coeÆcients ~UT 	̂i = ci provides a \descriptor" for the motion
parameters 	i. Analogously, the generated motion �t can be approximated as

�t � ~�t = �	 + ~Uct (5)

where ct = ~UT �̂t, and �̂t = �t � �	 .

4.1 Tree representation.

There are many ways to represent data such as ours for nearest neighbor search;
e.g. given a probe motion (set of coeÆcients) �nd the k nearest neighbors. Our
goals are somewhat di�erent. For our tracking task, we seek a representation that
can be searched such that each search result corresponds to a sample from some
underlying distribution. These samples will only approximate the true distribu-
tion and the formulation trades o� accuracy for eÆciency. The method proposed
here exploits the structure of our problem and may not be applicable to other
search problems with a di�erent probabilistic structure.

The motion examples in the database are sorted into a binary tree of depth
b according to their coeÆcients ci = [ci;1; :::; ci;b]

T (Figure 2b). The top node of
the tree corresponds to the coeÆcient ci;1. The database is split based on the
sign of ci;1 for each motion example i. Similarly, at the next level, the data is
divided again at each node based on the sign of ci;2. For each node (at depth
l), the left subtree contains motion examples with eigencoeÆcient ci;l < 0, while
the right subtree contains samples with eigencoeÆcient ci;l � 0. The process
continues to the leaves of the tree at the depth b. Each leaf of the tree contains
a list of pointers to the actual motion sequences in the database.

This process does not guarantee a balanced tree and, thus, some parents
will have one child instead of two, and some leaves will contain more than one
sample (see Figure 2b). In practice, the PCA representation results in a tree that
is approximately balanced. Leaf nodes in our experiments contain between zero
and several hundred samples. A balanced tree could be obtained by computing
the median of the coeÆcients at each node and dividing based on that value [2].

4.2 Probabilistic search.

The tree described above can be searched in a probabilistic fashion so that
searching the tree roughly approximates sampling from the distribution p(	i j �t)
(Equation (3)). The approach exploits the generative model above and uses the
coeÆcients ci;l at each level l to randomly select the left or right subtree.
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Observation 1 If ~U are the b axes with largest variation in the space of motion
examples 	i, �	 the center of this space, ci = ~UT (	i� �	) = ~UT 	̂i the projection of
	i into the sub-space spanned by ~U , and ct = ~UT (�t� �	) = ~UT �̂t the projection
of a generated motion �t, then

p(	i j �t) � p(ci j ct):

Explanation: p(	i j �t) in Equation (3) can be written as

p(	i j �t) = � e�
1

2
((	i� �	)�(�t� �	))T��1

d
((	i� �	)�(�t� �	)) =

= � e�
1

2
(	̂i��̂t)

T�
�1

d
(	̂i��̂t) = � e�

1

2
(	̂T

i �
�1

d
	̂i��̂

T
t �

�1

d
�̂t) : (6)

This can be characterized by the Mahalanobis distances [25] of the two motions
from the learned feature space:

d(	i) = 	̂T
i �

�1
d 	̂i ; d(�t) = �̂Tt �

�1
d �̂t :

Using the learned basis ~U and the diagonal matrix of singular values ~� of size
b� b, containing the b �rst diagonal elements from �, the Mahalanobis distance
can be approximated by projecting it onto the subspace spanned by ~U [25]:

d(	i) = 	̂T
i �

�1
d 	̂i � 	̂T

i
~U ~��2 ~UT 	̂i = ( ~UT 	̂i)

T ~��2 ~UT 	̂i = cTi
~��2ci :

Similarly, d(�t) � cTt
~��2ct. Inserting these approximations into (6) gives

p(	i j �t) � p(ci j ct) = � e�
1

2
(cTi

~��2ci�c
T
t
~��2ct) = � e�

1

2
(ci�ct)

T ~��2(ci�ct): 2

Thus, the samples in the database can be compared to a generated motion
using only the eigencoeÆcients c. The error in the approximation can be esti-
mated from the residual eigenvalues �l; l = b+1; : : : ; dm, i.e. the eigenvalues of
the dimensions in U that are not included in ~U [25].

Search Algorithm. Given a \probe" motion, �t, project it onto the basis set
to compute the coeÆcients ct. Starting at the top of the tree with coeÆcient ct;1
and proceeding down the tree for each level l, decide which branch to chose (left
or right) based the probabilities

pright subtree = p(ci;l � 0 j ct;l) = 1p
2���l

Z ct;l

z=�1

e
�

z2

2��2
l dz ; (7)

pleft subtree = 1� pright subtree ; (8)

where � is a \temperature" parameter described below.
Assuming the Gaussian model from Observation 1, a branch at level l is

selected with the probability that the coeÆcient value ct;l falls on that side of
the tree. Since this choice is probabilistic, \sampling" from the tree many times
will result in di�erent paths through the tree to the leaf nodes. Note that for
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Fig. 3. Sampling from the database. The temperature parameter � a�ects the random-
ness in the sampling. In each �gure, 10 pose candidates �

t+1 were sampled from the
database using a generated motion �t (a) Very low temperature. (b) Low temperature.
(c) Neutral temperature. (d) High temperature. (e) Samples from an example of arm
tracking (see also Section 6).

simplicity, �l is derived from the entire data set rather than being conditioned
on the choices above.

When a leaf is reached using this probabilistic search, one of the examples in
the leaf, 	s

i , is selected. This can be done by computing p(ci j ct) for each i in
the leaf and then using a Monte Carlo sampling technique to chose a particular i.
As suggested by Observation 1, this approximates sampling from the leaf using
p(	i j �t) (Equation (3)). Alternatively, one can sample uniformly from the leaf
node; this works well in practice and is more eÆcient.

The new state, sampled from the example database, is de�ned as �s
t+1 =

 s
i+1 + � where  s

i+1 is the pose directly following 	s
i in time, and � is a small

Gaussian noise term with empirically determined variance. This noise is added
in both synthesis and tracking to generate samples that di�er slightly from the
training data. �s

t+1 is concatenated to the d � 1 most recent entries in �st to
create �st+1 which is the motion history of particle s at time t+ 1.

The temperature parameter � controls the amount of randomness in the
probabilistic tree search. Figure 3 illustrates the e�ect of � with samples drawn
from the database using Equation (7). A generating motion example �t was �rst
selected from the database. Then, a probabilistic tree search was performed 10
times. For each of the 10 found database examples 	i, the pose  i+1 directly
following the motion example was selected and plotted. Thus, the variance within
the 10 found poses re
ects the accuracy with which the examples were found. A
low temperature (e.g. 3a) results in samples that are similar to �t. Alternatively,
a very high temperature (e.g. 3d) will lead to an almost uniform sampling of the
search tree, which means that the distribution over possible body poses will
roughly approximate the prior probability distribution, p(	i), over all motions.
In a tracking application, the temperature parameter controls how strongly the
motion prior guides the tracking. Furthermore, a lower temperature is typically
needed if the model will be used for synthesis, since it is not guided by image
measurements.

The total search cost for a single sample involves a logarithmic time tree
search followed by a search that is linear in the number of elements in the leaf
node. The relationship between the size of the leaf nodes, the depth of the tree,
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Fig. 4. Distribution over coeÆcients c3; c7; c11; c15 obtained by probabilistic tree search
(see text). Solid: empirical distribution from sampling. Dashed: Gaussian model.

and the size of the database requires further study. The overall cost, however
is signi�cantly better than linear in the size of the database. This eÆciency is
particularly important if the samples are to be used for particle �ltering where
predicting each particle involves sampling the tree with a di�erent probe.

Observation 2 The \true" distribution p(	i j �t) or p(ci j ct) is unknown.
The probabilistic tree search provides an approximate model and samples from
the tree search are more \realistic" than those from the Gaussian model in (3).

Intuition: In the general case, there is no guarantee that the probabilistic tree
search will approximate sampling from p(	ij�t). For example, if the coeÆcients
cl for each basis direction l were actually normally distributed and statistically
independent, then the tree search could provide a poor approximation to sam-
pling the true distribution.

Given the nature of human motion however, PCA does not result in bases
that make the coeÆcients statistically independent and, hence, these dependen-
cies are represented in the branching structure of the tree. Intuitively, similar
motions have similar sets of coeÆcients and these motions end up being grouped
in the leaf nodes.

This can be seen in Figure 4 which plots the empirical distribution over a few
coeÆcients using 1000 samples, 	i, drawn for a single probe, �t (with � = 1). For
comparison, the �gure also plots the distribution over each coeÆcient assuming
independent Gaussian noise. This example illustrates the general agreement
between the independent Gaussian model and samples drawn with the tree. By
adopting our model however, we can also capture the non-Gaussian nature of
the human motion data present in the database.

Further work needs to be done to formalize the tree search procedure, under-
stand the nature of the approximation, and characterize the problems to which
it is applicable.

5 Visualizing the Model (Synthesis)

Although our primary application for this motion model is as a prior to guide
probabilistic tracking, the probabilistic model can also be used for synthesis. The
goal of the visualization is to generate a new synthetic motion incrementally, by
indexing into the database at each time step, using the generated motion at the
previous d time steps.
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Fig. 5. Generated running motion, 2 s at 30 Hz. The pose every frame is shown in
gray. Trajectories for hands and wrists are plotted in black.

Note that the synthesis does not have a goal function. The type of motion can
be controlled up to a certain point by the choice of start motion. However, due
to the probabilistic tree search there is a certain randomness in the synthesis.

In Figure 5, a 2 second long running motion is visualized.4 Note that the
database contains several types of activities, not just running. The regularity
with which the feet are planted (Figure 5) indicates that the periodicity is well
preserved in the synthesized running sequence, even though the phase of the
running cycle is not explicitly modeled.

To generate more varied and non-cyclic motion, a larger database of examples
is needed to �nd smooth transitions between many di�erent types of motion
(� can be used to control the probability of changing motions). Finally, it is
important to note that the motion model has no notion of gravity, friction, and
position of the feet relative to the 
oor. To be able to generate plausible-looking
motions for longer periods, constraints need to be introduced on the position
and rotation of the human model so that it ful�lls basic kinematic and dynamic
requirements [6, 11]. Furthermore, in general it is desired to be able to edit the
generated motion iteratively, and to introduce goals in the motion generation
[26]. Therefore, the motion model is, in its present state, more suited for tracking
than for motion synthesis. However, the example based scheme introduces �ne
realistic details that are often lost in a learned motion model.

6 Tracking Results

The example-based motion model is now evaluated in terms of its performance
as a temporal prior for monocular 3D tracking, as described in Section 3. We
compared it to a very general temporal model of constant (angular) velocity in
the parameters, where all parameters are considered independent [36]. The gen-
erality of the constant velocity model allows tracking of any type of motion, but
introduces problems in high-dimensional spaces. Using particle �ltering meth-
ods as we do here is problematic given that the number of required particles is

4 A movie of the generated motion in Figure 5, along with other synthesis examples,
can be found at http://www.nada.kth.se/~hedvig/mpegs/movies.html.
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(a) Example-based motion model

(b) Constant velocity model

Fig. 6. Tracking an arm using 300 samples. Frames 5, 10, 15, 20, 25 and 30, with
the expected value of the posterior distribution overlaid, are shown. (a) The example
based model enables tracking with a small number of samples. (b) The same number
of samples is insuÆcient using the constant velocity model.

N / 1=�d where �� 1 depends on the generality of the motion model, and d is
the number of parameters [23]. The use of a strong prior model such as the one
developed here is one way of coping with the dimensionality problem. See [38]
for recent work on human motion tracking that places particles more e�ectively
thus allowing more general motion priors.

As an initial illustration, a version of the database is built using only the
joint angles and angular velocities of the right arm. The model has 8 DOF; 3
Euler angles in the shoulder, one angle in the elbow, and their angular velocities.
The sequence used for tracking is stabilized so that the shoulder has the same
position in all images and the con�guration of the arm at frame 0 is manually
set. To initialize the example-based temporal model, a linear search is performed
in the database, and N arm motion samples, whose last time step correspond
well with the manually set joint angles, are chosen using Monte Carlo sampling.

In Figure 6a, the arm is tracked with the example-based motion model as
the temporal prior. N = 300 samples are used for particle �ltering. In frame 15,
the elbow of the model arm is more bent than the real elbow in the sequence.
The reason for this is that the real arm position is not present in the database
{ none of the example subjects moved their arm to this position. This may be
an artifact of the marker placement during motion capture. However, in frame
20, the arm is again correctly estimated. A typical set of particles is illustrated
in Figure 3e. The variation in the set of sampled poses can be controlled by the
temperature parameter �, as discussed in Section 4.

For comparison, the arm is also tracked using the constant velocity prior.
The number of particles, N (and the likelihood model) are the same as in the
previous tracking case, i.e. much lower than the number of particles used in
similar experiments [36]. Since the constant velocity model is not able to predict
the arm motion as well as the example-based model, the arm model loses track
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(a) Example-based motion model

(b) Constant velocity model

Fig. 7. Tracking a walking human using 300 samples. Frames 5, 10, 15, 20, 25 and
30, with the expected value of the posterior distribution overlaid, are shown. (a) Even
though the dimensionality is higher than in Figure 6 the example based model enables
tracking with the same number of samples. (b) This number of samples is, again,
insuÆcient using the constant velocity model.

after a few frames, due to the small number of particles. However, if the number
of particles is raised to N = 3000, the constant velocity prior is suÆcient.

If the number of parameters d is larger, the constant velocity model is too
general (i.e. � is too low). Given that N = 3000 is suÆcient to track an 8-
dimensional arm model using this motion model, the relation N / 1=�d gives
an estimate of the number of particles needed to track a 50-dimensional model
such as human. Using this estimate, N � 1016.

The result of tracking a full 3D body using the example-based model is shown
in Figure 7a. N = 300 particles were used for tracking. Since the database of
motions is quite small (n � 50000), and the examples are taken from the motion
of professional dancers (a quite biased selection in terms of motion pattern),
the deviations in pose between the model and the human in the sequence is at
times large. Apart from the pose deviations, the example-based motion model
enables successful tracking of the person in this 30 frame sequence. This is in
contrast to the smooth motion model for which N = 300 particles is far from
suÆcient (Figure 7b). Note that the example-based motion model is more ver-
satile than learned models of walking [17, 34, 37] in that it can be used for all
kinds of motion (present in the database), as well as transitions between activi-
ties. Furthermore, some generalization to novel motions is made possible by the
addition of Gaussian noise to the samples.

7 Conclusions

Learning a concise probabilistic model of 3D human motion is a challenging task
(though recent work [4] suggests that it is possible). Here we make the simple ob-
servation that a database of motion capture data can, itself, serve as an implicit
probabilistic model in a way that is directly analogous to recent work on texture



European Conf. on Computer Vision, 2002. 15

synthesis. Unlike work on texture synthesis, our goal is human tracking and,
hence, we must model general human motion rather than narrow \textural" mo-
tions. This results in a large database of heterogeneous motions. Consequently,
practical algorithms for either synthesis or tracking necessitate an eÆcient algo-
rithm for searching the database. We have proposed a method for structuring the
database as a binary tree based on the coeÆcients of a low-dimensional approx-
imation to the data. Furthermore, we described a probabilistic search method
that uses the binary tree to stochastically generate sample motions from the
database that match a synthesized input motion. The algorithm has sub-linear
complexity and is suitable for synthesizing novel motion sequences and for gen-
erating predictions in a Bayesian tracking framework. Further work needs to be
done however to understand how well this heuristic search method approximates
the true distribution, how it will scale to larger databases, and whether it can
be applied to other problems with di�erent underlying densities.

One advantage of this method over traditional learning methods is that it uses
all the data and hence captures subtle variations that may be lost using other
methods. It is also extremely simple to implement. The disadvantage however
is that the representation does not readily generalize to new motions. To allow
more variation in the generated motion, and to lower the number of needed
example motion sequences, the method described here could be used to learn
separate motion models for di�erent parts of the body (as was illustrated with
the arm tracking example in Section 6 and Figure 6). The natural tree structure
of the body can be exploited in sampling the motions of the joints. More research
is needed to model the correlations between these limbs and to perform Bayesian
inference using such a model.

While our tracking results are preliminary, they suggest that an implicit
motion model may prove e�ective for tracking high dimensional human motion.
To reduce the problems with extrapolation from the database, the example-
based motion priors could be combined with more general priors using mixture
models. In a particle framework, this would correspond to propagating a certain
portion of the particles with a general temporal prior, and another portion with
the example-based temporal prior.

The model also shows promise as a method for generating varied synthesized
motion with natural detail. However, to exploit the example-based method for
synthesis, further work must be done. The most obvious extension is to per-
form some simple blending or smoothing of the synthesized poses [35, 31], and
to introduce a predictive mechanism to avoid \dead ends" [35]. The issue of
retargetting the synthesized motions to new actors remains open [11, 20, 31] as
does the application of these techniques to facial motions or other time series
data. Finally, realistic synthesis will require the addition of constraints such as
contact between feet and the ground plane and, more generally, controllabil-
ity/editability for animation [11]. The formulation of such constraints within
our sampling framework seems plausible (cf. [6]) but remains an area for future
research.
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