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Abstract

Information retrieval (IR) is the task of identifying information items (documents)

that are relevant to a user query from a collection. The most popular IR research

technique, the vector space model (VSM), is a word-matching approach: it uses

the words in common between the query and the document as a basic way of

determining their similarity. Because the same concept can be expressed in the

query and document using very di�erent vocabularies, synonymy can cause a

document to be judged as irrelevant by VSM.

Query-expansion methods deal with this problem by automatically supplying

the query with additional words that are related to those already in it. Latent

semantic indexing (LSI) is a statistical method that derives term associations

through a reduced dimensional singular value decomposition (SVD) of a matrix

formed from the collection. LSI has equaled or outperformed VSM on many

relatively small retrieval collections. But, with the growing size of modern infor-

mation repositories, LSI has failed to demonstrate its advantage over traditional

word-matching methods on some of these large corpora.

In this work, I provide evidence that LSI is not reaching its potential for

large collections because existing SVD implementations are not able to compute a

su�ciently large number of dimensions. I establish a uni�ed framework of vector-

based information retrieval called dimension equalization. Through this, I present

approximate dimension equalization (ADE), a method that \extrapolates" the

result of a high-dimensional SVD based on a relatively small number of computed

dimensions. Experiments indicate that ADE improves retrieval performance over

LSI and has great utility in cross-language applications.

I also investigate sampling approaches to reducing LSI computation, which
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use only a subset of the document collection to build LSI term-associations. My

focus is on local LSI, a variation of the ever-popular local feedback approaches in

the IR community. This method computes an SVD on a subset of documents that

are related to the query. Experiments show that local LSI outperforms not only

the global sampling methods but also the baseline VSM or LSI without sampling.

I extend the existing local LSI approach to cross-language retrieval and present

its high-quality results.
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Chapter 1

Introduction

With the advent of the World Wide Web, there is virtually an unlimited amount

of information that one can access on-line. What follows is the growing need for

automated, large-scale information retrieval (IR) systems. Now, the task that

used to fall solely on librarians has become the research and work of computer

scientists. Our goal in this �eld is to develop methods and techniques for e�ective

retrieval of information from large-scale text repositories.

1.1 Information Retrieval

Information retrieval (IR) is generally de�ned as the task of locating useful infor-

mation items that are relevant to a user query from a free text corpus. The text

collection can contain any type of mostly unstructured text, such as academic

papers, bibliographic records, newspaper articles, or paragraphs in a manual.

We usually call each information item, or the minimal retrievable element from

a collection, a document, and hence \document retrieval" is often used in place

of \information retrieval."

Research in information retrieval is concerned with developing models to rep-

resent contents of text documents and algorithms to retrieve the relevant items to

a user's request for information. Even with the tremendous advance of comput-

ing technology and arti�cial intelligence in recent years, it is still impossible for

a computer system to truly understand the ideas expressed in documents. Thus,

most of the current retrieval systems employ some type of text or concept match-
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ing, with degree of relevance being determined by the quantity and/or quality of

the matches.

There are two crucial aspects that people look for in their search engines:

e�ectiveness and e�ciency. E�ectiveness refers to how well a system meets the

users' information needs: whether they �nd what they are looking for in the �rst

document(s) the systems returns. On the other hand, e�ciency is about speed|

how long a user has to wait for a return from the retrieval system may be as

important a factor as e�ectiveness in determining the user's satisfaction with the

systems. These two qualities often are at odds against each other: by doing some

extra computing work (meaning the user waits longer), more relevant documents

can be placed at the top of the return list. This dissertation is mostly concerned

with the e�ectiveness problem, although the e�ciency issue can not be ignored.

In recent years, research in information retrieval has been expanded to include

tasks such as information �ltering (sorting through large volumes of dynamically

generated information and presenting to the user those that are likely to satisfy

his or her information requirement) and text categorization (assigning keywords

or categories to a text for easy organization and retrieval) [67]. In a sense, in-

formation retrieval is a special case of text categorization|we try to classify a

collection of documents into two categories: the ones that are relevant to a user

query, and the others that are not. As a result, phrases such as \document re-

trieval" and \text retrieval" have been used in place of \information retrieval"

to distinguish them from the more general meaning of IR. In this dissertation,

however, I still use \information retrieval" by its original de�nition: �nding doc-

uments relevant to a user query.

When both the corpus and user queries are in a single language, this is known

as monolingual information retrieval (MLIR). The counterpart of MLIR is CLIR,
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or cross-language information retrieval, where the queries are stated in one lan-

guage and the text records are in another. There is no strict de�nition of multilin-

gual information retrieval: sometimes it means information retrieval in a language

other than English [54, 101]; but, it often means searching of texts that can be

in any of a set of languages from a document repository, where it is possible that

individual documents are in more than one language [62].

Cross-language information retrieval is an important problem in our increas-

ingly global information economy. An automated CLIR system will bene�t more

than just people who speak two or more languages. People who read a second

language may not be con�dent in their ability to express ideas in that language.

They will likely �nd a cross-language text retrieval system particularly useful

when they are looking for documents in that language. A CLIR system can also

be helpful if the user is able to read only a single language. For example, when

only a small portion of the document collection will ever be examined by the

user, performing retrieval before translation (through a CLIR system) can be

signi�cantly more economical than performing translation before retrieval.

1.2 Present Research

One of the classical models of information retrieval is the vector space model

(VSM), developed by Salton and his students at Cornell University in late 1960's

and early 1970's [100, 94]. In this model, any given document is represented by

a vector in a high-dimensional semantic space, with each dimension or direction

of the space representing a particular indexing term in the collection. The prox-

imity between two vectors in that space becomes a measurement of the semantic

closeness of the corresponding two texts. The set of document vectors from a

3



collection naturally forms a document matrix.

A fundamental weakness of VSM is its index-by-term scheme, under which

no two documents will be recognized as relevant to each other unless they share

some words in common. For example, imagine one does a keyword search for

books on \computer graphics." A book titled \digital imaging" will certainly

be missed by a retrieval system that only implements VSM. The problem here is

that, in many cases, there are multiple ways to express a single concept, but VSM

does not take this into account. This weakness of VSM also makes it useless in

the area of cross-language retrieval, as words expressing the same idea are most

often spelled di�erently across languages.

Techniques that address this problem use a form of thesaurus for query ex-

pansion, or adding words related to those in the query to the query, in hope of

�nding additional relevant documents that do not use the words in the query.

The related words can come from an external source such as a standard pub-

lished thesaurus, or can be identi�ed directly from statistical analysis of the text

corpus.

Latent semantic indexing (LSI) [32] is one such type of query-expansion

method. It applies a linear algebra computation method called singular value

decomposition (SVD) [49] on a matrix formed from the corpus of interest. Se-

mantic associations among terms are found through this one-step analysis of their

statistical usage in the collection, and they are implicitly stored in the singular

vectors computed by SVD. A query represented in the latent semantic space can

retrieve a relevant document even if they have no words in common. Given suit-

able training data, LSI can easily be extended for cross-language retrieval because

building term associations across languages are just like creating translations.

Experimentally, LSI has been shown to perform better than both VSM on
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many, but relatively small corpora [39, 32, 36, 70, 28]. It also has achieved

favorable results in cross-language information retrieval [65, 7, 26], where the

conventional VSM cannot be directly applied without using machine translation

techniques on queries or documents [92, 62, 42]. However, in recent experiments

where the collection sizes exceed a hundred thousand, LSI has not performed

well compared to other methods. The reason here is that the quality of term

associations created by LSI depends on the number of singular vectors that can

be computed via SVD, which in turn inversely depends on the size of the text

collection.

In this dissertation, I investigate several techniques to deal with the scalabil-

ity problem of LSI. I begin my study with an examination of the fundamental

connections between LSI and a number of other vector-based IR methods. The

similarity and di�erences among these methods, with observations of their be-

havior when applied to real text corpora, lead to the formulation of the concept

of dimension equalization. Through this, I propose an approximation algorithm

to LSI named approximate dimension equalization and compare its retrieval per-

formance with other vector-based methods on various test collections. Then,

I consider sampling approaches to reducing LSI computation and concentrate

on the query-based local LSI method. I propose the extension of local LSI to

cross-language retrieval and demonstrate its e�ectiveness on several collections.

1.3 Contributions

The main contributions of this research are

� Dimension Equalization: The comparison of various vector-based meth-

ods of information retrieval produces a uni�ed view of these techniques.
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� Approximate Dimension Equalization: Observations on the distribu-

tion of singular values of document matrices inspire me to develop this

approximation algorithm, which mimics the performance of LSI with fewer

computed singular vectors. From a di�erent point of view, it makes cross-

language VSM possible.

� Cross-language Local LSI: The well-known e�ectiveness of local feed-

back is re-applied with LSI on the top documents from an initial retrieval.

A step further still is to employ it to cross-language applications. Di�erent

approaches are used and state of the art results are obtained.

Some other contributions I made during the work of this dissertation include

� The incorporation of current best indexing schemes into the LSI implemen-

tation module.

� The development and implementation of a new cross-language LSI retrieval

formula.

� The implementation and evaluation of the generalized singular value de-

composition approach to cross-language information retrieval.

� The implementation and evaluation of a length-based probabilistic sampling

approach to SVD approximation.

1.4 Organization

The rest of this dissertation is organized as follows:

� Chapter 2 reviews the relevant methods and models of information retrieval,

with a focus on the vector-based approaches.
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� Chapter 3 shows the mathematics behind various vector-based IR methods

including VSM, the generalized vector space model (GVSM), and LSI. I

show how they are related to one another through the idea of dimension

equalization.

� Chapter 4 introduces the approximate dimension equalization method and

shows its retrieval performance on a number of test collections, with com-

parison to VSM, GVSM, and LSI.

� Chapter 5 begins with a discussion of the document sampling approach to

SVD approximation. Then, I introduce the local LSI technique and propose

its extension to cross-language applications. I demonstrate its utility on

several retrieval collections later in the chapter.

� Chapter 6 concludes this work and points toward some future directions.

7



Chapter 2

Literature Review

In this chapter, I review the most popular models and algorithms developed in

the �eld of information retrieval, with the emphasis on vector-based approaches.

Chapter 3 gives an in-depth analysis of several of the vector-based methods that

are pertinent to this dissertation. Before starting, I present brief background on

how the e�ectiveness of an IR system is measured.

2.1 Evaluation of IR Systems

By de�nition, information retrieval is the process of matching some user query

against text items from a collection and returning the most relevant ones to

the user. In practice, a working IR system usually returns documents ranked

according to their computed similarity to the query. To evaluate the e�ectiveness

of an IR system, therefore, speci�c measure have been developed to determine

how well a system ranks relevant documents ahead of non-relevant ones in the

retrieved set. The \true" relevance of documents to queries is usually judged by

domain experts.

Researchers have designed and built standard test collections of documents,

along with user queries and associated relevance judgments. Di�erent informa-

tion retrieval systems can be directly compared on these identical collections.

Typically, relevance assessments are binary (a document can only be relevant or

irrelevant) and assumed to be exhaustive (documents that are not judged are

irrelevant). The most straightforward way of building a test collection to eval-
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uate IR systems is to let human experts determine for each query whether each

document in the collection is relevant to it or not. This process is extremely

time-consuming and is feasible only when the test collection is relatively small

with a few thousand documents at most. Examples of such collections include

the 1,400-document Cran�eld collection with 225 queries (as mentioned in the

overview of the �rst TREC [52]) and the CMU UNICEF multi-lingual (English

and Spanish) collection of 1,121 documents and 30 queries [26, 121].

When the collection size gets large, a complete assessment of the relevance

between every query-document pair becomes prohibitively expensive. An alter-

native way to build a test collection was proposed by Sparck Jones and van

Rijsbergen (as mentioned in the overview of the �rst TREC [52]) in the case

where there are many systems to be compared. Known as the pooling method,

this approach lets human experts judge, for each query, only the top n docu-

ments returned by each retrieval system, thus limiting the number of relevance

judgments that need to be made. The pooling method has been used in the Text

REtrieval Conference to build some very large test collections [52, 53, 56].

Another approach to constructing a large test collection for IR evaluation has

been introduced by Sheridan et al. [105], in which the collection must contain

time-sensitive documents, like news articles. This approach relies on query topics

to be related to unexpected events, and so all documents dated prior to the event

of the query topic were automatically assumed to be irrelevant and discarded

without being judged by human experts. For those documents dated on or after

the event of a given query, the relevance judgments are made up to the last

documents on the fourth day following the event. All documents dated thereafter

are not included in the test collection of that query, which results in that each

query has a di�erent set of documents to be tested on. The advantage of this
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relevant irrelevant
retrieved a b a+ b
unretrieved c d c+ d

a + c b + d a + b+ c+ d

Table 2.1: The relevance-retrieval contingency table: a, b, c, and d represent
frequencies of occurrence of the four conjunctions.

method is further narrowing the number of relevance judgments made by human

experts, while its disadvantage is its obvious limited applicability.

Since an ideal test collection is very hard to come by, the evaluation of systems

has always been an issue in information retrieval research.

The retrieval results of an IR systems on a test collection with a set of test

queries can be compared against the relevance judgments made by human experts.

The most common measures of retrieval e�ectiveness consist of two quantities,

namely recall and precision. Recall is de�ned to be the proportion of relevant

documents retrieved by a system, and precision the proportion of the retrieved

documents that are relevant. These two ratios are better understood by looking

at Table 2.1 [112]. From the table, we see that the recall ratio is de�ned as

a

a+ c
= Pr ( retrieved j relevant ); (2.1)

or an estimate of the conditional probability that a document will be retrieved

given that it is relevant, while the precision ratio is

a

a+ b
= Pr ( relevant j retrieved ); (2.2)

or an estimate of the conditional probability that a document will be relevant

given that it is retrieved.

Typically, the two quantities are in conict with each other: recall score can
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Figure 2.1: The interpolated recall-precision graph: precision at each of the 11
standard recall points are the highest achievable beyond that point.

be enhanced by returning more documents, but it is likely that more irrelevant

documents will be added to the retrieval set, and hence reduce precision score.

The opposite is also true: when precision goes up, the recall ratio tends to go

down. Given the relevance judgment for a query against a set of documents,

the precision scores for an IR system's retrieval runs can be computed at various

levels of recall. The commonly used levels of recall are from 0% to 100% in

increments of 10%, where the precision at a recall level is interpolated : we take

the highest achievable precision score at or beyond this level of recall. We can

then visualize the e�ectiveness of an IR system by plotting precision against recall

at these levels. Figure 2.1 shows a typical precision-recall graph from a retrieval

run by some IR system. Note the downward slope of the plot, which con�rms

the inverse relationship between these two quantities.

Information retrieval researchers have developed evaluation measures that
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combine precision and recall and also take into account document ranking. The

precision numbers at the aforementioned 11 recall levels are averaged to get the

11-point average precision value. If there is more than one query, the precision

at each recall level is �rst averaged over all queries and then averaged over the 11

points. This way, there is a single score that summarizes the overall performance

on a test collection.

In addition to the 11-point average precision, the non-interpolated average

precision is also commonly used as an indicator of retrieval e�ectiveness: we

compute precision at each point of the ranked return list where a relevant docu-

ment is found, and then we take the average over all those precision values. See

Chapter 15 of the book by Manning and Sch�utze [73] for an illuminative exam-

ple of these measures of accuracy in information retrieval. The non-interpolated

average precision was �rst introduced in the annual Text REtrieval Conference

(TREC) (http://trec.nist.gov/) and is often called simply \average precision" by

many IR researchers. TREC participants also use 11 recall-level and 9 document-

level precision averages to report the performance of their systems. The latter

quantities are the averaged precisions (over a set of queries) computed after a spe-

ci�c number (5, 10, 15, 20, 30, 100, 200, 500, and 1000) of documents is retrieved

(see, for example, appendix of the TREC-2 proceedings [57]).

A deeper view of the precision and recall ratios in terms of statistical decision

theory is given by Swets [112, 113]. In those papers, Swets argues that instead

of using precision, we should be using a new measure called \false drop":

b

b+ d
= Pr ( retrieved j irrelevant ); (2.3)

which is an estimate of the conditional probability that an item will be retrieved

given that it is irrelevant. He suggests that recall and precision cover only a
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column and a row of Table 2.1 and do not serve to specify the remainder of it.

But, precision and recall prevailed and became the standard measurements of IR

systems.

2.2 Exact Term Matching Systems

In information retrieval, terms refer to the individual indexable items in a doc-

ument or a query. Usually, a term is just a single token, or unigram, which is a

word in languages like English, or a character in languages like Chinese. A term

may also be the combination of two or more consecutive tokens, or a multi-gram,

in a document. When documents are scanned for n-gram terms, where n � 1,

the previous term overlaps with the current one by n� 1 tokens, unless there is

a punctuation mark at the end of the previous term, in which case the current

term starts at the �rst token after the punctuation mark. For example, if we use

bigrams (two consecutive words) indexing, the line \read my lips, no new taxes"

will consist of the following tokens: \read my," \my lips," \no new," and \new

taxes."

Today, most commercial applications of information retrieval such as those

used by Yahoo! (www.yahoo.com) and eBay (www.ebay.com) are based on exact

pattern matching of terms of queries with terms in text. These applications re-

quire queries that range from simple Boolean expressions using a few \ANDs"

and \ORs" between terms, to complex pattern matching expressions using prox-

imity operators, nested expressions, etc. For example, I often use the query \@1

promo CD single" at eBay's search page to look for auction items that contain

\promo CD," \CD single," or \promo single" in their titles (@1 means to pick

two of the three words speci�ed). To support rapid retrieval of the documents
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that contain any particular query word, a system typically includes an inverted

index that indicates for each word in the collection the list of documents that

contain it [11, 94].

Several indexing practices are commonly used to improve e�ciency and re-

trieval performance in Boolean matching systems as well as the other retrieval sys-

tems discussed later. One of these is phrase and proper name indexing, in which

any sequence of words that possesses a special, unique meaning is identi�ed and

grouped together as a single lexical item for indexing. Sophisticated algorithms

and heuristics have been developed in the �eld of natural language processing to

identify phrases, but a simple model of selecting the most frequent bigrams of

words often works well [73]. In languages such as Chinese and Japanese, there are

no obvious word boundaries. A sentence in one of these languages consists of a

sequence of non-spaced ideographic characters that are meaningful and represent

words, but can also be grouped together into multi-character words with special

meanings. Whereas bigrams or multi-grams are the simplest schemes that peo-

ple have tried for text retrieval in such languages, the topic of indexing Chinese

or Japanese texts has grown into stand-alone research areas in IR. For exam-

ple, in 1997 the Text REtrieval Conference (TREC) initiated Chinese retrieval

as one of its several \tracks"|tasks that focus on particular subproblems of text

retrieval [109].

Another common feature of IR systems is the removal of stop words, which are

grammatical or function words that bear little of the content of the documents

they appear in [73]. For instance, the SMART retrieval system [93] uses a default

list of 571 English words that are to be removed from the documents during

indexing. Examples of these stops words are \after," \enough," \such," and

\what." Stop word lists for other languages such as German and French are not
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as widely available as for English.

Finally, stemming, the procedure of converting di�erent morphological vari-

ants of the same word to a single basic form, is often used in the preprocessing

step of many IR systems. People hope to use stemming to reduce the number

of unique keywords being indexed as well as to match words that have similar

morphological forms and semantics. For example, the words \organize" and \or-

ganization" will have their respective su�xes removed by the stemmer to become

the same word \organ." Lovins and Porter stemmers are the mostly widely used

for English over the years [72, 81], while stemmers for other languages have been

created in recent years to meet the growing interest in multi-lingual information

retrieval. For instance, the PRISE indexing and search engines from the Na-

tional Institutes of Standards and Technology (NIST) include a Spanish stemmer

in addition to Porter's stemmer for English [33]. A problem with the su�x- or

pre�x-removing stemmers is that words of di�erent meanings can be stemmed to

the same token. For example, \secret" and \secretary" would become the same

word \secret."

A basic weakness of Boolean query systems is that they require user expertise

to avoid all-or-nothing results. A user of the system often has to change her

original formulation of the query to obtain a better result, and doing this well

requires experience. More sophisticated retrieval models and methods have been

developed over the years for measuring similarities between a query and a docu-

ment. Some of the more prominent ones include: the vector space model [100] and

related vector-based methods such as latent semantic indexing [32], probabilistic

retrieval models [59, 86, 29, 44], and inference networks [114]. In this study, I

investigate only the vector-based methods of information retrieval coupled with

matrix computation techniques.
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2.3 Term-Weighting Vector Space Model

In the vector space model of information retrieval developed by Salton [100, 94,

99], the index terms are viewed as basic orthogonal dimensions in a vector space,

and each document is represented by a vector in that space. The frequency of

occurrence of a term in a document contributes to the component of the document

along the corresponding orthogonal dimension for the term. The vectors of all

documents in a collection can be collected together to form a term-by-document

matrix, which typically is the end result of automatically indexing an entire

corpus.

The relevance of two text bodies is expected to be directly proportional to the

spatial proximity of their vectors in the vector space, which is usually computed

by a vector inner product. Hence, in VSM, two documents are considered to be

more related if their vector representations match in more dimensions, i.e., they

share more vocabulary. The appeal of VSM lies in this simple yet elegant way of

representing and comparing textual information.

Salton and his students implemented a well-known information retrieval sys-

tem named \SMART" based on the vector space model [93]. SMART has had a

huge impact on IR research for the past thirty years, and many people have used

it as the de facto standard against which they measure their IR research results.

One of the keys to the success of the vector space model is its term weighting

schemes, which refer to the techniques of assigning real-number values to term

components in a document vector [97, 106]. In other words, the value of each

vector component in a VSM document vector represents the weight of the cor-

responding term in that document. In the simplest case, we can use a binary

indicator, assigning a value of 1 to a vector component if the corresponding index
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term appears in the document and 0 otherwise. Generally, this approach will

not be very useful since the vector space model is simply reduced to the exact

pattern matching method discussed in Section 2.2. Many researchers have ex-

amined the subject of term weighting over the years and their experiments show

that appropriately weighted terms improve the e�ectiveness of a retrieval sys-

tem. Traditional factors used in term weighting can be divided into two types:

local and global. A third factor, document length normalization, is a more recent

development used to compensate for length di�erences among articles in a text

collection.

2.3.1 Term Local Weighting

Aside from the binary weighting I have just mentioned, most commonly-seen

local weighting schemes incorporate the term frequency (tf ) factor. As the name

suggests, term frequency is the occurrence count of a term in a document, which

is intended to capture the importance of that term in the document. However, it

is very unlikely that a query term appearing four times in an article can be four

times as salient as a query term that appears only once, or a document with four

occurrences of one query term is two times more relevant than another document

with single usages of two di�erent query terms. Thence, the term-frequency factor

is usually dampened by a function like square root or logarithm [97, 35, 19, 106].

For example, one of the local weighting functions used by SMART is 1 + ln(tf ),

while another of the form 1 + ln(1 + ln(tf )) is used in recent TREC experiments

by researchers at AT&T [108]. Both ensure that a term has at least a local weight

of 1 if it appears in a document, while any additional appearances only increase

the value slightly. On the other hand, no appearance would result in a weight of

0|a huge di�erence compared to any nonzero weights.
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The augmented tf weighting is another popular approach for computing the

term local weighting and is implemented in various retrieval systems including

SMART and INQUIRY [97, 25, 17], the latter of which can be obtained from

the University of Massachusetts. Also known as the maximum term frequency

normalization, the basic form of this weighting scheme is [17, 106]:

dt + (1� dt) �
f(tf )

f(max tf )
;

where dt is a constant representing the minimum local weighting value given to

a term occurring in a document, f(tf ) a function of the frequency count of that

term, and f(max tf ) the same function applied to the frequency of most frequent

term in the document. The value of dt is usually set somewhere around 0.5 and

never exceeding 1.0, so that the overall tf factor is restricted in the range of dt

and 1:0. This way, like the aforementioned tf factor involving logarithmic func-

tions, a single appearance of a query term gets a default weight while additional

occurrences cannot change this value too dramatically.

The augmented tf weighting is based on the observation that long documents

usually use the same terms repeatedly so that the tf factors tend to be large

in these documents. As a result, long documents are more likely to have higher

similarities to a query than short documents. Normalizing the local weighting

by the maximum term frequency in the document reduces this e�ect. Singhal et

al. [107] believed that the maximum tf normalization is not ideal because a term

with the same occurrence frequency in two documents will have the same value

with augmented tf weighting. Their importance in the two documents can be

very di�erent depending on the frequencies of other terms in those documents.

Hence, they used average term frequency in a document as the divisor in their
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normalization equation for all terms in the document:

1 + log(tf )

1 + log(average tf )
; (2.4)

so that a term that appears the average number of times of all terms in a document

would have unit importance in that document. They obtain better experimental

results using the average tf normalization than the maximum tf normalization.

Another local weighting factor that has been gaining recognition in recent

years is the tf factor used in the Okapi information retrieval system [88, 87].

This tf factor is based on approximations to the combination of a two-Poisson

model of term frequency [12, 58, 59] and Robertson and Sparck Jones' term

relevance weighting [86]. The weighting function has the form

tf c

Kc + tf c

where K is a constant that is usually 1 or 2 and c is either 1 or greater than 1

depending on the shape of the actual function the factor intends to mimic. Since

the two-Poisson model in e�ect assumes that all documents are of equal length,

a document length normalization factor is usually included in the formulation of

K, which I will further discuss in Section 2.3.3.

2.3.2 Term Global Weighting

Since the main problem in IR is to select a few relevant documents from a collec-

tion that includes many non-relevant ones, a term's local weighting alone does not

seem to provide su�cient discriminating power to produce good retrieval perfor-

mance. For example, a query term with high frequency counts in many documents

tends to have all such documents retrieved as relevant [97]. Thus, researchers have
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developed global weighting schemes to di�erentiate content-bearing terms from

others [110, 95].

The inverse document frequency (idf ) factor, originally derived by Sparck

Jones [110], is the most widely used global weighting scheme today. This factor

is expressed as an inverse function of the number of documents a term appears

in:

log

�
n

df

�
;

where n is the total number of documents in the collection and df is the number

of documents in which the term being weighted appears in. The idf factor basi-

cally gives less weights to terms that occur in many documents. In addition, a

theoretical justi�cation of this idf weighting scheme was also presented by Wong

and Yao [116], who proposed a goodness measure of a term in a document based

on Shannon information theory and showed that idf is an approximation of that

measure.

Another global weighting function that has the similar e�ect as idf is the

entropy weighting [35]:

1�
X
j

tf j � ( log(tf j )� log(gf ) )

gf � log(n)
;

where tf j is the term's frequency in the j-th document, gf is the term's global

frequency, or the total occurrence count of the term in the collection, and n is,

as before, the number of documents in the collection. Dumais [35] found that

entropy weighting produced performance advantages over other weightings such

as idf on several small test collections for latent semantic indexing, a retrieval
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method I introduce later in Section 2.4.3.

Robertson and Sparck Jones [86] derived a term weighting formula exploiting

term distributions in relevant and non-relevant documents. A major assumption

of their work is that some relevance information is available, so their model is good

mostly for relevance feedback retrieval, a process in which the query is improved

or recreated based on the documents that the user indicates are relevant. Croft

and Harper [29] studied the problem of improving the initial search (i.e., the

search before any relevance feedback) with a probabilistic model of document

retrieval based upon Robertson and Sparck Jones' term relevance weight. Under

some simplifying assumptions, they showed that their document ranking formula

depends inversely on the probabilities of terms being present in a non-relevant

document. Since in a large collection most documents are not relevant to a given

query, this last probability can be estimated by the probability of occurrence

for each term, which is just df =n via the maximum likelihood estimation, an

approach for determining estimates of unknown parameters of a random sample

in statistics (see, for example, the textbook by Ross [90]). Hence, Croft and

Harper's weighting formula is similar to the Sparck Jones' idf factor.

Since most term weighting functions use the product of some function of term

frequency and inverse document frequency, their combination is commonly known

as the tf � idf weighting.

2.3.3 Length Normalization

A third weighting factor, the document length normalization factor, appears to

be useful for collections with widely varying document lengths (term counts).

Without this normalization factor, long documents would have a better chance of

being retrieved as relevant to a query than short ones. This is because documents
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with more terms in them tend to have more distinct words that results in more

matches at each vector position against the query vector. They are also likely to

use the matched words more often, resulting in a high term frequency value.

Several schemes have been developed to diminish this unfair advantage that

long documents have over short ones.

In cosine normalization [97, 96, 106], each term weight is reduced by a factor of

the Euclidean norm (2-norm) of the document vector. Let ~d = (d1; d2; : : : ; dm)
T

be the vector representation of a document, where di, 1 � i � m, are the tf � idf

weight for the i-th term in the document. Then,

k ~d k =
q
d21 + d22 + � � �+ d2m

is the cosine normalization factor for that document. The length of a document

vector in the Euclidean space becomes unit after cosine normalization, and the

inner product of two vectors measures the cosine of the angle between them.

It should be noted that when comparing a query against a set of documents,

whether we cosine-normalize the query vector does not a�ect the relative values

of the products between the query and the documents. In other words, document

ranking is not changed when we normalize the query vector. In addition, the co-

sine normalization scheme gives somewhat unfair advantage to short documents,

as their vector components are \boosted" because they have smaller 2-norms to

be divided by.

The Okapi system document length normalization is based on the \verbosity

hypothesis" that a long document covers a similar content scope to a short docu-

ment but simply uses more words [88, 87]. Because the Okapi tf factor is derived

under the assumption that documents are all of equal length, all tf values of a
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document are to be normalized by the proportion of the document's length to

the average document length. The �nal normalized Okapi term frequency weight

in a document is (see Section 2.3.1 for a comparison)

tf c

(k1((1� b) + b dl
avdl

))c + tf c
;

where k1 and b are constants, dl is the byte length of this document, and avdl is

average byte length of documents in the collection.

Finally, the pivoted document length normalization is a normalization scheme

intended to improve upon an existing normalization function [107]. This method

is motivated by experimental observations that a normalization scheme that re-

trieves documents of all lengths with similar probabilities as their chances of being

relevant outperforms another scheme that retrieves documents with probabilities

di�erent from their their chances of being relevant. The basic form of the pivoted

document length normalization is

1

(1:0� slope) + slope � old normalization
average old normalization

where slope is some constant and old normalization is the existing normalization

factor that the pivoted normalization scheme intends to improve upon. For ex-

ample, researchers at AT&T used 0.2 for slope and document byte length (dl) as

the old normalization factor in their TREC-7 retrieval experiments [108].

When applied to the traditional cosine normalization, the new pivoted scheme

is called pivoted cosine normalization. Singhal et al. [107] observed that the cosine

function behaves \weaker" than a linear function of the number of unique terms

in a document, and suggested using the latter for document normalization. Thus,
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we have the pivoted unique normalization:

(1:0� slope)� pivot + slope � number of unique terms:

In TREC-4 experiments, researchers at Cornell University �xed slope at 0.2, and

set the pivot to the average number of unique terms across the entire collec-

tion [24]; they found these setting to be very e�ective for their retrieval tasks.

The SMART retrieval system implements various tf � idf weightings and nor-

malization functions and denotes the combined schemes by triples of letters: the

�rst letter in a triple represent the term frequency factor, the second inverse doc-

ument factor, and the last the normalization factor. Table 2.2, part of which is

taken from Singhal's thesis [106], summarizes the most commonly used functions

in SMART term weighting. If di�erent term weighting schemes are applied to

queries and documents, two letter triplets are used for document and queries in

that order. For example, \ntc.ann" would mean natural term occurrence weight-

ing, inverse document frequency weighting, and cosine normalization combined

for documents and augmented term occurrence weighting with no inverse docu-

ment frequency or normalization for queries.

In this study, I used various term weighting scheme mentioned in this and

previous sections for my experiments. Normally, I selected one that is known to

work well on the collection of interest. In other cases, I tested several weighting

schemes on a collection to �nd the best among them. I report the weighting

scheme used in each case.

2.4 Vector-Based Query-Expansion Methods

The problem with the vector space model of information retrieval is that it is still a

term-term matching scheme, even though terms are weighted by their importance
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Term Frequency Inverse Document Normalization

Frequency

f(tf ) f( 1
df
) f(length)

n tf n 1 n 1

l 1 + ln(tf ) c
p
d21 + d22 + � � �+ d2m

d 1 + ln(1 + ln(tf )) t log

�
n+ 1

df

�
b 0:8 + 0:2�

dl

avdl

a 0:5 + 0:5� tf

max tf
u

(1:0� slope)� pivot +
slope�# of unique terms

L
1 + log(tf )

1 + log(avg tf )

Table 2.2: The retrieval system SMART uses a triplet of letters to denote its
local, global, and normalization weighting schemes.

in reecting document content. In the vector space being constructed, terms are

treated as if they are pairwise orthogonal while each term weight is the component

of the document vector along the direction of the term vector.

Two major problems with term-term matching schemes like VSM are syn-

onymy and polysemy [47, 32]. Since there are always multiple ways to express a

given concept verbally (synonymy), a user query may not use terms that match

those in a relevant document. For instance, a \promotional CD" is also known

as a \DJ CD" among collectors and disc jockeys; nonetheless, it is very unlikely

that one will �nd the word \promotional" to be related to \DJ" in any standard

thesaurus. On the other hand, most words have multiple meanings (polysemy),

so terms in a user query can literally match terms in irrelevant documents. An

example here is the query \Babyface Nelson"|when looked up on Yahoo!, it

would match the biographies and stories of the infamous gangster in the 1930's,

as well as pages containing links to pop music artists in the early 1990's (both

Babyface and Nelson happen to be pop musicians in that period).

One method for easing the user's burden in choosing query words is for the
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retrieval system to automatically expand the query with terms that are related

to those supplied by the user. The new terms can be either statistically related

to the original query words or selected from lexical aids such as a thesaurus. The

expanded query is likely to help alleviate the problem of synonymy and polysemy.

In terms of our earlier examples, adding the word \DJ" to the query \promotional

CD" would certainly help a novice collector looking for hard-to-�nd CD's on eBay,

and including \crime" or \FBI" in the \Babyface Nelson" query would improve

search results for a user looking for information about the criminal.

2.4.1 Local Feedback

A well-known interactive method for query expansion is relevance feedback, where

users identify relevant documents in an initial list of retrieved documents, and the

system creates an improved query based on those sample relevant documents [89,

86, 98, 51]. The assumptions underlying relevance feedback are that documents

relevant to a query resemble each other, and that documents not relevant to the

query are di�erent from those that are relevant [1]. The vector representation of

the query can then be modi�ed to move it toward those of the relevant documents

and away from those of non-relevant ones.

The procedure of relevance feedback can be fully automated wherein vec-

tor representations of the top-ranked documents from an initial query-document

match are \added" to the query vector for further retrieval [3, 23, 119]. Since no

real user feedback is used in this process, this query expansion scheme is known

as pseudo-relevance feedback [121], local feedback [119], or blind feedback [115]. In

this dissertation, we adopt the terminology \local feedback" to contrast it to the

\global" analysis used by many query-expansion methods on an entire document

collection. The number of feedback iterations can be more than one, so that
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a sequence of queries will be generated with the hope of converging to a near

optimal query [89].

Early results of local feedback on some small collections did not appear to be

promising. This is partially due to the fact that not many top retrieved documents

were relevant, and so feedback would result in a negative e�ect by supplying

useless terms. Researchers at Cornell University applied local feedback in their

TREC experiments, however, and obtained favorable results. They believed that

this is due to the combination of better initial retrieval and the large number of

relevant documents per query in the TREC collections [23].

A more recent approach developed by Xu and Croft [119] involves locating

relevant concepts (noun phrases) from passages (�xed-size text windows) inside

top ranked documents to add to the original query. Known as local context

analysis, this method has been shown to result in improved retrieval performance

over the traditional local feedback. In addition, a study by Allan [2] focused

on the case when the top retrieved documents are so large that they may cover

several subject areas. Such documents are more likely to expand the queries with

inappropriate terms that happen to co-occur with queries terms. He compared

two approaches, discarding large documents and extracting passages from them,

and found both to be \valuable" under certain conditions. He also proposed a

hybrid system that performs passage feedback on large documents and uses the

entire text of other smaller relevant documents. Finally, Fitzpatrick and Dent [41]

examined the possibility of using past queries as an additional source of evidence

to improve automatic query expansion and found encouraging results. In recent

years, more and more IR researchers, especially participants of TREC, started

to apply some form of local feedback on top of their initial retrieval to enhance

performance.
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2.4.2 Generalized Vector Space Model

An early method of deriving the term correlations from analysis of the corpus

matrix is the generalized vector space model (GVSM) [118, 117]. The method was

developed based on an observation of the limitations associated with the conven-

tional VSM discussed earlier. Instead of using terms as orthogonal dimensions of

the information vector space, GVSM identi�es a set of new fundamental concepts

and uses them as the basis vectors of the vector space of interest. Those concept

vectors are derived from term usage in various sets of documents. In the sim-

plest case, each document represents a fundamental concept, and so each rows of

the term-by-document matrix is interpreted as the component of the correspond-

ing term vector along the directions of the concept vectors. Term correlations

can then be determined by the number of matches of the concept vectors be-

tween pairs of terms. Finally, in GVSM, semantic closeness between two texts is

computed by �rst transforming them into the concept space, or a space whose or-

thogonal dimensions are documents, and then measuring their spatial proximity

there as in VSM.

The similarity thesaurus approach proposed by Qiu and Frei [83, 82] has the

same fundamental form as GVSM. It builds a term-by-document matrix where

terms are indexed by documents, a similar interpretation to that in GVSM. The

di�erence is that the values in the matrix are created by a new function so

that they represent document weights in term vectors instead of term weights in

document vectors. This approach adds soundness to the GVSM technique since

it is not very clear how documents are represented by term vectors and terms by

document vectors simultaneously in GVSM. In Section 3.3.2, I will explain the

details of building term vectors from document weights and contrast it to GVSM.
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The problem of GVSM is that it may create a \distorted" semantic space. For

example, suppose there are two documents in the collection on economy-related

topics and twenty on sports-related topics. Then, for any vector in the GVSM

space, there are two dimensions representing economy-related concepts and ten

times that many representing sports-related concepts. A query request on the

topic of sports economy would make a GVSM system return mostly sports-related

articles.

2.4.3 Latent Semantic Indexing

Latent semantic indexing (LSI) [46, 32] sees neither terms nor documents as the

optimal choice for the orthogonal dimensions of a semantic space. Instead, it

uses a basis computed from the term-document matrix of VSM for its vector

dimensions. Berry et al. [9] summarize the basic idea behind of LSI as follows:

[LSI] tries to overcome the problem of lexical matching by using

statistically derived conceptual indices instead of individual words

for retrieval. LSI assumes that there is some underlying or latent

structure in word usage that is partially obscured by variability in

word choice. A truncated singular value decomposition (SVD) is used

to estimate the structure in word usage across documents. Retrieval

is then performed using the database of singular values and vectors

obtained from the truncated SVD.

Here, singular value decomposition [49] is a matrix computation technique that

converts a matrix into a product of three parts: the left and right singular vec-

tor matrices and the singular value matrix. The retrieval documents are then

projected by the singular vectors representing the most dominant orthogonal

29



dimensions of the matrix into a reduced-dimension semantic space for compar-

ison. Details of SVD and related matrix computations of LSI are discussed in

Section 3.4.

Theoretically, LSI has been proven to succeed in capturing the underlying se-

mantics of the corpus under the condition that the corpus is a reasonably focused

collection of meaningfully correlated documents [79]. In addition, Zha et al. [122]

proposed a systematic way of determining the optimal LSI dimension based on

the minimum description length principle from the �eld of array signal processing.

The prerequisites of this approach include knowing the spectrum (all singular val-

ues) of the term-document matrix, the computation of which requires enormous

resources when the matrix becomes very large. Zha and Zhang [124] also noticed

a special low-rank-plus-shift structure observed in every term-document matrix:

let A be a term-document matrix, then

ATA = a low-rank matrix + a multiple of the identity matrix:

In Section 3.5.3, I show how the distribution of the singular values of the term-

document matrices are related to this structure. While Zha and Zhang sug-

gested SVD computing and updating procedures that utilize the low-rank-plus-

shift structure, I present a novel algorithm for LSI approximation that takes

advantage of this special property in Chapter 4.

LSI has equaled or outperformed the conventional VSM in many monolingual

retrieval experiments where the document collections are small to medium, per-

haps because of its ability to make term association from matrix analysis [39, 32,

36, 37, 38, 70]. But, LSI reveals its weakness when the collection sizes become

large. The computation time required by SVD is typically proportional to the

product of the square of the number of terms (or documents, whichever is smaller)
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in the collection and the number of singular vectors or orthogonal dimensions de-

sired [111]. Even if we need only a fraction of all the singular vectors of a corpus

matrix for the retrieval to be e�ective, the actual number can be quite large given

the growing size of the modern information repositories, and it becomes infeasi-

ble to compute that many singular vectors via existing SVD algorithms. Thus,

when the collection size does become very large, the limited SVD vectors we can

compute are just too few for achieving good retrieval performance.

Researchers have responded to the scalability of LSI using a variety of ap-

proximation techniques, sometimes applying problem-speci�c constraints or ad

hoc algorithms. The scalability problem is one of the foci of this dissertation.

A similar technique to LSI was developed by Newby [75] that constructs an

information space by selecting useful terms and performs a principle component

analysis (PCA) on the term-by-term matrix of correlation scores. It di�ers from

LSI in that terms are explicitly selected for the information space and that a

statistical term-by-term correlation matrix is created and analyzed, whereas LSI

does its work on the term-by-document matrix1. Section 3.4.2 makes a detailed

comparison between LSI and the information space method.

2.5 Cross-Language Information Retrieval

As introduced in Chapter 1, cross-language information retrieval (CLIR) is the

problem of using ad hoc queries in one language to retrieve documents in another

language. Its importance has increased enormously in recent years because the

information super-highway is reachable from virtually all over the world. This

1In the actual computation, the SVD of the term-by-document matrix is usually found by
�nding the eigenvalues and eigenvectors of the symmetric matrix formed by multiplying the
term-by-document matrix by its transpose, exactly the process of PCA.
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dissertation treats cross-language retrieval between two languages.

Sch�auble and Sheridan [101] categorized the approaches to solving the CLIR

problem into three types: translation of the queries into the language of the

documents, translation of the documents into the language of the queries, and

translation of both the queries and the documents into some intermediary or

inter-lingual representation where they can be compared. Although translating

the few words in a query into the language of the documents is considerably

more e�cient than translating all documents into the language of the query, the

lengthiness of documents makes them more reliable indicators of content and less

vulnerable to translation errors.

The translation can be accomplished by using one or a combination of the

following resources: bilingual corpora, bilingual machine-readable dictionaries

(MRD), and machine translation (MT) tools. Next, I describe some of the basic

approaches in cross-language information retrieval.

2.5.1 Vector-Based Query-Expansion Methods

The classical vector space model of information retrieval cannot be applied di-

rectly to CLIR because similarity is based on the overlap of terms between queries

and documents|this is typically zero in CLIR. The problem at hand is to retrieve

documents containing expressions that do not exactly match those found in the

query.

Vector-based query-expansion methods such as GVSM and LSI can easily be

generalized for cross-language information retrieval as long as a bilingual com-

parable or parallel document collection is available for training [65, 104, 26, 121,

84, 69]. Comparable corpora usually are those texts that express the same idea

or describe the same event, even though they are composed independently. For
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example, Rehder et al. [84] used a bootstrapping procedure to extract comparable

documents from the TREC French and German collections of news articles (see

Appendix A.1 for some sample documents). In contrast, parallel collections are

more strictly aligned; they consist of texts that are translations of each other.

An example of a parallel collection is the United Nations Parallel Corpus in En-

glish, French, and Spanish produced by the Linguistic Data Consortium (LDC)

(http://www.ldc.upenn.edu/). Appendix A.2 shows a sample of this collection.

Comparable or parallel, the connection between the texts in di�erent languages

can be on di�erent levels of granularity: sentence, paragraph, or document; they

are aligned if the correspondence is one-to-one. Thus, the most coarse type of

alignment would be comparable documents, while the �nest type would be par-

allel sentences.

With the expansion of the Internet in the past decade, there are a large num-

ber of international web sites created in multiple languages. Researchers have

successfully used various heuristics to automatically extract parallel or compa-

rable corpora from the web [85, 77]. For example, the HTML markup tags of

the web documents can be used to both con�rm the translational relationship

between the texts and provide a �ner level of granularity of parallelism.

Under a vector-based query-expansion method, words of similar meaning

in di�erent languages are treated in a similar fashion to synonyms in a sin-

gle language, and translation is achieved through query expansions across lan-

guages. While in monolingual retrieval, query expansion is based on term-term

co-occurrence in the same documents, in cross-language retrieval term-term sim-

ilarity can be derived from their corresponding appearances in matching pairs

of documents from the comparable (or parallel) corpus. Vector-based query-

expansion methods on CLIR are usually fully automatic, can be used with much
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less knowledge of the syntax or semantics of the languages involved, and can be

trained with documents in a speci�c domain for retrieval in the same domain.

These query-expansion methods have been tested and shown to perform e�ec-

tively on various collections [104, 26, 84, 69, 121].

2.5.2 Machine Translation and Dictionary Methods

Strict applications of machine translation on CLIR require sophisticated and

expensive linguistic tools to process the queries (or documents). In a TREC

CLIR track overview, Braschler et al. [15] observed that \CLIR is a di�cult

problem to solve based on MT alone: queries that users typically enter into a

retrieval system are rarely complete sentences and provide little context for sense

disambiguation." The availability of machine translation software for di�erent

language pairs is also limited, especially when neither of the two is English. For

example, in their TREC-7 experiments, Gey et al. [48] experimented with three

di�erent MT software packages to translate queries in English, French, German,

and Italian to retrieve documents in all four languages; yet for translation between

two non-English languages, they had to use English as a bridge: queries in a

non-English language were �rst translated into English and then into another

non-English language. Their results show English queries do a great deal better

than queries in other languages in cross-language retrieval performance. A recent

development in MT-based CLIR has been the use of probabilistic translation

models (PTM) to translate either the query [77] or the documents [42]. The

parameters of PTM are usually estimated from a bilingual parallel corpus, which

has to be aligned at passage or even sentence level in order to make the model

robust. The retrieval performance of these models can be very e�ective, though.

For instance, the translation model of Franz et al. [42] not only was \fast" in
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translating the documents into the language of the query, but it also produced

very high performance results on TREC cross-language test collections.

In dictionary-based approaches to CLIR, on the other hand, word translations

are looked up in a bilingual machine-readable dictionary [62, 4, 31], as such

dictionaries are sometimes more easily found than parallel text corpora. The

process can be as simple as word-by-word translations [4], more sophisticated

phrasal translation when appropriate [5], or even mapping of the morphological

roots of query words across languages [62, 80]. In the case of languages such as

Chinese and Japanese, where the written texts contain no word boundaries, word

segmentation strategies needs to be applied to identify words to be translated out

of consecutive strings of characters [10, 27]. When a machine-readable dictionary

is not readily available or lacks the coverage of domain-speci�c terminologies,

bilingual term or phrase correspondences can be established through comparable

or parallel corpora [80, 18, 27], as in vector-based query-expansion methods. The

words in two languages are usually matched statistically with little concern for

the syntactic structure of either language. Collocational statistics of terms in a

parallel corpus can also be used for resolving translation ambiguities and reducing

translation errors in dictionary-based approaches [6, 45].

Nie et al. [77] compared results of English-French CLIR using machine trans-

lation, bilingual dictionaries, probabilistic translation models estimated from dif-

ferent sources, and combinations of a PTM and a dictionary. They found that

while a good MT systems may provide sound translation quality for CLIR, the

PTM and combination of PTM and bilingual dictionary are more \exible" and

provide equally good results. A preliminary comparison between LSI and ma-

chine translation for CLIR was made by Littman et al. [69], in which they found

both LSI and MT performed equally well on a test of locating the \mate" or
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translation counterpart of a document in a parallel corpus. Yang et al. [121]

performed a comparative study among machine translation and query-expansion

methods of cross-language information retrieval with a small subset of the UN

corpus from LDC. Littman and Jiang studied the di�erences between LSI and

GVSM using the same collection [70].
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Chapter 3

A Mathematically Uni�ed View

Vector-based, automatic information retrieval methods such as VSM, GVSM, and

LSI represent both queries and documents by high-dimension vectors learned from

analyzing a corpus of text. Each method has its own strengths and weaknesses.

VSM scales well to large collections, but cannot represent term-term correlations,

which prevents it from being used in cross-language retrieval. GVSM and LSI

can represent term-term correlations, but do not give good retrieval performance

on very large retrieval collections. In this chapter, I describe in detailed mathe-

matical formulae how these three basic methods and their close cousins relate to

each other. I present a novel uni�ed view on vector-based information retrieval

called dimension equalization.

3.1 Preliminary Concepts in Linear Algebra

To begin, I would like to refresh the readers' memories with some basic concepts

in vector and matrix computation that will be used in this dissertation. Let

~u = (u1; u2; : : : ; un)
T and ~v = (v1; v2; : : : ; vn)

T be two n-dimension real vectors,

and let A = [aij], i = 1; : : : ; m and j = 1; : : : ; n be an m� n matrix. Then,

� The inner product or dot product of the two vectors is the scalar number

given by

~u � ~v = ~u T ~v = u1v1 + u2v2 + � � �+ unvn:

� The (Euclidean) length or 2-norm of a vector ~v, denoted by k~vk, is
p
(~v)T~v.
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� The angle � between two nonzero vectors ~u and ~v is given by

cos(�) =
~u T ~v

k~uk k~vk
:

� Two vectors ~u and ~v are orthogonal if the angle � between them is 90�,

or ~u T ~v = 0. A set of nonzero vectors f~v1; ~v2; : : : ; ~vng is orthogonal if

~vi
T ~vj = 0 when i 6= j.

� The n-dimension vector ~v can be treated as an n � 1 matrix. Conversely,

each row of the matrix A can be viewed as an n-dimension vector and each

column of A an m-dimension vector.

� The set of all m� n real matrices is denoted by <m�n.

� Matrix A is a diagonal matrix if aij = 0 for i 6= j. We write A =

diag(a11; a22; : : : ; ass), where s = min(m;n). If m = n and aii = 1, then the

diagonal matrix A is known as an identity matrix and is usually denoted

by I.

� A matrix A 2 <m�m is said to be unitary or orthogonal if ATA = I.

� A matrix A 2 <m�m is invertible or non-singular if there exists B 2 <m�m

such that AB = BA = I.

� The Frobenius norm of a matrix A is

jjAjjF =

vuut nX
j=1

mX
i=1

jaijj2:

The readers are also expected to have some knowledge of the basic concepts in

linear algebra such as vector space, subspace, and basis of a vector space. Please
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refer to a standard linear algebra textbook (for example, the one by Lang [66])

for these concepts. Briey, we know that the set of all vectors of the same size

is a vector space. The dimension of a vector space is the maximum number

of independent, nonzero orthogonal vectors contained in that space. A vector

space can also contain other vector spaces with smaller dimensions, and these are

known as subspaces of that vector space. The smallest-dimension subspace that

contains all the row vectors of a matrix A is known as the row space of A. We

also say that these row vectors span the row space of A. Similarly, the subspace

spanned by the columns of A is called the column space of A. The rank of A,

denoted rank(A), is the dimension of the column space of A.

In vector-based information retrieval, documents and queries are represented

by vectors, and their semantic similarity is computed by vector inner product.

In this thesis, I use the following equation as a general formula for vector-based

information retrieval methods:

SimP (d; q) = (P T ~d ) � (P T~q ) = ~d TPP T~q; (3.1)

where SimP (d; q) represents the similarity between a document and a query, ~d

is the vector representation of a document d, ~q is the vector representation of a

query q, and P is a projection matrix that transforms ~d and ~q into a new vector

of a possibly di�erent size.

The vector ~d in Equation 3.1 is usually obtained this way: a document col-

lection can be represented by a term-document matrix D = [dij] 2 <
m�n, where

m is the size of the vocabulary, and n is the number of unique documents in

the collection. The entries of matrix D are term weights as described in Sec-

tion 2.3, i.e., dij is the weight of term i in document j. Speci�cally, ~d can

represent any column of the matrix D, which is an m-dimension vector. I also
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use D(j) = (d1j; d2j; : : : ; dmj)
T to denote the j-th column vector of the matrix D,

which corresponds to the j-th document of the collection. The equivalent vector

form for query q is then ~q = (q1; q2; : : : ; qm)
T .

Notation 3.1. De�ne ej be an n� 1 matrix with all elements equal to 0 (zero)

except for the j-th one, which is 1 (one) instead.

Then, D(j) can be expressed as Dej, as a matrix product. While ~d will be

used most of the time in this dissertation, occasionally D(j) and Dej are needed

in a few mathematical derivations.

3.2 Vector Space Model

In the vector space model of information retrieval, the similarity between docu-

ment d and query q is measured

Sim(d; q) =
mX
i=1

mX
k=1

dij qk ~ti � ~tk

= ~d T

2
6666664

~t1 � ~t1 ~t1 � ~t2 : : : ~t1 � ~tm
~t2 � ~t1 ~t2 � ~t2 : : : ~t2 � ~tm
� � �
� � �
� � �

~tm � ~t1 ~tm � ~t2 : : : ~tm � ~tm

3
7777775
~q

= ~d T C ~q; (3.2)

where ~ti and ~tk are unit term vectors in dimensions i and k, and C is an m�m

term correlation matrix. Comparing Equation 3.2 to Equation 3.1, we see that

C = PP T .

The conventional vector space model (VSM) makes the term-independence

assumption that any two index words are unrelated, or represent orthogonal
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dimensions in the semantic space. In the above equation, this is equivalent to

~ti � ~tk =

�
1 if i = k;
0 otherwise:

(3.3)

In other words, the correlation matrix C is an identity matrix I. The VSM

similarity measure becomes simply

SimVSM (d; q) = ~d T I ~q = (IT ~d ) � (IT~q ) =
mX
i=1

dij qi: (3.4)

Thus, in the form of Equation 3.1, the projection matrix P in VSM is the m�m

identity matrix.

A criticism of VSM is that it treats terms as unrelated in that they occupy

orthogonal dimensions in the semantic space. A nonzero similarity score between

two vectors will result only if they both have nonzero values in at least one

dimension, i.e., their original documents contain at least one term in common.

This is certainly far from ideal because, for example, for a query that contains

the search word \computer" but not \digital," a document that uses exclusively

the word \digital" will be deemed no more relevant than a document that talks

about gardening. It is also obvious that the exact term matching scheme of VSM

is not applicable to cross-language information retrieval.

Query-expansion techniques such as the generalized vector space model and

local feedback have been invented to deal with the word mismatch problem in

VSM [119]. These techniques often use a training corpus to derive term-term

correlations, and related terms can be added to the original query to enrich

retrieval. Ideally, the training corpus would simply be a thesaurus that lists for

every word all the related words and how strong the relationships are between
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them. At the other extreme, this \thesaurus" would only contain word entries

followed by no related words at all, and this is exactly analogous to the case

in conventional VSM. What query-expansion methods can derive from a real

training corpus is some statistical link between terms that appears together in

the same documents.

In monolingual information retrieval, the training is usually done on the re-

trieval collection itself, but other possibilities also exist: a subset of the retrieval

collection or even a completely di�erent collection can be used. In cross-language

retrieval, a bilingual corpus is needed for training, where corresponding docu-

ments in two languages are translations of each other or are on the same or

related subjects. In this dissertation, I use symbols A = [aij] (and B = [bij] for

cross-language) to denote the matrix for the training corpus, and D = [dij] to

represent the matrix for the retrieval collection. Unless speci�ed, I generally do

not assume A = D.

Next, I examine methods that compute the term correlation matrix C auto-

matically from a training corpus.

3.3 Generalized Vector Space Model

The generalized vector space model (GVSM) [118, 117] of information retrieval

measures term-term correlations based on the term-term co-occurrence informa-

tion derived from a training corpus. Each term vector ~ti, 1 � i � m, is expressed

as the vector sum of a set of orthogonal basis vectors or minterms ~mk that rep-

resent \fundamental concepts" [117]:

~ti =
X
k=1

cik ~mk; 1 � i � m; (3.5)
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where cik indicates how much term vector ~ti weighs in the direction of ~mk. Since

these basis vectors are derived from examining disjoint subsets of documents

where terms co-occur, in the worst case each document in the training corpus

represents a fundamental concept. So, the number of basis vectors will not exceed

n, the total number of documents in the collection A.

In fact, the version of GVSM often seen does make this oversimplifying

assumption|that documents express disjoint concepts and so their associated

vectors are orthogonal. The term vectors can, thus, be rewritten as

~ti =
nX

k=1

aik ~fk; (3.6)

where aik, is the weight of i-th term in the k-th document vector of A (the matrix

of the training corpus), and ~fk corresponds to the fundamental concept vector for

the k-th document in the training collection. The assumption of orthogonality

between documents is equivalent to the following property:

~fi � ~fj =

�
1 if i = j
0 otherwise:

(3.7)

In other words, the correlation between the i-th term and the j-th term is:

~ti � ~tj =
nX

k=1

nX
l=1

aikajl ~fk � ~fl =
nX

k=1

aikajk: (3.8)
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In this case, the term correlation matrix becomes

C =

2
6666664

~t1 � ~t1 ~t1 � ~t2 : : : ~t1 � ~tm
~t2 � ~t1 ~t2 � ~t2 : : : ~t2 � ~tm
� � �
� � �
� � �

~tm � ~t1 ~tm � ~t2 : : : ~tm � ~tm

3
7777775

=

2
6666664

Pn

k=1 a1k a1k
Pn

k=1 a1k a2k : : :
Pn

k=1 a1k amkPn

k=1 a2k a1k
Pn

k=1 a2k a2k : : :
Pn

k=1 a2k amk

� � �
� � �
� � �Pn

k=1 amk a1k
Pn

k=1 amk a2k : : :
Pn

k=1 amk amk

3
7777775

= AAT : (3.9)

The m � m matrix AAT has a nonzero value in its row i and column j if and

only if there is a document in A that contains both the i-th and j-th terms [28].

Thus, for GVSM, the similarity measure in Equation 3.2 can be rewritten as

SimGVSM�ML(d; q) = ~d TAAT ~q = (AT ~d ) � (AT~q ): (3.10)

This tells us that GVSM uses the indexed term-document training matrix A as

its projector P . Matching the vector components in ~d and rows of A by the terms

they represent, AT ~d transforms ~d into a new vector in the row space of A, and

its components correspond to the n documents in the training corpus. The query

vector ~q is also transformed by A in the same way, and so ~d TAAT ~q compares the

query and the document by the documents they are associated with.

The idea of using AAT as the term-term similarity matrix has also been

studied by Salton and McGill [99]. They set a threshold value on the elements

of AAT and cluster terms with a correlation value greater than the threshold
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into the same class. The resulting term classes can be organized in a hierarchy

or a network. Removing small elements from the similarity matrix AAT can

reduce the e�ort of computing query expansions while leaving its structure mostly

untouched.

Another technique of cutting the computational cost, called sparsi�cation,

is proposed by Yang [120]. This cost-cutting approach keeps only the most in-

uential (largest) components of the projected vectors before comparing their

similarity.

Notation 3.2. Let ~v be an n-dimension vector. De�ne the sparsi�cation opera-

tor Spk(~v), k � n, to return a new vector that is the same as ~v except replacing

its smallest n� k elements by 0 (zero).

Then, the term-document similarity is computed

SimGVSM�ML(d; q) = Spk(A
T ~d ) � Spk(A

T~q ): (3.11)

In other word, this sparsi�cation method �rst does the transformations AT ~d and

AT~q, then sets all but k largest-value elements of the resulting vectors to zero,

and �nally calculates the inner product of the two vectors. Yang et al. [26, 121]

used 100 and 200 for the value of k in their experiments.

3.3.1 Cross-Language Retrieval

The extension of GVSM to cross-language retrieval was proposed by Yang et

al. [26]. Assuming a bilingual corpus for training, two matrices A = [aij] 2 <
m�n

and B = [bij] 2 <p�n are formed, where A is a term-document matrix for the

training documents in the language of documents being retrieved, and B is a

term-document matrix for the training documents in the language of the query.

45



While the numbers of unique terms in the two languages are di�erent (denoted

by m and p above), the number of training documents are the same (n), with the

corresponding columns of A and B representing the matching pairs of documents

in the bilingual corpus.

As in the case of monolingual retrieval, a term vector in a multi-lingual cor-

pus is the weighted sum of fundamental concept vectors that are represented by

individual documents. Since each concept vector describes one pair of parallel

documents in the two languages, terms in di�erent languages can be associated

with each other via the fundamental concepts (documents) they share. Speci�-

cally, the matrix

C = ABT =

2
6666664

Pn

k=1 a1k b1k
Pn

k=1 b1k b2k : : :
Pn

k=1 a1k bmkPn

k=1 a2k b1k
Pn

k=1 a2k b2k : : :
Pn

k=1 a2k bmk

� � �
� � �
� � �Pn

k=1 amk b1k
Pn

k=1 amk b2k : : :
Pn

k=1 amk bmk

3
7777775

is the cross-language term similarity matrix. For a document ~d from the retrieval

collection and a query ~q in a di�erent language, the similarity comparison between

them is de�ned as:

SimGVSM�CL(d; q) = ~d TABT~q = (AT ~d ) � (BT~q ): (3.12)

3.3.2 Similarity Thesaurus

In GVSM, the elements of the training matrix A are obtained from one of the

term weighting schemes discussed in Section 2.3. Those weighting schemes were

designed to represent documents as vectors and terms as vector components.

Thus, it is somewhat contradictory that terms in GVSM are represented by fun-
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damental concept vectors, which turn out to be just the individual documents,

while at the same time the indexing method being used assumes that documents

are composed of term vectors.

The similarity thesaurus developed by Qiu and Frei [83, 82] at the Swiss

Federal Institute of Technology (ETH) tries to avoid this problem by treating

training documents as indexing features for retrievable terms. Also known as

the dual space approach, this method creates a document-term matrix with an

indexing formula that is di�erent from the traditional tf � idf scheme [104]. In

particular, the inverse document frequency of a term is replaced by the inverse

term frequency of a document, which is an inverse function of the number of

di�erent terms that the document contains. The weight of the j-th document in

the i-th term vector is

w(ti; dj) =

8>><
>>:

0
@0:5 + 0:5 �

tf (ti ; dj )

max
k

tf (ti ; dk)

1
A� itf (dj ) if tf (ti ; dj ) > 0

0 otherwise:

(3.13)

where tf (ti ; dj ) is the usage frequency of term ti in document dj, and itf (dj ) =

log(m=jdj j) is the inverse term frequency of document j. Similar to the idf factor

used in SMART, here m is the total number of indexing terms in the collection

and jdjj is the number of di�erent terms appearing in dj.

Therefore, all terms in a collection can be represented by a document-term

matrix E = [eji] where eji = w(ti; dj). The i-th column of E represents the i-th

term vector. According to Qiu [82], each term vector is also cosine normalized.

The term-term thesaurus matrix is then computed as

C = ETE; (3.14)
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and the document-query similarity is simply

SimST�ML(~d; ~q ) = ~d TETE ~q = (E~d ) � (E~q ): (3.15)

Here, the transformation matrix is P = ET . Comparing this to Equation 3.10, we

see that the matrix B functions like the transpose of matrix A, the only di�erence

being how they are indexed.

The dual space approach has been built into the SPIDER information retrieval

system developed at ETH [104]. In the actual process of building the thesaurus,

only \good" terms that do not have very high or low document frequencies are

considered for expansion, and only pairs of terms that have high similarity scores

are stored in the �nal data structure to aid retrieval. This approach is very

similar to the threshold value used by Salton and McGill [99] on their similarity

matrices.

The SPIDER system has also successfully extended the similarity thesaurus

method to applications of cross-language information retrieval [104, 16, 14]. As in

the case of monolingual retrieval, the basic equation is the same as that of GVSM,

with the primary di�erence being the way indexing features of term vectors are

constructed:

SimST�CL(~d; ~q ) = ~d T ETF ~q = (E~d ) � (F~q );

where F is a document-term matrix similar to E but constructed from the training

documents in the language of the query.

3.3.3 Local Feedback

Another avor of the GVSM method is local feedback, which was �rst discussed

by Attar and Fraenkel [3]. In their work, top returned documents from an initial
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retrieval run were assumed to be relevant and were used to expand the query.

This is di�erent from Rocchio's classic relevance feedback approach [89], where

real relevance information from the user who submits the query is obtained and

used. Hence, local feedback is sometimes also known as pseudo-relevance feed-

back [121]. Rocchio's formula for adding additional terms and reweighting the

query, however, is frequently used in local feedback:

~qLF = � ~q +
�

n1

n1X
i=1

Ri �


n2

n2X
i=1

Si; (3.16)

where n1 and n2 are the numbers of relevant and non-relevant documents, respec-

tively, Ri and Si are vector representations of those relevant and non-relevant

documents, respectively, and �, �, and  are referred to as Rocchio weights. The

optimal values of these weights are usually experimentally determined. In local

feedback, there is no information or assumption about non-relevant documents,

and so  is assigned zero.

Now, compared to GVSM, we observe that the selection of top ranked docu-

ments for feedback is very similar to computing AT~q = DT~q (assuming training

on the retrieval collection) and performing sparsi�cation (i.e., Spk(D
T~q )). Here,

the sparsi�cation number k in Equation 3.11 is set to the number n1 in Rocchio's

formula. If we then left-multiply Spn1(D
T~q ) by D again, it amounts to comput-

ing the vector sum of the top ranked documents, but each document vector is

weighted by the score of relevance between the query and that document. To

compute
Pn1

i=1Ri (summing up the vectors of the top-ranked documents without

weighting them) as in Equation 3.16, I �rst introduce a new notation.

Notation 3.3. Let ~v be a n-dimension vector. Then Spnk(~v), k � n, sets the

k largest elements of ~v to 1 (one), replaces the other n � k elements of ~v by 0
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(zero), and returns the new vector. Let D be an n � n diagonal matrix. Then

Spnk(D) does the same operation on the diagonal elements of D.

Using this notation, Rocchio's formula can be expressed in a GVSM-like fash-

ion:

~qLF�ML = � ~q +
�

n1
D Spnn1(D

T~q ): (3.17)

When this newly expanded query vector is compared to a document vector again

for relevance score, the formula is

SimLF�ML(d; q) = (~d ) � (~qLF�ML )

= (~d ) � (� ~q +
�

n1
D Spnn1(D

T~q ))

= � (~d T~q ) +
�

n1
(~d TD Spnn1(D

T~q ))

= � SimVSM (d; q) +
�

n1
(~d TD Spnn1(D

T~q )):

In words, the local feedback methods use Rocchio weights to combine the score

of VSM and ~d TD Spnn1(D
T~q ), which looks very much like the GVSM formula

in Equation 3.10: ~d TAAT~q = ~d TDDT~q when A = D.

Yang et al. [121] extended local feedback to cross-language retrieval as they did

with GVSM. The idea is to �nd top relevant training documents in the language

of the query and substitute them with their translations in the language of the

retrieval collection. The cross-language feedback query is

~qLF�CL = B Spnn1(A
T~q );

where A and B are parallel training matrices as de�ned in Section 3.3.1. I use A

(and B) instead of D here because the training collection is usually di�erent from
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the retrieval collection in cross-language retrieval. The �~q part in Equation 3.17

is set to zero when we apply the original query cross-lingually. As a result, the

weighting on the feedback part, �=n1, is set to 1. Hence, the following is the

cross-language similarity comparison formula for local feedback:

SimLF�CL(d; q) = ~d TB Spnn1(A
T~q ) = (BT ~d ) � (Spnn1(A

T~q ));

which closely resembles the cross-language GVSM formula (Equation 3.12). Davis

and Dunning [30] experimented with a similar approach on the TREC English-

Spanish retrieval: they set n1 to be 100 and used only the 100 most frequent terms

(after eliminating the 500 most frequent ones �rst) from those top documents (i.e.

B Spn100(A
T~q )) to create the new query.

In general, local feedback leads to improved retrieval performance. Most of

the groups that participate in TREC take advantage of this technique in one

way or another. Some researchers make a distinction between local feedback

and a method such as GVSM that derives the term correlation from the entire

training corpus. They call the latter global analysis in contrast to analyzing the

speci�c subset of documents returned from the initial query in local feedback. An

excellent comparative evaluation of the global and local methods was given by Xu

and Croft [119]. Another study of relevance feedback by Allan [2] was focused on

�nding optimal values for factors such as document or passage size and number

of documents retrieved (i.e., the number n1 above). The e�ectiveness of local

feedback analysis can also be used together with the IR method I discuss next:

latent semantic indexing.
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3.4 Latent Semantic Indexing

Except for certain kind of corpora that are relatively small, the GVSM assumption

that documents represent non-overlapping concepts is not generally valid. Latent

semantic indexing (LSI) [32] is another vector-based query-expansion method that

uses neither terms nor documents as the orthogonal basis of a semantic space.

Instead, it computes the most signi�cant orthogonal dimensions in the term-

document matrix of the corpus, via singular value decomposition, and projects

documents into the lower rank subspace thus found (known as the latent se-

mantic space). LSI then computes semantic similarity by the proximity between

projected vectors. LSI has been successfully applied to various document collec-

tions and has achieved favorable results, sometimes signi�cantly outperforming

VSM [32, 36, 37].

LSI uses SVD to factor the term-document training matrix A into three fac-

tors:

A = U �V T = U diag(�1; �2; : : : ; �p)V
T ; (3.18)

where U = (u1; u2; : : : ; um) 2 <
m�m and V = (v1; v2; : : : ; vn) 2 <

n�n are unitary

matrices (i.e. UTU = I and V TV = I) whose columns are the left and the right

singular vectors of A, respectively, � 2 <m�n is a diagonal matrix whose diagonal

elements are non-negative and arranged in descending order (i.e. �1 � �2 � � � � �

�p � 0), and p = min(m; n). The values �1, �2, : : : , �p are known as the singular

values of A, and are the square roots of the eigenvalues of ATA and AAT . An

illustration of SVD is shown in Figure 3.1.

Suppose the rank of A is r. Then, r � p and only �1, �2, : : : , �r are positive,

while the remaining (p � r), if r < p, singular values are zero. In LSI retrieval,
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Figure 3.1: A matrix is decomposed into three matrices of singular values
and vectors, and the most signi�cant of these triplets can be used to form a
low-dimension approximation to the original matrix.

researchers are only concerned with using the �rst r singular vectors of A, since

the rest of them, if any, correspond to the zero singular values.

LSI uses the structure from SVD to obtain the reduced-dimension form of the

training matrix A as its \latent semantic space."

Notation 3.4. For k � r, de�ne the reduced-dimension form of A to be

Ak = U �k V
T = U diag(�1; �2; : : : ; �k; 0; : : : ; 0)V

T :

That is, Ak is obtained by discarding the r � k least signi�cant singular

values and the corresponding left and right singular vectors of A (since they are

multiplied by zeros now). Then, the �rst k (k � r) columns of U that correspond

to the k largest singular values of A together constitute the projection matrix for

LSI:

SimLSI�ML(d; q) = (IkU
T ~d ) � (IkU

T ~q ) = ~d T UIkU
T ~q; (3.19)

where Ik is like the identity matrix I expect that only its �rst k diagonal ele-

ments are nonzero (they are one). Here, each row of IkU is a k-dimension vector
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representing a term in the training collection. In analogy to VSM, the vector

representation of a document is the weighted sum of the vector representation

of its constituent terms. For a document vector ~d and a query vector ~q, IkU
T ~d

and IkU
T~q are now the LSI vector representations of that document and query,

respectively, in the reduced-dimension vector space. This process is known as

\folding in" documents (or queries) into the training space [37, 9]. When k < r,

we say that we performed dimension reduction on U (or A). Figure 3.1 shows

the result of computing an SVD on A and using its k most dominant singular

vectors and values for the dimension reduction.

An interesting observation is that according to Notation 3.3, Ik = Spnk(�).

Hence, we can rewrite Equation 3.19 as

SimLSI�ML(d; q) = (IkU
T ~d ) � (IkU

T~q ) = (Spnk(�)U
T ~d ) � (Spnk(�)U

T~q ):(3.20)

LSI's dimension reduction uses the same operator for sparsi�cation the local feed-

back method, but on a very di�erent object (matrix). Since the singular values in

� are arranged in descending order, Spnk(�) is the same as taking the following

Heaviside unit step function (see, for example, the book by Bracewell [13]) on

these values:

Hk(x) =

�
1 if x � �k
0 otherwise

Mathematically, we can also view the transformation of ~d and ~q by IkU as

orthogonal projections onto the low-dimension space Ak. In the terminology

of linear algebra, UIkU
T is the unique orthogonal projection onto the range of

Ak [49], The projection of ~d and ~q under UIkU
T are thus UIkU

T ~d and UIkU
T~q.
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Since

(UIkU
T ~d ) � (UIkU

T~q ) = ~d TUIkU
TUIkU

T~q

= ~d TUIkU
T~q (since UTU = I and IkIk = Ik)

= SimLSI�ML(d; q); (3.21)

we are indeed comparing the projected images of document and query vectors on

the range space of Ak when we compute LSI similarities.

As in GVSM, monolingual LSI usually uses the original collection matrix D

for training, i.e., A = D. Then, the projected vector of the j-th document on

Ak = Dk is

UIkU
TD(j) = UIkU

TDej = UIkU
TU�V T ej = UIk�V

T ej = U�kV
T ej = Akej:

In words, the representation of the j-th document of A in the reduced-dimension

space is simply the j-th column of Ak. The similarity comparison between the

reduced-dimension document Akej and the projected query UIkU
T~q is

(UIkU
TD(j)) � (UIkU

T~q ) = (Dkej)
T UIkU

T~q

= eTj D
T
k UIkU

T~q

= eTj V �kU
TUIkU

T~q

= eTj Vk�kIkU
T~q

= eTj D
T
k ~q (since �kIk = �k)

= (Dkej) � (~q );

which gives a simpli�ed formula for LSI measurement when we train directly on

the retrieval matrix D: Once we have the SVD dimension reduction of D, we
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simply compute IkU
T ~q and compare it to the j-th column vector in �kV

T .

Empirically, the computations of IkU
T , �kV , and others mentioned above do

not require that we obtain the complete set of left and right singular vectors in

U and V , which are very large matrices and impossible to obtain (with current

resources) for a large term-document matrix. Instead, since the matrices Ik and

�k have nonzero elements only until the k-th diagonal element, it is adequate

to just compute the �rst k columns (singular vectors) of U and V for retrieval

purpose. I use U and V in the formulae of this dissertation merely for notational

coherence.

The use of SVD for dimension reduction has the property that the most

insigni�cant dimensions in the projection matrix are always discarded �rst. This

is shown by the Eckart-Young theorem [40]:

Theorem 3.1. Let U �V T be the SVD of matrix A, and Ak = U �k V
T be the

reduced-dimension form of A, where k � rank(A). Then

min
rank(B)=k

kA�BkF = kA� AkkF = kA� UIkU
TAkF :

That is, Ak is the closest to A (in terms of the Frobenius norm) out of all ma-

trices of rank k. The intuition behind LSI is that the best k topics underlying the

document collection are captured by the k dominant dimensions, with the dom-

inance determined by the corresponding singular values. In this way, LSI learns

the structure of the training materials, and uses this in making new judgments

of query-document relatedness. In many experiments, as well as some theoretical

analysis [79], keeping only the most signi�cant dimensions and discarding the rest

does result in improved retrieval performance.
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3.4.1 LSI and Query Expansion

The forms of Equation 3.10 (or Equation 3.15) and Equation 3.19 look much

alike. As the term similarity matrix used in the GVSM-based methods is AAT ,

naturally we can think of the matrix UIkU
T as the term-association matrix for

LSI. Speci�cally, IkU is an m�k matrix whose rows are vector representations of

them terms in the collection. The j-th value in a row vector represents how much

the corresponding term weighs in the j-th most signi�cant orthogonal dimension

of the training space de�ned by Ak. UIkU
T simply computes the dot product

between every pair of reduced-dimension term vectors in Uk.

From a di�erent point of view, we can compute the singular value decom-

position on the similarity matrix AAT of GVSM and �nd its latent semantic

structure. Given the SVD of A as in Equation 3.18, the SVD of AAT is

AAT = (U �V T ) (U �V T )T

= U �V T V �T UT

= U ��T UT (since V T V = I)

= U �2 UT (since �T = �): (3.22)

Since U is a unitary matrix and �2 is still diagonal, U �2 UT is exactly the

singular value decomposition of the term-association matrix AAT . In this new

perspective, UIkU
T is also the orthogonal projection onto the range of AkA

T
k ,

the reduced-dimension form of the term-association matrix AAT . Then, the LSI

similarity comparison given by Equation 3.19 can be viewed as expanding the

query ~q with UIkU
T in the term-association subspace Ak A

T
k , and then comparing

it to the document vector ~d:

SimLSI�ML(d; q) = (IkU
T ~d ) � (IkU

T ~q ) = ~d T UIkU
T ~q = (~d ) � (UIkU

T~q ): (3.23)
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Sch�utze's approach [102] to determining word senses is similar to the current view

of LSI retrieval: He computed the SVD of a term-term co-occurrence matrix to

�nd reduced-dimension vector representations of terms that reect their closeness

in meaning. One major di�erence between his approach and LSI is that he used

a context window size of 1,000 characters to obtain term co-occurrence data.

As mentioned before, diagonal elements of �2 are also known as the eigenval-

ues of AAT , while the corresponding column vectors of U are called eigenvectors.

Viewed this way, LSI is very closely related to the information space model that

uses the principal component analysis on the term correlation matrix|I will

discuss this shortly in the next section.

Since (~d ) � (UIkU
T~q ) = (UIkU

T ~d ) � (~q ), the LSI formula of Equation 3.23

can also been viewed as if it is performing document expansion before matching

against the query. An interesting result arises when expansion is performed on

both the documents and the query. If both ~d and ~q are multiplied by UIkU
T

at the same time and then their similarity are compared, the formula is exactly

the same as expressed by Equation 3.21. Since UT U = I, only one UIkU
T is

left in the end. This shows query expansion in LSI is idempotent : one UIkU

captures all levels of expansion. GVSM term-association matrix, on the other

hand, only captures second-order term co-occurrence. To get higher order term

co-occurrences, more copies of the transformation matrix A needs to be inserted

before the query and document vectors. For example, the following equation

captures third-order term co-occurrence:

(AAT ~d ) � (AAT~q ) = ~d TAATAAT~q = ~d TU�4UT~q:

This formula establishes a positive relation between two terms if they both co-

occur with a third term in some documents from the training collection. The
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problem with this is obvious: higher and higher powers of the singular values

appear in the middle. I will come back to this point in Section 3.5.3.

3.4.2 Geometric Information Space

A method similar to LSI called Information Space (Ispace) was developed by

Newby [74]. It operates by identifying eigenvectors and eigenvalues of a term-by-

term correlation or covariance matrix. The covariance matrix is derived from term

co-occurrence counts and the procedure of �nding its eigenvalues and eigenvectors

is known as principal components analysis (PCA) in statistics.

The information space is created and applied to document retrieval by the

following steps:

(1) A set of speci�c terms is selected from the document collection for rep-

resenting the information space.

(2) A term-by-term co-occurrence matrix is generated for those terms and

their correlation data is derived.

(3) Principal components analysis is applied to the correlation matrix to

form a reduced-dimension information space.

(4) Documents and queries are located at the geometric center of all the

terms that occur in them and can be compared against each other in

the information space.

(5) Similarity is measured by the geometric distance from each document

to each query.

Among these steps, (4) and (5) are the same as in VSM or LSI, while (1)

di�ers from indexing in LSI only in that LSI computes the relations among all
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terms in a corpus. The most signi�cant contrast between LSI and information

space lies in Step (2), and once that is clear, we will see that Step (3) is essentially

the same process as in LSI.

The term co-occurrence matrix in Step (2) is a square matrix with each row

or column representing a selected term. Let �x and �y denote the x-th and y-th

selected terms, respectively. Then, the element at row x column y and at row y

column x of the co-occurrence matrix indicates the number of times �x and �y co-

occur in a document. Now, let two random variables Ox and Oy be the indicator

variables for whether �x and �y occur in a document. Then, the correlation of

any two terms can be computed using the following formula (see Appendix B.1

for the derivation):

Corr(Ox; Oy) �
n df (�x & �y)� df (�x ) df (�y)p

df (�x ) (n � df (�y)) df (�y) (n � df (�y))
; (3.24)

where n as before is the number of training documents, df (�x ) and df (�y) are the

document frequency of the terms �x and �y, respectively, and df (�x & �y) is the

number of documents in which both �x and �y appear.

Then, for a set of m0 selected terms, a term-term correlation matrix C 0 = [c0ij]

can be constructed where the c0ij = Corr(Oi; Oj). Except for the way that matrix

elements are derived, this correlation matrix is the same as the term-association

matrix C = AAT used in GVSM. In the information space method, PCA is then

used to �nd the eigenvalue and eigenvectors of the matrix C 0:

(U 0)T C 0 U 0 = � = diag(�1; �2; : : : ; �m0); (3.25)

where � contains the eigenvalues of C 0, and U 0 is orthogonal and contains the

eigenvectors of C 0. The eigenvectors that correspond to the the �rst k eigenvalues
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LSI Information Space
Term Selection use all m terms select m0 < m

\good" terms
Term Association Matrix C = AAT C 0 = [Corr(Oi; Oj)]
Computation A = U �V T so that (U 0)T C 0 U 0 = �

UTCU = UTAATU = �2

Dimension Reduction �rst k columns of U �rst k columns of U 0

Variance Captured (
Pk

i=1 �
2
i )=(
Pr

i=1 �
2
i ) (

Pk

i=1 �i)=(
Pm0

i=1 �i)

Table 3.1: The information space method di�ers from LSI in only the selection
of terms and creation of the term-association matrix.

are the �rst k principle components of C 0. Furthermore, if we consider the m0

selected terms as a random vector T = (�1; �2; : : : ; �m0), then the proportion of

total variance (of their occurrences in documents) due to the �rst k principal

components is

Pk

i=1 �iPm0

i=1 �i
:

Typically, k is selected where the above proportion reaches 90% or 99%. The

corresponding principle components then form a k-dimension subspace of C 0,

just like in LSI, where dimension reduction is performed via SVD on the matrix

AAT . In LSI, the same variance can be computed in terms of the singular values,

which are just the square roots of the eigenvalues of AAT :

Pk

i=1 �
2
iPr

i=1 �
2
i

;

where r is the rank of A. From this, we see that the information space method

is very closely related to LSI; the comparison is summarized in Table 3.1.
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3.4.3 Cross-Language LSI

Like the generalized vector space model, latent semantic indexing can be ap-

plied to cross-language information retrieval, provided that a bilingual document-

aligned corpus is available for training. The query-expansion mechanism in both

methods can be viewed as a natural way to establish a cross-language semantic

correspondence between terms in di�erent languages that mimics the e�ect of

real translations.

Cross-language LSI is very similar to monolingual LSI; it computes the orthog-

onal dimensions in the parallel training corpus and uses them as the projection

matrix for the bilingual semantic space where queries and documents in di�erent

languages can be compared [65, 7]. Assuming A and B are the term-document

matrices for the training documents in two languages, as in Section 3.3.1, the

SVD of the following matrix is computed to build the bilingual space:

�
A
B

�
= U �V T ; (3.26)

where matrix [ATBT ]T is of dimension (m+ p)� n. Each column of this matrix

combines a pair of parallel documents in two languages into a single document.

Similar to the monolingual case, a term, regardless of the language it is in, gets

a reduced-dimension vector representation in the rows of IkU , which consist of

the �rst k columns of U . Term similarities are computed by UIkU
T , as in the

monolingual case. Let D0

(j) and ~q
0 be the vector extension of j-th document D(j)

and query ~q, respectively, so that they cover terms in both languages:

D0

(j) =

�
D(j)

0

�
; ~q 0 =

�
0
~q

�
:
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Then, the similarity comparison measure is essentially unchanged from monolin-

gual LSI:

SimLSI�CL = (IkU
TD0

(j)) � (IkU
T~q 0) = (D0

(j))
TUIkU

T~q 0: (3.27)

Comparing the cross-language LSI formula to that of cross-language GVSM,

the training matrix appears to be quite di�erent from what one may anticipate.

In GVSM, the cross-language term association matrix is ABT , which, following

the discussion in Section 3.4.1, we would imagine LSI should analyze via SVD.

But, ABT is a very large term-term matrix and also much denser than either A

and B. On the other hand, the cross-language LSI formula in Equation 3.27 can

be viewed as analyzing the following term association matrix:

�
A
B

� �
A
B

�T
=

�
A
B

�
[ATBT ] =

�
AAT ABT

BAT BBT

�
;

with just one SVD, we are analyzing both the monolingual term-association ma-

trices (AAT and BBT ) and the cross-lingual ones (ABT and BAT ). Of course,

this is an approximation to a rigorous three-step process that incorporates both

monolingual and cross-language term-associations (BBT , BAT , and then AAT ),

which is the subject of next section.

3.4.4 Procrustes Analysis

The Procrustes analysis method developed by Littman et al. [71, 68] performs

the \translation" from one language into another explicitly. They �rst �nd the

SVD's of A and B to obtain the respective reduced-dimension LSI spaces Ak and
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Bk:

Ak = U �k V
T

Bk = W 
kX
T :

Since query ~q will be projected into the space of Bk, the translation would require

a mapping from Bk to Ak so that ~q can have an appropriate representation in

Ak. Applying the solution to the Procrustes problem [49], a rotation matrix can

be found between the matrices IkU
TA = �k V

T and IkW
TB = 
kX

T 1, both of

dimension k � n (n is the number of parallel documents). In particular, let the

singular value decomposition of 
kX
T V �k (a k � k matrix) be


kX
T V �k = U 0�0 (V 0)T ;

then U 0 (V 0)T is the orthogonal rotation matrix we are looking for (see Ap-

pendix B.2). This is equivalent to �nding a transformation from Bk to Ak by

computing the SVD of the matrix Bk A
T
k :

Bk A
T
k = W 
kX

T V �k U
T

= WIk U
0 �0 (V 0)T Ik U

T

= (WIk U
0) �0 (UIk V

0)T ;

where WIkU
0 and UIkV

0 are unitary matrices. So, T = WIk U
0 (V 0)T Ik U

T is

a rotation matrix from Bk to Ak. Now, the query vector ~q can be �rst pro-

jected (query expansion), then rotated (translation), and �nally projected again

1An alternative approach is to �nd the rotation matrix between V and X , which is related to
the new cross-language LSI formula that I present in Section 3.5.1.
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as follows:

~q ! WIkW
T~q

WIkW
T~q ! T T WIkW

T~q

T TWIkW
T~q ! UIk U

T T TWIkW
T~q = UIk V

0 (U 0)T IkW
T~q = T T~q:

In essence, the similarity comparison formula of the Procrustes method is

SimPA�CL(d; q) = ~d T UIk V
0 (U 0)T IkW

T~q

= ((V 0)T Ik U
T ~d ) � ((U 0)T IkW

T~q ): (3.28)

The connection between the Procrustes analysis method and LSI is most evident

when we apply the above derivation steps to the case of monolingual retrieval.

Appendix B.3 shows the interesting result that monolingual Procrustes analysis

is exactly the same as monolingual LSI.

Because the translation step of Bk A
T
k requires an SVD of a probably very

dense matrix (in contrast, recall that we only need to �nd the SVD of A|a

sparse matrix|in order to compute the SVD of AAT ), such a three-step process

has been carried over only on relatively small collections on the orders of several

thousand dimensions [71, 68].

3.4.5 Generalized Singular Value Decomposition

Since cross-language LSI treats each training document pair (the aligned columns

of A and B) as a single document, any query or document in only one language

will thus be treated like a \half" document. To see this, let A(j) and B(j) be any

pair of corresponding documents in the training corpus. Then, since they contain

terms in only one language, their vector representations need to be \extended"
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with zeros to cover the terms in the other language. In fact, IkU
T

�
A(j)

0

�
and

IkU
T

�
0

B(j)

�
are the vector representations of A(j) andB(j) in the latent semantic

space.

One way to address this issue is to force the two documents to have the same

vector representation after SVD. This can be achieved through the generalized

version of singular value decomposition (GSVD) on a pair of matrices [49]:

�
A
B

�
=

�
U�
W


�
V �1; (3.29)

where U 2 <m�m and W 2 <p�p are unitary matrices, V 2 <n�n is invertible,

� = diag(�1; �2; : : : ; �n), and 
 = diag(!1; !2; : : : ; !t), where t = min(p; n).

The GSVD of A and B give rise to a new LSI-like formula for cross-language

document comparison:

Sim(d; q)GSVD�CL = ~d T U ��1 
�1W T ~q = (��1UT ~d )T (
�1W T~q ): (3.30)

Here, the common part (V �1) of the two matrices is extracted, and, in U and

W , two sets of orthogonal vectors are constructed to represent terms in the two

di�erent languages.

Now, for any pair of training documents A(j) and B(j), their projected images

in the GSVD space are

��1 UTA(j) = ��1 UTAej = ��1 UTU�V �1ej = V �1ej

�1W TB(j) = 
�1W TBej = 
�1W TW
V �1ej = V �1ej:

Thus, their mapped images are indeed identical.

Whereas whether we really need to treat parallel documents in di�erent lan-
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guages as identical remains as an issue, the retrieval performance of GSVD ap-

pears to be not much di�erent from that of LSI, which I will briey present in

Section 4.3.2. Like Procrustes analysis, the GSVD algorithm is currently feasi-

ble only on small collections because there is no software package for large-scale

sparse matrices. I had to use the general LAPACK procedure for GSVD to

accomplish the task described in Section 4.3.2.

3.5 Dimension Equalization

All the methods I have discussed so far fall into three categories: the basic term-

matching approach of VSM, the methods with a simple utilization of the term-

term association matrix, and the others that use SVD to analyze the association

matrix. Hence, we have the three basic forms of vector-based method of infor-

mation retrieval: VSM, GVSM, and LSI. They all have their advantages and

disadvantages in terms of computational complexity, storage requirements, and

retrieval performance. In this section, I discuss their mathematical relationships

to solidify a uni�ed view of those methods and lay the groundwork for the ap-

proximation algorithm presented in Chapter 4.

From the previous sections, we see that all three methods do in one way or

another conform to Equation 3.1. Their formulae look quite di�erent, however,

as Table 3.2 shows.

We can obtain the VSM and LSI similarity formulae from a di�erent perspec-

tive, in terms of a special form of the training matrix A. Before I continue, I

introduce some new notation.

First, I de�ne the operation of dimension equalization as re-composing A

with U and V , but giving all columns unit equal weight. This process is shown
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Monolingual Cross-language

VSM (IT ~d ) � (IT~q ) = (~d ) � (~q ) {

GVSM (AT ~d ) � (AT~q ) (AT ~d ) � (BT~q )

GVSM with Spk(A
T ~d ) � Spk(A

T~q ) Spk(A
T ~d ) � Spk(B

T~q )
Sparsi�cation

Similarity (E ~d ) � (E ~q ) (E ~d ) � (F ~q )
Thesaurus where E is like AT and F is like BT

Local �

n1
(DT ~d ) � (Spnn1(D

T~q )) (BT ~d ) � (Spnn1(A
T~q ))

Feedback +� (~d ) � (~q ) where D = A

LSI (IkU
T ~d ) � (IkU

T ~q ) (IkU
T ~d ) � (IkU

T ~q )

where A = U�V T where

�
A

B

�
= U�V T

Information (Ik(U
0)T ~d ) � (Ik(U

0)T~q ) {
Space where (U 0)TC U 0 = �

and C is like AAT

Procrustes (IkU
T ~d ) � (IkU

T~q ) ((V 0)T Ik U
T ~d ) � ((U 0)T IkW

T ~q )
Analysis where A = U �V T where A = U �V T ,

B =W 
XT ,
and 
kX

T V �k = U 0�0 (V 0)T

GSVD { (��1UT ~d ) � (
�1W T~q )

where

�
A
B

�
=

�
U�
W


�
V �1

Table 3.2: The three conventional vector-based information retrieval methods
(shown in boldface) and their close relatives all use a projection matrix, but they
look wildly di�erent from the surface.

in Figure 3.2 and a formal de�nition is given below.

Notation 3.5. Suppose A = U �V T . Then the equalized-dimension form of A

is

�A = U diag(1; 1; : : : ; 1) V T = UI V T = UV T :

In addition, recall that the reduced-dimension form of A is

Ak = U �k V
T :
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Figure 3.2: The dimension equalization of a matrix A involves replacing the
singular value matrix � by the identity matrix I.

1

...
1

kk

Reduced Dimension Equalization

 I VTA

k

k

n

m

m

m

n

n

m U

n

k

k

Figure 3.3: The reduced form of a dimension-equalized matrix �A involves re-
placing the identity matrix I by Ik, where k � r (the rank of the original matrix
A).

Then, the reduced-dimension form of �A is

�Ak = U Spnk(�)V
T = UIkV

T = U diag(1; 1; : : : ; 1; 0; 0; : : : ; 0) V T :

This is illustrated in Figure 3.3.

Now, we are ready to see formulations of LSI and VSM that look similar to

that of GVSM.
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Formulation Equation Interpretation

(IkU
T ~d ) � (IkU

T~q ) 3.19 fold in the document and the query
in the latent semantic space

(UIkU
T ~d ) � (UIkU

T ~q ) 3.21 projecting the document and the query
onto the range of reduced-dimension
space Ak

(~d ) � (UIkU
T ~q ) 3.23 expand the query using the �rst k

dimensions of A before comparing to the
document

( �AT
k
~d ) � ( �AT

k ~q ) 3.31 using the reduced dimension equalization
form of A as the transformation matrix

Table 3.3: Similarity comparison of LSI can be formulated in four di�erent ways
with di�erent interpretations.

3.5.1 LSI Revisited

Through the following derivation, we see that �Ak is also a transformation matrix

for LSI:

( �AT
k
~d ) � ( �AT

k ~q ) = (V IkU
T ~d ) � (V IkU

T~q )

= ~d TUIkV
TV IkU

T~q

= ~d TUIkU
T ~q

= SimLSI�ML(d; q): (3.31)

So far, I have given four di�erent formulations of LSI similarity comparison.

They are summarized in Table 3.3.

The new LSI formula of Equation 3.31 looks very much like the GVSM one in

Equation 3.10, except for what is in the middle: while the GVSM transformation

matrix A has its natural diagonal matrix intact, the LSI matrix �Ak replaces it

with an identity matrix up to k dimensions. It should be noted that the di�erence
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is the squares of diagonal elements and the number of dimensions:

SimGVSM�ML(d; q) = ~d TAAT~q

= ~d T (U �V T )(U �V T )T~q

= ~d TU�V TV�UT ~q

= ~d TU�2 UT~q

= (�U ~d ) � (�U~q ):

Comparing this last formula to the similarity measure of LSI in Equation 3.19,

we see that GVSM is a weighted (by the squares of singular values) version of

full-rank LSI.

Now, for cross-language retrieval, recall that GVSM uses the following formula

(Equation 3.10):

SimGVSM�CL(d; q) = (AT ~d ) � (BT~q );

with A being replaced by its translational counterpart B on the query side. For

cross-language LSI, we could do a similar thing, simply substituting �Bk for �Ak

on the query side:

SimLSI�CL(d; q) = ( �AT
k
~d ) � ( �BT

k ~q ): (3.32)

This is quite di�erent from the original cross-language LSI formulation by Lan-

dauer and Littman [65] as described in Section 3.4.3. Compared to this traditional

cross-language LSI, my new approach computes two separate SVD's of smaller

matrices instead. This is certainly more useful when the combined matrix be-

comes too large to analyze via SVD.

When k = n, the number of documents in the training collection, for k in

71



Equation 3.32, this new cross-language LSI is a special case of the Procrustes

method discussed in Section 3.4.4 (see Appendix B.4 for a derivation).

3.5.2 VSM Revisited

As shown in Equations 3.10, 3.12, 3.31, and 3.32, GVSM and LSI use forms of

the training matrices A and B for projection. VSM can be expressed in a similar

fashion as well.

To see this, I �rst examine the relationship between VSM and LSI. In mono-

lingual LSI retrieval, training is usually done directly on the retrieval collection.

This means A = D, where A is the matrix for the training collection and D the

matrix for the retrieval collection. In addition, if all the orthogonal dimensions

of D are used in LSI (k = r, the rank of D), then Equation 3.19 becomes

SimLSI�ML(d; q) = (IkU
TD(j) ) � (IkU

T ~q ) (since A = D)

= (UTDej) � (U
T~q ) (since k = r)

= (UTU �V T ej) � (U
T~q )

= (�V T ej) � (U
T~q )

= eTj V �UT~q

= DT
(j) ~q

= (D(j) ) � (~q )

= SimVSM (d; q): (3.33)

In words, if the full rank of the retrieval matrix is used for training, monolingual

LSI turns into VSM.

It then follows that since LSI uses �Ak as the transformation matrix, VSM uses
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Monolingual Cross-language

GVSM (AT ~d ) � (AT~q ) (AT ~d ) � (BT~q )

VSM ( �AT ~d ) � ( �AT~q ) ( �AT ~d ) � ( �BT~q )

LSI ( �AT
k
~d ) � ( �AT

k ~q ) ( �AT
k
~d ) � ( �BT

k ~q )

Table 3.4: VSM, GVSM, and LSI expressed in terms of the di�erent forms of
the training matrices A and B.

�A = �D with no dimension reduction at all. Hence, we have

( �ATD(j) ) � ( �A
T~q ) = (V UTD(j) ) � (V U

T~q )

= (V UTU �V T ej ) � (V U
T~q )

= (V �V T ej ) � (V U
T~q )

= eTj V �V TV UT~q

= eTj V �UT ~q

= DT
(j) ~q

In other words, in VSM the projection matrix P = �A. Thus, all three methods

can be expressed in a normal or special form of A, as summarized in Table 3.4.

Note that in the cell for cross-language VSM, the formula ( �AT ~d ) � ( �BT~q ) is

not exactly VSM but full dimensional LSI. The requirements for LSI to be VSM

include not only full dimensionality, but also training on the retrieval collection.

If we did have a parallel corpus for retrieval, then a trivial extension of the

monolingual VSM would do the cross-language retrieval job: do monolingual

retrieval on the documents that are in the language of the query, and then return

their aligned counterparts in the other language.
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3.5.3 Comparison of Singular Values

If the singular values of the training matrix A were all the same, then the formulae

for GVSM and VSM in Table 3.4 would give the same scores for the same query

against a document collection (i.e. same ranking). Similarly, LSI and VSM are

the same if the dimensionality k is chosen equal to the rank r of A. Therefore,

the di�erences we observe between VSM, GVSM, and LSI in practice depend on

the distribution of the singular values of the training matrix.

Figure 3.4 shows the singular values of the small 1,121 UNICEF English test

documents used by Carbonell et al. [26]. The collection is indexed with the

SMART ntc weighting scheme and a complete spectrum of 1,103 singular values

is easily found from the matrix. The characteristic of this plot is that its corre-

sponding matrix possesses the low-rank-plus-shift structure, reported by Zha and

Zhang in their study of LSI [124, 123] (see Section 2.4.3): the singular values are

relatively large but decrease sharply at the beginning, level o� noticeably for the

most part in the middle, and dip again at the end (due to rank-de�ciency [124]).

Since the singular values indicate how important their corresponding singular

vectors (dimensions) are in the term-document space, the special shape of their

distribution plot does show that the vector space has a few very dominant dimen-

sions (hence the \low rank"), plus a wide range of mostly identical dimensions

(like \shifting" or multiplying the identity matrix by some constant value).

I have plotted the singular values of a number of corpora, varying language,

size, and indexing scheme, and all seem to have this special property. Figure 3.5

shows four such plots of some relatively small document collections (with at most

10,000 documents) on which a complete SVD can be computed using current

hardware and software. The detailed information of these four corpora are listed
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Figure 3.4: Singular value distribution of the matrix of the CMU UNICEF
English test collection shows the its low-rank-plus-shift structure.

in Table 3.5 on the same page as the plots.

When the matrix size gets too large to compute the complete spectrum using

current computing resources, we still see the trend of initial dropping and leveling

o� of singular values. Plotted on Figure 3.6 are the �rst 480 singular values of

the TREC French collection of 141,643 documents with Okapi term weighting.

More plots of other large corpora are shown in Figure 3.7, and their information

is listed in Table 3.7.

What does this imply for the behavior of the various vector-based IR methods?

All three projection matrices (A, �A, and �Ak) have the same left and right singular

vectors (U and V ) and only di�er in how they weight these vectors (�, I, and Ik).

So, for all three methods, P = U �V T using Equation 3.1, where � is a diagonal
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Collection Language Subject Documents Terms Weighting

Medlars English Medicine 1,033 7,014 SMART ntc

Cran�eld English Aerodynamics 1,400 3,763 SMART ntc

CMU UNICEF Spanish Politics 1,134 15,343 SMART ntc

TREC AP 1990 English News 10,000 47,887 SMART ntc

Table 3.5: Characteristics of four small document collections show that they are
very diverse.
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Figure 3.5: Singular value distributions of the matrices of the Medlars, Cran-
�eld, UNICEF, and TREC AP 1990 collections all show the low-rank-plus-shift
structure.
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Figure 3.6: Distribution of the �rst 480 singular values of the TREC French
collection matrix still show the initial part of its low-rank-plus=shift structure.

matrix of dimension weights. The di�erence between the three methods in terms

of � is summarized in Table 3.7. According to the distributions of real singular

values, we see that the projection P in GVSM is skewed by �, while the one in LSI

is �ltered by a Heaviside function. The relative dimension weights or normalized

singular value distributions of the three vector-based methods are illustrated by

the solid lines in Figure 3.8 (the dashed lines will be explained shortly). While

VSM and LSI equally apply the orthogonal dimensions they use, GVSM seems

to give overwhelming emphasis to the initial ones. This makes GVSM look like a

very low-dimension LSI, since the e�ect of all dimensions except the �rst few is

negligible. VSM is the other extreme since it is a full dimensional version of LSI.

A natural question to ask at this point is, what is the \right" value of � to
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Collection Language Subject/Type Documents Terms Weighting

TASA English Highschool Readings 37,651 74,729 Similarity

Thesaurus

NACSIS Japanese Academic Paper 45,372 33,553 Similarity

Abstracts Thesaurus

TREC French News 141,643 196,878 SMART ntc

Hansard French Canadian Parliament 227,344 102,078 SMART ntc

Proceedings

Table 3.6: Characteristics of four large document collections show that they are
quite di�erent.
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Figure 3.7: Initial singular value distributions of the TASA, NACSIS, TREC
French, and Hansard collection matrices show they all possess the common
low-rank-plus-shift structure.
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Monolingual Cross-language
A = U �V T A = U �V T , B = W 
XT

P = U �V T P = U �V T , Q = W 	XT

Sim(d; q) = (P T ~d ) � (P T~q ) Sim(d; q) = (P T ~d ) � (QT~q )
GVSM � = � � = �, 	 = 

VSM � = I � = I, 	 = I
LSI � = Ik � = Ik, 	 = Ik

Table 3.7: VSM, GVSM, and LSI di�er only in the diagonal elements of their
respective projection matrices.

use? In some sense, the answer is whichever gives the best empirical results.

But, we can make a motivated prediction based on linear algebra. Ideally, the

transformation matrix P should project queries and documents into the row

space of the training matrix, since this is our source of information on term-

term relatedness. However, the least signi�cant dimensions of the row space

(those corresponding to the smallest singular values) are likely to be modeling

\noise"|variability in term usage that does not correspond to a signi�cant change

in meaning. Thus, we might want to project documents and queries into all but

the least signi�cant dimensions of the row space. This truncation is achieved by

setting � = Ik�, where k
� is the optimal number of dimensions to include.

Empirically, studies using smaller collections have shown that best retrieval

performance can indeed be achieved with reduced but equally weighted dimen-

sions of the training matrix [39, 36, 70]. With larger collections, however, the

small number of dimensions that can be calculated does not appear to be enough

to demonstrate the utility of dimension reduction with equalization. In other

words, by extrapolating from studies on the smaller collections, I predict the

ideal k� is lying there somewhere beyond what can be computed using current

computing resources. This is depicted as a dashed line in Figure 3.8.

While none of VSM, GVSM, and LSI match the singular values of the idealized
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Figure 3.8: The three basic vector-based methods apply quite di�erent relative
weights to the orthogonal dimensions of the training matrices that they use for
projection.

transformation matrix, the following lemma is useful in judging which gives the

best approximation.

Lemma 3.1. Let A be a monolingual training corpus with singular value decom-

position U�V T . Let P = U�V T and Q = U	V T be two transformation matrices

that share left and right singular vectors with A. Compare the matrices of sim-

ilarities obtained by comparing all pairs of documents in A to each other using

SimP and SimQ. The Frobenius norm of SimP (A;A)�SimQ(A;A) is equal to the

Frobenius norm of �2(�2 � 	2)2.

A proof of this lemma can be found in Appendix B.5. What it tells us is that

the closer two transformation matrices are in their singular values, the closer are
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the similarities they produce. Further, the dimensions that matter the most are

the ones that correspond to the largest singular values in the training matrix A.

Based on this, we would expect VSM to produce the most accurate similarity

scores, followed by LSI, which is accurate for the dimensions with the highest

singular values. However, VSM cannot be used directly for cross-language re-

trieval. In the next chapter, I develop a novel approximation to the idealized

transformation matrix, which will �ll in the question mark in Figure 3.8.
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Chapter 4

Approximate Dimension Equalization

As I have described in last chapter, VSM, GVSM, and LSI are closely related

vector-based IR methods each with its own unique strengths. VSM is simple,

scales extremely well, and gives excellent performance on large text collections,

but it cannot be used for cross-language retrieval without applying language-

speci�c knowledge or machine translation techniques [20, 119]. LSI extends VSM

by obtaining a reduced-dimension representation that models term-term associ-

ations, thus allowing a query to have a positive similarity to a document with

which it shares no terms. This is especially important in cross-language IR appli-

cations. While LSI has shown impressive performance on some text collections,

its performance on extremely large and diverse text collections has lagged behind

that of VSM. I have presented some evidence that this is because of the large

number of dimensions needed from the SVD for large text collections. Although

SVD is used as a preprocessing step in retrieval by LSI, the large size of modern

information collections has made full SVD computations less and less feasible.

GVSM also models term-term associations, and scales much more easily than

LSI. Unfortunately, its performance also lags substantially behind that of VSM

and often LSI. I argued that this is because, although GVSM uses more dimen-

sions than LSI, it puts tremendous weight on the largest ones, resulting in an

e�ective dimensionality that is substantially smaller.

In this chapter, I show how to combine ideas from VSM, GVSM, and LSI to

obtain a vector representation that approximates the e�ect of dimension equal-

ization. This approximation algorithm is based on the consistent pattern we
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observe from the distribution plots of singular values of many text collections,

which I discuss in detail in Section 4.1. Then, in the sections that follow, I will

formally introduce the algorithmic procedure of this approximation method and

show experimental results applying the approximation technique on a variety of

retrieval collections.

4.1 Motivation

In Sections 3.5.1 and 3.5.2, I explained the analytical di�erences between VSM,

GVSM, and LSI in terms of dimension equalization of the projection matrix

P . All three methods use the same left and right singular vectors from the

training matrix but with di�erent weights in the middle. Then, in Section 3.5.3, I

provided the singular value distributions of a number of document collections that

consistently demonstrated the low-rank-plus-shift structures of the corresponding

matrices. This helps to clarify the di�erence: GVSM is very low dimensional

(approximately), LSI reduced dimensional, and VSM full dimensional.

Retrieval performance of these methods has been compared by researchers

between VSM and GVSM [118, 117], between VSM and LSI [39, 32, 36, 37],

and among VSM, GVSM, and LSI [26, 121, 70]. A mixture of results has been

reported, with GVSM and LSI outperforming VSM on smaller collection and LSI

almost always having a better retrieval result than GVSM on the same corpus.

A notable exception is Yang et al. [121], who found GVSM to be more e�ective,

especially in cross-language retrieval, than LSI. Our attempt to replicate these

results were not successful [70].

In recent years, however, LSI has exhibited second-rate performance in mono-

lingual retrieval on large collections compared to VSM. The crucial reason for this
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under-achievement of LSI is that, as the modern text collections grow larger, the

large-dimensional SVD has become more di�cult to compute. For corpora that

consist of hundreds of thousands of documents, only about one or two percent

of the orthogonal dimensions of their matrices can be calculated with present

resources. The hypothesis is that although dimension reduction is a fundamental

property of LSI, abandoning 95% or more of the dimensions (see, for example,

experiments described in Section 4.3) oversimpli�es the vast, complex structure

of the semantic space represented by the large number of documents. As we see

from the results presented later in Section 4.3.2, where I am able to obtain all

dimensions of the space of the relatively small UNICEF collection, the best LSI

performance is reached at 55% of the full dimension of the training matrix. This

also explains why GVSM works as well as other methods on small collections.

When collection size is small, the small number of dimensions that dominate in

the GVSM transformation matrix would comprise a large portion of the complete

dimensionality, making it closer to LSI than it is on larger corpora.

From these observations, I conclude that we need a certain fraction of the

orthogonal dimensions of the training matrix for productive retrieval. We see

that too few dimensions do not capture enough information while too many, in

the case of VSM, can provide good retrieval performance. But, in the latter

case, we lose the ability of deriving term-term associations. Hence, getting this

proportion of dimensions, which varies over corpora, as well as using them equally

is a key to e�ective retrieval. What we need is an approximation method that

achieves this with only limited computing power. The current resources are the

SVD package from LSI, which can compute a limited number of singular vectors

and values, and GVSM, which essentially uses all the singular vectors, but in a

way that over-emphasizes the �rst few singular vectors.
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Upon re-examining the plots in Figures 3.4, 3.5, 3.6, and 3.7, I realized I can

take advantage of the special low-rank-plus-shift structure of the singular values.

From these �gures, I speculate that

1. the relatively at singular values in the middle (the \shift" part) can prob-

ably still be used to weight the corresponding singular vectors (as in the

GVSM case) without too much deviation from the situation in dimension

equalization, where 1 is the weight on all available singular vectors,

2. some work needs to be done on the large singular values at the beginning,

which are computable using the current resources, to decrease the impor-

tance level of their corresponding vectors to that of the middle vectors,

and

3. the singular values at the end that correspond to the \dip" should not

concern us because we are dropping the last singular vectors in dimension

reduction anyway.

These points combined would result in a method that utilizes the computations

used in both LSI and GVSM. The key to this algorithm lies in the fact that the

middle singular vectors in the original matrix are weighted close to evenly with

small di�erences between the corresponding consecutive singular values. This

gradual downgrading of singular vectors with singular values may not be too

detrimental at all, since each next dimension may be less important than the

current one. On the other hand, as we are still giving weights to the middle

orthogonal dimensions, lowering down the importance of initial singular vectors

would mostly mean assigning them weights close to the middle singular values.
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4.2 Algorithm

Recall from Chapter 3, Ak is the reduced-dimension form of the training matrix

A:

Ak = U diag(�1; �2; : : : ; �k; 0; : : : ; 0)V
T = U �k V

T ;

�A is the equalized dimensional form of A:

�A = U diag(1; 1; : : : ; 1) V T = UI V T = UV T ;

and �Ak is the reduced-dimension form of �A:

�Ak = U diag(1; 1; : : : ; 1; 0; 0; : : : ; 0) V T = UIk V
T :

Now, de�ne

~Ak = �Ak +
1

�k
A�

1

�k
Ak:

~Ak has the same left and right singular vectors of A, and consists of the �rst k

equalized dimensions of A and the remaining r�k dimensions of A normalized by

�k. In terms of the projection matrix P = U �V T as discussed in Section 3.5.3,

the dimension weights � is

~Ik = Ik +
1

�k
��

1

�k
�k;

where ~Ak = U ~Ik V
T as matrix multiplication is associative. The process of

creating ~Ik is illustrated in Figure 4.1. The normalization 1=�k is there to down-

weight the rest of the singular values (�k+1, : : : , �r) because the �rst k singular

values (�1, : : : , �k) are changed to the value of one.
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Figure 4.1: Approximate dimension equalization: using the dimension weights
of �Ak (Ik), A (�), and �A (�k) to form those of ~Ak (~Ik).

This new matrix ~Ak takes advantage of the special shape of the singular value

plots of all the term-documents we have seen; it attens out the �rst k very large

singular values, and attaches the rest of the real singular values, which are a

relatively level and long middle portion with a small dipping tail. This way, we

obtain relatively equalized dimensions of the training matrix until close to the

end of all dimensions. Now, for monolingual retrieval, we simply calculate

SimADE�ML(d; q) = ( ~AT
k
~d ) � ( ~AT

k ~q );

and for cross-language retrieval, we replace the ~Ak in front of ~q by ~Bk:

SimADE�CL(d; q) = ( ~AT
k
~d ) � ( ~BT

k ~q ):

I call this approach approximate dimension equalization (ADE). The big question

mark in Figure 3.8 can now be replaced by the dimension weights of the ADE

method. The new drawing is shown in Figure 4.2, and the analytical di�erence

between the four method is compared in Table 4.1.

It is clear that ADE approximates the ideal singular values better than either

LSI or GVSM. From one perspective, ADE is trying to extend the limited ability

of LSI to compute the singular vectors and values of a large training matrix by im-

plicitly adding additional ones with relatively equal weights. From another, ADE

makes cross-language VSM possible, obtaining most if not all the dimensions of

both training matrices with equalization. From a third, it uses GVSM's approach
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Figure 4.2: Weights applied to the orthogonal dimensions of their respective
projection matrices by VSM, GVSM, LSI, and ADE.

to scalably capturing term-term correlations, modi�ed to prevent overemphasiz-

ing the �rst handful of dimensions. In a sense, the projection used by ADE is

better than LSI on large matrices because in LSI, truncating dimensions at the

largest number we can compute is completely unjusti�ed by the data. ADE, on

the other hand, uses all the available dimensions in a way that is supported by the

data. The four vector-based methods, VSM, GVSM, LSI, and ADE, expressed

in a normal or special form of A are summarized in Table 4.2.

Computationally, ADE only needs to compute the �rst k dimensions of the

training matrix, much like a k-dimension LSI. Moreover, in practical applications,

the ADE similarity formula is simpler to compute than one would imagine. Notice
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Monolingual Cross-language
A = U �V T A = U �V T , B =W 
XT

P = U �V T P = U �V T , Q =W 	XT

Sim(d; q) = (P T ~d ) � (P T~q ) Sim(d; q) = (P T ~d ) � (QT~q )
~Ik = Ik +

1
�k
�� 1

�k
�k

~IAk = Ik +
1
�k
�� 1

�k
�k,

~IBk = Ik +
1
!k

� 1

!k

k

GVSM � = � � = �, 	 = 

VSM � = I � = I, 	 = I
LSI � = Ik � = Ik, 	 = Ik
ADE � = ~Ik � = ~IAk , 	 = ~IBk

Table 4.1: VSM, GVSM, LSI, and ADE di�er in the diagonal elements of their
respective projection matrices.

Monolingual Cross-language

GVSM (AT ~d ) � (AT~q ) (AT ~d ) � (BT~q )

VSM ( �AT ~d ) � ( �AT~q ) ( �AT ~d ) � ( �BT~q )

LSI ( �AT
k
~d ) � ( �AT

k ~q ) ( �AT
k
~d ) � ( �BT

k ~q )

ADE ( ~AT
k
~d ) � ( ~AT

k ~q ) ( ~AT
k
~d ) � ( ~BT

k ~q )

Table 4.2: VSM, GVSM, LSI, and ADE expressed in terms of the di�erent forms
of the training matrices A and B.

that

SimADE�ML(d; q) = ( ~AT
k
~d ) � ( ~AT

k ~q ) =
~d T ~Ak

~AT
k ~q;

and the matrix ~Ak
~AT
k actually is not a complicated product once items cancel
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out:

~Ak
~AT
k = ( �Ak +

1

�k
A�

1

�k
Ak) ( �Ak +

1

�k
A�

1

�k
Ak)

T

= (UIkV
T +

1

�k
U�V T �

1

�k
U�kV

T ) (V IkU
T +

1

�k
V �UT �

1

�k
V�kU

T )

= UIkU
T +

1

�k
U�kU

T �
1

�k
U�kU

T +
1

�k
U�kU

T +
1

�2k
U�2UT

�
1

�2k
U�2

kU
T �

1

�k
U�kU

T �
1

�2k
U�2

kU
T +

1

�2k
U�2

kU
T

= UIkU
T +

1

�2k
U�2UT �

1

�2k
U�2

kU
T :

Now the ADE retrieval becomes quite straightforward:

SimADE�ML(d; q) = ~d T ~Ak
~AT
k ~q

= ~d TUIkU
T~q +

1

�2k
~d TU�2UT~q �

1

�2k
~d TU�2

kU
T~q

= SimLSI�ML(d; q) +
1

�2k
SimGVSM�ML(d; q)�

1

�2k
~d TU�2

k U
T~q

Note that at full dimensionality, ~d TU �2
k U

T~q = SimGVSM�ML(d; q). Therefore,

full-dimension ADE becomes full-dimension LSI, which is just VSM when training

on the retrieval corpus. On the other hand, when k = 0, the above formula would

have only the (1=�2k) SimGVSM�ML(d; q) part left. So, ADE is just GVSM with no

SVD involved.

In cross-language retrieval, even though we cannot do the same tricks as in

the monolingual case, the dense matrix ~Bk is still never directly formed. Instead,

we compute ~BT
k ~q by forming a transformed query vector at each step (assuming
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B =W 
XT as in Section 3.4.4):

~BT
k ~q = �BT

k ~q +
1

!k
BT~q �

1

!k
BT
k ~q

= XIkW
T~q +

1

!k
BT~q �

1

!k
X 
kW

T~q:

Note that there is no intermediate result (matrix) bigger than the size of the

number of queries by the number of documents (or terms, whichever is bigger).

Even if we process queries in batches of tens or hundreds, those matrices are still

not very large. Then, since

SimADE�TL(d; q) = ( ~AT
k
~d ) � ( ~BT

k ~q ) =
~d T ~Ak

~BT
k ~q;

~Ak
~BT
k ~q can be computed in a similar way.

An experimental comparison between LSI and the ADE method in terms of

the relative weights given to the orthogonal dimensions of the training matrix is

shown in Figure 4.3. This matrix is created from the 1,400-document Cran�eld

corpus, detailed results on which will be discussed in Section 4.3.1. To show a

real-data graph similar to Figure 4.2, I plotted Figure 4.3 based on the results

in Table 4.4. According to that table, LSI achieves its best performance with

300 orthogonal dimensions, all evenly weighted, and the rest are discarded. The

relative weights given to these dimensions by LSI is shown in dashed line and

labeled \LSI Ideal" in Figure 4.3. Now, suppose in reality I were only able to

compute the �rst 75 SVD dimensions. The relative weights used by LSI in this

case is shown in solid line and labeled \LSI Reality" in the graph. With the

ADE method, I implicitly attach the remaining 1,325 dimensions slightly down-

weighted, the dimension weights of which is plotted as the dash-dot line in the

�gure. As we can see, the ADE graph covers not only the entire area under the
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Figure 4.3: Relative dimension weights used by GVSM, LSI, and ADE on the
retrieval of the Cran�eld collection: ADE simulates the e�ect of an ideal LSI
retrieval by computing fewer initial dimensions and attaching the rest implicitly.

\LSI Reality" plot, but also a large portion of the area under the \LSI Ideal"

line. In terms of performance, with 75 computed dimensions, ADE did nearly as

well as LSI with 300! For comparison, I also include the dimension-weight plot

of GVSM in the same graph. Since in the retrieval process we rank documents

by their similarity scores to the query, what is important is the relative instead

of the absolute weight of each orthogonal dimension. Thus, the plotted GVSM

weights are normalized by dividing all the singular values by the �rst one. Since

the �rst few singular values are relatively large compared to the rest of them (the

low-rank-plus-shift structure), we see the very sharp drop at the beginning of the

GVSM plot. Performance-wise, the average precision of GVSM on this collection

is approximately the same as that of LSI with only 25 dimensions.
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4.3 Experimental Results

In this section, I present some results of applying the four vector-based methods|

VSM, GVSM, LSI, and ADE|on collections of di�erent sizes and in di�erent

languages. I have used both the traditional tf � idf and the more recent Okapi

weighting schemes to build the training matrices, and have presented my results

with whichever weighting scheme that works better with the conventional VSM.

Except for some of the rather small collections, most of my experiments were

run on a SGI machine named \dragon" in the Department of Computer Science

at Duke University. This computer has four MIPS R10000 2.5 processors and 2

gigabytes of RAM. I will refer to this machine simply as \dragon" in the experi-

ment descriptions where I mention the actual time spent on SVD computation.

Also at a few places in the descriptions of experiments, I report the variance

captured by the computed SVD dimensions. As discussed in Section 3.4.2, for a

training matrix A = U �V T , the total variance due to the �rst k singular values

is

Pk

i=1 �
2
iPr

i=1 �
2
i

:

where r = rank(A). Since kAk2F = k�k2F =
Pr

i=1 �
2
i , the divisor in the above

formula can be easily computed through the Frobenius norm of A.

The variety of the test collections that I used makes their individual details

di�cult to keep track of. Therefore, before starting the discussion on the experi-

ments, I give a summary of the processing details of these collections in Table 4.3,

so that the readers can locate relevant information quickly. Note that since in all

the experiments, stemming and stop-word removal are always applied together if
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Collection Set Docs Stem & SW Weighting Dim

Cran�eld Documents 1,400 Yes SMART ntc 1,400
Queries 225 Yes SMART ntc {

Medlars Documents 1,033 Yes SMART ntc 1,033
Queries 30 Yes SMART ntc {

CMU Training 1,134 Yes SMART ntc 1,117
UNICEF Test 1,121 Yes SMART ntc 1,103

Queries 30 Yes SMART ntc {

TREC AP 1990 78,321 Yes SMART ntc 800
Okapi 800

TREC 4 Topics 50 Yes SMART ntc {
binary

TREC 6 & 7 53 Yes SMART ntc {
Topics binary

TREC French 141,643 No SMART ntc {
German 185,082 No SMART ntc {
Fre Training 40,000 No SMART ntc 1,700
Ger Training 40,000 No SMART ntc 1,700
TREC 6 Topics 25 No SMART ntc {
TREC 7 Topics 28 No SMART ntc {

TREC English (AP) 242,918 Yes SMART Lnu {
French 141,643 Yes SMART Lnu {
Eng Training 30,024 Yes SMART ntc 2,200
Fre Training 30,024 Yes SMART ntc 2,000
TREC 6 Topics 25 Yes SMART ltn {
TREC 7 Topics 28 Yes SMART ltn {

NTCIR-1 Japanese 332,918 No SMART Lnu {
English 187,080 Yes SMART Lnu {
Jap Training 45,372 No SMART ntc 1,400
Eng Training 45,372 Yes SMART ntc 1,200
Training Topics 21 No SMART ltn {
Test Topics 39 No SMART ltn {

Table 4.3: Information on how the test collections were processed is given in
terms of the number of documents, whether stemming and stop-word removal are
used, the weighting scheme being applied, and the number of SVD dimensions
computed.
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they are used, Table 4.3 has only one column for these two steps.

4.3.1 Cran�eld and Medlars Collections

I begin with two English monolingual retrieval collections, Cran�eld and Medlars,

both can be downloaded from Cornell University computer science department's

web site (ftp://www.cs.cornell.edu/pub/smart/). The Cran�eld corpus consists of

1,400 documents on aerodynamics and 225 test queries, while Medlars consists

of 1,033 medical abstracts and 30 queries. These collections are very small but

were used extensively in the past by IR researchers. I use them to demonstrate

LSI's ability to derive term-term correlations via the reduced-dimension semantic

space.

Both collections were �rst stemmed and stop-word removed with the SMART

software available at Cornell's ftp site. I then proceeded to create the term-

document matrix using the ntc weighting scheme as shown in Table 2.2.

For all four methods, I developed software tools to do matrix addition and

multiplication. For LSI computation, I used SVDPACK, a sparse SVD package

developed by Michael Berry at the University of Tennessee at Knoxville [8]. A

complete SVD of the Cran�eld document matrix takes about 20 minutes to com-

pute on an AlphaStation with one 266Mhz processor. For GVSM, I computed

the vector dot product between the transformed query and documents vectors as

shown in Equation 3.10, which is replicated here:

SimGVSM�ML(d; q) = ~d TAAT ~q = (AT ~d ) � (AT~q ):

Now, if AT ~d is computed for every document in a collectionD, the resulting set of

vectors (ATD) comprise a very dense matrix to be stored on disk. This may not

seem to be a lot for small collections such as Cran�eld, but ATD would require
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a huge amount of storage space if D represents a very large collection. Thus,

when running GVSM, I usually compute AT~q and then AAT~q before comparing

the resulting vector to ~d. As the number of test queries are small, so are the sizes

of intermediate results|AT~q and AAT~q for a small number of ~q.

The retrieval results on Cran�eld shows the positive e�ect of query expansion

via LSI dimension reduction While the full rank of the Cran�eld matrix is 1,400,

LSI achieves its best average precision of 0.4196 at 300 dimensions, which account

for 22% of the total dimensionality and 67% of the total variance. Similarly,

ADE's best performance of 0.4115 is obtained at the smaller dimensionality of

75 (only 5% of the total). Here, by dimensionality, I mean the cut-o� points

before which the initial singular values are \leveled," even though in theory ADE

assigns nonzero weights to all the dimensions of the training matrix. The fact

that both scores are much higher than that of VSM con�rms the ability of LSI to

derive term-term correlations at the reduced dimensions of the semantic space.

To examine the e�ects of dimension reduction by LSI and ADE, I plotted the

average precision against SVD dimensionality from 50 to 1,400 in Figure 4.4. The

average precision of VSM is included in the same graph for comparison.

There are several things to be noticed in this graph. First and most im-

portantly, the plot of ADE looks like a shift-backward image of that of LSI,

con�rming that it approximates LSI with fewer dimensions, \extrapolating" the

results of high-dimension SVD's based on the values computed. The shift is ap-

proximately 200 dimensions. Secondly, at the full dimension of 1,400, the LSI

performance score equals 0.3800, the average precision of VSM, an empirical proof

of one of my theoretical conclusions: VSM is just full dimensional LSI training

on the retrieval collection itself (which I did for this collection). ADE's result is

also the same, since full dimensional ADE is just full dimensional LSI. Finally,
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the score of GVSM is too low to �t in the range of Figure 4.4, but by observing

the performance tendency of LSI at low dimensions, we can imagine that LSI

and GVSM will match their performance at some point|around 25 dimensions

as mentioned in Section 4.2. This is also in accordance with my early prediction

that GVSM is like a low-dimension LSI.

Because GVSM produced a dismal average precision of 0.2173, I tried a nor-

malized version of Equation 3.10. Namely, instead of dot product of transformed

vectors, I used the cosine measure for similarity comparisons:

cos(AT ~d; AT~q ) =
~d TAAT~q

kAT ~d k � kAT~q k
: (4.1)

With this normalization step, GVSM produced a much higher average precision of

0.4145. This extra computation step is not practical for large collections because

it now requires the actual vector transformation of AT ~d. As I mentioned earlier

in this section, for an entire collection this becomes a very dense matrix ATD,

which would require enormous storage space if both A and D are large in size.

But, since the Cran�eld collection is fairly small, the cosine comparison is still

feasible. In a similar way, I produced new sets of results for LSI and ADE using

the cosine measure as well: cos( �AT
k
~d; �AT

k ~q ) and cos( ~AT
k
~d; ~AT

k ~q ). This extra step

also improved the results of these two methods on this collection.

Similar to Figure 4.4, Figure 4.5 shows the e�ects of computed dimensions

used by LSI and ADE with the cosine comparison. For VSM, since I used the

SMART ntc weighting scheme, which already includes document length cosine

normalization, its result does not change in the new �gure. The new plots appear

to be less \regular" than the ones without cosine normalization, but they still

show ADE approximating LSI with approximately 200 fewer computed dimen-
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Figure 4.4: LSI and ADE average precisions rise and fall with the number of
computed dimensions they use on the Cran�eld collection; ADE appears to be a
shifted image of LSI.

0 200 400 600 800 1000 1200 1400
0.37

0.38

0.39

0.4

0.41

0.42

0.43

SVD dimension

av
er

ag
e 

pr
ec

is
io

n

ADE 
LSI 
GVSM
VSM 

Figure 4.5: LSI and ADE average precisions vary with the number of computed
dimensions they use on Cran�eld retrieval; the cosine similarity measure brings
up the performance of GVSM, LSI, and ADE.
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Figure 4.6: ADE again appears to be a shift-backward image of LSI on the
Medlars collection.
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Figure 4.7: Cosine measure greatly enhances LSI performance but only improves
those of GVSM and ADE slightly.
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Cran�eld Medlars
AvgP P10 Dim AvgP P10 Dim

VSM 0.3800 0.2862 1,400 0.5317 0.6367 1,033
GVSM 0.2173 0.1924 { 0.5936 0.6900 {
GVSM cosine 0.4145 0.3098 { 0.6438 0.7067 {
LSI 0.4121 0.3080 300 0.6611 0.7233 70
LSI cosine 0.4207 0.3191 175 0.7029 0.7467 60
ADE 0.4115 0.3062 75 0.6546 0.7167 20
ADE cosine 0.4276 0.3169 25 0.6635 0.7133 20

Table 4.4: Results on the Cran�eld and Medlars collections are shown in terms
of average precision, precision at document cuto� of 10, and SVD dimensionality
at which the corresponding precision scores are obtained. Boldface indicates the
best score in a column.

sions.

For the Medlars collection, the average-precision-versus-dimension plots of

LSI and ADE are shown in Figure 4.6 and 4.7, with Figure 4.7 showing the

results of using cosine normalization for comparison. The shape of the plots are

very similar to those of the Cran�eld collection, making the same compelling

point that term-term correlations are in e�ect and that ADE approximates LSI

with fewer computed singular vectors. Another notable thing is that the cosine

measurement gives LSI performance a much greater boost than it gives to GVSM

and ADE, while on the Cran�eld collection it is the opposite. This shows the

cosine normalization is quite erratic in a�ecting retrieval results in addition to

its unscalability.

The best results from each method on both collections are summarized in

Table 4.4. It contains average precisions as well as precisions at document cuto�

value of 10, both standard measures in the information retrieval �eld. A third

column for each collection shows the equalized dimensions used by the respective

methods.
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4.3.2 CMU UNICEF Collection

My next empirical evaluation of the four vector-based methods is on the UNICEF

document collection created by Carbonell et al. [26]. This collection consists of

1,134 training documents and 1,121 test documents, each in both English and

Spanish. A set of 30 English queries is also provided along with exhaustive rele-

vance judgments for these queries over all 1,121 test documents. The relevance

judgments were made between the English queries and the English test docu-

ments, and this is what I use for my monolingual retrieval evaluation. Since

the Spanish test documents are translationally equivalent to the English ones,

the relevance judgments between the English queries and the Spanish test doc-

uments are assumed to be the same as in the monolingual English case. This

cross-language relevance is needed for the evaluation of cross-language informa-

tion retrieval methods. See Appendix A.2 for examples of the actual documents

and queries in the UNICEF collection.

Like the Cran�eld and Medlars collections, I processed the CMU UNICEF

English collection and queries with stemming and stop-word removal using the

SMART software. I then indexed the documents and the queries using the

SMART ntc.ntc weighting scheme, which gives the best baseline VSM perfor-

mance compared to other schemes on this collection [121]. After indexing, the

matrix of the English retrieval corpus contains 7,542 unique terms and the ma-

trix of the English training corpus has 7,739 terms. I performed VSM retrieval

directly through the SMART system and also with my own VSM program|the

two results came out identically: 0.4562 for non-interpolated average precision.

The trainings in GVSM, LSI and ADE were �rst done directly on the matrix

of the retrieval documents, and then on the matrix of the training documents to
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compare the results. I computed complete SVD's on the two matrices; both take

less than 20 minutes on the SGI machine \dragon." Apparently, the matrices

are rank de�cient: the SVD software package �nds 1,103 of the 1,122 possible

nonzero singular values of the retrieval matrix, and 1,117 of the 1,134 singular

values of the training matrix.

I then ran LSI and ADE at various dimensions to observe the e�ect of rank

reduction as in the Cran�eld and Medlars experiments. Again, I plotted the av-

erage precision scores computed at SVD dimensions from 20 to the full rank of

1,103 in Figure 4.8. Also included in the same graph is the plot for GVSM with

varying sparsi�cation numbers. Recall that sparsi�cation is a technique used by

Yang [120] that set all but the k largest elements in a vector to zero (see Sec-

tion 3.3). The vector in the case of GVSM is the transformed document or query

vector, and I varied the number k also from 20 to 1,121 (i.e. no sparsi�cation)

to study its inuence on retrieval performance. For this collection, I found that

cosine normalization still improves the performance of GVSM dramatically but

not so much for LSI and ADE. However, the results shown in the graph are still

from using cosine normalization after projection for all three methods.

Even though the horizontal axes of the LSI and ADE plots and the GVSM

plot represent di�erent variables, the graph still reveals to us that ADE and LSI

perform much better than GVSM on this collection. The horizontal dotted line

across the upper half of the graph represents the VSM average precision. It is

very encouraging to see that once again the scores of ADE and LSI climb higher

than that of VSM and peak at a range of very low dimensions. As in Cran�eld

and Medlars, ADE appears to approximate LSI with fewer computed dimensions.

As I mentioned earlier, typically people train GVSM and LSI directly on

the collection they perform retrieval on in monolingual retrieval. But, since the
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Figure 4.8: ADE outperforms VSM and LSI at low dimensions, and GVSM
with sparsi�cation at all dimensions in MLIR on the CMU UNICEF collection.

UNICEF data includes a separate set of training documents, I also ran the three

query-expansion methods with this training set. The plots of average precision

against dimension or sparsi�cation number are shown in Figure 4.9. Here, as

expected, we see an overall performance decline for all three methods compared

to when training them directly on the retrieval collection. However, ADE still

comes out at the top and the shape of its plot mirrors that of LSI with a smaller

number of dimensions. In both Figure 4.8 and 4.9, the curves of LSI and ADE

once again converge at high dimensionalities.

For cross-language LSI retrieval, I used the new formula (Equation 3.32) that

I proposed in Section 3.5.1, instead of the traditional approach by Landauer

and Littman [65] (see Section 3.4.3). Since my formula requires separate SVD's

being computed for the two parallel corpora, I indexed the 1,134 Spanish training

documents also with the SMART ntc weighting; the resulting matrix has 15,343
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Figure 4.9: ADE outperforms LSI and GVSM using a separate training corpus
in MLIR on the CMU UNICEF collection

unique terms and 1,117 dimensions. A performance comparison of LSI, ADE, and

GVSM are shown in Figure 4.10. The shape and relative position of the three

plots appear to be very similar to their monolingual counterparts in Figure 4.9.

Once more, ADE achieves impressive average precision scores at low dimensions.

Since the CMU UNICEF collection is relatively small, I was able to compute

the generalized singular value decomposition on the training matrix as discussed

in Section 3.4.5. Without a sparse-matrix package for GSVD, I used the LAPACK

routine \dgssvd" that can handle a pair of m � n and p � n general matrices,

where in practice m, n, and p depend on the size of the RAM on a particular

computer. The average-precision-versus-dimension plot of the GSVD method is

also included in Figure 4.10. Here, we see its performance mimics that of LSI on

this collection. Unless we have more RAM or a better software package to handle

GSVD, the size of the CMU collection is already pushing the limit of the current
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Figure 4.10: At low dimensions, ADE outperforms LSI, GSVD, and GVSM in
CLIR on the CMU UNICEF collection; the curve of GSVD is very similar to that
of LSI.

computing resources.

The best monolingual results for each method are summarized in Table 4.5.

Notice that while LSI achieves its best score with 180 dimensions, or approxi-

mately 17% of the full dimensionality (and 56% of total variance), ADE accom-

plishes the same feat with only 7% of the rank. However, as we will see in later

sections, it becomes impossible even to obtain 5% of the total dimensionality on

very large matrices with the current computing resource. In Table 4.6, we see that

although the best results of LSI, ADE, and GSVD in cross-language retrieval are

nearly identical, ADE accomplishes it with the fewest computed dimensions. In

fact, ADE's average precision reaches the 0.4400-level with only 250 dimensions!

Moreover, it is very intriguing to see that with the same training collection, the

best results of LSI and ADE were obtained at exactly the same dimensionalities

(900 and 600, respectively) in both monolingual and cross-language runs.
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A = D A 6= D
AvgP P10 %VSM D/S AvgP P10 %VSM D/S

VSM 0.4562 0.3931 100 1,121 {
GVSM 0.4361 0.4276 95.6 180 0.3922 0.4172 86.0 100
LSI 0.4697 0.4276 103.0 180 0.4519 0.4207 99.1 900
ADE 0.4697 0.4207 103.0 80 0.4526 0.4172 99.2 600

Table 4.5: Monolingual results on the CMU UNICEF collection: LSI achieves
the best scores and ADE is close to the best using fewer computed dimensions.
The last two columns for each type of run show the averages precision as a
percentage of the baseline VSM performance and dimensionality or sparsi�cation
number at which the scores in each row are obtained.

AvgP P10 %Monolingual %VSM D/S
GVSM 0.3755 0.3966 95.7 82.3 60
LSI 0.4449 0.4034 98.5 97.5 900
ADE 0.4435 0.4000 98.0 97.2 600
GSVD 0.4451 0.4042 { 97.6 1100

Table 4.6: Cross-language results on the CMU UNICEF collection: LSI, ADE,
and GSVD achieve similar scores with ADE using the fewest computed dimen-
sions. The \%Monolingual" column shows the cross-language average precision
as a percentage of the monolingual one for each method.

4.3.3 TREC Associated Press Collection 1990

My next test corpus is a set of Associated Press (AP) news articles from the

TREC-6 CLIR collections [101]. While the entire English AP collection consists

of 242,918 news items from years 1988 to 1990, I used only 78,321 documents

from year 1990. I use this sub-collection because I wanted the corpus to be large

enough to demonstrate the scalability problem of LSI, and yet small enough to

be able to compute an SVD. I will refer to this sub-collection as the AP 1990

collection; sample documents from it can be found in Appendix A.3.

Again, since this collection is in English, I used SMART for stemming and

stop-word removal; this resulted in 114,698 unique terms in the processed doc-

uments. I then indexed the collection with the SMART ntc weighting scheme.

I used two sets of queries|TREC-4 ad-hoc topics 201{250 and TREC-6 and
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TREC-7 cross-language topics 1{53, because they have the corresponding rele-

vance judgments made against the AP 1990 documents (see Appendix A.3 for

some examples of the topics). The TREC-6 and TREC-7 topics are designated

\cross-language" because they were used in the cross-language track of the Text

REtrieval Conference. They have both monolingual and cross-language relevance

judgments made for collections in their own languages and other languages, re-

spectively. In this experiment, I used the TREC cross-language topics in English

along with their relevance judgments on the AP collection for my monolingual

experiments. I extracted the \long" version of these topics that consists of the

title, description, and narrative �elds of the original topics. I indexed the queries

with the ntc weighting and ran the baseline VSM retrieval. The average preci-

sions are 0.2132 for the 50 ad-hoc queries and 0.4056 for the 53 cross-language

queries.

As discussed in Sections 2.3.1 and 2.3.3, in recent years the Okapi term-

weighting scheme [88] has been very popular for experiments on TREC data.

Therefore, I also indexed the AP documents with the Okapi formula used by

Franz et al. [42]:

tf

c1 + c2 �
dl
avdl

+ tf
� log

�
n� k + 0:5

k + 0:5

�
;

where tf is, as usual, the occurrence frequency of a term in the document, dl the

document length, avdl the average length of the documents in the collection, n

the total number of documents in the collection, and k the number of documents

containing this term. The weights c1 and c2 are set to 0.5 and 1.5, respectively.

The queries are indexed with binary weighting: a term's position in the query

vector contains a value of 1 if the term is in the query and 0 otherwise. As a result,

I obtained somewhat surprising results: an improved average precision of 0.2964
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for the ad-hoc queries, but a declined average precision of 0.3732 for the cross-

language ones. I have also observed better performances with the SMART ntc

weighting for cross-language queries on other TREC collections such as the French

collection (see Section 4.3.4). The reason behind this remains to be investigated

but is beyond the scope of this dissertation.

I then proceeded to compute an SVD on each matrix. The computation

took 15 and 21 hours on \dragon"; the reason for the time di�erence may be

the load of the system during the experiment. Because of computer memory

limitations, I was only able to calculate a little more than 800 singular vectors

and values. This is merely about 1% of the rank of the matrices and 32% of

the total variance. As a result, LSI scored substantially lower than VSM in

retrieval performance. But, ADE partially bridges the gap between LSI and VSM,

achieving results close to VSM with the same number of computed dimensions as

LSI. The results are listed in Tables 4.7 and 4.8, with extra columns showing the

number of individual queries on which VSM is outperformed by other methods.

We do see an encouraging sign that on about one-fourth of the queries, LSI query-

expansion actually works with only a very limited number of dimensions; ADE

is even better, improving performance on nearly half of them.

Because of the size of the collection, I was not able to compute LSI, ADE, and

GVSM in the special normalization-after-transformation way as for Cran�eld and

other small collections. As a result, GVSM gives extremely poor performances

with both query sets and both indexing schemes; again, it behaves like a very

low-dimension LSI as predicted.

I also included the average-precision-versus-dimension plot for this collection.

Figure 4.11 reveals the e�ect of dimension on performance with TREC-4 ad-hoc

queries and Okapi weighting, while Figure 4.12 illustrates a similar e�ect with
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TREC 4 ad-hoc TREC 6 and 7 cross-language
(50 queries) (53 queries)

AvgP P10 # � VSM AvgP P10 # � VSM
VSM 0.2132 0.2479 { 0.4056 0.4044 {
GVSM 0.0240 0.0333 0 0.0534 0.0844 1
LSI 0.1322 0.2021 16 0.2318 0.2578 10
ADE 0.2049 0.2354 25 0.3418 0.3600 15

Table 4.7: Results on the TREC AP 1990 collection with SMART ntc indexing:
ADE not only bridges the gap between LSI and VSM, but also outperforms VSM
on a number of queries.

TREC 4 ad-hoc TREC 6 and 7 cross-language
(50 queries) (53 queries)

AvgP P10 # � VSM AvgP P10 # � VSM
VSM 0.2964 0.3437 { 0.3732 0.3956 {
GVSM 0.0060 0.0125 0 0.0153 0.0356 0
LSI 0.2328 0.2724 17 0.2149 0.2711 10
ADE 0.2841 0.3292 27 0.3499 0.3600 20

Table 4.8: Results on the TREC AP 1990 collection with Okapi indexing: they
are very similar to the results on the same collection with SMART ntc weighting.

TREC-6 and TREC-7 cross-language queries and SMART ntc indexing. In both

�gures, we see that the results for LSI and ADE are strictly increasing, as they

are still trying to \catch up" with the performance of VSM using a small number

of singular vectors. ADE achieves the e�ect of approximately 700 additional

dimensions. Note that while selecting the optimal dimension is a tricky issue in

the small collections, it does not appear to be important for large collections|

more dimensions are consistently better than fewer [79].

4.3.4 TREC French and German Collections

The next set of results is on a pair of much larger collections: the French and

German collections used in the cross-language track of the Sixth Text REtrieval

Conference [101]. The French collection consists of 141,643 news articles from the
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Figure 4.11: ADE outperforms LSI and approaches the performance level of
VSM on the AP 1990 collection with TREC 4 ad-hoc queries and the Okapi term
weighting.
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Figure 4.12: ADE out-distances LSI and approaches the performance level of
VSM on the AP 1990 collection with TREC-6 and TREC-7 cross-language queries
and the SMART ntc term weighting.
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Swiss news agency (Schweizerische Depeschen Agentur or SDA), and the German

corpus contains 185,082 documents from the same agency. Like the TREC AP

collections, these news articles are specially selected to cover the same time span

(1988 to 1990). The same test queries as the 53 English ones I used on the AP

1990 collection are available in both French and German. They are the ones

that I used in experiments in this section. Since there are two query sets, and

both can be used for monolingual and cross-language retrieval, I will adopt the

convention of referring to a particular retrieval run in terms of query-language-

document-language from now on. For example, by \French-German" retrieval,

I mean using French queries to retrieve German documents in a cross-language

run. For cross-language training, I used a subset of 40,000 pairs of documents

aligned by Rehder et al. [84]. Each pair of documents are only comparable in

content: they are on the same topic and from the same time period, but are not

direct translations (see Appendix A.1 for a sample pair).

Similar to the AP 1990 collection, I �rst indexed the French collection with

both SMART ntc and Okapi weighting schemes. I did not use any stemming or

stop-word removal on the collection, but I did remove accent mark from all words

(for example, \d�ecembre" was replaced by \decembre"), since it was discovered

that a large minority of the words in the French collection that should have

had accents did not [20]. The resulting matrices have 196,878 rows for unique

terms. After running the baseline VSM, I obtained the following non-interpolated

average precisions for the �rst 25 TREC-6 topics: 0.1786 for Okapi indexing

and 0.3162 for SMART ntc. (I separated the topics by conference, TREC-6 and

TREC-7, because there exist published results for these query subsets with which

I can compare my results.) The fact that the cross-language topics work better

with SMART ntc indexing appears consistent with the results I obtained for the
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AP 1990 collection. So, I decided to use ntc weighting in subsequent experiments.

I created matrices for the 40,000 French and German training documents the

same way I did for the complete French collection. The French training corpus

contains 91,634 terms while the German corpus has 221,366 terms. I created

1,700-dimensional (only a little more than 4% of the full rank) subspaces from

the two matrices using the SVD package, which took approximately 32 hours for

the French matrix and 39 hours for the German one on \dragon." The 1,700

singular values account for 49% and 38% of the total variance in the French and

German training matrices, respectively.

I tested GVSM, VSM, and ADE with monolingual and cross-language re-

trieval runs; results are shown in Tables 4.9 and 4.10. Again, I found both LSI

and ADE lagging behind VSM in both monolingual French and monolingual

German retrieval. But, while VSM cannot be applied to cross-language retrieval,

ADE obtains very strong results in that territory. French-German retrieval with

TREC-6 queries had an average precision of 0.2177, or about 77% of the German

monolingual performance. This compares favorably with one of the best results

obtained for this collection by Franz el al. [42], who used passage-aligned text

to train a statistical machine translation system and produced an average pre-

cision of 0.2361 (68% of monolingual performance). ADE's score was lower in

absolute value compared to theirs, but they achieved a much higher monolingual

performance (0.3478) than I was able to, even though I implemented their Okapi

formula to index the documents.

Noticeable from the tables is the signi�cant performance decline of retrieving

on the German collection from TREC-6 to TREC-7 queries. One reason could be

that while there are approximately 41.3 relevant documents per TREC-6 query

in the German collection, there are only 27.6 relevant documents per TREC-7
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Monolingual Cross-language
French German Ger ) Fre Fre ) Ger

VSM AvgP 0.3162 0.2958 { {
P10 0.4714 0.4043 { {

GVSM AvgP 0.0509 0.0101 0.0206 0.0187
P10 0.1333 0.0174 0.0429 0.0435

LSI AvgP 0.1711 0.1025 0.1175 0.1495
P10 0.2190 0.1609 0.1810 0.2217

ADE AvgP 0.2064 0.1635 0.1671 0.2177
P10 0.3095 0.2304 0.2810 0.2957

Table 4.9: Monolingual and cross-language results on the TREC French and
German corpora with TREC-6 cross-language topics and SMART ntc indexing.

Monolingual Cross-language
French German Ger ) Fre Fre ) Ger

VSM AvgP 0.2796 0.2541 { {
P10 0.4357 0.3259 { {

GVSM AvgP 0.0529 0.0004 0.0189 0.0217
P10 0.0929 0.0000 0.0250 0.0407

LSI AvgP 0.2070 0.0651 0.0947 0.0751
P10 0.3036 0.0852 0.1250 0.1000

ADE AvgP 0.2929 0.1527 0.1933 0.1572
P10 0.4000 0.2148 0.2607 0.1963

Table 4.10: Monolingual and cross-language results on the TREC French and
German corpora with TREC-7 cross-language topics and SMART ntc indexing.

Monolingual Cross-language
French German Ger ) Fre Fre ) Ger

VSM 24 30 { {
GVSM 1 1 1 2
LSI 6 3 4 1
ADE 18 16 44 47

Table 4.11: Number of TREC 6 and 7 topics on which each method achieves
the best performance on the TREC French and German corpora.
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query. Fewer relevant documents in the top returned list means their slots are

�lled by irrelevant documents, thus bringing the average precision down. But,

this still does not explain the decline in precision at the 10-document cuto�

level. Since the overall German retrieval results are weaker for TREC-7 topics, I

indexed the German collection with Okapi weighting and ran monolingual VSM

with those topics. The average precision from this run is only 0.1543, much lower

compared to 0.2273 for the SMART ntc weighting. However, since the objective

of these experiments is not necessarily to obtain the best possible performance

on a speci�c collection, I chose not to investigate the source of this performance

decline any further.

These tables do reveal the utility of ADE for improving LSI performance in

both monolingual and cross-language situations. Table 4.11 breaks down the

results by topics by showing the number of topics for which each method ob-

tained the best average precision. The numbers in each column do not add up

to 53 because several queries do not have any relevant documents in the collec-

tions. Again, we see the e�ect of query-expansion by LSI and ADE on a number

of queries in monolingual retrieval with such a small portion of the full dimen-

sionality. In addition, ADE outperforms VSM 24 and 19 times on French and

German monolingual retrieval, respectively. For cross-language retrieval, ADE's

performance dominates the best of LSI and GVSM. An interesting observation is

that the same query, the very �rst one in the set, puts GVSM on top in all four

cases.

4.3.5 TREC English and French Collections

To further demonstrate the utility of ADE for cross-language retrieval, I ran it

for retrieval across a pair of languages that are most commonly used in cross-
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language retrieval tests: English and French. The superset of the TREC AP

1990 collection from Section 4.3.3, the entire TREC AP collection, is the English

collection that I used. This corpus consists of 242,918 documents and 210,580

terms after stemming with SMART. For French, I used the same collection as

in Section 4.3.4; but, to match the pre-processing of English documents, I did

stop-word removal (from a list of 355 words) and some elementary stemming.

My French stemmer is implemented in the same way as described by Buckley et

al. [20]. The resulting French collection has 156,875 unique terms, or 20% less

than when no stemming or stop-word removal is used. Finally, I also de-accented

all the words in both collections.

For training, I used two sources: the Hansard Corpus and the United Nations

(UN) Parallel Text Corpus [50]. The Hansard Corpus contains the o�cial records

of the proceedings of the Canadian Parliament in English and Canadian French

and is available on a CD-ROM produced by the Linguistic Data Consortium

(LDC). I used the \set b" of the collection that was originally obtained by Bell

Communications Research and spans from 1986 to 1988. The UN Corpus is the

original source of the CMU UNICEF collection described in Section 4.3.2. I used

Version 1.0 of the data CD-ROM, also produced and published by LDC. The

documents in this CD come from the O�ce of Conference Services at the UN in

New York and span the period between 1988 and 1993, and a large number of

them are available in English, French, and Spanish versions.

I extracted parallel passages from the corpora by taking advantage of the

SGML tags in the documents. In the Hansard collection, there are more than

220,000 parallel passages with no document boundaries. Had I treated each

passage as a single document, the number of documents in the training collection

would have been too large for the SVD package. To reduce this number, I indexed
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each passage as a single document and ran VSM similarity comparisons between

consecutive documents. Then, I combined English passages that had a similarity

score greater than 0.16 (a somewhat arbitrary threshold) and combined French

passages according to their English parallels. I also omitted all passages that have

fewer than twenty words in either the French or the English version. The resulting

parallel corpora had more than 100,000 documents, about one-sixth of which was

randomly selected for training. On the other hand, the documents in the UN

collection can be so large that they contain 30{50 paragraphs. Thus, I only

selected segments of the UN documents|from 2 to 20 consecutive paragraphs|

to form my training documents. This process is the similar to that of Yang

et al. [121] in their preparation of the CMU UNICEF collection. The resulting

parallel collections had approximately 23,000 documents and I again randomly

selected half of them for this experiment. The combined UN and Hansard parallel

collections have 30,024 documents in each and they are stemmed and stop-word

removed as described earlier.

I ran the baseline VSM retrieval on English and French collections with the

SMART Lnu.ltn indexing scheme (see Table 2.2). The Lnu weighting on doc-

uments was developed by Singhal [106] and used by Buckley et al. [24, 20] and

Braschler et al. [16] in their recent TREC experiments:

1+log(tf )
1+log(average tf )

(1:0� slope)� pivot + slope � number of unique terms
:

Here, I set slope to be 0.2 and the pivot to the average number of unique terms

in a document for the collections, the same as in the experiments of Buckley et

al. [24]. For the queries, I adopted the ltn scheme by Braschler et al. instead

of the ltu scheme by Buckley et al. [24], because it is not exactly clear how the
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normalization factor u is to be used with a set of queries1.

For the training documents, I used the SMART ntc indexing, which has

worked well with TREC cross-language topics in my previous experiments. The

30,024 English documents contain 26,436 unique terms while their French paral-

lels have 46,174. Notice that because of the smaller size of the training collections

compared to the retrieval collections, the latter have far more terms than the

former. However, most of the words in the TREC-6 and TREC-7 topics were

common enough that they are found in the training documents. Using \dragon,"

I was able to �nd a little more than 2,200 dominant dimensions (8% of the full

rank and 82% of the total variance) from the English and 2,000 (7% of the full

rank and 65% of the full rank) from the French training corpora. The results

from LSI and ADE with these computed dimensions are shown in Tables 4.12

and 4.13. I did not run GVSM here because previous experiments have shown it

to be ine�ective on large collections.

My TREC-6 cross-language results compare favorably with those by Buckley

et al. [20], who matched English and French words directly if they are very close

to each other in spelling. They also used local feedback after the initial cross-

language run to achieve an average precision of 0.2408 for 13 of the 25 TREC-6

English queries on French documents. ADE already accomplishes this level of

average precision without taking advantage of the closeness in spelling of the two

languages and additional feedback enhancement (I did run this with a feedback

method|local LSI|as described in Chapter 5, though). My monolingual base-

line VSM runs had lower average precisions than theirs because I did not use their

1Recall from Section 2.3.3, the pivoted normalization factor \u" is created to match the
observed relationship between retrieval documents' length and their chance of being relevant.
This does not seem to have anything to do with the queries.
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Monolingual Cross-language
English French Fre ) Eng Eng ) Fre

VSM AvgP 0.3597 0.3661 { {
P10 0.5095 0.5048 { {

LSI AvgP 0.2308 0.2402 0.1936 0.1965
P10 0.3514 0.3619 0.2857 0.2952

ADE AvgP 0.2999 0.2931 0.2656 0.2582
%VSM { { 74% 71%
P10 0.4524 0.4333 0.4048 0.3571

Montreal AvgP 0.2895 0.3686 0.2560 0.3053
%VSM { { 88% 83%

Table 4.12: Monolingual and cross-language results on the TREC English and
French corpora with TREC-6 cross-language topics and SMART Lnu indexing;
included for comparison are the results by researchers at the University of Mon-
treal.

Monolingual Cross-language
English French Fre ) Eng Eng ) Fre

VSM AvgP 0.4882 0.4056 { {
P10 0.6385 0.5250 { {

LSI AvgP 0.3845 0.2975 0.3027 0.2667
P10 0.5123 0.4286 0.4546 0.3786

ADE AvgP 0.4216 0.3185 0.3482 0.2978
%VSM { { 71% 73%
P10 0.5815 0.4500 0.4783 0.4179

Montreal AvgP 0.3202 0.2764 0.3245 0.2649
%VSM { { 101% 96%

Table 4.13: Monolingual and cross-language results on the TREC English and
French corpora with TREC-7 cross-language topics and SMART Lnu indexing;
included for comparison are the results by researchers at the University of Mon-
treal.
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\SuperConcepts" approach, or an additional processing step after local feedback

in these experiments.

For both TREC-6 and TREC-7 topics, several sets of comparable results can

be found in the report by Nie et al. [77] at the University of Montreal in Canada.

One of their best approaches involves the combination of a probabilistic trans-

lation model estimated from the Hansard collection and a large bilingual dictio-

nary of over one million entries. They obtained average precisions of 0.2560 and

0.3245 on TREC-6 and TREC-7 French-English runs, respectively, and 0.3053

and 0.2649 on TREC-6 and TREC-7 English-French runs, respectively. These

numbers are all listed in Tables 4.12 and 4.13 in the rows labeled \Montreal."

While ADE's average precisions are higher than theirs in absolute value in three

out of the four cases, they are lower in terms of the percentage of the monolingual

VSM performance (also shown in the two tables). However, their low baseline

results may just be one reason behind the high percentages.

4.3.6 NACSIS Test Collection

My last test collection for this chapter is the NACSIS Test Collection for In-

formation Retrieval Systems 1 (NTCIR-1) [64], where NACSIS is the National

Center for Science Information Systems in Japan. This collection consists of ap-

proximately 330,000 documents in either Japanese, English, or a combination of

both. These documents are abstracts of academic papers presented at meetings

hosted by 65 Japanese academic societies and cover a variety of topics such as

chemistry, computer science, and linguistics. A document has several �elds en-

closed by SGML tags; these �elds typically include ID, title, author, abstract,

keyword, and the name of the academic society, each of which can be in both

Japanese and English. The NTCIR-1 data has three parts: JE collection, which

119



is also denoted \ntc1-je1" and contains the entire collection of mixed documents;

J collection, which is also denoted \ntc1-j1" and contains 332,918 Japanese-only

documents; and E collection, which is denoted by \ntc1-e1" and contains 187,080

English-only documents. I used only J and E collections for my cross-language

experiments.

The retrieval topics for NTCIR-1 consist of 30 (topic0001{topic0030) used

for training and 53 (topic0031{topic0083) used for testing in the First NTCIR

Workshop held in Tokyo, Japan, in 1999. These topics are all in Japanese only and

contain the following �elds: title, description, narrative, concept, and �eld (i.e.

academic �eld). Among the topics, 21 of the �rst 30 and 39 of the last 53 topics

are usable for cross-language retrieval; the others were discarded because they

have fewer than �ve relevant documents in the collection. In my experiments, I

ran separate tests for the two topic sets for the purpose of simplifying comparisons

with published results.

Relevance assessments are available for both topic sets against both ntc1-j1

(monolingual) and ntc1-e1 (cross-language). The judgments were carried out

by the pooling method as described in Section 2.1 and had three grade levels:

relevant (grade A), partially relevant (grade B), and non-relevant (grade C). As

a result, there are two types of relevance judgment �les available: In \rel1" �les,

only the grade-A documents are treated as relevant, while in \rel2" �les, both

grade-A and grade-B documents are taken as relevant. For my results, I used

both types of relevance judgment �les, and they seem to produce results that are

consistent with each other.

In processing the documents in both languages, I extracted the text from

the title, abstract, and keyword �elds from them. The English documents were

stemmed and stop-word removed through the SMART system, the same way I did
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for the TREC AP documents. The resulting English collection has 208,276 unique

terms. The Japanese text is coded in EUC, or Extended UNIX Code, which

represents each character in Japanese by two bytes. In order to be able to process

the Japanese documents with my programs that handle only ASCII characters,

I created another program that converts each two-byte Japanese character into

a four-character \word" in ASCII. With no stemming or stop-word removal, the

converted Japanese collection has 130,777 unique \words." I then indexed both

collections with the SMART Lnu weighting. Because sentences in Japanese or

Chinese contains consecutive characters with no word boundaries, IR researcher

have tried using n-grams, where n � 2, to index collections in such a language.

However, in my experiments I chose to use individual characters, or unigrams, as

the basic indexing items (terms) in the Japanese collection, as I was curious to

see how the term-association capability of LSI (and ADE) would do in this case.

For the topics, I extracted the title, description, narrative, and concept �elds

to form the queries. I discarded the concept words in English and acronyms from

topics 0031{0083 as they contains both Japanese, English, and acronym concept

�elds. The Japanese queries were also converted into ASCII; they were then

indexed with SMART ltn weighting.

The baseline monolingual VSM results are shown in the top rows of Table 4.14.

At �rst sight, we see a downgrade of performance from the training queries to

the test queries. I do not have an explanation for this, but, I have seen results

by other researchers having a similar trend with the same query sets on this

collection (e.g. [91]).

For monolingual LSI and ADE retrieval, the entire ntc1-j1 collection is too

large for the SVD package to process. Therefore, I selected a subset of documents

from it to create an LSI space. In fact, since I would use a pair of training corpora

121



topic0001{0030 topic0031{0083
rel1 rel2 rel1 rel2

VSM AvgP 0.3452 0.3295 0.2601 0.2870
P10 0.5143 0.5333 0.4103 0.4974

MLIR LSI AvgP 0.2555 0.2569 0.2413 0.2702
P10 0.4524 0.4667 0.4000 0.4846

ADE AvgP 0.2807 0.2795 0.2576 0.2874
P10 0.4571 0.4762 0.3949 0.4872

LSI AvgP 0.1327 0.1375 0.1162 0.1322
P10 0.2429 0.2619 0.1462 0.1923

CLIR ADE AvgP 0.1554 0.1606 0.1703 0.1898
P10 0.2810 0.3048 0.2000 0.2538
11pt AP 0.1734 0.1783 0.1870 0.2043

UMD AvgP { { 0.1534 {
CLIR Toshiba 11pt AP 0.2910 { 0.1820 {

Published ULIS 11pt AP { 0.1930 { {
Berkeley AvgP { { { 0.1925

Table 4.14: Monolingual and cross-language results on the NTCIR-1 collection
for two set of cross-language topics and two levels of relevance judgments, with
SMART Lnu indexing; included for comparison are published results from several
research groups.

for cross-language retrieval later on, I proceeded to extract parallel documents

from the J and E collections for training. Matching documents were identi�ed

by the same document ID numbers at the beginning of a Japanese and an En-

glish document. Since all English documents in ntc1-e1 were originally extracted

from abstracts that are in both languages, nearly all of them had a translational

counterpart in ntc1-j1, where documents are either Japanese-only or in both lan-

guages in their original form. Thus, the resulting parallel collections I obtained

have 181,485 documents in each language, close to the size of the ntc1-e1 collec-

tion.

This size not only was still too big for LSI processing, but it also would have

meant cheating had I used it for cross-language retrieval, since I could have ob-

tained excellent results by �nding the best documents in the Japanese training
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collection with VSM, and then identifying their parallel counterparts in the En-

glish collection. With these considerations, I decided to use only one-fourth, or

45,372 documents, of the parallel corpora for LSI and ADE training. I indexed

these smaller parallel collections with similarity thesaurus weighting method from

ETH as described by Equation 3.13, but the results I obtained for both monolin-

gual and cross-language LSI retrieval runs were extremely low. I then applied the

SMART ntc weighting on the training corpora, which had much better results

compared to those from the ETH weighting. The matrices created have 33,553

Japanese terms and 84,554 English terms. It took \dragon" approximately 9.5

hours to compute 1,400 SVD dimensions (4% of the full dimensionality and 85%

of the total variance) from the matrix of Japanese documents, and 13 hours to

compute 1,200 dimensions (3% of the full dimensionality and 54% of the total

variance) from the matrix of the English collection.

The results of monolingual and cross-language LSI and ADE retrieval were

shown in Table 4.14. The 11-point average precisions of ADE are also included

in the table for later comparisons with other published results. Even with this

special collection, we see similar results as in the previous sections: ADE improves

on LSI in both monolingual and cross-language retrieval.

In cross-language retrieval, scores of ADE compare closely to several published

results (also listed in Table 4.14) that used language speci�c tools such as a

bilingual dictionary or a machine translation system. For example, Oard and

Wang [78] from the University of Maryland used the freely available \edict"

Japanese/English dictionary to automatically translate the queries and obtained

an average precision of 0.1534 (compared to ADE's score of 0.1703) for the 39

test queries with the same extracted topic �elds as mine. This result is shown in

the row labeled \UMD" in in Table 4.14.
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Results by Sakai et al. [91] at Toshiba R&D Center|thus \Toshiba" in Ta-

ble 4.14|are 0.2910 in 11-point average precision for the 21 training queries and

0.1820 for the 39 test ones with an automatic machine translation system. While

their scores are higher than mine (0.1734 in 11-point average precision) for the

training queries, their test query results are actually lower than the 11-point av-

erage precision of 0.1870 that I obtained from ADE. This may be partially due

to the fact that they tuned the dictionary of their MT system for the training

queries by adding new phrases into it. They also tried the local feedback method

on top of the initial cross-language retrieval run; I present results using a similar

approach in Section 5.3.4. Fujii and Tetsuya [45] at the University of Library and

Information Science in Japan used a compound word translation method with a

bilingual dictionary on NTCIR-1. They achieved an 11-point average precision of

0.1930 with the �rst 21 queries and \rel2" judgments (shown in the row labeled

\ULIS" in Table 4.14). My result of 0.1783 is obtained with similar settings

except for the topic �elds being used for query|they used only the description.

Finally, one of the best sets of results reported in the First NTCIR Workshop was

by Chen et al. [27]. With non-interpolated average precisions as high as 0.3755

for the 39 test queries, they achieved their results with a bilingual lexicon that

was built from aligning and matching Japanese and English keyword �elds in

NACSIS documents. They noted that their method is only applicable \when the

documents containing keywords in both the source and target languages are avail-

able for creation of bilingual lexicon." Their pure MT-based run had an average

precision of 0.1925 with rel2 judgments on the 39 test topics (shown in the row

labeled \Berkeley" in Table 4.14); my result at 0.1898 is close with similar �elds

selected from the topics and the documents for indexing. In summary, all the

published results discussed here were obtained with the incorporation of certain
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type of language-speci�c knowledge; for example, the ability to perform word

segmentation on Japanese queries is needed for the machine translation system

to work. On the contrary, I accomplished comparable results with ADE merely

by unigram indexing; this clearly demonstrates the ability of ADE, or if possible,

a high-dimension LSI, to derive term associations and translations from bilingual

corpora.

4.4 Conclusion

The approximate dimension equalization approach mimics the e�ect of a high-

dimension latent semantic indexing with just a few computed initial singular val-

ues and vectors. The dimensions not being computed are used implicitly through

the manipulation of singular values of the original matrix. When the collection

size is small, ADE is able to approximate the best LSI (and best overall) results

with fewer computed dimensions than LSI. When the collection size gets large,

ADE seems to improve on LSI and inch close to VSM every time with a limited

number of dimensions. ADE becomes especially useful in cross-language retrieval,

where VSM is not applicable; it obtains state-of-the-art results on some of the

standard test collections.
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Chapter 5

Local LSI Sampling

In the previous chapter, I described an approximation algorithm to LSI for re-

trieval on a reduced-dimension semantic space. The purpose of this ADE algo-

rithm is to mimic the e�ect of using a large number of equalized dimensions of

the training space when we can only �nd very few signi�cant ones with current

limited computation resources. There is another possibility for down-scaling the

problem, however: we can make the SVD more computable by using a smaller

training collection through the sampling of documents.

One may argue that the training collections need not to be as large as the

current retrieval collections are. But, as I pointed out earlier, training is usually

done on the retrieval collection itself in monolingual retrieval. So, the training

size does keep pace with the retrieval size in this case. Otherwise, we would use a

separate training collection, possibly in monolingual retrieval and necessarily in

cross-language. Then, a decrease in performance is often observed as the term-

term correlations in the training corpus may not entirely reect those in the

retrieval corpus. To cover the term associations more thoroughly, more training

documents are probably needed, resulting in, again, a growing size of the training

collection.

In this chapter, I examine a sampling approach to reducing the LSI training

collection size that is closely related to local feedback. The original idea, known

as local LSI, was introduced by David Hull in his dissertation [61]. I use a

slightly di�erent method than his and extend the local sampling approach to

cross-language information retrieval. I show that this local method not only
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reduced the computational requirement of SVD tremendously, but it also shows

signi�cant improvements in retrieval performance, both monolingually and cross-

lingually. But, �rst, in Section 5.1, I discuss two basic sampling approaches to LSI

approximation that have been examined before and have yielded only mediocre

retrieval results.

5.1 Global Random Sampling

Traditionally, when a training collection is too large to analyze via the SVD using

available computing power, we can sample a number of documents from the orig-

inal collection and compute the SVD on the sub-collection. This is analogous to

the approach of selecting good terms (row vectors of the term-document matrix)

for expansion that is used in GVSM, the similarity thesaurus method, and the

information space method. While the term-selection approach has the avor of

discarding words that may not have their connections with other words properly

established by the training corpus, the document-sampling method intends to

capture such connections using fewer documents than given.

Two di�erent approaches to sampling are:

� select raw documents from the collection and index the sub-collection, or

� select columns (document vectors) from the term-document matrix of the

collection.

In the �rst approach, which I refer to as \text sampling" henceforth, the weight of

the same term in the same document could be very di�erent in the sub-collection

than in the original collection. This is due to the fact that most of the current

indexing functions incorporate the collection size or some value averaged over a
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collection in their formulations. The result is little, if any, mathematical con-

nection between the term-document matrix of the sub-collection and that of the

original collection.

In terms of query expansion, we can view text sampling as using a smaller

example set to learn a term-correlation model. The procedure would be to build

an LSI space on the sub-collection, expand the queries with the term-associations

found with SVD, and compare the new queries to the retrieval collection. This

corresponds to the third interpretation, or the query-expansion view, of LSI de-

scribed in Table 3.3. As we shall see in Section 5.2, this view of LSI training suits

the idea of local LSI better than the other two in the same table.

In the second \vector sampling" approach above, we begin by selecting a

sample of document vectors from the matrix of the original training collection A

to form a new matrix S. Then, we �nd the singular value decomposition of S:

S = US �S V
T
S :

In terms of linear algebra, the column space of S is a subspace of the column

space of A. This means US, being the basis of S, captures some dimensions of A,

but not necessarily the dominant ones (in A). Were we able to do this|sampling

documents so that the most dominant dimensions of the sampled space captures

(or spans) the subspace spanned by the most signi�cant dimensions of the original

space|the LSI scalability problem would have been solved. In other words, our

objective in global sampling is to make �Sk to be as close to �Ak as possible. Then,

the similarity score computed from ( �ST
k
~d ) � ( �ST

k ~q ) would be very similar to that

computed from ( �AT
k
~d ) � ( �AT

k ~q ). In the weighted sampling approach that I discuss

shortly, we see that it emulates the dominant dimensions of the original space

with the dominant dimensions of the sampled space with high probability.
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In monolingual retrieval, if the sampled documents are directly from the re-

trieval collection, the documents not included in the sample S 0 are \folded in"

by projecting them onto the reduced sample space Sk as in Equation 3.21:

US Ik U
T
S S

0:

Note that if the sampled documents are folded into the reduced sample space,

they are exactly the reduced sample space Sk:

US Ik U
T
S S = US Ik U

T
S US �S V

T
S = US Ik �S V

T
S = Sk:

The query ~q can be folded into the sample space as well before making a similarity

comparison with the (projected images of) the documents. This corresponds to

the second interpretation of LSI described in Table 3.3.

The most straightforward global sampling procedure, and one commonly used

in work on LSI, is to select document vectors to include in the sampling matrix S

uniformly at random from the full set of document vectors. This approach has the

appeal of simplicity and can be intuitively justi�ed by arguing that the \latent"

structure available in the matrix is not embodied by any single document vector;

taking a sample of document vectors should still reasonably represent the most

important components of meaning.

Nonetheless, uniform sampling lacks a formal justi�cation and, as I show be-

low, can be improved using an approach that samples based on document-vector

length. Further, it is possible to construct matrices where uniform sampling pro-

duces poor results with high probability. For example, for a large matrix with

only one nonzero components, uniform sampling would most likely select those

columns with all zeros in them than the one with the only nonzero entry, and

thus misrepresent the structure of the original matrix.
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5.1.1 Weighted Sampling

I next describe the weighted sampling approach invented by Frieze et al. [43],

a detailed study of which is given by Jiang et al. [63]. As mentioned earlier,

the objective of global sampling is to make the k-dimensional subspace of the

sampled space as similar to the k-dimensional subspace of the full collection

space as possible. Given a target number of orthogonal dimensions k, a sample

size s, and a probability �, we can �rst compute the error bound

" = 2
p
k=(�s): (5.1)

It is assured that, with at least probability 1� �, the sample space will be within

" of the true k-dimensional SVD, as described below. Then, we carry out the

following steps.

(1) For each column (document) A(j) of A, compute the square of its vector

length (A(j))
TA(j).

(2) Select s columns of A with probabilities proportional to their length

squared as computed in the previous step. Sampling is performed with

replacement, meaning that a single document vector can appear multiple

times in the sample. A matrix S of size m� s (terms by sample size) is

obtained.

(3) Normalize the document vectors in S to unit length.

(4) Compute the SVD of S and use its �rst k left singular vectors (USIk) as

a basis for projecting document or query vectors into the range of Sk.

The algorithm runs in time O(ms2) plus the number of nonzeros in the term-by-

document matrix [63].
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The reason for normalizing document vectors to unit length in Step (3) is that

this is exactly the normalization that implies that for every unit length vector u,

the expected length squared of uTS is precisely juTAj2=jjAjj2F (this can be shown

by direct calculation), i.e., the ratio juTSj=juTAj is a constant in expectation,

independent of u. This means that the sampled matrix S behaves similarly to A

with regard to multiplication by unit vectors.

Now, from standard properties of SVD, the �rst left singular vector u1 of

A is a unit-length vector u maximizing juTAj. So, crudely speaking, the most

dominant singular vector of S should give us a good approximation to the most

dominant singular vector of A. To establish the correctness formally, we need

to bound the variance; this can be done and uses properties of the probability

distribution and the normalization selected in the algorithm. The same property

holds for the other singular vectors.

By the same criterion as used in Theorem 3.1, the weighted sampling algo-

rithm provides the following guarantee [43, 34].

Theorem 5.1. Given a matrix A and a matrix S = US �S V
T
S that consists of

columns of A obtained through the weighted random sampling algorithm, we have

kA� USIkU
T
S Ak

2
F � min

rank(D)=k
kA�Dk2F + "kAk2F = kA� Akk

2
F + "kAk2F ;

with probability at least 1� �, where " = 2
p
k=(�s).

In words, when the document vectors in A are projected onto the k domi-

nant dimensions of the sampled space, the total error factor we get compared

to directly using the k dominant dimensions of A (i.e., the SVD of the full col-

lection) is bounded by " times the norm of A. Note that the expression for the

approximation has the same form as in Theorem 3.1, but instead of using the true
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singular vector matrix U , the algorithm �nds an approximation US; the latter can

be found more quickly as we use a smaller document matrix.

Theoretically, the error bound in Equation 5.1 can be very large. For example,

with s = 10,000 documents, � = 0:95 probability, and k = 300 dimensions, the

error is 35%. To be assured of an error factor of 2% for a 300-dimensional SVD

with 95% probability, a 3:2 million document sample is needed. (Notice how the

error bound calculation is independent of the size of the full collection. So, be it

ten million documents or a hundred million documents, we would need to sample

3:2 million of them to obtain the desired small error and large probability.) If

this bound were an accurate reection of the precision of the weighted sampling

method, the method would be of little practical value.

The real error, however, can be measured by computing kA�USIkU
T
S Ak

2
F and

kA�Akk
2
F = kA�UIkU

TAk2F . The problem is this is not practical because of the

sizes of USIkU
T
S A and UIkU

TA will be very dense|in the billions of nonzeros even

for A with less than 100; 000 documents [63]. However, as shown in Appendix B.6,

the approximation error can be rewritten as

kA� US Ik U
T
S Ak

2
F � kA� UIkU

TAk2F

= kAk2F � kIk U
T
S Ak2F � (kAk2F � kIk U

TAk2F )

= kIk U
T Ak2F � kIk U

T
S Ak

2
F : (5.2)

So, (kIk U
TAk2F � kIk U

T
S Ak

2
F )=kAk

2
F is the observed (relative) approximation

error. The matrix IkU
TA is the set of training document vectors determined

by \fold in" in the full SVD and IkU
T
S A is the set of training document vectors

determined by \fold in" in the sampled SVD. If we train on the retrieval collection

and have already folded in the retrieval documents, the error calculation just
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involves a single scan through the set of folded in document vectors.

Experimental results described later in Section 5.3.1 show that we can achieve

low observed errors with small sample sizes using the weighted sampling proce-

dure.

5.2 Local LSI Feedback

The weighted sampling approach just discussed has a solid theoretical foundation

and good experimental bounds in terms of sample error. However, there are still

two main problems with this method (and global sampling in general).

First, as I pointed out in last section, even though the error bound in Equa-

tion 5.1 does not depend on the size of the full collection, it does increase with

k, the number of desired dimensions. What we have learned about LSI from

the previous chapters is that the number of dimensions needed (from the train-

ing space) often increases with the retrieval collection size. Therefore, when the

collection size is huge, to keep up with the dimension requirement (k) and to

maintain a decent error bound (�) and a high probability (1 � �), we have to

sample a large number of documents, the SVD of which would again be very

di�cult to compute.

Secondly and more importantly, retrieval results of using sample collections

have mostly been worse than those from using the full collection. In the study

by Jiang et al. [63], part of which is described later in Section 5.3.1, the average

performance of ten runs of weighted random sampling is below the performance

of LSI on the full collection, and even below the average performance of uniform

random sampling. In addition, both sampling approaches perform much worse

than the baseline VSM result.
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The same can be argued for the approximate dimension equalization method

as well: since by any means we need to compute some initial singular triplets

of the collection matrix, the computational requirement can still exceed system

limitations when the corpus contains millions or even more documents. Thus,

we need a method that can scale even better than ADE, improves retrieval per-

formance, and works with cross-language applications. Local LSI, an idea �rst

introduced by Hull [61], meets all the above requirements with a small additional

cost during the process of retrieval.

5.2.1 Basic Concept

The original local LSI method described in Hull's thesis [61] is as follows: apply

the singular value decomposition to the set of documents that are known to be

relevant to the query; then, all the documents in the collection can be folded

into the reduced space of those relevant documents, which we say forms a local

region of the query. The rationale behind local LSI is straightforward: When

we use SVD to process through tens of thousands of documents and �nd term-

associations, we hope the result is a fairly sophisticated LSI structure good enough

for information retrieval. But, the few number of dimensions we can compute is

often not enough for distinguishing between words relevant and non-relevant to

those that are in a particular query. So, instead, we can turn our focus from the

entire corpus to the query itself by examining only the documents that contain

the words related to those in the query. The LSI term-association structure built

from those documents would certainly help that particular query most.

Local LSI uses the same assumptions as relevance feedback [89]: the docu-

ments relevant to a query are similar to each other but dissimilar to those that are

not relevant (see Section 2.4.1). In this view, discarding the (mostly) non-relevant
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documents from the training space has an e�ect similar to dimension reduction|

the dimensions occupied by those documents that are not in the subspace the

query is in, and so we \reduce" them automatically by not even considering them.

The relevant documents in the discarded set will still get adequate representa-

tion in the local space because of their assumed similarity to the known relevant

documents.

Hull [60] �rst proposed the local LSI method in the context of text routing

problem: documents are either relevant or non-relevant to a speci�c information

need, and a classi�cation method is to be developed to predict which document

belongs to which group based on an existing training sample. This pre-judged

set of documents is generally not available for an ad-hoc query, so local LSI in

its original arrangement is not applicable to the information retrieval task that

we are trying to solve. However, we can borrow the idea from the local feedback

method discussed in Sections 2.4.1 and 3.3.3.

Recall that relevance feedback is a semi-automatic process that reformulates

(or expands) a user query based on what the user has indicated as relevant

from an initial retrieval. Local feedback then extends the idea by assuming

the top k documents from the initial retrieval are relevant and using them for

query expansion. This way, the user does not have to spend time examining the

documents returned from the preliminary retrieval, while systems that utilize this

technology also get a boost in retrieval performance due to additional words from

the top documents that were not in the original query. The local LSI approach

that I study in this chapter employs exactly the same idea: train (in this case,

compute an SVD) on the top documents from an initial retrieval.

A combination of both local feedback and local LSI was applied by Sch�utze et

al. [103] on their document classi�cation experiments. Local feedback was used to
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expand the initial query vector using a modi�ed version of Rocchio's formula [22],

and then an SVD was performed on the top 2,000 documents retrieved by the

expanded query (which comprise a \local region" to the query). Thus, query

expansion is mainly done by local feedback, while LSI is used to create a reduced

representation of the expanded query that can be better used by an statistical

classi�er. I used a simpler (and di�erent, in a sense) approach|computing LSI

directly on the top documents from the initial retrieval, because I believe the LSI

alone is su�cient for query expansion (see Section 3.4.1).

5.2.2 Procedure

The �rst step in local LSI as well as other local feedback methods is an initial

retrieval on the training corpus that returns a set of documents to be used for

further analysis. On paper, any of the known IR methods such as VSM, GVSM,

or LSI can be used to accomplish this. In practice, since the objective of training

on documents in GVSM and LSI is to build term associations for query expansion,

there is redundancy if I use them for the initial retrieval in local LSI. Besides, I do

treat local LSI as a variation of the local feedback methods: it is a performance

booster for VSM. Hence, I generally complete the initial screening step using

VSM, with which e�ciency is also achieved since VSM retrieval can be accelerated

with an inverted index data structure [94].

The next step is to select the top documents from the initial screening. Here,

in addition to vector sampling used in weighted random sampling, text sampling

can also be used: select texts of top returned documents directly from the corpus.

In this particular approach, we are free to choose an indexing scheme (possibly

di�erent from the one used on the full collection) to build local term correlations.

When choosing an indexing method for the entire collection, we want to use one
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that helps to return the best top documents for local training or feedback; that

indexing scheme, however, is not necessarily equally good at building term asso-

ciations. For example, in recent years, the best indexing schemes for the TREC

collections tend to give a long document a higher probability of being retrieved

than a short one [107]. This means the same query term is more \important" in

a long document than in a short one. On the contrary, the similarity thesaurus

indexing function considers a short document to be more reective of the mean-

ing of a word than a long one is [82]. Hence, a di�erent indexing scheme may

be used for building the local term associations than the one for retrieving the

best possible top documents. On the other hand, in the global sampling methods

where only vector sampling is used, we can index the original training corpus

directly with a scheme that is better at building a term-association structure.

In summary, with text sampling, local LSI is carried out by the following

steps:

(1) Index the training collection with the best known term-weighting scheme

for retrieval on its type of text/corpus.

(2) Given a query, perform conventional VSM retrieval on the training col-

lection.

(3) Index the top k documents returned by the initial retrieval, with perhaps

a weighting scheme better suited for creating term-associations.

(4) Compute an SVD on the resulting matrix and project the query onto

the reduced LSI space.

(5) Compare the projected query vector against the document vectors in

the retrieval collection and return the top documents.
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With vector sampling, Step (3) above should be replaced by \select the vectors

of the top k documents returned by the initial query to form a new matrix."

The number of top documents chosen to be used for LSI training, k, is usu-

ally collection dependent and determined experimentally. The size of the local

training set for a query should not be too large compared to the actual number of

relevant documents; otherwise, too many non-relevant documents in the training

set would probably hurt retrieval performance. But, prior to retrieval, a query's

number of relevant documents in a collection is not known, and some number has

to be picked based on other information such as the average number of relevant

documents per query for past queries.

An advantage of local LSI over local feedback is that the top k documents are

not actually declared \relevant"|they are only used to create a useful reduced-

dimensional space for retrieval. Therefore, including both relevant and non-

relevant documents in the local training set would not hurt local LSI (in a sense,

it may actually help|see Section 5.3.1) as much as it would local feedback. In

other words, we have more \freedom" in choosing k for local LSI than for local

feedback.

In previous experiments with relevance feedback, researchers have used k in

the range of 10 to 1,000 for the information retrieval tasks [1, 2, 119], and even

more for the text routing task [22, 103]. E�ciency again can be a factor in

choosing the number k. For example, in their local feedback experiments, Buckley

and Salton [21] found that using the top 1,000 documents took twice as much

time as using the top 200. In this dissertation, I follow the study by Allan [2],

who experimented with several factors including the feedback size that a�ect the

performance of relevance feedback. In results he reported, retrieval performance

usually peaks within the range 75 to 100 feedback documents. In the experiments
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described later in Section 5.3, the feedback sizes that I used ranged from 20 to

200, but I generally found improvement in retrieval performance of local LSI over

other methods regardless of the particular size I choose.

Notice the above procedure does not project the retrieval corpus onto the

local training space because fold-in here would be too costly in time when it is no

longer a pre-processing step. Moreover, assuming the collection is already indexed

with the best term-weighting method for retrieval, fold-in will only distort the

matrix structure since the local space is much smaller than the collection space.

Therefore, mathematically, while the fold-in process involves computing IkUS
~d

for all documents in the retrieval collection, the local LSI method I propose is

SimLocal�LSI�ML(d; q) = (~d ) � (USIkU
T
S ~q );

where S = US �S V
T
S and S is the term-document matrix created from the top

k documents returned from an initial retrieval. In other words, it uses the in-

terpretation of LSI that is listed on the third row of Table 3.3. The similarity

comparison between ~d and USIkU
T
S ~q is accomplished by mapping the terms (rows)

in the local region (S) into the same terms (corresponding rows) in the global

space (A).

A technique similar to the local LSI process I just explained was implicitly

used by Newby [76] in his TREC-7 experiments. Because of the large size of the

TREC corpus being used, he was unable to make a full eigensystems analysis

of the term correlation matrix for his information space method, which, as I

explained in Section 3.4.2, is very similar to LSI. Instead, he ran the analysis

on a sub-matrix of the entire term correlation matrix that corresponds to terms

both selected from the TREC topics that he would test with and additional ones

that frequently co-occur with selected ones. This way, he kept the total number
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to terms to be considered down to what can be easily processed by the Ispace

system. Those terms, in the terminology of this Chapter, are just the terms in the

local region of the topics, or the queries. The main di�erence between Newby's

method and local LSI, as we can easily see, is that instead of selecting particular

documents or columns of the term-document matrix, he essentially selects terms

or rows of the term-document matrix1.

5.2.3 Cross-Language Local LSI

Like other corpus-based methods, local LSI can be applied to cross-language

retrieval. Given a pair of parallel collections, we face two possibilities here:

1. Pre-translation local LSI

� Find the top documents from the training corpus in the language of

the query using VSM.

� Find the matching training documents from the collection in the lan-

guage of the retrieval documents.

� Perform cross-language LSI using the two local document subsets for

training.

2. Post-translation local LSI

� Perform cross-language retrieval using LSI, ADE, or any other ap-

plicable method that \translates" the query into the language of the

documents.

1Even though the Ispace method works on the term-term matrix C, we can think of C as the
product of a term-document matrix A and document-term matrix AT , and then selecting
the i-th and j-th rows of A is the same as selecting the element of C at i-th row and j-th
column.
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Figure 5.1: Local LSI can be applied before or after query translation, or a
combination of both in cross-language retrieval.

� Expand the translated query by running local LSI on the top retrieved

documents.

� Perform monolingual retrieval with the expanded query.

These two approaches are illustrated in Figure 5.1. In the �rst option, the best

documents are selected for building cross-language term associations. In other

words, we attempt to make the translation to be as accurate as possible. In the

second choice, we hope the top retrieved documents are a good source for �nding

more words in the other language related the query. The functionality of local LSI

is basically the same as in the case of monolingual retrieval; the cross-language
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work is done through some other algorithm. One such algorithm, of course, can

just be the pre-translation local LSI. This third approach is also illustrated in

Figure 5.1 and described here:

3. Combined pre-translation and post-translation local LSI

� Perform cross-language retrieval using pre-translation local LSI.

� Expand the translated query by running LSI on the top retrieved doc-

uments.

� Perform another monolingual retrieval run with the expanded query.

These three options are very much like three cross-language local feedback

approaches evaluated by Ballesteros and Croft [5]. In their experiments, they

employed a machine readable dictionary (MRD) for word-by-word and phrasal

translation of the queries. Local feedback was done before automatic query trans-

lation to enhance the translation accuracy (i.e. creating more related words to

translate), or after it to reduce translation ambiguity (i.e. down-weighting the

irrelevant translations). They also applied local feedback both before and after

translation to have the best of both worlds.

The three proposed cross-language local LSI methods di�er from those of

Ballesteros and Croft mainly in the way query translation is accomplished. In the

pre-translation approach, local LSI is used both for query expansion and transla-

tion, while in contrast local feedback is only used for expansion with translation

being done through MRD lookups. In the post-translation approach, local LSI

can be more like local feedback: the �rst cross-language retrieval step of local

LSI can simply be achieved through query translation via MRD.

The cross-language local feedback method adopted by Yang et al. [121] and

by Davis and Dunning [30] lies somewhere in between the pre-translation and

142



post-translation approaches. Like pre-translation, they retrieve top documents

from the training collection in the language of the query; like post-translation,

they expand (replace, actually) the query with documents from the other training

collection that are parallel to those top documents (see Section 3.3.3 for details).

In a sense, this local feedback approach is closer to the pre-translation local LSI

than other methods.

I tested both the pre-translation and post-translation local LSI methods in the

cross-language experiments described later in the chapter. The pre-translation

approach appears to be the simplest of the three choices since it reduces the train-

ing space in the �rst step of the procedure. Moreover, it retains the elegance of

LSI in combining query expansion and translation in one process. In contrast, the

post-translation local LSI approach would merely be a repetitious demonstration

of monolingual local LSI, as I could potentially use any cross-language method

for its screening step. Like all local feedback methods, its �nal performance

would also rely very much on the particular baseline cross-language method it

uses. Finally, the combination of pre-translation and post-translation local LSI

seems to be an attractive direction to go. However, since the main objective of

my study is to show the translation capability of local LSI, the focus will be on

pre-translation local LSI in this dissertation. In addition, because the results

show that pre-translation local LSI is already achieving great cross-language re-

sults, another layer of feedback process after translation is not urgently needed

for e�ciency (speed of retrieval) concerns.
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5.3 Experimental Results

To study the application of the local LSI in an information retrieval setting, I

performed a set of retrieval experiments on test collections that I used to study

ADE. I ran experiments only on medium to large collections because methods

like VSM and LSI already achieve impressive results on small collections such as

Cran�eld. Besides, Xu and Croft [119] noted that local feedback methods do not

work well with some of the standard small test collections because of the fewer

relevant documents for each query in those collections.

In this section, with many existing results from Chapter 4, I compare the

performance of local LSI with the baseline VSM and LSI. I focus my experiments

mainly on cross-language retrieval because there are relatively few experiments

on relevance feedback in that area compared to monolingual retrieval. I am also

able to compare the performance between global sampling and local LSI on the

�rst corpus I study|the AP 1990 collection.

Again, most of the experiments described in this Chapter are conducted on

the SGI machine \dragon" (see Section 4.3). The detailed information of the

collections used here are the same as listed in Table 4.3.

5.3.1 TREC AP 1990 Collection

The �rst set of data is obtained from the TREC AP 1990 collection as described

in Section 4.3.3. I begin with this collection because there are not only results by

VSM, LSI, and ADE, but also results by the two global sampling methods [63]

for comparison.

Uniform random sampling and weighted random sampling were performed on

the term-document matrix indexed with SMART ntc weighting. The baseline
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VSM achieves an average precision of 0.2132 with TREC-4 ad-hoc topics 201{

250. In Section 4.3.3, I found that the TREC-4 ad-hoc topics work better with

Okapi weighting on this collection. But, since the objective here is to demonstrate

the relative performance of local LSI in comparison to global sampling and other

methods such as baseline VSM, I did not run the global sampling algorithms on

the Okapi-indexed matrix of AP 1990 corpus.

Details of the sampling experiments are found in the report by Jiang et al. [63].

Briey, sample size 10,000 was chosen to be the focus of the study and repeated

ten times with both uniform and weighted sampling, because it represented a

relatively small fraction (about 1=8) of the original document set and still gave

comparable performance compared to running LSI on the entire collection. Sam-

pling was done with replacement, so a particular document could be sampled

multiple times.

For each sampled matrix, an 1,000-dimensional SVD was computed and ob-

served errors were measured using to Equation 5.2. Reproduced from the re-

port by Jiang et al. [63], Figure 5.2 summarizes the errors over the ten 10,000-

document samples generated by both global approximation algorithms. The sam-

ples producing the maximum and minimum error at 900 dimensions are shown for

both uniform and weighted sampling. We can clearly see that weighted sampling

produces approximations with greater accuracy and less variance than uniform

sampling. Notice approximation accuracy decreases with increasing numbers of

dimensions because we are attempting to estimate smaller components of varia-

tion (singular values) based on the same size sample.

Although the error results illustrated in Figure 5.2 provide a compelling case

for the use of weighted sampling over uniform sampling, retrieval performance us-

ing the sampling methods paints a less clear picture. For the two global methods,
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Figure 5.2: Approximation accuracy for a 10,000-document sample size declines
for larger sets of singular values, but the weighted sampling technique consistently
produces more accurate approximations.

I computed 1,000-dimensional SVD's of the sample matrices, performed retrieval

on the resulting latent semantic subspace, and measured performance at dimen-

sions from 300 to 1,000 by increments of 100. Figure 5.3 gives the average of the

aforementioned ten runs of 10,000-document samples with uniform and weighted

sampling on the AP 1990 collection with 50 TREC-4 ad-hoc topics. The graph

also shows the performance of VSM and that of LSI without sampling for ref-

erence. We see that the average performance of weighted sampling is somewhat

surprisingly below that of uniform sampling, which is, again, surprisingly close

to that of LSI on the full collection. However, both sampling methods as well as

the full LSI all lie well below the baseline VSM.

In the same �gure, I included three plots for the local LSI method. These
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Figure 5.3: Comparison between local and global sampling methods on the AP
1990 collection: with more dimensions, the average precisions of local LSI not
only increase much more sharply than global methods, but they also climb above
the baseline VSM result.

results were obtained in the following way: For example, for the feedback size of

200, I extracted the texts of each query's top 200 documents from VSM retrieval

for training. I indexed all the top documents for all queries as a whole collection

with ETH's similarity thesaurus (see Section 3.3.2) weighting scheme, which I

learned from experience worked well to establish term-term correlations. The

feedback size (200) and the number of queries (50) together gave a total number

of 10,000 documents in the combined training set, though the actual total is 8,418

due to removed duplicates. This number provides a close comparison between

local LSI and the two global sampling methods with 10,000 samples.

The reason that I indexed all the top documents together was mainly for
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e�ciency, because running SVD's on 50 small matrices may be a simpler task for a

computer, but not so for human beings who have to create 50 indexed collections.

Another reason is that since the job of LSI is to �gure out the \proper" structure

of word associations in the texts, we would want to train it with not just the

relevant documents but also others, so to help it to better distinguish content-

bearing words and other words. The top documents of other queries may just

be the perfect �t for this purpose, since we save the e�ort of doing it for every

query in one computation step. In a real-life situation, we may want to add a

few of the documents not in the top returned list for \negative" training. This is

similar to Rocchio's relevance feedback formula depicted in Section 3.3.3, which

subtracts the vectors of the known (or assumed) irrelevant documents from the

query vector. In this case, the local LSI approach is more elegant: let SVD to

�gure out the relevance; what matters is enough (assumed) relevant documents

are in the training set and the set is su�ciently small.

I also ran local LSI with feedback sizes of 50 and 100, which resulted in a total

of 2,304 and 4,488 documents, respectively, for 50 queries. I computed 1,000-

dimensional SVD's on the three feedback matrices and performed LSI retrieval.

In Figure 5.3, we see that the local LSI plots are rising much more sharply than

those of the global sampling methods. For a similar sample size, the local LSI

with 200-document feedback outperforms LSI at 700 dimensions and even VSM

at 900 dimensions. With a smaller feedback size of 100, the results are better still.

This shows local LSI not only reduces the computation of LSI, but also improves

retrieval e�ectiveness. In the same �gure, we also see the improvement of retrieval

performance with decreasing sample size. This is a positive sign because a smaller

training set means less training time.

To truly show the performance advantage of local LSI, I need to run and
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compare it against the best VSM result I obtained for this collection. So, I

tried it with the Okapi weighting, which, from Section 4.3.3 gave an average

precision of 0.2964 for TREC-4 topics. This time I used vector sampling|select

document vectors directly from the Okapi-indexed document matrix. I computed

SVD's on combined documents gathered by using feedback sizes from 20 to 100 in

increments of 20. For comparison, I implemented the basic local feedback schema

as described in Section 3.3.3, and set the Rocchio weights of Equation 3.16 to

� : � :  = 1 : 1 : 0, the same as Xu and Croft [119] did. Figure 5.4 shows

these results in terms of varying feedback size. For local LSI, I selected a speci�c

dimension at which to compute LSI similarity, and plotted average precision

for that dimension against selected feedback sizes. For local feedback, it is a

simple plot of average precision versus feedback size. The baseline VSM is shown

as the dotted straight line in the middle. We see local LSI outperforms VSM

and local feedback at most combinations of feedback size and SVD dimension.

We cannot, however, draw the conclusion that local LSI is better than local

feedback, because the local feedback method I have implemented corresponds to

its simplest formulation. There are many techniques and heuristics that can be

added onto Rocchio's formula to enhance its performance. For example, local

context analysis [119] is an advanced technique that selects \concepts" (noun

groups) from the best matching passages (�xed-size text windows) to be added

to the query. At the same time, we can imagine that local LSI being run on a

noun-phrase-only term-document matrix indexed from the passages that matches

the query best. Hence, the comparison between local feedback and local LSI in

their basic forms is actually very appropriate.

To make a di�erent, yet clearer, view of the e�ect of feedback sizes on re-

trieval performance, I plotted in Figure 5.5 �ve di�erent sets of results for the
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Figure 5.4: Local LSI outperforms basic local feedback and baseline VSM at
di�erent sample sizes and with di�erent dimensions on the AP 1990 collection
with TREC 4 ad-hoc topics and Okapi indexing on the retrieval documents.

200 300 400 500 600 700 800 900 1000 1100
0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

SVD dimension

av
er

ag
e 

pr
ec

is
io

n

Local LSI (k = 20)    
Local LSI (k = 40)    
Local LSI (k = 60)    
Local LSI (k = 80)    
Local LSI (k = 100)   
VSM                   

Figure 5.5: Performance of local LSI varies with SVD dimension and sample
size on the AP 1990 collection with TREC 4 topics and Okapi weighting; the
average precisions appear to converge at high dimensions, however.
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aforementioned �ve feedback sizes with local LSI. The �rst and most important

characteristic of this graph is: all but two points of local LSI plots lie above that

of baseline VSM. Then, we notice the rather interesting con�guration formed by

the collection of �ve plots, which shows, among other things, how feedback size

matters at low SVD dimensions but not so much at high ones. If we ignore the

relative position of each plot on the graph, we see that the dimension at which I

obtained performance peak for each feedback size has a positive relationship to

its size. In other words, more training data means more SVD dimensions needed.

We cannot draw a conclusion from this �gure and Figure 5.3 as to what

feedback size to be used in the future on other collections. There has been

previous research on the e�ect of feedback size on retrieval performance [2], but

generally there are no clear guidelines (except for relying on previous experience)

as to what speci�c size to use on a given collection. All that can be learned from

the experiments is: the number feedback documents will always be collection

dependent.

5.3.2 TREC French and German Collections

My next set of experiments are conducted on the TREC French and German

collections as described in Section 4.3.4, as I turn my focus quickly to cross-

language retrieval.

But, since there are four sets of monolingual retrieval results available from

Section 4.3.4, it would have been negligent for me not to try local LSI on those

cases. The original results of VSM, GVSM, LSI, and ADE are listed in Tables 4.9

and 4.10, from which I separated monolingual from cross-language results and

reorganized them into Tables 5.1 and 5.2. Recall that I used the SMART ntc

weighting scheme to index both the training and retrieval collections, and there
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French German
TREC 6 TREC 7 TREC 6 TREC 7

VSM AvgP 0.3162 0.2796 0.2958 0.2541
P10 0.4714 0.4357 0.4043 0.3259

LSI AvgP 0.1711 0.2070 0.1025 0.0651
P10 0.2190 0.3036 0.1609 0.0852

ADE AvgP 0.2064 0.2929 0.1635 0.1527
P10 0.3095 0.4000 0.2304 0.2148

Local LSI AvgP 0.3608 0.3372 0.3598 0.2815
P10 0.4810 0.5143 0.4652 0.3542
%VSM 114.1 120.6 121.6 111.9

Table 5.1: Monolingual local LSI results on the TREC French and German
corpora with TREC 6 and 7 cross-language topics and SMART ntc indexing on
the local documents.

German ) French French ) German
TREC 6 TREC 7 TREC 6 TREC 7

LSI AvgP 0.1175 0.0947 0.1495 0.0751
P10 0.1810 0.1250 0.2217 0.1000

ADE AvgP 0.1671 0.1933 0.2177 0.1572
P10 0.2810 0.2607 0.2957 0.1963

Local LSI AvgP 0.2010 0.2279 0.2294 0.1902
Pre-translation P10 0.3143 0.2877 0.2870 0.2148
Local LSI AvgP 0.1712 0.2101 0.2207 0.1707
Post-translation P10 0.2857 0.2857 0.2826 0.2111

Table 5.2: Cross-language local LSI results on the TREC French and German
corpora with TREC 6 and 7 cross-language topics and SMART ntc indexing on
the local documents.

were two sets of queries: TREC-6 and TREC-7.

For monolingual local LSI, I used a feedback size of 20 (from my experience

with the AP 1990 collection) and built the LSI spaces on the top documents from

VSM retrieval. When selecting top documents, I used the text sampling approach

discussed in Section 5.2.2: I extracted the actual text of the top documents and

re-indexed them with the SMART ntc weighting; for each term in the query

I used its global weighting from the original collection, because the idf factor
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derived from a large collection is more e�ective in distinguishing content words

from non-content words. However, since ntc is just a tf � idf scheme, and the

only factor that depends on the collection size is the idf factor, what I did was

essentially equivalent to the vector sampling process.

Again, for each query set I combined the feedback documents for all queries

and computed a single SVD. Since the numbers of TREC-6 and TREC-7 topics

are 25 and 28, respectively, the total number of feedback documents in a combined

set never exceeded 560, while the number of unique terms was no more than

17,000. For such small collections, it always took less than 60 seconds to compute

the full SVD's of the matrices on \dragon." Here, we see the speed of local LSI (in

computing an SVD) is not a real issue as the computer being used was certainly

far from the fastest available, and queries were also processed in batches. It

remains to be seen whether the performance of local LSI justi�es its usage.

The numbers shown in the last rows of Table 5.1 certainly give an a�rmative

answer, as we see the performance gains by local LSI over VSM range from 10%

to 20%. The dimensions at which these best scores are obtained are small as well:

With the exception of the French TREC-7 run, whose best average precision was

found at 100 dimensions, all peak performances were reached at 200 dimensions.

This shows that we continue to see the e�ect of dimension reduction even with

local LSI. In addition, I made a performance comparison among local LSI runs

with di�erent feedback sizes on the TREC-6 German retrieval. As in Figure 5.5,

I chose feedback sizes from 20 to 100 in increments of 20. I plotted the average

precision against SVD dimensions from 100 to 1,200 by the interval of 100 for each

run. For the two smaller feedback sizes of 20 and 40, since there are not enough

documents to have 1,200 dimensions, I drew their plots from 100 to their largest

possible dimensions. The overall pattern of the plots in the �gure is similar to
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Figure 5.6: Performance of monolingual local LSI varies with feedback size and
SVD dimension on the TREC German collection with TREC-6 cross-language
queries.

that of Figure 5.5: they converge in higher dimensions and most of the points lie

above the baseline VSM.

In the cross-language runs, I experimented with both the pre-translation and

the post-translation local LSI, as discussed in Section 5.2.3. Since the combined

pre-translation and post-translation method is essentially a speci�c implementa-

tion of the post-translation method, I did not test it here|the post-translation

runs I made were su�cient to showcase its ability.

In the pre-translation method, the idea is to �nd the best training documents

for query translation. In Section 4.3.4, I used the 40,000 comparable documents

in French and German as the training corpora. Therefore, here I computed

VSM similarities between the queries and those training documents in the same
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language. Then, I selected the texts of 100 top ranked documents for each query

from the training collection, as well as their counterparts in the other training

corpus. I used a larger feedback size of 100 because from my previous experience

it is usually the case that more dimensions (and hence training documents) are

needed to establish cross-language associations and obtain good results. The

combined collection of the top documents of a set of topics has about 2,000

documents. I then computed two separate SVD's for each corresponding pair of

feedback collections. For example, for the German TREC-6 topics, I computed

an SVD on the top-100 documents from the German training corpus retrieved

by VSM, and another SVD on the matching documents in the French training

corpus. Cross-language LSI as described in Section 3.5.1 was then run for each

training sub-collection, and the dimensions of the training matrices were \probed"

to �nd the best average precision results.

For post-translation local LSI, the process is simpler: I applied local LSI on the

results of cross-language ADE retrieval (since its results are the best among the

methods that I ran). The feedback size was set to 20, the same as in monolingual

local LSI.

The results of both local LSI approaches are shown in Table 5.2. We see that

the combination of ADE and post-translation feedback is still outperformed by

pre-translation local LSI consistently on these test collections. Since the training

corpora I used are only comparable to each other, it is really remarkable that pre-

translation local LSI can build from these term associations across the languages

well enough for high-quality cross-language retrieval.
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5.3.3 TREC English and French Collections

Continuing with my cross-language experiments, my next set of results come

from doing retrieval on the TREC English and French collections that I used in

Section 4.3.5, where the processing details of the collections were provided. The

main di�erences between these collections and the French and German collections

from the last section are in that stemming and SMART Lnu term-weighting were

used here compared to no stemming and ntc indexing.

Recall that I obtained quite high baseline VSM average precision scores for the

two collections, especially with TREC-7 topics. I re-organized the monolingual

results from Section 4.3.5 into Table 5.3. Then, I ran local LSI with VSM retrieval

in hope to better them. Once again, feedback size was set at 20 and top documents

for a set of query were bundled together and processed by a single SVD. The

actual computation times were all under a minute, again on \dragon."

When extracting the top documents, I used the text sampling approach.

Then, I indexed the documents with the SMART ntc weighting scheme, which

normalizes all document to unit length, instead of the Lnu weighting that was

used on the full corpus and gives more importance to long documents. The Okapi

weighting scheme, which favors short documents, was also tried but gave poor

performance. When calculating the weight of a term in a local document, I ap-

plied its idf factor obtained from the full corpus, again in hope that this will

provide better di�erentiation power.

The monolingual local LSI results are shown in Table 5.3, along with the SVD

dimensions at which the best scores are achieved. It is somewhat surprising to see

the numbers for local LSI come below those of baseline VSM on English retrieval

with TREC-7 topics. But, a closer look will help us to perhaps understand the
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English French
TREC 6 TREC 7 TREC 6 TREC 7

VSM AvgP 0.3597 0.4882 0.3661 0.4056
P10 0.5095 0.6385 0.5048 0.5250

LSI AvgP 0.2308 0.3845 0.2402 0.2975
P10 0.3514 0.5123 0.3619 0.4286

ADE AvgP 0.2999 0.4216 0.2931 0.3185
P10 0.4524 0.5815 0.4333 0.4500

Local LSI AvgP 0.3877 0.4524 0.3934 0.4075
P10 0.5143 0.5885 0.5143 0.5264
Dim 300 100 100 300

Table 5.3: Monolingual local LSI results on the TREC English and French
corpora with TREC 6 and 7 cross-language topics and SMART ntc indexing on
the local documents.

French ) English English ) French
TREC 6 TREC 7 TREC 6 TREC 7

LSI AvgP 0.1936 0.3027 0.1965 0.2667
P10 0.2857 0.4546 0.2952 0.3786

ADE AvgP 0.2656 0.3482 0.2582 0.2978
P10 0.4048 0.4783 0.3571 0.4179

Local LSI AvgP 0.2740 0.3432 0.2610 0.2947
Pre-translation P10 0.4238 0.4738 0.3619 0.4157

Dim 2000 2000 2000 2000
Local LSI AvgP 0.2797 0.3756 0.2812 0.2983
Post-translation P10 0.4005 0.4815 0.3857 0.4181

Dim 300 500 450 300

Table 5.4: Cross-language local LSI results on the TREC English and French
corpora with TREC 6 and 7 cross-language topics and SMART ntc indexing on
the local documents.
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reason behind it: The VSM average precision of 0.4882 is such a high number

that additional \help" from local LSI only serves to sully it. After all, however,

local LSI does improve upon VSM in three out of four cases, and the improvement

seems to be the largest when VSM is the worst.

For cross-language retrieval, I again experimented with both pre-translation

and post-translation local LSI methods. For the pre-translation methods, I used

the feedback size of 100 and indexed the combined top documents for a query

set with SMART ntc weighting function. The resulting matrices all had fewer

than 2,800 documents and 16,000 terms and full SVD's took about 2 hours each

to complete on \dragon." Had the computations been done separately for each

query, the time it took would have been much less|recall that for the top-20

feedback of 28 queries it took less than a minute to compute the SVD. The

results of the four cross-language runs along with the SVD dimensions at which

these best results were achieved are shown in Table 5.4. In all four cases, the

best average precisions were coincidentally reached at 2,000 dimensions. We see

that the performance of pre-translation local LSI on the English-French corpora

is similar to that of ADE at best. But, it has de�nite advantages in its low

computational cost, even though it is done at instead of before retrieval time.

The post-translation local LSI was tested on top-20 feedback of cross-language

ADE results. These results are listed in the last rows of Table 5.4. Although it

shows improvement on all four cases, it is somewhat interesting to see that the

improvement is the greatest on the retrieval of English documents by TREC-7

French queries and the retrieval of French documents by TREC-6 English queries.

The explanation for the former case could be that local LSI is de�nitely going to

help because, compared to the other three cases, the cross-language ADE result

is farthest from that of the baseline monolingual VSM. The other three cases,
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on the other hand, are quite consistent between monolingual and cross-language

retrieval: the \degree" of improvement by local LSI on VSM is similar to that

by local LSI on ADE on the same collection. In summary, we see that local LSI

methods, both pre-translation and post-translation, are valuable assets to have

for cross-language retrieval.

5.3.4 NACSIS Test Collection

The last test collection for local LSI is the NACSIS collection of Japanese and

English academic paper abstracts. The details of this NTCIR-1 collection are

described in Section 4.3.6; I repeat some of them here: I used 332,918 Japanese

(ntc1-j1) and 187,080 English documents, 21 training and 39 test topics all in

Japanese, and two types of relevance judgment �les (rel1 and rel2); I indexed

the retrieval collections with the SMART Lnu weighting function, and converted

two-byte codes in Japanese text into four-character words in ASCII before initial

processing; I created parallel training documents by extracting the Japanese and

English documents with the same ID's, but I only used one-fourth of them since

the full English parallel corpus is almost the entire English collection.

As before, I �rst tried local LSI on top of VSM in monolingual retrieval,

with the usual feedback size of 20 and the SMART ntc weighting on the local

documents. The performance improvement over VSM was not all that great,

as Table 5.5 indicates2. The results of VSM, LSI, and ADE in the same table

are copied from those of Table 4.14 in Section 4.3.6. The ine�ectiveness of local

feedback on NTCIR-1 was also observed by Sakai et al. [91] in their experiments.

They not only found little performance advantage of post-translation local feed-

2I also tried the ETH's similarity thesaurus weighting function but it gave even worse results.
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topic0001-0030 topic0031-0083
rel1 rel2 rel1 rel2

VSM AvgP 0.3452 0.3295 0.2601 0.2870
P10 0.5143 0.5333 0.4103 0.4974

LSI AvgP 0.2555 0.2569 0.2413 0.2702
P10 0.4524 0.4667 0.4000 0.4846

ADE AvgP 0.2807 0.2795 0.2576 0.2874
P10 0.4571 0.4762 0.3949 0.4872

Local LSI AvgP 0.3498 0.3306 0.2627 0.2908
(k = 20) P10 0.5238 0.5429 0.4051 0.4846
Local LSI AvgP 0.3530 0.3315 0.2643 0.2923
(k = 50) P10 0.5429 0.5571 0.4077 0.4923

Table 5.5: Monolingual local LSI results on NTCIR-1 with two sets of
cross-language topics and SMART ntc weighting on the local documents.

back over baseline cross-language retrieval, but sometimes they also obtained a

decline in average precision with local feedback.

However, knowing Japanese is quite di�erent from languages like English or

French, I ran another set of local LSI experiments with a larger feedback size.

This time the top-50 documents returned by VSM are kept for building the local

LSI space. The matrix of the top documents of 21 training topics had 2,896

rows (terms) and 962 columns (documents), while the matrix of the feedback

documents of 39 training topics had 4,703 rows and 1,705 columns. The full-SVD

computation of the larger matrix took about 10 minutes to �nish on \dragon."

As we see from Table 5.5, the improvement in retrieval with a larger feedback

size is still at most trivial. My results, thus, seem to be consistent with those

of Sakai et al. [91] in �nding that local feedback methods are less useful on the

NACSIS collections than on, for example, the TREC collections.

The last set of results for this chapter as well as this dissertation is from the

local LSI runs on Japanese-English retrieval of NTCIR-1. With the mediocre

results of monolingual retrieval by local LSI, I focused my attention on the pre-
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translation local LSI method instead of post-translation, since the latter is essen-

tially a variation of the monolingual local LSI.

Because there is no English translation of the Japanese queries, I could not run

monolingual English retrieval as a baseline to compare with my cross-language

results. The comparison from monolingual Japanese retrieval would be quite in-

accurate since the Japanese retrieval collection has 77% more documents than

its English counterpart. With the aid of local LSI, however, I was able to emu-

late monolingual results from cross-language retrieval. Recall from Section 4.3.6

that the entire set of English parallel documents consists of most of the English

retrieval collection; I took advantage of this fact and ran pre-translation local

LSI on the full parallel document sets: I located the top-100 documents returned

by VSM for each query on the Japanese training collection, and I identi�ed their

parallels in the English training collection; I computed separate SVD's on the two

feedback collections and transformed Japanese queries into the parallel English

term space with LSI. Not surprisingly, the retrieval results from this procedure

are very good; the �rst rows of Table 5.6 shows the two runs for two queries

sets. The average precisions of cross-language local LSI with the training queries

are as high as those of the monolingual Japanese retrieval, while those with the

test queries actually exceed those of baseline VSM. In essence, my local LSI with

the full training set is a test of ability of LSI in doing mate retrieval, which is

the task of identifying translational equivalents from document-aligned parallel

corpora [65]|LSI does seem to excel in this area [65, 70].

But, with training collections that contain only one-fourth of the document

from the full collections, I was able to test the ability of local LSI in \pulling in"

other relevant documents from among those not selected for training. Table 5.6

reveals the results of pre-translation local LSI on the smaller training collection
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topic0001-0030 topic0031-0083
rel1 rel2 rel1 rel2

Local LSI AvgP 0.3430 0.3352 0.2868 0.3169
(Full Training) P10 0.4381 0.4571 0.3282 0.3872

LSI AvgP 0.1327 0.1375 0.1162 0.1322
P10 0.2429 0.2619 0.1462 0.1923

ADE AvgP 0.1554 0.1606 0.1703 0.1898
P10 0.2810 0.3048 0.2000 0.2538

Local LSI AvgP 0.2620 0.2581 0.2383 0.2568
Pre-translation P10 0.3857 0.4143 0.3103 0.3667
Local LSI AvgP 0.1597 0.1567 0.1621 0.1815
Post-translation P10 0.2762 0.3000 0.2026 0.2590

Table 5.6: Cross-language local LSI results on NTCIR-1 with two sets of
cross-language topics and SMART ntc weighting on the local documents.

with the usual feedback size of 100. The local LSI method does show high perfor-

mance gain over the global methods like LSI and ADE, whose results were copied

from Table 4.14 in Section 4.3.6. Whereas in Section 4.3.6, I already made com-

parisons between my ADE results with a few published ones on this collection,

the results here by local LSI would compare favorably against them. Still, I did

not perform word segmentation on Japanese texts or use a bilingual dictionary.

In the same table, I also presented the results for running post-translation local

LSI on top of cross-language ADE. As we can clearly see, the extra feedback step

after the initial retrieval does not help improve the performance, just like in the

monolingual case.

5.4 Conclusion

Local LSI has several signi�cant merits. By focusing the analysis on the selected

documents related to the query, it outperforms VSM on monolingual retrieval

when ADE is not able to do so. The additional computational cost at retrieval

time does not seem to be a signi�cant factor, as the SVD of a small number of
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documents takes only seconds to compute on an average machine. Since term

relevance is automatically deduced through SVD in local LSI, this saves the need

for statistically selecting terms from top feedback documents and re-weighting

them in the expanded query, as in the case of local feedback.

In cross-language retrieval, the pre-translation local LSI approach learns more

accurate translational term-associations by concentrating on the training docu-

ments that actually contain the words to be translated, while the post-translation

approach is a mere extension of the monolingual local LSI. I recommend pre-

translation local LSI for cross-language applications because it can be used as

long as there is a parallel or comparable corpus available, and it will be most ef-

fective when the training corpus covers the same subject domain as the retrieval

collection. The post-translation approach, on the other hand, would depend on

the cross-language method it employs for its performance. One possible method

here is the pre-translation method, though this has not been fully tested, since

the pre-translation method alone is getting high-quality retrieval results.
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Chapter 6

Conclusion

In this dissertation I have studied, created, experimented, and compared methods

that conduct information retrieval by modeling terms and documents in a high

dimensional vector space. In a detailed analysis of those methods, I show that the

term relationships in documents is intrinsically determined by the structure of the

vector space being used, and that we can apply some simple matrix computation

techniques to alter that structure. The relationship between terms can be used to

supply the original user query with additional terms that will help the retrieval

of relevant documents. Moreover, the derived term associations between terms in

two di�erent languages make the document retrieval across those languages not

only possible but also e�ective.

6.1 Results

There are three main varieties of the vector-based information retrieval methods:

VSM, GVSM, and LSI. GVSM and LSI are extensions to basic VSM in that

they analyze a set of training documents to derive term-term associations to

facilitate information retrieval. I have shown how the three methods can be

represented in a uni�ed mathematical framework called dimension equalization,

which is accomplished through the singular value decomposition of the term-

document matrix of a corpus being considered. Under this uni�cation, we have

learned how equalization of reduced SVD dimensions can produce better term-

term associations for improving performance in information retrieval.
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The only method that uses both reduction and equalization of SVD dimen-

sions of a term-document matrix is LSI. LSI has demonstrated its advantages

over the other two methods on some of the small, classic information retrieval

test collections. However, the computational requirement of SVD presents a ma-

jor problem for LSI in its scalability. My results show that when the retrieval

collection becomes very large, LSI has failed to compete with the traditional VSM

method because of the tiny number of SVD dimensions that can be computed

with current limited computing resources.

Upon a close examination of the matrix SVD's of many di�erent types of cor-

pora, I observed the so-called low-rank-plus-shift structure that exists in all those

term-document matrices. Such structure, as I discovered, can be utilized to create

an approximation of a large number of equalized dimensions with only a few ini-

tial ones being actually computed through the SVD software. The approximation

process is fairly easy to compute: it only involves the basic matrix additions and

multiplications of the di�erent SVD parts of the original matrix. I have named

this method approximate dimension equalization (ADE) and have presented its

retrieval results on various test collections and compared it to VSM, GVSM, and

LSI. My �ndings are conclusive: ADE does improve on LSI with the same number

of computed dimensions; it bridges the gap between the performances of LSI and

VSM in monolingual retrieval; and it is very e�ective in cross-language retrieval

where VSM is not applicable. These �ndings further con�rm my hypothesis that

equalization of reduced dimensions of a term-document matrix produces better

associations among related terms.

The computation of LSI can be further scaled down with the application of

document sampling. I have made a brief study of the global sampling approaches

to LSI approximation. I have applied the theoretical �ndings by Frieze et al. [43]
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to the implementation of a weighted random sampling algorithm. My experiments

show that the weighted approach is very promising in sampling accuracy but much

less so in retrieval e�ectiveness.

My focus of the sampling study has been on the use of LSI on the top returned

documents from an initial retrieval. Local feedback methods have been very

popular in the IR research community, but are traditionally accomplished by

either blind addition of top documents to the original query, or by careful selection

of most related terms from the top documents and supplying them to the query.

Local LSI is a similar method to local feedback: it automatically derives the

appropriate term relationship structure through the computation of the SVD of

the matrix of the top returned documents. The rationale behind local LSI is

that the documents in the local region of the query give LSI an opportunity

to make a focused analysis of the term associations that would really help the

retrieval of documents relevant to the query. This presents a solution to the LSI

scalability problem because selecting the documents local to the query can be

viewed as selecting the SVD dimensions that have the most signi�cant e�ect on

performance.

In this research, I have extended the study by Hull [61, 60] and have ap-

plied the local LSI method to information retrieval, especially in cross-language

applications. My experimental results show that in most monolingual cases, lo-

cal LSI improves upon the baseline VSM retrieval by a signi�cant amount. For

cross-language retrieval, I have proposed two di�erent approaches to use local

LSI. The post-translation local LSI method is similar to the monolingual local

LSI method|it runs LSI on the initial cross-language retrieval results. The novel

approach is pre-translation local LSI. This method runs an initial monolingual

retrieval on the training documents in the language of the query, and then per-
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forms cross-language LSI on the parallel top documents returned in the initial run.

The advantage of the pre-translation method is that we maximize the accuracy

of translation before the retrieval, while the advantage of the post-translation

method is we can insert any other algorithm in for the initial cross-language re-

trieval, including pre-translation local LSI. My experimental results indicate that

pre-translation local LSI is very e�ective in cross-language retrieval and post-

translation local LSI is in most cases an asset to have to enhance the retrieval

performance.

6.2 Future Directions

An alternative approach to document sampling is term selection, where the rows

instead of columns of a term-document matrix are chosen according to a certain

criterion. Of course, the criteria would be di�erent in the two approaches, since

in term selection we want to pick those terms that are well represented by the

corpus. One criterion is to select terms that do not have very high or very low

frequency counts [74, 75], and this is similar to the global sampling approaches

for LSI. Another can be the selection of terms that are closely related those in the

query [76], which is a brand new approach to implementing local LSI feedback.

I believe the selection of terms in the local region of a query to build LSI space

deserves more investigation.

From the numerous experiments I conducted for this dissertation, I have

learned that no matter how well a method or weighting schemes does in average

precision, there is always some queries on which another method or weighting

scheme outperforms it. Thus, I wonder whether it is possible to be able to choose

the particular weighting scheme and retrieval method for each query. The under-
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lying problem here is to detect the characteristics of a query that may decide its

applicability with certain weighting scheme and retrieval method. For example,

the length of the query or the percentage of obscure terms in the query, may be

two of these factors. Studies are needed to determined if my observations are

only arbitrary.

In conclusion, we have learned that the fundamental idea in LSI|of using

equalized dimensions of the term-document matrix for projection|is a very sound

approach to building the term-association space for query expansion. Since dif-

ferent semantics and meanings are \stored in" or \captured by" the di�erent di-

mensions of the this space, the dimension truncation of LSI at the limit of current

computing capability would only hurt the retrieval performance. This thesis have

investigated two approaches that manage to retain as many useful dimensions of

the semantic space as possible: ADE does this by including all the \latent" di-

mensions and local LSI by keeping most of the dimensions that are \relevant"

to the current query while discarding the rest. A thorough understanding of the

role that each dimension plays would de�nitely be a major breakthrough in not

only vector-based information retrieval, but information retrieval in general.
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Appendix A

Sample Queries and Documents

This section describes and lists some of the queries and documents from the test

collections used in this thesis.

A.1 Comparable Documents: TREC French and

German Collections

These are news articles from the Swiss new agency (Schweizerische Depeschen

Agentur) from 1988 to 1990, and are used in the the TREC Cross-Language In-

formation Retrieval (CLIR) track [101]. In the experiments by Rehder et al. [84],

40,000 document pairs were found through an automatic alignment procedure.

These documents are comparable, not parallel, since they are not strictly trans-

lations of each other.

Here is an sample pair of documents. The �rst is in French and the second in

German:

P�erou: une �liale de Nestl�e accus�ee de manoeuvres sp�eculatives

Lima, 4 jan (ats) Le gouvernement p�eruvien a accus�e dimanche la soci�et�e

\Perulac", �liale du groupe Nestl�e ayant son si�ege �a Vevey (VD), de s'être

livr�ee �a des manoeuvres sp�eculatives en rationnant la distribution de sa pro-

duction de lait en poudre. Alors que Perulac rejette cat�egoriquement cette

accusation, le pr�esident p�eruvien Alan Garcia a demand�e l'application de sanc-

tions contre \les coupables de l'accaparement de ce produit".

\Nous allons prendre des mesures et sanctionner la soci�et�e Perulac, a�n

que ne se r�ep�ete pas cette manoeuvre condamnable", a-t-il d�eclar�e, ajoutant
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que le gouvernement p�eruvien d�esormais participera directement �a la produc-

tion et �a la fabrication du produit, pour �eviter de nouvelles actions sp�eculatives.

Le gouvernement p�eruvien a lanc�e ses accusations trois jours apr�es avoir ef-

fectu�e une op�eration coup de poing dans les entrepôts de Perulac au nord de

la capitale Lima. En pr�esence du ministre de l'agriculture Remiglio Morales

Bermudez, la police p�eruvienne a en e�et saisi dans la journ�ee du 31 d�ecembre

plusieurs millions de botes de lait en poudre \Ideal".

Contact�ee �a Lima, la direction de Perulac a estim�e que le nombre de bôites

saisies �etait sup�erieur aux 2,8 millions pr�ealablement annonc�e. Une bote de

lait en poudre \Ideal" vaut actuellement sur le march�e p�eruvien entre 25 et

30 centimes suisses. L'op�eration de la police p�eruvienne dans les entrepôts de

Perulac �a Santa Anita et �a Chiclayo faisait suite �a de nombreuses d�enonciations

selon lesquelles la �liale de Nestl�e n'approvisionnait plus le march�e. Le lait en

poudre �etait en e�et devenu pratiquement introuvable dans la capitale.

Perulac-\A��are": Garcia droht mit Sanktionen

Lima, 5. Jan. (sda) Die peruanische Regierung hat am Sonntag die Nestl�e-

Tochtergesellschaft Perulac beschuldigt, mit der Verknappung des Milchpul-

verabsatzes \Spekulationsman�over" unternommen zu haben. Staatschef Alan

Garcia k�undigte Sanktionen gegen die \Schuldigen an der Hortung dieses Pro-

dukts" an, \damit ein solches verdammenswertes Man�over nicht nochmals

passiert". Die peruanische Regierung werde sich darum k�unftig direkt an

der Herstellung von Milchpulver beteiligen, um neuen Spekulationsmachen-

schaften vorzubeugen. Die Perulac hat die Anschuldigungen kategorisch de-

mentiert.

Die Regierung brachte ihre Anschuldigungen drei Tage nach der Blitzaktion

gegen die Lagerhallen der Perulac im Norden der Hauptstadt Lima vor. Im

Beisein des Agrarministers Remiglio Morales Bermudez hatte die Polizei am

Silvestertag mehrere Millionen Dosen Milchpulver der Handelsmarke \Ideal"

beschlagnahmt. Auf Anfrage sch�atzte die Perulac-Direktion in Lima die Zahl

der beschlagnahmten Dosen, die auf dem heimischen Markt zu umgerechnet 25
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bis 30 Rappen abgesetzt werden, auf mehr als die zunchst bekanntgegebenen

2,8 Millionen ein.

Zu den Razzien der Polizei in den Perulac-Depots in Santa Anita und

Chiclayo war es gekommen, nachdem zahlreiche Klagen eingegangen waren,

die Nestl�e-Tochtergesellschaft beliefere den Markt nicht mehr. Milchpulver

war in der Tat in allerjngster Zeit in Lima kaum mehr aufzutreiben.

To see their closeness in meaning, the �rst sentence of the French article can

be translated into English as

Lima, Jan 4 (ats). The Peruvian government accused on Sunday

the company \Perulac", a subsidiary of the Nestl�e group located at

Vevey (VD), of doing speculative maneuvers by rationing the distri-

bution of its powdered milk production.

while the �rst German sentences can be translated as

Lima, Jan 5 (sda). The Peruvian government accused on Sunday

Nestl�e's subsidiary company Perulac of speculating with the shortage

of the powdered milk sales.

It should be noted that not all document pairs in the two collections are this

close, though.

A.2 Parallel Documents: CMU UNICEF Col-

lection

This collection is extracted from the LDC's United Nations Parallel Text Corpus;

the training, retrieval collections and the queries are created and described by

Carbonell et al. [26]. It contains 1,134 training documents and 1,121 test doc-

uments, each in both English and Spanish. Yang et al. also prepared a set of
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30 English queries along with exhaustive relevance judgments for these queries

over all 1,121 test documents. The relevance judgments were made between the

English queries and the English test documents|relevance for the Spanish test

documents were assumed to be the same, since these are translationally equivalent

to the English.

Here is a document from the English training corpus, which consists of two

paragraphs extracted from an original UN document:

5. Although the order of priority varies according to the country, the princi-

pal causes of infant and child deaths in the region include: diarrhoeal diseases;

the expanded programme of immunization (EPI) target diseases, particularly

measles; neonatal tetanus and whooping cough; acute respiratory infections

(ARI); malaria; and low birth weight (often associated with maternal malnu-

trition). In addition, this year as in the past, some countries faced epidemics:

cholera (Guinea-Bissau, Mali, Mauritania, Nigeria and Senegal); yellow fever

(Cameroon, Guinea, Mali and Nigeria); cerebral-spinal meningitis (Benin, Cen-

tral African Republic and Nigeria); and paralytic poliomyelitis (Senegal).

6. A considerable e�ort has been made to improve the collection and analy-

sis of data concerning immunization coverage at local, regional and/or national

levels. However, few countries have a reliable epidemiological monitoring sys-

tem to measure programme impact on morbidity and mortality, particularly for

measles, neonatal tetanus and poliomyelitis. Maternal morbidity and mortal-

ity, due principally to abortion and obstetrical complications, remain a serious

cause for concern, although precise data are still scanty in most countries. In

general, 80 per cent or more of all deliveries still take place at home, often

without quali�ed assistance.

The matching document in the Spanish collection is:

5. Si bien el orden de prioridades var��a seg�un el pas, las principales causas

de mortalidad en los primeros a~nos de vida en la regi�on son: las enfermedades
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diarreicas; las enfermedades que combate el programa ampliado de inmu-

nizaci�on, particularmente el sarampi�on; el t�etanos neonatal y la tos ferina; las

infecciones agudas de las v��as respiratorias; el paludismo; el peso bajo al nacer

(a menudo vinculado a la malnutrici�on materna). Adem�as, este a~no, como

en a~nos anteriores, algunos pa��ses sufrieron epidemias: c�olera (Guinea-Bissau,

Mal��, Mauritania, Nigeria y Senegal); �ebre amarilla (Camer�un, Guinea, Mal�� y

Nigeria); meningitis cerebroespinal (Benin, Nigeria y Rep�ublica Centroafricana);

y poliomielitis (Senegal).

6. Se realiz�o un esfuerzo considerable para mejorar la reuni�on y el an�alisis

de datos relativos a la cobertura de la inmunizaci�on a nivel local, regional y

nacional. Sin embargo, pocos pa��ses tienen un sistema con�able de vigilancia

epidemiol�ogica para medir los efectos del programa en la morbilidad y mor-

talidad, particularmente en el caso del sarampi�on, el t�etanos neonatal y la

poliomielitis. La morbilidad y mortalidad maternas, derivadas principalmente

de los abortos y las complicaciones obst�etricas, sigue siendo motivo de grave

preocupaci�on, aunque en la mayor��a de los pa��ses s�olo se dispone de pocos

datos exactos. En general, el 80% o m�as de los partos tienen lugar en el

hogar, a menudo sin asistencia profesional.

The last Spanish sentence, for example, can be translated as

In general, 80% or more of all child births take place at home,

often without professional assistance.

which is nearly the same as the last sentence of the English document.

Two of the 30 test queries for this collection are shown below:

water puri�cation sanitation water supply project clean water personal hygiene

health sanitation

disease sickness diarrhea diarrhoeal contaminated sanitation coli bacteria scep-

tic excrement drinking water cholera guinea worm parasite ameba amoeba

173



A.3 TREC-6 Associated Press Collection

This document collection consists 242,918 Associated Press (AP) newswire arti-

cles from 1988{1990. They are used in the TREC conferences for both ad hoc

track and cross-language track, and they can be found on TREC disk 1{3 [55].

The following is a typical news article found is this collection:

Brazilian Airline Workers on Strike

With AM-Carnival, Bjt

The ight crews of Brazil's two largest airlines went on strike for higher

wages Friday, tying up most domestic and some international ights on the

eve of Carnival celebrations.

Non-Brazilian carriers were not a�ected by the strike at Varig and Vasp air-

lines. Transbrasil, Brazil's other major airline, operated normally after reaching

a separate agreement with its ight crews.

The Sao Paulo and Rio de Janeiro international airports said the strike

stopped all departures and arrivals of Varig and Vasp. Shuttle service between

Rio and Sao Paulo also was suspended.

An estimated 30,000 to 40,000 passengers, including many Carnival tourists,

will be a�ected by the planned three-day strike, the airlines' press o�ces said.

The huge Carnival celebration kicks o� Saturday and runs until AshWednes-

day, Feb. 17.

Edson Antonio Matosinho, one of the directors of Brazil's 12,000-strong

ight crew union, said in a telephone interview that about 7,000 Varig and

Vasp employees joined the strike.

The strike was called to demand a 65 percent wage hike, Matosinho said.

Flight crew workers' salaries range from $385 to $3,300 a month, he said.

TREC-4 ad-hoc topics (Topic Number 201-250) are one of the sets of topics

that have relevance judgments made for this collection. These topics are natural
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language queries that consist of one sentence each, an example (Topic Number

248) of which is shown here:

Number: 248

Description:

What are some developments in electronic technology being applied to and

resulting in advances for the blind?

TREC-6 and TREC-7 cross-language topics (Topic Number 1{53) are two

other sets of queries with relevance judgments for the AP collection. The topics

are more elaborate in that they contain three �elds: title, description, and nar-

rative. The title �eld is usually a noun phrase while the other two are composed

of one or more sentences. Typically people use the title and description to form

the \short" version of the query and combine all three �elds to create the \long"

version. The example below is Topic Number 28.

Number: 29

The Ustica A�air

Description:

Did the armed forces and the secret services try to hide the truth about the

disaster of Ustica?

Narrative:

On 27 June 1980 an ITAVIA DC9 crashed in the sea o� the coast of Us-

tica. The reasons for this tragedy are still not clear. There have been many

enquiries, hearings and commissions to investigate the true causes of the dis-

aster. Strong doubts have emerged concerning the involvement of Italian and

non-Italian secret services and o�cers of the armed forces in this event. Rele-

vant documents are those that discuss or deny the possibility that the military

or the secret services have been involved in a plot to throw the inquiry o� the

track.
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The TREC-6 cross-language topics are also available in Dutch, French, Ger-

man, and Spanish, while the translations of the TREC-7 cross-language English

topics can be found in French, German, and Italian.
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Appendix B

Mathematical Derivations

B.1 Term Correlation

For two terms �x and �y, de�ne

Ox =

�
1 if �x occurs
0 otherwise

; Oy =

�
1 if �y occurs
0 otherwise

and note that

OxOy =

�
1 if Ox = 1 and Oy = 1
0 otherwise

is an indicator random variable for whether both �x and �y occur in a document.

The correlation of Ox and Oy is de�ned as

Corr(Ox; Oy) =
Cov(Ox; Oy)p
Var(Ox) Var(Oy)

(B.1)

where Cov(Ox; Oy) is the covariance of Ox and Oy, and Var(:) denotes the vari-

ance of a random variable.

The variance of an indicator random variable is the product of the probabilities

of the occurrence and non-occurrence of its corresponding event [90]. Hence,

Var(Ox) = Pr(�x) � [1� Pr(�x)] �
df (�x )

n
�

�
1�

df (�x )

n

�

Var(Oy) = Pr(�y) � [1� Pr(�y)] �
df (�y)

n
�

�
1�

df (�y)

n

�
;
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where the probability of the occurrence of a term is estimated by the proportion

of its document frequency (denoted by df ()) to the collection size (denoted by n

as before).

The covariance of two random variables is related to their expectations, while

the expectation of an indicator random variable for an event is just the probability

that the event occurs. So, we can compute the covariance of Ox and Oy as follows:

Cov(Ox; Oy) = E[Ox; Oy]� E[Ox] � E[Oy]

= Pr(�x; �y)� Pr(�x) � Pr(�y)

�
df (�x & �y)

n
�

df (�x )

n
�
df (�y)

n
;

where we use df (�x & �y) to represent �x and �y's co-occurrence score, or the

number of times they both appear in a document.

Putting them all together, Equation B.1 becomes

Corr(Ox; Oy) �
n df (�x & �y)� df (�x ) df (�y)p

df (�x ) (n � df (�y)) df (�y) (n � df (�y))
:

B.2 Orthogonal Procrustes Problem

Suppose we have two matrices A and B with A;B 2 <m�p. In the orthogo-

nal Procrustes problem we look for an orthogonal matrix Q that can be applied

to rotate B into the subspace of A. Speci�cally, we try to solve the following

problem:

min
QTQ=I

kA� BQkF :
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Recall that since kAk2F = trace(ATA), where trace(X) is de�ned as the sum of

the diagonal entries of square matrix X, we have

kA� BQk2F = trace((A� BQ)T (A� BQ))

= trace((AT �QTBT )(A� BQ))

= trace(ATA�QTBTA� ATBQ+QTBTBQ):

Let X 2 <m�m and Y 2 <m�m be given. The trace function has the following

properties:

1. trace(XT ) = trace(X).

2. trace(X + Y ) = trace(X) + trace(Y ).

3. trace(XY ) = trace(Y X).

4. trace(Y XY �1) = trace(X), where Y is invertible.

We can thus derive that

kA�BQk2F = trace(ATA) + trace(BTB)� 2 trace(QTBTA):

Hence, our Procrustes problem is equivalent to looking for an orthogonal matrix

Q that maximizes trace(QTBTA). Now, if we let BTA = U�V T be the singular

value decomposition of BTA, then

trace(QTBTA) = trace(QTU�V T ) = trace(V TQTU�) � trace(�);

where the last inequality holds because V TQTU is an orthogonal matrix. In order

to maximize trace(QTBTA), we set V TQTU = I or Q = UV T .
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B.3 Monolingual LSI and Procrustes Analysis

In the monolingual case, let A = U �V T as usual. Following the rationale of

the Procrustes analysis method from Section 3.4.4, we are to �nd the orthogonal

rotation matrix between �kV
T and �kV

T . Since

(�k V
T ) (�k V

T )T = �k V
T V �k = �2

k = I �2
k I

T ;

then IIT = I (the identity matrix) is the orthogonal rotation matrix we are look-

ing for. Therefore, substituting U 0 and V 0 in Equation 3.28 by I, the similarity

comparison formula for Procrustes analysis on monolingual retrieval is

SimPA�ML(d; q) = (IT Ik U
T ~d ) � (IT Ik U

T~q )

= (Ik U
T ~d ) � (Ik U

T~q )

= SimLSI�ML(d; q);

exactly the LSI formula in Equation 3.19.

B.4 Cross-Language LSI and Procrustes Anal-

ysis

We have

A = U �V T

B = W 
XT

as the matrices for the parallel training documents. As mentioned in Section 3.4.4,

in Procrustes analysis, we may choose to derive a rotation matrix between IkV
T

and IkX
T , the equalized version of �kV

T and 
kX
T .
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At full dimension, and if there are more terms than documents in the collec-

tion, XT and V T are unitary. Then, the SVD of XTV is simply XT IV = XTV ,

which means the orthogonal rotation matrix T we are looking for is just XTV

itself. Now, this variation of the Procrustes analysis approach becomes:

SimPA�CL(d; q) = (IkU
T ~d ) � (T T IkW

T~q )

= (UT ~d ) � (T TW T~q ) (since k = r)

= ~dT U V TXW T ~q

= ~dT �A �BT ~q

= ( �AT ~d ) � ( �BT~q )

= SimLSI�CL(d; q)

This is exactly the new formulation of the cross-language LSI similarity with full

dimensionality (see Section 3.5.1).
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B.5 Proof of Lemma 3.1

We have A = U�V T , P = U�V T and Q = U	V T . Then,

jjSimP (A;A)� SimQ(A;A)jjF

= jjATPP TA� ATQQTAjjF

= jjV�UTU�V TV �UTU�V T � ATQQTAjjF

= jjV�2�2V T � V �2	2V T jjF

= jjV�2(�2 � 	2)V T jjF

= trace((V �2(�2 �	2)V T )T (V �2(�2 �	2)V T ))

= trace(V (�2(�2 �	2))2V T )

= trace((�2(�2 � 	2))2V TV )

= jj�2(�2 � 	2)jjF :

B.6 Frobenius Norm of Projection Error

Given an m � k matrix U whose columns are orthonormal (i.e. UTU = I)

and an m � n matrix A, we want to �nd a simpli�ed formula for calculating

kA� UUTAk2F .

Recall that kAk2F = trace(ATA), where trace(X) is de�ned as the sum of the

diagonal entries of the square matrix X. With the following property of the trace

function:

trace(X + Y ) = trace(X) + trace(Y );
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we can derive that

kA� UUTAk2F = trace((AT � ATUUT ) (A� UUTA))

= trace(ATA� 2ATUUTA+ ATUUTUUTA)

= trace(ATA� 2ATUUTA+ ATUUTA)

= trace(ATA)� trace(ATUUTA)

= kAk2F � kUTAk2F :
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