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Abstract

I describe a new planning technique that efficiently solves probabilistic proposi-
tional planning problems by converting them into instances of stochastic satisfia-
bility (SSAT) and solving these problems instead. This is the first work extending
the planning-as-satisfiability paradigm to stochastic domains. I make fundamen-
tal contributions in two areas: the solution of SSAT problems and the solution of

probabilistic planning problems.

I first describe three SSAT solvers: two exact solvers, based on the Davis-
Putnam-Logemann-Loveland (DPLL) algorithm, and one approximation tech-
nique. The first exact solver finds the optimal solution (a setting of variables in
the SSAT problem that maximizes the probability of a satisfying assignment).
The second applies bounding arguments to efficiently identify the first solution
whose probability of satisfaction exceeds a prespecified threshold. I explore the
application of several well-known DPLL heuristics to the solution of SSAT prob-
lems and empirically demonstrate that, while they improve performance signif-
icantly in randomly generated SSAT problems, in SSAT encodings of planning
problems a simple heuristic based on temporal order dominates. The approxi-
mate solver uses a randomized approximation scheme (with or without hillclimb-
ing) to rapidly identify a good solution to the SSAT problem. The epsilon-delta
bound on the time required to evaluate SSAT solutions is polynomial in the size
of the SSAT encoding v. exponential for the exact methods.

In the second half of the dissertation, I describe two probabilistic planners:
MAXPLAN (for unobservable domains) and ZANDER (for partially observable do-
mains). MAXPLAN converts a dynamic-belief-net representation of a noncontin-

gent planning problem into an instance of E-MAJSAT, a restricted type of SSAT
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problem in which ezistentially quantified variables precede randomly quantified
variables. ZANDER solves general contingent planning problems by using a more
general type of SSAT encoding in which existentially quantified and randomly
quantified variables are interleaved. The conversion and solution algorithms ex-
ploit the structure of the domain, including factoring in the state representation
and asymmetry in the distributions of propositions resulting from the application
of actions.

ZANDER can solve arbitrary, goal-oriented, finite-horizon partially observable
Markov decision processes (POMDPS). An empirical study comparing ZANDER'S
performance to that of three other leading probabilistic planners—a dynamic
programming POMDP algorithm, MAHINUR, and SENSORY GRAPHPLAN (SGP)—
shows that ZANDER'’s performance equals or betters that of these planners on a
range of problems. ZANDER finds optimal contingent plans as much as two orders
of magnitude faster, in spite of the fact that MAHINUR and SGP are specialized
to more restricted classes of problems. In addition, experiments indicate that
further significant efficiency gains will be possible, thus allowing ZANDER to scale

up to larger problems.
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Chapter 1

Introduction

Planning—making a sequence of action choices to achieve a goal—has been an
important area of artificial intelligence (AI) research since the field of Al began
about fifty years ago. It promises to be an active area for at least that much
longer. There are two main reasons for planning’s prominence. First, the need to
plan is pervasive; to a greater or lesser extent, all problems can be characterized
as planning problems: how should one act (bring resources to bear) to change
an existing state into a more desired state? The ability to act in a goal-directed
fashion is critical to any notion of intelligent agency. Second, planning is an
extremely hard problem. Deterministic STRIPS planning (arguably the “easiest”
type of propositional planning that is still capable of expressing interesting prob-
lems) is PSPACE-complete [19]; probabilistic propositional planning in partially
observable domains is undecidable [73].

Traditionally, the decision-making models that have been studied in Al plan-
ning admit no uncertainty: every aspect of the world that is relevant to the
generation and execution of a plan is known to the agent in advance. This un-
realistic assumption has been a major impediment to the practical use of Al
planning techniques, and there has been a great deal of research in the past
decade to create planning techniques that are capable of handling uncertainty in
the environment (uncertain initial conditions, probabilistic effects of actions, and
uncertain state estimation). One of the attractive features of Al planning is its
ability, in some cases, to operate in large domains (~ 10%° states). One reason
for this ability is that Al planning typically uses a problem representation that

1



allows significant features of the problem states and actions to be exploited by

the solution method.

Planning is an important research area in other disciplines as well. Its cen-
trality, in terms of human activities, and its difficulty have made planning a
longstanding and important area of research in operations research (OR), psy-
chology, and cognitive science. The planning work in OR is of particular in-
terest. In contrast to traditional AI planning, OR planning addresses the need
to deal with uncertainty (uncertain initial conditions, probabilistic effects of ac-
tions, uncertain state estimation). OR planning approaches, such as algorithms
for Markov decision processes (MDPs) and partially observable Markov decision
processes (POMDPs), are quite comfortable dealing with domains in which the
agent is uncertain about the effects of its actions and even about what state it
currently is in. Classical OR techniques, however, use an impoverished problem
representation that does not capture relationships among states, and these tech-
niques are capable of solving problems only in relatively small domains (~ 10°
states for exact MDP solution methods and many fewer for exact POMDP solution

methods in typical domains).

This dissertation investigates the potential of merging the best characteristics
of Al planning (large domains) and OR planning (stochastic domains) to produce
a system that can reason efficiently about plans in complex, uncertain applica-
tions. The planners I have developed are rooted in the planning-as-satisfiability
paradigm. In this paradigm, the planning problem is converted into a satisfiability
problem and the efficient solution of the resulting satisfiability problem produces
the required plan. This work is inspired in large measure by the success of SAT-
PLAN, a similar planning technique for deterministic domains [59]. By encoding

the planning problem as a Boolean satisfiability problem, and using stochastic
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local search to solve the resulting satisfiability problem, SATPLAN can solve very
hard deterministic planning problems as much as an order of magnitude faster

than the next best planning system.

As I will discuss in more detail in subsequent chapters, there are significant
problems in developing a probabilistic version of SATPLAN. Plans in a stochastic
domain can be very complex. Unlike plans in a deterministic setting, optimal
plans in a stochastic domain frequently require contingent branches that specify
different actions depending on the stochastic outcome of the current action, or
loops that repeat an action until a desired result is achieved. In addition, eval-
uating plans in stochastic domains is difficult. In the deterministic setting, plan
evaluation can be accomplished by executing the plan and checking the single
execution trace to see whether the final state is a goal state. In the stochastic
setting, the uncertainty in the domain means that, in general, there will be mul-
tiple possible execution traces for a given plan, with some subset of these traces
ending in a goal state. For this reason, plan evaluation requires the equivalent
of checking each possible execution trace and summing the probability of each

trace whose final state is a goal state.

The main contribution of my dissertation research is to show that the planning-
as-satisfiability paradigm can be successfully extended to support contingent
planning in partially observable stochastic domains. To my knowledge, the plan-
ners I have developed are the only existing planners that augment the planning-
as-satisfiability paradigm to support stochastic domains. ZANDER (Section 7.3),
the most advanced planner I developed, can solve arbitrary, goal-oriented, finite-
horizon partially observable Markov decision processes (POMDPs). An empirical
study comparing ZANDER’s performance to that of three other leading prob-

abilistic planners—a dynamic programming POMDP algorithm, MAHINUR, and
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SENSORY GRAPHPLAN (SGP)—shows that ZANDER’s performance equals or bet-
ters that of these three planners on a range of problems. ZANDER finds optimal
contingent plans as much as two orders of magnitude faster, in spite of the fact
that MAHINUR and SGP are specialized to more restricted classes of problems. I
will describe specific contributions in the following guide to the remaining chap-

ters of this dissertation.

Chapter 2:

This chapter reviews the planning research that is relevant to the work I
have done. It traces the roots of my research back to the earliest days of Al
planning and describes other planning research that has attacked problems

similar to those my research has addressed.

Chapter 3:

My work is an extension of the planning-as-satisfiability paradigm, devel-
oped by Kautz and Selman [59]. I start this chapter by describing a repre-
sentation for deterministic planning problems. I describe the satisfiability
problem and show how deterministic planning problems can be encoded as
satisfiability problems. Finally, I describe how SATPLAN [59] uses stochastic

local search to solve the resulting satisfiability problem.

Chapter 4:

This chapter describes some planning complexity results that indicate what
is needed in order to extend the planning-as-satisfiability paradigm to prob-

abilistic planning.

Chapter 5:



In this chapter, T formally describe the stochastic satisfiability problem.
I describe an algorithm for solving stochastic satisfiability problems and
report results using this algorithm on randomly generated stochastic sat-
isfiability problems. These tests compare the performance of six heuristics
commonly used in satisfiability problems, and show empirically that four
of them decrease the size of the search tree created during the solution of

the problem given certain conditions.

I also describe an approximation algorithm I developed for stochastic satis-
fiability problems. The algorithm uses random sampling to bound the size
of the plan search space, and stochastic local search to find the best plan in
that reduced space. I report tests on random problems that indicate that

this is a viable approximation approach.

Chapter 6:

In this chapter, I describe MAXPLAN, the first planner I developed. MAX-
PLAN converts a dynamic belief network representation of the planning
problem to an E-MAJSAT problem, a type of stochastic satisfiability prob-
lem, and solves the E-MAJSAT problem instead. I report results comparing
MAXPLAN’s performance with other planning techniques. I also describe a
caching technique I developed to overcome the prohibitive memory require-

ments of MAXPLAN.

Chapter 7:

MAXPLAN assumes complete unobservability and so can be used only when
a good open-loop plan can be found. In this chapter, I describe ZANDER,
a planner that extends the probabilistic-planning-as-stochastic-satisfiability
paradigm to support contingent planning in stochastic domains with partial

5



observability. ZANDER encodes the contingent planning problem as a more
general type of stochastic satisfiability problem. Rather than finding a
single best assignment, as MAXPLAN does, ZANDER finds an assignment
tree that specifies the optimal action choice for each possible sequence of
observations. I report tests that show ZANDER to be competitive with other

state-of-the-art planners on a range of problems drawn from the literature.

Chapter 8:

In this chapter, I discuss open problems and future work in five areas: im-
provements to ZANDER, extensions to ZANDER, approximation techniques,
developing planners with less independence, and a unifying framework for
planning and scheduling under uncertainty. I report some preliminary work
in the areas of 1) developing alternate stochastic satisfiability encodings for
probabilistic planning problems,; and 2) applying the approximation algo-

rithm described in Section 5.2.3 to planning problems.

Chapter 9:

I conclude with a brief summary of the major contributions of this disser-

tation.



Chapter 2

Approaches to Planning

The Al planning literature is vast with many threads: Planning as theorem
proving, planning as state-space search, planning as plan-space search, planning
as task-network search, and planning as constraint satisfaction are a few of the
major threads. The OR planning literature is similarly broad.

I will provide a framework for my review of Al planning approaches by making
two orthogonal distinctions: deterministic planning v. probabilistic planning, and
classical planning v. constraint satisfaction planning. The most important threads
in Al planning with regard to my work are those that deal with the deterministic
and probabilistic variants of both planning as plan-space search and planning
as constraint satisfaction (in particular, planning as satisfiability). The most
relevant thread in OR planning is planning using the Markov decision process
framework, so I will confine my discussion of OR planning approaches to planning

in that framework.

2.1 Deterministic Planning

I will describe the deterministic planning problem formally in Section 3.1. Infor-

mally, a planning problem is characterized by;

e a finite set of states that the planning agent could find itself in,

e a finite set of operators, or actions, that transform states to states deter-

ministically,



e a designated initial state, and

e a set of goal states.

A solution to the planning problem is a sequence of actions that transforms the

initial state to one of the goal states.

2.1.1 Classical Planning

My review of the classical, deterministic planning literature begins with Green’s
theorem-proving problem solver [42] and the STRIPS planner [35]. Both of these
are important in the chronology that leads to planning as satisfiability. In Green’s
problem solver—which could be used for planning, as demonstrated by its solution
to the Monkeys and Bananas problem [42]—the planning problem is expressed
in first-order logic. The solver then uses resolution theorem proving to answer
the question of whether there is a state in which the goal-—monkey has the
bananas—is true. Extending Green’s work proved difficult due to the inefficiency
of first-order theorem provers at that time and the necessity of dealing with the
frame problem in first-order logic. Briefly, the frame problem is the problem of
needing to prove the persistence of conditions that are unchanged by a given
action.

Both of these problems were solved (or sidestepped) by the introduction of
the STRIPS planner [35], which did not use resolution theorem proving, and which
dealt with the frame problem by specifying that all conditions not explicitly
changed by an action remain unchanged. (But, as I will discuss in Section 2.1.2,
the use of general reasoning systems for planning resurfaces quite successfully
almost 25 years later in Kautz and Selman’s SATPLAN planner.)

The sTRIPS planner used a propositional state representation, in which the
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characteristics of a state are described by a collection of Boolean variables, and an
action representation that specifies, via sets of propositions, the necessary precon-
ditions for an action to be applied and the effects of the action (which propositions
become True—add effects—and which become False—delete effects—as a result
of executing the action).

The STRIPS representation has been enormously influential, becoming more
or less the standard planning problem representation, in spite of some serious
limitations. As Allen [1] points out, the fact that the representation of the actions

is separate from the representation of the environment means that:

e only one action can occur at any time,
e the environment changes only in response to planned actions, and

e actions are effectively instantaneous.

In addition, propositional planning has difficulty expressing maintenance goals
(e.g. “maintain condition ¢ from 4:00 pm to 5:30 pm”) and dealing with partial
goal achievement or tradeoffs among multiple goals.

Besides its influential problem representation, the STRIPS planner was one
of the first planners to introduce the notion of planning as a search for a path
through state space from the initial state to a goal state. This search for a path
uses means-ends analysis either to build forward from the initial state (progression
or forward planning) in search of a state that includes the goal conditions, or to
build backward from the goal state (regression or backward planning) from the
goal state in search of a state that includes the initial conditions.

This type of search, which locks in an action ordering as the path through

the state space is constructed, can be too inflexible. Sometimes it is useful to be
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able to specify that action A must be part of the plan, and perhaps even that
it must precede action B, or follow action C', but that its exact position in the
plan is unknown at the time it is added to the plan. The desire for this type
of planning led to the notion of planning as search through the space of partial
plans. Clearly, this is a more general notion of search, since state-space search
can be seen as a type of restricted search through plan space (i.e. one in which
the next plan in our search through plan space is the current plan with an action
appended to the open end of the plan). Two examples of planners that search in
plan space are SNLP [80] and UCPOP [93].

Searching in plan space is a powerful idea. As noted above, it is more flexible
than searching through state space. But, in addition, by making the plan itself the
object of our search, searching in plan space makes it possible to guide our search
by directly operating on the objective—the plan. This may be more effective than
trying to shape the plan indirectly by guiding the search through state space, and
may make it easier to construct more complex plans.

This power brings with it two critical and difficult issues:
e How can plan space be searched efficiently?
e How can plans be evaluated efficiently?

The first issue—efficiency—needs to be dealt with no matter what kind of search
one is engaged in. It is critical to avoid barren areas of the search space and focus
the search as much as possible on areas containing, in this case, good plans, or
partial plans that are relatively easy to extend to good plans.

The second issue is unique to searching in plan space. Although all search
problems have an evaluation component (to decide how best to extend the search),
the evaluation a planner must perform after a step is taken (to decide whether
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a successful plan has been constructed) differs significantly in state-space search
and plan-space search. After each step in a search through state space, it is only
necessary to evaluate whether a goal state (forward planning) or the initial state
(backward planning) has been reached, and this evaluation is merely a matter
of comparing the status of the propositions in two states. After each step in a
search through plan space, however, the current plan needs to be evaluated and,
if it is not good enough, improved. The computational expense of this evaluation
can vary drastically with the complexity of the plans being considered; it is
critical that this process be as efficient as possible. I will return to these issues

in Chapter 6.

2.1.2 Constraint Satisfaction Planning

In recent years, two planning methods based on constraint satisfaction—GRAPH-
PLAN and SATPLAN—have received a great deal of attention in the planning re-
search community. In fact, in 1998 in a planning competition held at the Fourth
International Conference on Artificial Intelligence Planning Systems, four out of
the five planners competing were GRAPHPLAN- or SATPLAN-based planners. (In-
terestingly, in the next planning competition, held at the Fifth International Con-
ference on Artificial Intelligence Planning and Scheduling in 2000, the dominant
planners in a field of approximately fifteen entrants were temporal-logic-based
planners.)

Both GRAPHPLAN and SATPLAN make use of the notion of search through plan
space, albeit in a somewhat different fashion from the implicitly sequential notion
of plan modification and evaluation described in the previous section. Both of
these planners, in a sense, consider all plans up to a certain length simultaneously

and attempt to extract a successful plan from this collection.
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GRAPHPLAN [10] works by creating a planning graph that interleaves layers
of nodes representing the status of propositions at a time step with layers of
nodes representing possible actions at a time step. Edges in this directed, leveled
graph connect actions to their preconditions and their add and delete effects,
thus indicating all feasible actions at each time step and their impact on the
domain propositions. GRAPHPLAN operates by constructing a planning graph
forward from the initial conditions until a layer of propositions appears that
contains all the goal propositions. The planner then searches for a plan using
backward chaining; if none is found it extends the graph another time step and
the search is repeated. The key element of GRAPHPLAN is a scheme for efficiently
identifying and propagating pairwise inconsistencies (e.g. two actions that cannot
be executed at the same time). GRAPHPLAN outperforms UCPOP on several
natural and artificial planning problems [10]; it remains one of the best current

planners and research on this paradigm is quite active (see Section 2.2.2).

SATPLAN [58, 59] works by first converting the planning problem to a propo-
sitional satisfiability problem and then using stochastic local search to solve the

! Kautz and Selman [59], in an early paper de-

resulting satisfiability problem.
scribing SATPLAN, argue that the planning community, in rejecting general rea-
soning systems in favor of specialized planning algorithms, learned the wrong
lesson from the failure of Green’s theorem-proving problem solver. They argue
that the lesson to be learned was not that general reasoning systems are inappro-
priate for planning but that first-order deductive theorem-proving does not scale

well. In contrast, propositional satisfiability testing has great potential as a tool

for reasoning about plans.

!Deterministic STRIPS planning is PSPACE-complete [19]; SATPLAN converts this to an NP-
complete problem by considering only polynomial-length plans.
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Briefly, SATPLAN converts a deterministic planning problem to a Boolean
satisfiability problem by constructing a CNF Boolean formula that has the prop-
erty that any satisfying assignment to the variables in the formula—any model—
corresponds to a plan that achieves the goal. The satisfiability of the resulting
CNF formula is determined using WALKSAT, a generic satisfiability algorithm
based on stochastic local search. It is worth noting here that although SATPLAN
uses stochastic local search, other satisfiability testing algorithms exist. The
original Davis-Putnam procedure for satisfiability testing [28] uses resolution as
a key algorithmic component. Resolution was later replaced by wvariable splitting
[27], and this latter procedure has completely overshadowed the earlier version
(unjustifiably so, some have argued [30]). Although stochastic local search (used
by SATPLAN) generally outperforms these systematic satisfiability testers by an
order of magnitude or more on hard random satisfiability problems, there is some
evidence that the systematic testers are competitive with stochastic local search
on more structured, real-world planning problems [7]. T use a modified version
of the Davis-Putnam-Logemann-Loveland satisfiability tester [27] in my planners
(Section 6.4).

Planning as satisfiability has been an active area of research. Researchers have
looked at the issues that arise in connection with efficient conversion of planning
problems to satisfiability problems [56, 34|, improving systematic satisfiability
testers [7, 66], understanding and improving stochastic local search [100, 81, 57],
accelerating the search for a plan by including domain-specific knowledge [61],
and incorporating the various constraint satisfaction planning techniques in a

single planning system [60)].
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2.2 Probabilistic Planning

Like a deterministic planning problem, a probabilistic planning problem is spec-
ified by a finite set of states, a finite set of actions, an initial state, and a set of
goal states. In a probabilistic domain, however, actions transform states to states
probabilistically; for a given state and action, there is a probability distribution
over possible next states. The solution to a probabilistic planning problem is
an action selection mechanism for the planning domain that reaches a goal state
with sufficiently high probability. Note that probability of success is not the only
objective that makes sense to consider. Examples of other possible objectives

include:

e minimizing the length or size of the plan, or

e maximizing the expected utility achieved by the plan (if there is a wtility
function that assigns a numerical value to each component of the goal, thus
providing a quantitative measure of the importance, or utility, of each goal

component).

The defining characteristic of probabilistic planning is that the actions are
probabilistic; the outcome of an action in a given state is a probability distribu-
tion over possible next states. There is another type of nondeterministic planning
that is relevant in this review, however. It is possible to frame planning prob-
lems using nonprobabilistic actions.? A nonprobabilistic action can have multiple

possible outcomes that depend only on the state in which the action is executed.

2Such actions have historically been called conditional actions [39, 40, 94]. In my taxonomy
of planning under uncertainty, however, I wish to make a distinction between the type of
planning and the type of actions used, so I will will use the term nonprobabilistic action to

avoid confusion.
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The effect of the action is deterministic given the state in which it is executed,
but the agent may not know a prior: the state in which it will be executing the
action and, hence, its effect. Thus, the uncertainty is represented as a list of pos-
sible state/outcome pairs, rather than as a probability distribution over possible

outcomes.

A simple example will clarify this distinction between probabilistic actions and
nonprobabilistic actions. A probabilistic action move(a,b,c) in a blocks-world do-
main (i.e. move block a off of block b onto block ¢) might specify that the action
is successful with probability 0.85, that block a ends up on the table with prob-
ability 0.10, and that nothing happens with probability 0.05. A nonprobabilistic
version of the same action might specify that if the gripper is functioning and
dry, the action will succeed, if the gripper is functioning, but wet, block a will

end up on the table, and if the gripper is not functioning, nothing will happen.

The type of planning an agent engages in is, in this sense, a function of the
agent’s knowledge about the domain. A probability distribution over possible
outcomes of an action may, in some cases, be a substitute for better domain
knowledge. In the blocks world example, the agent may not know that the move
action fails sometimes because the gripper is wet. But experience may allow the
agent to estimate a probability distribution over outcomes of that action. Or
it may be the case, to extend this example further, that the agent knows that
when the gripper is wet, the action usually fails, but that with probability 0.05
it succeeds. If the agent does not know why the action sometimes succeeds, the
agent may still be able to attach a probability distribution to the execution of

the action, and plan using that probability distribution.

I will also make a distinction between conditional planning and contingent

planning. In conditional planning, the effects, but not the execution, of actions
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are contingent on the outcomes of previous actions. In contingent planning, both
the effects and execution of actions are contingent on the outcomes of previous
actions.®> Thus, in contingent planning, the agent can make observations and
construct a branching plan in which actions are made contingent on these obser-
vations. Without the ability to observe its environment and condition its actions
accordingly, an agent can only execute a straightline plan, a simple noncontingent
sequence of actions, and hope for the best.

These two distinctions (conditional planning v. contingent planning and non-
probabilistic actions v. probabilistic actions) produce the following taxonomy of

planners:

1. Conditional planning with nonprobabilistic actions: These types of planners
engage in conformant planning: producing a straightline plan that is guar-
anteed to succeed no matter what conditions are encountered. Example:

CONFORMANT GRAPHPLAN [103].

2. Contingent planning with nonprobabilistic actions: Sensing allows this type
of planner to produce a contingent plan, but the lack of probabilistic ac-
tions means that the planner must look for a plan that will succeed under all
circumstances. Examples: CNLP [94], PLINTH [40], and SENSORY GRAPH-

PLAN [113].

3. Conditional planning with probabilistic actions: As in Case 1, these plan-
ners engage in conformant planning, but the probabilities attached to ac-

tion outcomes allow the planner to specify the straightline plan that has the

3Note that the term conditional has been used in different ways in the literature. Plans in
which the execution of actions depends on the outcomes of earlier actions were originally
called conditional plans [111]. Some researchers [32] suggested calling such plans contingent
plans, reserving the term conditional for plans in which only the effects of actions are con-
tingent on the outcomes of earlier actions, and this terminology has been generally adopted.
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highest probability of succeeding, even if that probability is less than 1.0.
Example: BURIDAN [65] and UDTPOP [95]. The first planner I developed,

MAXPLAN (Chapter 6), falls into this category.

4. Contingent planning with probabilistic actions: As in Case 2, sensing al-
lows planners in this category to produce contingent plans. As in Case
3, probabilistic actions allow the planner to specify the plan that has the
highest probability of succeeding. Examples: C-BURIDAN [32], DTPOP [95],
MAHINUR [88, 89], and PGRAPHPLAN/TGRAPHPLAN [11]. ZANDER, the con-

tingent planner I developed (Chapter 7), falls into this category.

I will discuss these planners more fully in the sections that follow.

2.2.1 Classical Planning

CNLP and PLINTH are contingent planners that plan with nonprobabilistic ac-
tions. CNLP [94], a complete, contingent nonlinear (partial-order) planner based
on SNLP [80], differentiates among plan branches by establishing mutually ex-
clusive contexts for actions. Briefly, whenever the planner encounters a possible
context in which an action, chosen for its effects in a different context, cannot be
executed, the planner creates a branch and attempts to construct a separate plan
for that context. PLINTH [40] is a linear conditional planner that operates like a
conventional linear planner, but with nonprobabilistic actions. It creates a con-
tingent plan by repeatedly selecting an unrealized goal and nondeterministically

choosing an action to achieve that goal while respecting existing constraints.

BURIDAN [65] is a conditional planner that uses probabilistic actions. BURI-
DAN uses a propositional state representation and tree-based, probabilistic STRIPS

operators to extend partial-order planning to stochastic domains. Its represen-
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tation can express arbitrary MDPs (see Section 2.2.3), sometimes logarithmically
more compactly than traditional OR representations. BURIDAN searches for a
plan whose probability of success meets or exceeds some prespecified threshold.
The plans found by BURIDAN are partially ordered sequences of actions that, in
execution, become simple sequences of actions (like the plans found by classical

deterministic planners).

The basic BURIDAN algorithm alternates between plan assessment (is the plan
good enough?) and plan refinement (what can be done to improve it?), and its
performance emphasizes the importance of the two issues raised in Section 2.1.1:
efficient plan-space searching and efficient plan evaluation. As I will show in Sec-
tion 6.6, BURIDAN performs relatively poorly even on some very simple domains.
With regard to plan evaluation, BURIDAN has four different plan-evaluation meth-
ods that can yield a wide range of performance results even on simple problems.
For example, on the BOMB-IN-TOILET problem, BURIDAN’s performance [65],
varies from a low of 6.9 CPU seconds to a high of 6736.0 CPU seconds depending
on which of four plan-evaluation methods it uses. Since there exist problems for
which each method is best and since it is not possible, in general, to determine
beforehand which method will provide the best performance, plan evaluation
remains problematic for BURIDAN.

C-BURIDAN [32] augments BURIDAN’s expressivity to encompass contingent
plans (although it is still not powerful enough to express policies, or universal
plans; see Section 2.2.3). As such, C-BURIDAN is trying to solve a somewhat
different problem; its actions can provide information to the agent, but this in-
formation might be noisy or incomplete, as in a POMDP (see Section 2.2.3).

UDTPOP [95] is a sound and complete, decision-theoretic, partial-order, con-

ditional planner that uses probabilistic actions. UDTPOP finds the plan that
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maximizes the value of a multi-attribute value function, which is the sum of a
reward value function and step cost functions. Thus, UDTPOP can reason about
the relative utility of plan objectives. UDTPOP uses a single-support causal link
mechanism in contrast to BURIDAN, which can instantiate multiple causal links
to support a goal condition.

DTPOP [95] is an extension of UDTPOP that supports contingent planning with
probabilistic actions and is designed to address three problems with C-BURIDAN
described by Peot [95]: an inability to determine the relevance of observations,
too-early commitment to an execution policy, and inefficient and unnecessary

branch replication.

MAHINUR [88, 89], a contingent, partial-order planner that uses probabilistic
actions, was designed primarily to address the following weakness in C-BURIDAN
described by Onder and Pollack [88]: Cc-BURIDAN does not reason about whether
the branches it constructs are actually worth constructing; it automatically cre-
ates branches to resolve otherwise unresolvable conflicts. MAHINUR combines
BURIDAN’s probabilistic action representation and system for managing these ac-
tions with a CNLP-style approach to handling contingencies. The novel feature
of MAHINUR is that it identifies those contingencies whose failure would have the
greatest negative impact on the plan’s success and focuses its planning efforts
on generating plan branches to deal with those contingencies. This selectivity
in adding branches to the plan boosts MAHINUR’s speed considerably relative to
the partial-order planners described above, but Onder and Pollack [88] identify
several domain assumptions (including a type of subgoal decomposability) that
underlie the design of MAHINUR, and there are no guarantees on the correctness

of MAHINUR for domains in which these assumptions are violated.
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2.2.2 Constraint Satisfaction Planning

There has been significant recent work on augmenting GRAPHPLAN to handle
stochastic domains. Some researchers have extended GRAPHPLAN to handle ac-
tions with conditional effects [3]. CONFORMANT GRAPHPLAN [103] deals with
uncertainty in the initial conditions and in the outcome of actions by attempting
to construct a noncontingent plan that will succeed in all cases. Since the result-
ing plan is expected to succeed under all possible circumstances, CONFORMANT
GRAPHPLAN has no sensing actions. PGRAPHPLAN [11] employs forward search
through the planning graph to find the contingent plan with the highest expected
utility in an MDP-style environment (the state of the world is known, but ac-
tions are probabilistic; see Section 2.2.3 for MDP details). SENSORY GRAPHPLAN
(sGp) [113], unlike CONFORMANT GRAPHPLAN, constructs plans with sensing ac-
tions that gather information to be used later in distinguishing between different
plan branches. However, SGP has not been extended to handle probabilistic ac-
tions and imperfect observations, so it is only applicable to a subset of partially

observable planning problems.

To my knowledge, there has been no work done outside of this dissertation to

augment SATPLAN to handle stochastic domains.

2.2.3 Operations Research Planning

Much of the planning work in OR takes place in the framework of the Markov deci-
sion process (MDP) model, an intuitively appealing model capable of representing
AT planning problems. In the MDP model, initially developed by Bellman [8] and
Howard [51], an agent with a finite set of actions at its disposal is embedded in

an environment capable of being in a finite number of states. Each action in each

20



possible state:

e yields some (possibly negative) reward, and

e probabilistically changes the state of the environment according to the

MDP’s state transition model.

The objective of the agent is to act so as to maximize its success as measured by

the expected cumulative reward received.

Although the MDP model captures some essential components of the planning
problem, it contains a number of simplifications (shared with sTRIPS-style plan-
ning) that make it tractable: the action set and state space are finite, time is
discrete, only one action is taken at a time, the effects of actions are instanta-
neous, the environment does not change except as a result of the agent’s actions,
rewards are not time dependent, and the environment is completely observable;
the agent sees everything and can use this information in deciding what action to
take next. In addition, MDPs make the Markov assumption that state transitions
and rewards depend only on the current state and action, and not on time, or on
past states or actions. Viewed from a slightly different perspective, the Markov
assumption says that knowledge of the current state and action is sufficient; the
agent can do no better even if it remembers previous states and actions. This
is a powerful constraint that allows a solution to be constructed by calculating
a value function, a mapping from states to values that measures how “good” it
is for an agent to be in each possible state of the MDP independently of how the

agent arrived at that state.

Value functions form the backbone of virtually all MDP algorithms. Their

widespread use is largely the result of three factors:
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e Value functions form the basis of a universal plan, or policy; since each state
has a value, and the state transition table is known to the agent, there is
an optimal choice no matter what state the agent is in. The agent selects
the action that maximizes the probability-weighted average of the values of

the possible resulting states.

e There is always an optimal value function the agent can use to make the

best choice.

e An approximately correct value function at time ¢ can be used to construct

a more accurate value function at time ¢ + 1.

There are several standard methods for solving MDPs exactly; dynamic pro-
gramming techniques such as value iteration [8], policy iteration [51], and mod-
ified policy iteration [96], and linear programming [31]. These techniques, how-
ever, are computationally feasible only for relatively small MDPs (~ 10° states).
Additional techniques have been developed to try to overcome this limitation.
Envelope methods 29, 45, 106] try to solve a smaller sub-MDP defined over those
states that the agent is most likely to encounter. Priority queue methods [83]
concentrate on iteratively improving the value function of states whose value,
as assessed by the current value function, seems likely to change significantly.
Reinforcement learning approaches [6, 55, 104, 105] stochastically generate tra-
jectories through the state space and concentrate on producing an accurate value
function for those states the agent is likely to visit.

None of these methods have strong guarantees regarding running time or ap-
proximation error, but they can solve somewhat larger MDPs (~ 10° states). One
technique that has been used to successfully solve realistically large MDPs is value
function approrimation. In this technique, the table of states and values typically
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used to represent the value function is replaced with a parameterized function
approximator. There are various flavors of this technique, largely depending on
the type of function approximator used, but the main idea is that instead of
maintaining an exponentially large table of state values, one uses something like

a neural network to learn an approximate value function.

In fact, the reinforcement learning approach along with value function ap-
proximation has led to an impressive number of successes: the world’s best
backgammon-playing program (and one of the world’s best backgammon play-
ers, including human players) [107, 108], a controller for a bank of elevators [25],
a system for making cellular-phone-channel assignments [101], and a job-shop
scheduler for space-shuttle payload processing [118]. This approach does not al-
ways succeed, however, and although some work has been done to establish its
theoretical underpinnings [9, 109, 110, 4, 41], its applicability is still not clearly
understood.

Recent work on MDP algorithms has focussed on using insights from classical
Al planning to help solve larger MDPs faster; in particular, exploiting the structure
of compact, factored representations of the problem [15], and using approximation
schemes [14]. In the former work, a technique called structured policy iteration
(SPI) was developed that constructs optimal policies without needing to explicitly
enumerate the state space. SPI avoids explicit enumeration by exploiting the
structure (the regularities and independencies) in a factored representation of the
planning domain that uses two-time-slice Bayes nets (described in Section 6.1).

Koller and Parr [63] have presented evidence that the value function of a
factored MDP can often be well approximated using a factored value function;
i.e. a linear combination of restricted basis functions, each of which refers to

only a small subset of variables in the MDP. They show that this value function
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approximation technique can be used as a subroutine in a policy iteration process
to solve factored MDPs [64].

Partially observable Markov decision processes (POMDPs) generalize MDPs to
the case in which there is uncertainty about the current state as well as about the
effects of actions. The POMDP model is very general; it can account for tradeoffs

among the following:

e taking uncertain actions with differing costs to advance toward one or more

possibly competing goals, and
e taking actions to gain partial knowledge about one’s surroundings.

A POMDP [54, 72, 82, 114] is an MDP augmented by a finite set of observations
the agent can experience and an observation function that maps each action
and resulting state to a probability distribution over the possible observations.
Thus, the agent’s knowledge of the actual state of its environment is the result
of potentially unreliable observations. The resulting uncertainty regarding the
actual current state is frequently handled by maintaining a belief state, which is a
probability distribution over the underlying states of the process and summarizes
all the information contained in past actions and observations and the current
observation. In effect, one can think of the POMDP as an MDP over these belief
states.

In the POMDP model, actions transform belief states to belief states using a
belief-state transition function that is based on the state transition function of
the underlying MDP and the observation probabilities of the POMDP. Similarly,

rewards are based on the current belief state and action.

The value function is again critical to POMDP solution methods. In the case of

POMDPs, the value function is usually represented as a piecewise-linear, convex
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function, and the solution techniques generally use dynamic programming to
iteratively transform an approximate value function into a more accurate value

function.
Active areas of POMDP research include the use of heuristics [18, 44, 112],

factored, propositional representations [16, 32|, reachability analysis [12], and

approximation [21, 49, 69, 67, 92, 115, 117].

2.3 Summary

During the past decade, Al researchers have recognized that in order for Al
techniques to be used in the real world, they must be able, in many cases, to deal
with the pervasive uncertainty found there. Thus, much recent Al research—
in planning and other areas—has focused on dealing with uncertainty, and the
demarcation between Al planning research and OR planning research has become
less and less clear. Many Al researchers have adopted the Markov decision process
formalism and, in fact, much of the current Al research on probabilistic planning
is taking place in that framework.

My research has established an alternate framework for planning with proba-
bilities based on stochastic satisfiability. In the next two chapters (Chapters 3 and
4), I will describe the planning-as-satisfiability paradigm and discuss complexity
issues that suggest what is necessary to extend the paradigm to probabilistic plan-
ning. In the remaining chapters, I will describe the planners I have developed
based on this extension, and report results indicating that this is a promising
alternative approach to attacking problems expressed in the MDP and POMDP

framework.
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Chapter 3

Deterministic Planning as Satisfiability

I briefly described the operation of SATPLAN in Section 2.1.2. Since my work is
an extension of this planning-as-satisfiability paradigm, I will describe SATPLAN
in more detail in this chapter. SATPLAN operates by converting a deterministic
planning problem to an instance of SAT and solving the SAT problem instead
(Figure 3.1). In the following sections, I will describe a representation for deter-
ministic planning problems, provide a formal definition for the satisfiability prob-
lem, show how deterministic planning problems can be encoded as SAT problems,

and describe how SATPLAN solves the SAT encoding of a planning problem.

3.1 Representing Deterministic Planning Prob-

lems

A planning domain M = (S, sg, A, G) is characterized by a finite set of states S,
an initial state s; € S, a finite set of operators or actions A, and a set of goal
states G C §. The application of an action a in a state s results in a deterministic
transition to a new state s’. The objective is to choose actions, one after another,
to move from the initial state sy to one of the goal states.

The STRIPS representation [35] of M, which I will describe informally, uses a
propositional state representation; a state is described by an assignment to a set

of Boolean variables. Actions are specified by three sets of propositions:

1. The preconditions set specifies what propositions need to be True for the
action to be executed.
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Planning Problem
Problem ) d
dig-moat: erect-castle:
Converter Pre: none Pre: moat
Add: moat Add: castle
s N Del: none Del: none
SAT Problem
(NOT moat-0) AND
(NOT castle0) AND
(dig-moat-1 ORerect-castle-1) AND
(dig-moat-2 ORerect-castle-2) AND
(castie2) y Successful Plan
dig-moat-1
erect-castle-2
SAT
Solver

Figure 3.1: The SATPLAN approach converts a planning problem to a SAT
instance and solves that problem instead.

2. The add effects set specifies those propositions that become True as a result

of executing the action, and

3. The delete effects set specifies those propositions that become False as a

result of executing the action.

An example will help flesh out this brief description. The STRIPS represen-
tation for a simple problem is shown in Figure 3.2. In this problem, the agent
desires to build a sand castle in a certain location on the beach. Unfortunately,
that location is subject to occasional waves that make it difficult to construct the
castle. Fortunately, the agent has a shovel and so has the capability of digging a
moat around the construction area to protect the castle. In this simple problem,
there are two action: dig-moat and erect-castle. The dig-moat action has no pre-
conditions; the action can always be executed. It has a single add effect—moat

becomes True—and no delete effects. The erect-castle action has a precondition;
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State Propositions: moat, castle

Actions: dig-moat, erect-castle

dig-moat erect-castle
Preconditions: none Preconditions: moat
Add: moat Add: castle
Delete: none Delete: none

Figure 3.2: The STRIPS representation for the deterministic SAND-CASTLE-67
problem.

there must be a moat in order to execute this action. Again, there is a single

add effect—castle becomes True—and no delete effects.

3.2 Deterministic Satisfiability

Informally, a deterministic satisfiability (SAT) problem asks whether a given
Boolean formula has a satisfying assignment; that is, is there an assignment
of truth values to the variables used in the formula such that the formula eval-
uates to True. SAT is a fundamental problem in computer science. It was the
first NP-complete problem and many important, practical problems in areas such
as planning and scheduling, network design, and data storage and retrieval (to
name just a few) can be expressed as SAT problems [38]. As such, SAT is a very
well-studied problem, both from a theoretical point of view (e.g. how does the
solution difficulty of random SAT problems vary as one varies the parameters of
the problem?) as well as a practical point of view (e.g. how can one solve SAT
problems efficiently?).

Formally, let x = (x1,Xa2,... ,X,) be a collection of n Boolean variables, and
¢(x) be a Boolean formula on these variables in conjunctive normal form (CNF)

with m clauses. Each clause is a disjunction of literals; a literal is a variable
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or its negation. Thus, ¢ evaluates to True if and only if there is at least one
literal with the value True in every clause. (Note: I will sometimes use 1/0
to denote True/False.) An assignment is a mapping from x to the set {True,
False}. An assignment A is satisfying, and ¢(x) is said to be satisfied, if ¢(x)
evaluates to True under the mapping A. This can be expressed using existential
quantifiers and, anticipating the notation necessary for stochastic satisfiability,

the expectation of formula satisfaction:
dzy, ..., 3z, (E[d(x) <> True] = 1.0)

In words, this asks whether there exist values for all the variables such that the
probability of the formula evaluating to True is certain. Note that I am using

equivalence (<> True) to denote the event of the formula evaluating to True.

3.3 Encoding Deterministic Planning Problems
as SAT Problems

The generality of propositional satisfiability makes it possible to encode determin-
istic planning problems in a number of different ways; many different approaches
to planning can be converted to propositional satisfiability. For example, both
state-space planning and plan-space (causal) planning can be used as a basis for
satisfiability encodings [56, 78]. The advantages of this generality are clear, but
there is also a disadvantage. The multiplicity of possible SAT encodings for a
particular problem and the absence of a principled way of selecting the best en-
coding make it difficult to develop a system that operates as efficiently as possible
on a broad range of planning problems. In fact, one of the current challenges in

the planning-as-satisfiability paradigm is to automate the process of producing
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the most efficient SAT encoding of a planning problem [34].

To provide a sense of what a SAT encoding of a planning problem looks like, I
will describe one possible SAT encodings—the linear encoding with classical frame
axioms [56]—for the 2-step deterministic SAND-CASTLE-67 problem described in
Section 3.1 above. In this type of SAT encoding, satisfiability is made equivalent

to goal achievement by enforcing the following conditions:

the initial conditions and goal conditions hold at the appropriate times
(note that the initial state is completely specified whereas the goal state

may be only partially specified),
e exactly one action is taken at each time step,

e if an action holds at time ¢, its preconditions hold at time ¢ — 1, its add
effects hold at time ¢, and the negation of each of its delete effects holds at

time ¢, and

e if an action does not affect a state variable, then that state variable remains

unchanged when that action is executed (classical frame conditions).

There are five groups of clauses in this encoding (Figure 3.3). The first two
groups of clauses enforce the initial conditions and goal conditions. The initial
conditions are that there is no moat and no castle. To enforce the first condition,
the negation of moat-0, the variable indicating the status of the moat at time step
0, appears by itself in a clause. Since all clauses must be satisfied, this ensures
that this initial condition is honored. To enforce the second initial condition,
the negation of castle-0 appears alone in a clause. The goal condition, having a

castle at time step 2, is enforced by placing castle-2 in a clause by itself.
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The third group of clauses enforces the restriction that exactly one action
occurs at each time step. This is accomplished at each time step with a disjunction
over all actions and binary disjunctions over all possible pairs of negated actions.

The fourth group of clauses enforces action preconditions and effects. A simple
example will clarify the construction of these clauses. The dig-moat action at time

step 1 implies its add effect moat at time step 1:
(dig-moat-1 — moat-1)

Negating the antecedent and changing the implication to a disjunction yields

clause 8:
(dig-moat-1 V moat-1)

The fifth group of clauses enforces the frame conditions. For example, execut-
ing the dig-moat action at time step 1 has no impact on the status of the castle

variable at time step 1. This generates two implications:

(dig-moat-1 A castle-0 — castle-1)

(dig-moat-1 A castle-0 — castle-1)

Again, negating the antecedent and replacing the implication with a disjunction

produces clauses 14 and 15:

(dig-moat-1 V castle-0 V castle-1)

(dig-moat-1 V castle-0 V castle-1)

The encoding of this simple problem also provides a sense of how satisfying

assignments are equivalent to successful plans. It is particularly easy to see how
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Initial Conditions:
1. (moat-0) A
2. (castle-0) A

Goal Conditions:
3. (castle-2) A

Exactly One Action Per Time Step:
4. (dig-moat-1V erect-castle-1) A

dig-moat-1 V erect-castle-1

( ) A
6. (dig-moat-2 V erect-castle-2) A
( 2) A

dig-moat-2 V erect-castle-2

Action Effects:

8. (dig-moat-1V moat-1) A

9. (dig-moat-2 V moat-2) A

10. (erect-castle-1 V moat-0) A

11. (erect-castle-2 V moat-1) A

12. (erect-castle-1 V castle-1) A
(

13. (erect-castle-2 V castle-2) A

Frame Axioms:

14. (dig-moat-1V castle-0 V castle-1) A
15. (dig-moat-1V castle-0 V castle-1) A
16. (dig-moat-2 V castle-1V castle-2) A
17. (dig-moat-2 V castle-1 V castle-2) A
18. (erect-castle-1 V moat-0 V moat-1) A
19. (erect-castle-1 V moat-0 V moat-1) A
20. (erect-castle-2 V moat-1V moat-2) A
21. (erect-castle-2 V moat-1V moat-2)

Figure 3.3: The CNF formula for a 2-step deterministic SAND-CASTLE-67 plan.
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unsuccessful plans will lead to unsatisfying assignments. Clauses 4—7 ensure that,
in any satisfying assignment, all the action variables will have an assigned value.
Consider the two plans that begin with the action erect-castle. This means that
erect-castle-1 will be True. This, along with clause 10, means that moat-0 must
be True, which will make it impossible to satisfy the initial condition in clause
1. Of the two remaining plans, consider the plan dig-moat, dig-moat. This means
that both dig-moat-1 and dig-moat-2 will be True. clause 3 forces castle-2 to be
True and this, along with dig-moat-2 = True forces castle-1 to be True (clause
16). But, since dig-moat-1 is True, the fact that castle-1 must be True forces
castle-0 to be True (clause 14). And, this makes it impossible to satisfy the
initial condition in clause 2.

The plan dig-moat, erect-castle is the only possible successful plan and the only
plan that allows a satisfying assignment: moat-1, moat-2, castle-2, dig-moat-1,
and erect-castle-2 are all True, while moat-0, castle-0, castle-1, dig-moat-2, and

erect-castle-1 are all False.

3.4 Solving Deterministic Satisfiability

Problems

The most straightforward technique for solving the SAT encoding of the planning
problem is systematic search for a satisfying assignment. This can perhaps best
be visualized by thinking of it as a search on an assignment tree. First, impose an
arbitrary ordering on the variables. An assignment tree is a binary tree in which
each node represents a variable and a partial assignment. The root node at level
0 represents the first variable in the ordering and the empty partial assignment.

For node ¢ at level d representing the dth variable v in the variable ordering
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and partial assignment A, the left child of node ¢, ¢;, represents the variable
following v in the variable ordering and the partial assignment A extended by
setting v to True. The right child of node ¢, ¢,, represents the variable following
v in the variable ordering and the partial assignment A extended by setting v to
False. The 2" nodes at level n represent all possible complete assignments to
the n variables. A traversal of this tree, evaluating the Boolean formula given the
full assignment at each leaf, will consider all possible assignments and, hence, is
guaranteed to find a satisfying assignment if one exists. The full assignment tree
is, of course, exponential in the number of variables, and practical considerations
demand that a systematic solver search as little of this tree as possible. I will

describe heuristics for this purpose later in this section.

Even using heuristics, however, systematic search is impractical for very large
problems. SAT encodings of even moderately-sized planning problems can be very
large (> 5000 variables), and for problems of this size a more practical approach
is to use stochastic local search. SATPLAN, in fact, uses WALKSAT [100], a generic
satisfiability algorithm based on stochastic local search. WALKSAT initially makes
a random assignment to the variables in the formula. If this is not a satisfying
assignment, it randomly selects an unsatisfied clause. If it can satisfy this clause
by flipping a variable without unsatisfying any other clauses, it does so. Other-
wise, it randomly flips that variable that would unsatisfy the fewest clauses. The
randomness of this flip (the assignment may stay the same) is intended to pre-
vent, the solver from getting trapped in a local maximum or oscillating between
two partial assignments. This process continues until a satisfying assignment is
found or until a specified maximum number of variables have been flipped. This
entire process can also be repeated a specified number of times starting with a

new random assignment. Clearly, WALKSAT is not complete; it may not find
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a satisfying assignment when one exists. In addition, it cannot report that a
satisfying assignment does not exist (although recent work [99] provides proba-
bility bounds on the likelihood of missing a satisfying assignment if one exists).
WALKSAT, however, can solve satisfiability problems that are orders of magnitude

larger than those the best systematic solvers can handle [100].

3.5 Summary and Discussion

I have described how deterministic planning problems can be efficiently solved by
encoding them as SAT problems and using stochastic local search to solve the SAT
problem. There are a number of advantages to this approach. The expressivity of
Boolean satisfiability allows us to construct a very general planning framework.
It is relatively straightforward to express planning problems in the framework
of propositional satisfiability. In addition, this framework makes it easy to add
additional constraints to the planning problem (such as domain-specific knowl-
edge [61]) to improve the efficiency of the planner. Another advantage echoes
the intuition behind reduced instruction set computers; we wish to translate
planning problems into satisfiability problems for which we can develop highly
optimized solution techniques using a small number of extremely efficient opera-
tions. Supporting this goal is the fact that satisfiability is a fundamental problem
in computer science and, as such, has been studied intensively. Numerous heuris-
tics and solution techniques have been developed to solve satisfiability problems

as efficiently as possible.

There are disadvantages to this approach. Problems that can be compactly
expressed in representations used by other planning techniques often suffer a

significant blowup in size when encoded as Boolean satisfiability problems, de-

35



grading the planner’s performance. As I noted above in Section 3.3, automatically
producing maximally efficient plan encodings is a difficult unsolved problem. In
addition, translating the planning problem into a satisfiability problem may ob-
scure the structure of the problem, making it difficult to use one’s knowledge
of and intuition about the planning process to develop search control heuristics
or prune plans. This issue has also been addressed; Kautz and Selman [61], for
example, report impressive performance gains resulting from the incorporation of
domain-specific heuristic axioms in the SAT encodings of deterministic planning
problems.

In spite of these disadvantages, however, SATPLAN is one of the most successful
deterministic planners that has been developed. A natural question, which I
will address in the next chapter, is whether this paradigm can be extended to

probabilistic planning domains.

36



Chapter 4

Extending the Planning-as-Satisfiability
Paradigm

In this chapter, I review some complexity results that suggest what would be

necessary to extend the planning-as-satisfiability paradigm to stochastic domains.

In its most general form, a plan is a program that takes as input observable as-
pects of the environment and produces actions as output. I will classify plans by
their size (the number of internal states) and horizon (the number of actions pro-
duced en route to a goal state). The computational complexity of propositional
planning varies with bounds on the plan size and plan horizon. In the determin-
istic case, for example, unbounded STRIPS planning is PSPACE-complete [19]. If
we put a polynomial bound on the plan horizon [59], however, STRIPS planning

becomes an NP-complete problem.

The complexity of probabilistic propositional planning varies in a similar fash-
ion. If the plan size is unbounded and the plan horizon is infinite, the problem is
EXP-complete, if completely observable [70], or, in the more general case, unde-
cidable [73]. If plan size or plan horizon alone is bounded by a polynomial in the
size of the representation of the problem, the problem is PSPACE-complete [70].
Contingent planning with polynomial bounds on the plan horizon falls into this
class. Evaluating a probabilistic plan—calculating the probability that the given
plan reaches a goal state—is PP-complete [70]. Finally, if we place bounds—
polynomial in the size of the planning problem—on both plan size and plan

horizon, the planning problem is NP*¥-complete [70].
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Whereas the class NP can be thought of as the set of problems solvable by
guessing the answer and checking it in polynomial time, the class NP*™* can be
thought of as the set of problems solvable by guessing the answer and checking it
using a probabilistic polynomial-time (PP) computation.! The class PP can be
informally characterized as the set of problems in which one needs to count the
number of answers that satisfy some conditions. PSPACE is the class of problems

solvable using polynomial space.

To the extent that we take the planning problem to be one of constructing
a good controller and executing it to solve the problem, polynomial bounds on
plan size and plan horizon are reasonable. In some cases, it may not help to
know whether a plan exists if that plan is intractable to express, requiring, say,
exponential space (and exponential time) to write down. The polynomial bound
on plan horizon is perhaps less defensible but nonetheless seems like a reasonable
restriction. When a contingent plan is required (see Chapter 7), the polynomial
restriction on plan size may be too severe to allow a good plan (one with a suffi-
ciently high probability of reaching a goal state) to be found, but the polynomial
bound on plan horizon is still necessary to keep the problem in a “reasonable”
complexity class (PSPACE).

The success of SATPLAN encourages us to try a similar approach for prob-
abilistic planning problems, but these complexity results make it clear that we

cannot encode probabilistic planning problems as SAT problems. The relationship

IThe class NP is a particularly interesting class. It is likely that NPFF characterizes many
problems of interest in the area of uncertainty in artificial intelligence; the work described
in this dissertation and earlier work [84] give initial evidence of this. A survey of relevant

results is available elsewhere [70].
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. Complete .
Complexity | satisfiability Pianning
Problem
Probabilistic planning with:
PSRACE %orlynomially bounded plan size
polynomially bounded plan horizon
Probabilistic planning with:
NPPP p;or%nomially bounded plan size
polynomially bounded plan horizon
PP Probabilistic planealuation
Deterministic planning with:
NP SAT polynomially bounded plan size
which is equialent to
polynomially bounded plan horizon

Table 4.1: Probabilistic planning is in a higher complexity class than determin-
istic planning; this chart will be completed in Chapter 5.

among these classes can be summarized as follows:
NP C PP C NP"" C PSPACE.

Although it is not known whether these are proper subsets, it seems likely that
complete problems in PSPACE really are more difficult than complete prob-
lems in NP. In any case, we currently cannot express an NPFP-complete or
PSPACE-complete problem as a compact instance of SAT; if we want to extend
the planning-as-satisfiability paradigm to probabilistic planning, we will need a
different type of satisfiability problem. Table 4.1 summarizes the situation.

To extend the planning-as-satisfiability paradigm, we need to fill in the empty

boxes in this chart. We need satisfiability problems that are complete for the
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complexity classes that contain the planning problems of interest. Stochastic
satisfiability, which I will describe in the next chapter, satisfies this requirement

for all these planning problems.
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Chapter 5

Stochastic Satisfiability

Portions of this chapter have appeared in an earlier paper:

“Stochastic Boolean satisfiability” [71] with Littman and Pitassi.

Stochastic satisfiability (SSAT) is at the core of the probabilistic planning
techniques I have developed; both MAXPLAN and ZANDER operate by converting
the planning problem to an instance of stochastic satisfiability and solving that
problem instead. In this chapter, I will describe the stochastic satisfiability prob-
lem, including two special cases of SSAT—MAJSAT and E-MAJsAT—that are of

particular interest from the probabilistic planning perspective.

I will then present two algorithms for solving SSAT problems—an exact al-
gorithm and an approximation technique. Since the SSAT problem is PSPACE-
complete, one might expect solution techniques for the NP-complete problem SAT
to be of little or no use in solving SSAT problems. In fact, in the same way that
SSAT is an extension of SAT, the exact algorithm I describe is an extension of a
solution technique developed for SAT. I will also present empirical evidence that
heuristics developed for SAT problems are applicable to SSAT problems as well.
The approximation technique I will describe also uses a technique that has been
used successfully on SAT problems—stochastic local search—but combines this
algorithmic idea with random sampling in a novel way. I will present some em-
pirical results using this approximation algorithm on randomly generated SSAT

problems.
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5.1 Stochastic Satisfiability

I will describe the general stochastic satisfiability problem first. Certain restric-
tions on this general problem lead to two special cases of stochastic satisfiability—
MAJSAT and E-MAJsAT—that are of special interest with respect to probabilistic
planning. These three problems—SSAT, MAJSAT, and E-MAJSAT—are complete
for different complexity classes and turn out to be just what is needed to fill in

the empty boxes in Table 4.1.

5.1.1 SSAT

Recall the definition of satisfiability from Section 3.2. Given Boolean variables
X = (X1,X2,... ,Xn) and a CNF formula ¢(x) constructed from these variables,

the satisfiability problem asks
dzq, ..., 3z, (E[p(x) <> True] = 1.0) :

Do there exist values for 1, xo, . . . , T, such that the probability of ¢(x) evaluating
to True is certain?

The key idea underlying stochastic satisfiability (SSAT) is the introduction of
a randomized quantifier: 4. Randomized quantifiers introduce uncertainty into
the question of whether there is a satisfying assignment. I will formalize this
notion later in this section but, for now, a simple example will illustrate the

operation of this quantifier. Suppose I have the following formula:

Az, dyo(E[(x1 VTy) A (T1 V y2) <> True] > 0.75). (5.1)

This instance of SSAT asks whether a value for z; can be chosen such that for

random values of ys (choose True or False with equal probability) the ezpected

42



probability of satisfying the indicated Boolean formula is at least 0.75. This

extension of SAT was first explored by Papadimitriou [90].

There are two important points to be made here. First, the presence of
randomized quantifiers means that obtaining a satisfying assignment is no longer
completely under the control of the solver. In the above example, after the solver
has chosen a value for the existentially quantified variable z;, the value of the
randomly quantified variable y, will be chosen by flipping a fair coin. Thus,
there is a certain probability that the choice of a value for x; will lead to a
satisfied formula. If the solver sets x; to True, then there is a 0.5 probability
that the formula will be satisfied (if the coin flip for y, comes up True) and a
0.5 probability that the formula will be unsatisfied (if the coin flip comes up
False). The situation is similar if the solver sets z; to False. (Since the solver
can choose values for the existentially quantified variables and the probability
of satisfaction depends on the chance outcomes of the randomized variables, I
will sometimes refer to existentially quantified variables as choice variables and
randomly quantified variables as chance variables.)

Second, quantifier ordering is now critical. In the example, a value for z; must
be chosen that yields a sufficiently high probability of satisfaction regardless of
the randomly chosen value for y5. This is impossible; either value of x; will result
in an unsatisfied formula for one of ¥,’s values, so the maximum probability of

satisfaction is 0.5. Suppose, however, the order of the quantifiers were reversed:

dy1, Jxo(E[(xe VT,) A (T2 V y1) <> True] > 0.75). (5.2)

Here, the choice of a value for x5 can be made contingent on the random outcome
of the coin flip establishing y;’s value. In this case, choosing x5’s value to be the

same as y;’s value leads to a satisfied formula regardless of the coin flip. The
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probability of satisfaction is now 1.0, exceeding the specified threshold.

Formally, an SSAT formula is defined by a triple (¢, @, #) where ¢ is a CNF for-
mula with underlying ordered variables z1, ... , z,, @ is a mapping from variables
to quantifiers (existential 3 and randomized ¥), and 0 < 0 < 1 is a satisfaction
threshold. Define ¢[;,—, to be the (n — 1)-variable CNF formula obtained by
assigning the single variable x; the Boolean value b in the n-variable CNF for-
mula ¢ and simplifying the result, including any necessary variable renumbering.
(Variables are numbered so that z; corresponds to the outermost, or leftmost,
quantifier and z,, to the innermost.)

The maximum probability of satisfaction, or value, of ¢ (under quantifier
order Q), val(¢, Q), is defined by induction on the number of quantifiers. Let x;

be the variable associated with the outermost quantifier. Then:
1. if ¢ contains an empty clause, then val(¢, Q) = 0.0;
2. if ¢ contains no clauses then val(¢, Q) = 1.0;
3. if Q(z1) = 3, then val(¢, Q) = max(val(¢[s,-0, @), val(P[2,=1, Q));

4.1f Q(z1) = ¥, then val(, Q) = (val(¢[a,=0, Q) + val(¢[a,-1,Q))/2.

Given ¢, @, and a threshold 0, (¢, @, 6) is True if and only if val(¢, Q) > 0.

Let us examine the application of this definition to the original example (Equa-
tion 5.1). The outermost quantifier is existential, so Rule 3 dictates that the value
of the formula is the maximum of the value of the subformula if z; is True and
the value of the subformula if z; is False. If z; is True, the formula reduces to
dy1(E[(y1) <> True] > 0.75) (after variable renumbering). Since the outermost
quantifier is now randomized, Rule 4 dictates that the value of this subformula
is the average of the values if ¥, is True and if y; is False. If y; is True, the

44



new subformula contains no clauses and the value is 1.0 (Rule 2). If y; is False,
the new subformula contains an empty clause and the value is 0.0 (Rule 1). The
average of these, 0.5, is thus the value of the subformula when z; is True. If z;
is False, a similar calculation establishes the value of the subformula to be 0.5.
Taking the maximum, the value of the original formula is 0.5. Since the threshold
6 is 0.75, the SSAT instance (¢ = (1 V7o) A (T1 V 42), @ = {(z1,3), (y2,d)},
6 = 0.75) is False.

One further modification is necessary to encode planning problems as stochas-
tic satisfiability problems. I will allow an arbitrary, rational probability to be
attached to a randomly quantified variable. This probability will specify the like-
lihood with which that variable will have the value True. Thus, the value of
a randomly quantified variable will be determined according to this probability,
rather than choosing True or False with equal probability. This has an impact
both on notation and on the inductive definition of value. Randomized quanti-
fiers can now be superscripted with an associated probability other than 0.5. For
example, 4%y, indicates that the chance variable y; is True with probability

0.65. Rule 4 in the inductive definition of val(¢, Q)) becomes:

4. if Q(z1) = ¥, then val(¢, Q) = (val(P|z,=0, Q) X (1.0 —7) +
val(@]p=1, Q) X 7).

In other words, the value in this case is the probability weighted average of the
values of the two possible subformulas.

For the sake of completeness, I note here that stochastic satisfiability can be
extended to include universally quantified variables as well as existentially and
randomly quantified variables. Although this version of stochastic satisfiability

might be useful for encoding planning problems when there is an adversarial
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situation, I do not use this version in any of my SSAT-based planners. Details

regarding this Extended SSAT problem are available elsewhere [71].

5.1.2 MAJSAT

As I described in Section 3.2, SAT is the special case of stochastic satisfiability
in which all the quantifiers are existential, making the ordering irrelevant, and
the threshold is 1.0 (the assignment must satisfy the formula). MAJSAT is the
special case of stochastic satisfiability in which all the quantifiers are randomized
quantifiers. Again, the ordering is irrelevant, but now the threshold can be any
probability 0 < # < 1. This is somewhat different from the standard formulation
of the MAJSAT problem: given a Boolean formula ¢(x) in CNF, are at least half
of its assignments satisfying? But, both formulations share the property of, in
some sense, counting the number of satisfying assignments. To see this in the
SSAT formulation of the problem, suppose that all assignments are equally likely
(which is the case if all variables have an associated probability of 0.5). Then,
asking whether at least half the assignments are satisfying is equivalent to asking

whether the probability of satisfaction is at least 0.5:
dzq, ... 4z, (E[o(x) <> True| > 0.5).

(Note that ¥ = ¥°°.) The more general SSAT formulation of the problem substi-
tutes a general threshold 6 for the specific threshold of 0.5. (Papadimitriou [91]
refers to this as “Threshold SAT”.) Note that this formulation is polynomially
equivalent to finding the exact probability of satisfaction, since one can use binary

search on the threshold probability € to determine this probability exactly.
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5.1.3 E-MAJSAT

E-MAJsAT [70] is more general than MAJSAT in that an E-MAJSAT problem
contains both existentially quantified variables (choice variables) and randomly
quantified variables (chance variables). E-MAJSAT is still a special case of SSAT,
however, because of the following restriction on the quantifier ordering: all choice
variables must precede all chance variables in the ordering. In other words, in an
E-MAJSAT problem, one must find settings for an initial block of choice variables
that will yield a sufficiently high probability of satisfaction given the probabilities

attached to the subsequent block of chance variables:
Ay, ..., 3T, Yeyty - - -, Yy (E[o(x,y) <> True] > 6).

In this E-MAJSAT problem, the values of choice variables z; through z. are un-
der the control of the solver, while those of chance variables y..; through vy,
are not. The difficulty lies in the necessity of choosing the values for the choice
variables before the random settings of the choice variables are known. No-
tice that once a setting for the choice variables has been chosen, only chance
variables remain and the problem reduces to a MAJSAT problem: does the prob-
ability of satisfaction, given those choice variable settings, exceed the specified
threshold? In effect, to solve an E-MAJSAT problem, one needs to solve multiple
MAJSAT problems (naively, 2¢ MAJSAT problems). In fact, E-MAJSAT is short
for “EXISTS-MAJSAT”: does there exist a setting for the choice variables such

that the probability of satisfaction meets or exceeds the specified threshold?

As was the case for MAJSAT, this threshold formulation of E-MAJSAT is poly-
nomially equivalent, via binary search, to a formulation of E-MAJSAT in which

one is required to find the settings of the choice variables that maximizes the
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probability of satisfaction given the probability distribution over chance variable

settings.

5.2 Solving Stochastic Satisfiability Problems

I will describe two algorithms for solving SSAT problems. The exact algorithm
in Section 5.2.1 is both sound and complete: given an arbitrary SSAT instance
(¢,0,Q), this algorithm is guaranteed to return the correct answer, although
the running time can be exponential. As with SAT, incomplete or approximate
algorithms can often solve large problems more quickly than complete algorithms
like DPLL. For SAT, randomized local search procedures like WALKSAT (briefly
described in Section 3.4) have been shown to be successful for large problem
instances. Similarly, MAJSAT instances are very naturally approximated using
random sampling. Section 5.2.3 describes a new SSAT algorithm that combines
local search with random sampling to compute approximate answers to SSAT

problems.

5.2.1 A Davis-Putnam-Logemann-Loveland Algorithm

The evalssat algorithm described in this section can be viewed as an extension of
the Davis-Putnam-Logemann-Loveland (DPLL) algorithm for solving SAT prob-
lems [27]. To my knowledge, DPLL and its variants are the best systematic
satisfiability solvers known. As such (and also because of its simplicity), DPLL
was the obvious choice as a basis for an SSAT solver. DPLL works by enumer-
ating all possible assignments, simplifying the formula whenever possible. These
simplifications, or pruning rules, make it possible to solve problems whose entire

set of assignments could not be completely enumerated. Since DPLL is designed
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to solve SAT problems, the pruning rules only need to deal with existential quan-
tifiers. The evalssat algorithm extends the DPLL algorithm to SSAT by providing

pruning rules for randomized quantifiers.

The evalssat algorithm (Figure 5.1) takes formula ¢ and low and high thresh-
olds 6; and 6. It returns a value less than 6, if and only if the value of the SSAT
formula is less than 6, a value greater than 6, if and only if the value of the SSAT
formula is greater than 6y, and otherwise the exact value of the SSAT formula.
(Note that 7y denotes the probability that randomized variable v has value b.)
Thus, this algorithm can be used to solve the SSAT decision problem by setting
0, = 0, = 0. It can also be used to compute the exact value of the formula by
setting §; = 0 and 0, = 1. The algorithm’s basic structure is to compute the
value of the SSAT formula from its definition (Section 5.1.1); this takes place in
the first two lines of pseudocode and in the section of pseudocode labeled “Split-
ting”, which enumerates all assignments, applying operators recursively from left
to right. However, it is made more complex (and efficient) by a set of pruning

rules, described next.

Unit Propagation

When a Boolean formula ¢ is evaluated that contains a variable x; that appears
alone in a clause in ¢ with sign b (0 if Z; is in the clause, 1 if z; is in the clause),
the normal left-to-right evaluation of quantifiers can be interrupted to deal with
this variable. This is called unit propagation, by analogy with DPLL.

If the quantifier associated with z; is existential, x; can be eliminated from the
formula by assigning it value b and recurring. As in DPLL, this is valid because
assigning x; = 1 — b is guaranteed to make ¢ False, and x; = b can be no worse.

Similarly, if the quantifier associated with z; is randomized, it is the case that one
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evalssat(¢, @, 0;,0) := {

if ¢ is the empty set, return 1

if ¢ contains an empty clause, return 0

/* Unit Propagation */

if x; is a unit variable with sign b and Q(z;) = 3,
return evalssat(¢|,—s, @, 6, 65)

if x; is a unit variable with sign b and Q(z;) = ¥,
return evalssat(@|,—p, Q, 0;/7,", Op /7, )7y

/* Pure Variable Elimination */

if x; is a pure variable with sign b and Q(z;) = 3,
return evalssat(¢ |, s, @, 6;, 65)

/* Splitting */

if Q(z1) =3, {
vo = evalssat(¢ |z, —o, @, 01, 01)
if vg > 6, return vq
vy = evalssat(¢| -1, Q, max(6;,vy), 0p)
return max(vg, vy)

}

if Q('Tl) =4d, {
vy = evalssat(¢|,,—0, Q, (6, — 7") /75", O /75" )
if vomy" + w7t < ), return vomy'
if vomy* > O, return vomy*
vy = evalssat(¢| =1, @, (6, — vomg?) /7y, (On — vomg) /1Y)
return vomy' + vyt

}

}

Note: m; denotes the probability that randomized variable v has value b.

Figure 5.1: The evalssat algorithm generalizes the DPLL algorithm for satisfia-
bility to solve SSAT problems.
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branch of the computation will return a zero, so x; can be eliminated from the
formula by assigning it value b and continuing recursively. The resulting value is
multiplied by the probability associated with the forced value of the randomized

quantifier (7;°), since it represents the value of only one branch.

Pure Variable Elimination

Pure variable elimination applies when there is a pure variable; ¢.e. a variable
x; that appears only with one sign b in ¢. If Q(x;) = 3, the algorithm assigns
x; = b and recurs. This is valid because there are no unsatisfied clauses that
would be satisfied if x; = 1 — b but unsatisfied if z; = b. Interestingly, pure
variable elimination does not appear to be possible for randomized variables.
Both assignments to a randomized variable give some contribution to the value

of the SSAT formula, and must be considered independently.

Thresholding

Another useful class of pruning rules concerns the threshold parameters ¢; and 6.
While some care must be taken to pass meaningful thresholds when applying unit
propagation, threshold pruning mainly comes into play when variables are split
to try to prevent recursively computing both assignments to x;, the outermost
quantified variable. Note that thresholding is similar to MINIMAX tree *cutoffs
[5].

If Q(xz1) = 3, after the first recursive call computing vy (the value of the
current formula with z; set to False), it is possible that 6, has already been
exceeded. In this case, the algorithm can simply return vy, without ever comput-
ing v; (the value of the current formula with z; set to True). In particular, it is

possible that v; > vy, but all that is significant is whether one of the two exceeds
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0. If vy exceeds 6; but falls short of 6, this can be used to increase the lower
threshold for the recursive computation of vy; since the algorithm must take the
larger of vy and vy, the precise value of v, is not needed if it less than vy.

Threshold pruning is not as strong for randomized variables, although it can
be done. There are two types of threshold pruning that apply. First, if vy, the
value obtained by assigning 0 to x; is so low that, even if v;, the value obtained
by assigning 1 to x1, attains its maximum value of 1, the low threshold will not be
met (vomg* + 77t < 6;), then the algorithm can return vyng' without calculating
vy. Second, if vy is high enough to meet the high threshold even if vy = 0
(vomg > 6y), the algorithm can, again, return vymg! without computing vy. If
both tests fail, the algorithm needs to compute v, but can adjust the thresholds
accordingly.

For a detailed explanation of thresholds, see the proof of correctness of evalssat

immediately following.

Correctness of evalssat

The following lemma shows that the evalssat algorithm produces the correct value
of the given SSAT instance (¢, @, 0;,6,). Recall that 7} denotes the probability

that randomized variable v has value b.

Lemma 1. For all n, for all formulae ¢ with at most n variables, for all thresh-
olds 0y, 0y, such that 6, < 0, evalssat(o, Q, 6;,0y) returns a value v such that: (i)
if 0, < wal(g, Q) < 0y, then val(p, Q) = v; (i) if val(o, Q) < ), then v < ); and
(#3) if val(p, Q) > Oy, then v > 0.

Proof. The correctness of the algorithm will be proved by induction on the num-

ber of variables of the formula. If there are no variables, then ¢ either consists of

52



no clauses (i.e., it contains the empty set), or it contains an empty clause. If ¢
consists of no clauses, then ¢ evaluates to 1 by definition. Likewise, if ¢ contains
an empty clause, this implies that val(¢, Q) = 0, and thus the lemma holds in
this case.

Now, assume that ¢ has n > 0 variables, and as usual, the variables are
named z1,...,x, where z; is the outermost quantified variable. As above, the
lemma holds if ¢ consists of no clauses or contains an empty clause. In all
other cases, a single variable is removed. The first case is where a variable
x; is removed because it occurs in a singleton clause in ¢ with sign b, and
Q(z;) = 3. In this case, val(¢,Q) = val(¢|,=s, Q) because when z; is set to
1 — b, ¢ evaluates to 0. Then, by the inductive hypothesis, the algorithm out-
puts a correct value on ¢[,,—. If z; is a unit variable and Q(z;) = ¥, then
val(¢, Q) = val(¢[z;=p, Q)" + val(@P|gi=1-p, Q)T = val(@[z;=5, Q)7 . In this
case, when calling evalssat recursively on ¢ ., the low and high bounds 6, and 6,
must be shifted by a factor of 1/7;*. That is, when val(¢, Q) = v, val(¢ [ z;=s, Q) is
v/m;"; thus if 6, < v < ), then by induction evalssat(¢| ,,—p, @, 0;/7; ", 05 /7, ") will
return the value v/7m,* since 6;/m," < v/m;* < 0 /m,*. Similarly, the algorithm is
correct for v < 0; and v > 6.

The second case is where z; is a pure variable with sign b and Q(z;) = 3,
then val(¢, Q) = max(val(¢|z,=p, Q), val(@]z,=1-5, Q)) = val(P|z,=p, Q), so by in-
duction the algorithm is correct.

The third case is when z; is removed and Q(z;) = 3. Let vy = evalssat(¢| 4, —o,
Q,0,,0:). If val(¢] 4,0, Q) > Oy, then vy > 6 by the induction hypothesis, so vy is
a correct value. Otherwise, vy < 6. Let v; = evalssat(d[ -1, Q, max(6;, vo), 0p)-
There are several simple cases to check: If val(¢] ., -0, Q) > 6;, then vy will equal

val(@| z,—0, @) by the inductive hypothesis, so max(6;, vg) = vg, and thus it is easy
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to check that max(vg,v1) is a correct answer. Similarly, it can be checked that
the answer returned is correct if val(¢[z,—0, @) < 6.

The fourth and final case is when z; is removed and Q(z;) = d. Let
vy = val(0]z—0,Q) and let v| = val(0]z-1,Q). If vj < (6, — 7n7*)/mg" then
vyt Fuimlt < [(6—7t) /7yt |mgt + 7yt = 60, If vy > 6y /7g", then vimg' +vi7]" >
(Op/mg")mgt = 6. So, no detailed answer is needed if v) < (6, — 7{') /75"
or vy > Op/mg'. Thus, it suffices to calculate vy = evalssat(¢][,,—o, @, (0 —
) gt Op f7st). I vemd* +7ft < ), then vymg' +vinl* < 6y, so return vomy* (any-
thing less than ;). If vomy® > 6y, then vjmg' +vimy* > vomg' > Op, S0 return vomy'.
Otherwise, calculate v; = evalssat(¢[z, =1, (;—vomy") /7T, (O —vomgt)/7i"). Now,
if v < (6, — vomy?) /7y, then vymg' + viwy* < ), and if v1 > (0 — vomy?) /71",

then vjmg* + vimy* > 0. O

5.2.2 An Evaluation of Heuristics for evalssat

In all but the most trivial SAT problems, the DPLL algorithm will exhaust op-
portunities to apply unit propagation and pure variable elimination before a sat-
isfying assignment has been discovered. When this occurs, the algorithm must
select an unassigned variable z from the current simplified formula to split on,
i.e. check for satisfying assignments both when z is assigned True and when z is
assigned False. For peak performance, the order in which variables are selected
is critical. For example, suppose a SAT problem is presented to DPLL with n
variables and, for the sake of this example, that no pruning is done. Suppose
further that if the variable z; is set to True the formula becomes unsatisfiable. If
x; is the last variable the algorithm chooses to split on, it will potentially generate
2"~ assignments, discovering as many times that setting x; to True makes the

formula unsatisfiable. If, however, it selects x; as the first variable to split on,
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it will discover that setting that variable to True leads to unsatisfiability before
generating and checking those 2"~! assignments. Unit propagation, as described
in Section 5.2.1, handles this extreme case; other ideas are needed to address this

more generally.

Considerations such as this have prompted a great deal of research into effi-
cient splitting heuristics for SAT [7, 24, 36, 37, 48, 50, 53, 66]. An appropriate
splitting heuristic can reduce the running time of the DPLL algorithm by several
orders of magnitude. But, do these splitting heuristics improve efficiency in SSAT

problems?

Relative to its counterpart in SAT problems, splitting in SSAT is restricted
to selection from among a specific class of variables: To ensure that the value of
the formula is computed correctly, splitting heuristics for SSAT must choose a
variable from the first (leftmost or outermost) block, as described in Section 5.1.1.
(Recall that quantifier ordering is important; adjacent quantifiers commute if they
are of the same type, but not if they are of different types. See the example in
Section 5.1.1.)

A hypothesis is that splitting heuristics would have the greatest impact when
there are large blocks of interchangeable variables (the extremes being SAT and
MAJSAT, both of which consist of a single block of size n), and would not be as
useful when there was a great deal of quantifier alternation (since, barring unit
clauses and pure variables, DPLL must split on all variables in the first block
before splitting on a variable from another block). In the case where blocks are
single variables, the splitting heuristic can be expected to have no impact on
performance.

To test this hypothesis, I conducted tests using six splitting heuristics (where,
in all cases, it is understood that the choice is made from the outermost block of
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variables):

e RAND chooses a variable randomly,

e SATS_MOST finds the literal that satisfies the most clauses in the current

formula and chooses that variable,

e 25_JW (2-sided Jeroslow-Wang [50]) chooses a variable whose literals appear

in a large number of short clauses,

e POS_2S_JW (positive, 2-sided Jeroslow-Wang [50]) is 25_JW applied to the
subset of variables that appear in at least one clause containing all positive

literals,

o MOMS chooses the variable that has “Maximum Occurrences in clauses of

Minimum Size”, and

e MAX_UNIT [7], is similar to heuristics used by the successful POSIT [36]
and TABLEAU [24] solvers, preferring variables that will lead to a maximal

number of unit propagations.

With the exception of RAND, these heuristics try to select the variable that will
most simplify the formula and establish its satisfiability (or lack thereof) most
quickly. SATS_MOST attempts to do this by choosing the literal that will satisfy,
and thus eliminate, the most clauses. The remaining heuristics try to choose a
variable that maximizes the number of unit clauses likely to be produced. The
baseline for comparison is the splitting rule in Figure 5.1, which splits on the
next variable in the initially specified quantifier ordering.

To test the performance of these heuristics on problems with varying block

sizes, eight sets of 100 random formulas were generated with the following char-
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acteristics:

24 variables, 24 clauses, 3 literals per clause
24 variables, 48 clauses, 3 literals per clause
24 variables, 72 clauses, 3 literals per clause
24 variables, 96 clauses, 3 literals per clause
32 variables, 32 clauses, 3 literals per clause
32 variables, 64 clauses, 3 literals per clause
32 variables, 96 clauses, 3 literals per clause
32 variables, 128 clauses, 3 literals per clause.

These sets were generated according to the usual fixed-clause random £-CNF
model [71], which is defined in terms of three integer parameters n, k and m; a
formula is generated by selecting m clauses of size k£ independently. A clause is
generated by randomly selecting one of n variables k£ times without replacement
and randomly negating it with probability 0.5. This distribution is denoted F¥:m.
In my experiments, I used a program called makewff, available from AT&T Labs —
Research, to generate random formulas from this distribution. In order to ensure
that the formulas generated contained exactly n variables, however, I modified
makewff to repeatedly generate a formula with the desired characteristics until
one was generated that contained all n variables.

For each block size in a specified range of block sizes (1, 2, 3, 4, 6, 12, and
24 for problems with 24 variables and 1, 2, 4, 8, 16, and 32 for problems with
32 variables) two problem types were generated: a type F problem, which has
an existentially quantified outermost block, and an R problem, which has a ran-
domly quantified outermost block. The block sizes chosen were all those that
generate an equal number of existential and randomized quantifiers, plus SAT
and E-MAJSAT (block size 24 or 32). In this manner, each set of 100 24-variable
problems generated 1400 instances, and each set of 100 32-variable problems

generated 1200 instances.
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The evalssat algorithm was implemented in C and each splitting heuristic was
tested on all 10,400 problem instances generated as described above. These tests
were conducted on a 143 MHz Sun Ultra-1 with 128 Mbytes of RAM, running
SunOS-5.7. Performance was measured by counting the change in the number
of recursive calls to the central function in the algorithm (i.e. the function that
extends the current partial assignment and checks for satisfiability or unsatisfi-
ability). This function first tests for satisfaction of the formula; if the current
partial assignment is insufficient to establish satisfaction or unsatisfaction, the
function extends the partial assignment. In the most general case, the function
selects an unassigned variable, first setting the variable to True and calling itself
recursively, and then setting the variable to False and calling itself recursively.
Whenever possible, as in the case of a variable in a unit clause, one of these
recursive calls is eliminated. Measuring the number of calls to this function is
equivalent to measuring the size of the DPLL tree generated by the algorithm.
The DPLL tree is the partial tree of assignments generated during evalssat’s enu-
meration of possible assignments. This tree has the property that for every i, 7,
1 < j, every variable in block 7 is split upon before every variable in block j, with
the possible exception of variables that become irrelevant, variables that appear

in unit clauses, and pure variables.

Measuring the number of recursive calls to this central funciton is a more direct
measure of the efficiency of the heuristic than measuring, for example, CPU time.
For perspective, however, the running time, measured in CPU seconds, for a non-
MAJSAT 24-variable, 48-clause problem was typically less than a second. Running
times for MAJSAT problems varied from 1 to 5 CPU seconds. A connection
between these two ways of measuring performance is provided by the fact that

for the results reported below (problems with 24 variables, 48 clauses, 3 literals

28



per clause) the algorithm performs approximately 20,000 recursive calls per CPU

second.

Although the results of the tests (Figures 5.2 and 5.3) generally supported the
hypothesis that efficiency improves with block size, there are some peculiarities
that warrant further study. (Note that the results for all eight sets of problems
were similar; we show the results only for 24-variable, 48-clause problems.) On
both type E and type R problems, four of the heuristics tested (POS_2S_JW,
MAX_UNIT, SATS_MOST, and MOMS) provided some improvement in perfor-
mance (reduction in the size of the DPLL tree generated). For type E problems,
this improvement was positively correlated with block size (see Figure 5.2). For
type R problems the improvement was positively correlated with block size up to
a block size of 12; all four of these heuristics show less improvement for a block
size of 24 than they do for a block size of 12 (see Figure 5.3). My conjecture is
that this phenomenon is due to the fact that pure variable elimination cannot
be used in these problems. Given a total of 24 variables and a block size of 24,
the randomly quantified outer block of variables is the only block of variables—a
MAJSAT problem—and pure variable elimination cannot be applied to randomly

quantified variables (Section 5.2.1: Pure Variable Elimination).

SATS_MOST and MOMS were particularly effective, reducing the number of
recursive calls in DPLL by approximately half (over both problem types) for
a block size of 12. RAND performed as expected on type R problems, nei-
ther improving nor degrading performance. 2S_JW, a heuristic that might have
demonstrated improved performance, was similarly neutral. Neither of these two
heuristics performed as expected on type F problems; both heuristics degraded
performance, and this degradation was positively correlated with block size. The

fact that 2S5_JW performed no better than RAND agrees with results reported else-
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Figure 5.2: The heuristics POS_2S_JW, MAX_UNIT, SATS_MOST, and MOMS
reduce the size of the DPLL tree generated relative to splitting in strict quantifier
order when the formula block size is greater than 1 and variables in the first block
are existentially quantified.
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Figure 5.3: The heuristics POS_2S_JW, MAX_UNIT, SATS_MOST, and MOMS
reduce the size of the DPLL tree generated relative to splitting in strict quantifier
order when the formula block size is greater than 1 and variables in the first block
are randomly quantified.
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where [50]; on a set of hard, random SAT instances, Hooker and Vinay reported
that the number of nodes visited (variable assignments made) in the search for
a satisfying assignment using the 2S_JW heuristic were significantly larger than

those constructed using a random heuristic.

For the heuristics that improved performance, the block size did not have
to be very large to produce significant reductions in the size of the DPLL tree
generated. For the four successful heuristics, tree size was reduced as soon as
blocks were larger than a single variable and, in some cases, the reduction became
significant even for relatively small block sizes. MAX_UNIT, SATS_MOST, and
MOMS, for example, provided average reductions in tree size of approximately

23%, 28%, and 32%, respectively, for a block size of six.

The results suggest that a successful SAT heuristic is likely to be a successful
heuristic in MAJSAT and SSAT problems, but block size is a limiting factor. In
the case where blocks are single variables, the splitting heuristic has no impact
on performance. It is important to note, however, that the tests were conducted
on small, random problems. For problems with more structure, such as SSAT
formulas that encode planning problems, these results may be different. In ad-
dition, there may be other good splitting heuristics that take advantage of this
structure. In Section 6.4, I will describe results that show improved performance
on such SSAT problems using a time-ordered splitting heuristic in which variables
with a lower time index are chosen first.

The success of SATS_MOST, which is computationally much simpler than
MAX_UNIT or MOMS, was somewhat surprising and warrants further study. It
is possible that performance disparities might appear in these three splitting
heuristics as the problem size increases beyond that of the problems in these

tests. Finally, it is possible that splitting heuristics unique to SSAT problems
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could be developed. Such heuristics might use the probabilities associated with
the random variables to select variables in a way that provides potentially greater

simplification of the problem.

5.2.3 A Stochastic Sampling Algorithm

In general, DPLL appears to be a powerful and flexible approach to solving SSAT
problems. A less systematic approach, however, may be necessary to attack very
large SSAT problems. Randomized local search algorithms, like WALKSAT [100],
have been extremely successful in solving difficult satisfiability problems (see
Section 3.4). The presence of randomly quantified variables in SSAT problems,
however, makes it impossible to apply local search techniques directly to SSAT
problems. A possible approach is suggested by an approximation technique for
MAJSAT problems: stochastic sampling. In this approach, some number of as-
signments to the random variables are generated according to their probabilities,
and then the probability that the formula is satisfiable is estimated from that
sample. This section develops an approximation algorithm for SSAT problems
that combines stochastic sampling to reduce the size of the problem (Section 5.2.3:
Stochastic Sampling) and randomized local search to solve the reduced problem

efficiently (Section 5.2.3: Randomized Local Search).

Policy Trees

The starting point for the stochastic sampling algorithm for SSAT is the policy-
tree representation. Figure 5.4 provides an example policy tree for the SSAT

instance
3z, Axg, Vy1, dyo, Axg, Ixy, Hys, dys, E[(T1 V23 VY3) (T2 VTV Y2) (23 VY1 VTL)] > 6.
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Original Formula: (X3 O X5 0y3)(X, OX, OY,) (X3 Oy, 0Y,)

Simplified Formulae at Leges Given Random ¥riable Assignments

Leaf 1: (X, OXg) Leaf9:  (Xq OX7)(x;)
Leaf 2: (X OX3) Leaf 10: (Xy OX)
Leaf 3: Satisfied Leaf 11: (X;)

Leaf 4: Satisfied Leaf 12: Satisfied

Leaf 5: (Xy OXg)(X, OXg) Leaf 13:  (Xq O Xg)(X, OX410)(Xg)
Leaf 6: (X OXg)(Xy OXg) Leaf 14:  (X; OXg)(X, OX40)
Leaf 7: (X, OXg) Leaf 15: (X, JXq0)(Xg)

Leaf 8: (X, OXg) Leaf 16: (X5 0Xq0)

Figure 5.4: A policy tree represents the set of contingent choices in an SSAT
problem.
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Each existential variable can take on a different Boolean value as a function of
the assignment to the randomized variables that appear to its left in the quantifier
ordering. The policy-tree representation makes this evident by including a copy of
the variable for each of these assignments. Existential variables, and their copies,
are called decision variables and are represented as rectangular decision nodes in
the policy tree. If z; is an existential variable such that r randomized variables
are to its left, then there will be 2" copies of z; in the policy-tree representation.
In the policy tree in Figure 5.4, for example, two randomized variables (y; and y9)
appear to the left of the existential variables x3 and x4 in the quantifier ordering,
so there are four copies of 3 and z4. To emphasize that the value of each instance
of a copied variable can be set independently, these variables are renumbered in
the policy tree such that, given two decision nodes at the same level in the tree
(and, therefore, containing the same variables), the variables in one decision node
will be distinct from the variables in the other decision node. The renumbering
of a variable appears in a parenthesized subscript next to the original number.
Thus, z3(7) is the relevant copy of variable x3 when y; is False and y; is True.
Note that the existential variables in the simplified formulas in Figure 5.4 are
subscripted with the new numbers only.

Each leaf of the policy tree represents a partial assignment consisting of an
assignment to all randomized variables in the SSAT formula. The probability of a
leaf is 1/2% in a formula with R randomized variables. (Note that the stochastic
sampling algorithm assumes that all randomized variables have an associated
probability of 0.5. In the more general case, in which randomized variables can
have arbitrary associated probabilities, the probability of a leaf is the product of
the probabilities of the outcomes of the randomized variables along the path from

the root to the leaf.) A policy is an assignment of Boolean values to the existential
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nodes in the policy tree (boxes in Figure 5.4). Given a policy, all the root-to-leaf
paths in the policy tree represent complete assignments to the variables in the
formula, each of which is either satisfying (value 1) or unsatisfying (value 0). The
value of a policy is the weighted sum of the probabilities of the satisfied leaves.
For example, the policy that assigns “0” to all existential nodes in the policy tree

in Figure 5.4 has value 3/4 (leaves 9, 11, 13, and 15 are unsatisfied).

The value of a policy tree is the maximum over all policies of the policy values.
The value of the policy tree in Figure 5.4 is 1 because the policy z14) = 0,
To2) = 0, T3(7) = 1, z319) = 1 satisfies all leaves (unmentioned variables can take
on either value). Note that a policy tree is simply an alternative representation of
the solution tree generated by the DPLL algorithm, and the value of a policy tree
is exactly that of a DPLL tree for the formula. It is a convenient representation

for organizing the sampling algorithm described next.

Stochastic Sampling

The value of a fixed policy with respect to an SSAT instance can be computed in
time linear in the size of the policy tree. However, in a formula with R randomized
variables, the size of the policy tree is roughly 2%. An accurate estimate of the
value of the policy can be obtained by constructing and evaluating a partial policy
tree. A partial policy tree is constructed by choosing a set W of w assignments to
the randomized variables proportional to their probability and independently of
the policy. The sampled assignments select out a set of leaves from the full policy
tree, with the probability of an assignment given by its frequency of selection in
the random sample. The top of Figure 5.5 gives a partial policy tree derived from
the sample in the bottom of the figure and the policy tree of Figure 5.4. Let s

be the number of sampled leaves that are satisfied by the policy. Then, the value
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Leaf 8: YVi=1 Y.=0 Y;=0 Ya=0
Leaf 13: Y1=0 Y.=0 Ys=1 Ya=1
Leaf 14: Y.1=0 Y.=0 Ys=1 Y.=0
Leaf 15: Y:=0 Y.=0 Y3=0 Ya=1

Figure 5.5: Randomized local search can be applied to a partial policy tree,
obtained by sampling, to provide an approximate answer for an SSAT instance.
Boxes in the figure represent decision nodes and circles random nodes.
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of the policy is estimated as >, the proportion of the w sampled leaves that the

policy satisfies. Let v be the true value of the policy and v be the estimate found
via sampling. The following lemma allows us to bound the error in our estimate

of v.

Lemma 2. Let € > 0 be a target approximation error. The probability that |v —

0] > € is less than 2 exp(—2€*w).

Proof. Given a fixed policy to evaluate, define X; = 1 — v to be the event of
sampling a leaf that yields a satisfying assignment. The probability of this event
is just v, the true value of the policy. Define X; = —v to be the event of sampling
a leaf that yields an unsatisfying assignment; the probability of this event is 1 —v.

All the X;s are mutually independent, and

X=2Xi:(1—v)s—v(w—s):s—vw (5.3)

i=1

where w is the number of samples and s is the number of sampled leaves that
are satisfied by the policy. The Chernoff bound ([2], Corollary A.7, p. 236) states

that, given the above assumptions, for a > 0,

Pr[|X| > a] < 2exp(—2a°/w). (5.4)
Substituting Equation 5.3 into Equation 5.4 and setting a = ew yields:
Pr[|s — vw| > ew] < 2 exp(—2e*w)
Since 7 = 0, the result follows. O

Thus, to be sure with probability 1 — § of having an estimate no further than e

away from the true value, w = O(5 log(5)) samples are sufficient. Note that this
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sampleevalssat(¢, Q, W) :={
if ¢ is the empty set, return 1
if ¢ contains an empty clause, return 0
if Q(z1) = 3, return
max(sampleevalssat(¢|;, o, @, W),
sampleevalssat(¢[;,—1,Q, W))
else if Q(z1) =¥, {
Let Wy be the samples in W that assign x; =0

Let W, be the samples in W that assign 21 =1

return %sampleevalssat(ﬂxlzo, Q,Wo)+
[Wa

Wsampleevalssat@ﬁ (2121, @, W1)

Figure 5.6: A stochastic sampling algorithm for SSAT problems chooses the
best approximate value.

number does not depend on n, m, k, or how the SSAT formula or the policy was
created.

Lemma 2 directly gives a polynomial time approximation algorithm for MAJSAT
and can be extended to solve SSAT problems via systematic search, described
next. Given a sample W of size w of assignments to the randomized variables
in an SSAT formula, it is straightforward to recursively compute the value of the
policy with the largest approximate value. Figure 5.6 sketches this procedure; as
before x; refers to the outermost quantified variable.

The running time of sampleevalssat is w - 2€, where E is the number of ex-
istential variables in the formula. The next theorem shows that, if the random
sample W is large enough, sampleevalssat gives a good approximation to the true

value of the given SSAT formula with high probability.

Theorem 3. Let (¢,Q,0) be an instance of SSAT and W be a size w random

sample of the assignments to the randomized variables in ¢. Let P be the number
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of possible policies for the SSAT instance. Let v = val(¢, Q) be the true value of
the SSAT formula and v be the estimate found via sampleevalssat. Let € > 0 be a

target approzimation error. The probability that v — 0| > € is less than P2e—2w,

1 1 1
w=0 (6—2 log <5> + 2 ]og(P))

samples are sufficient to be sure with probability 1 — § of having an estimate no

Thus,

further than € away from the true value.

Proof. Imagine that we use the sample W to approximately evaluate all P poli-
cies. By Lemma 2, the probability that any given estimate is off by more than
€ is 2e 2w, Therefore, the probability that at least one estimate out of P is off
by more than € is less than P2e~2¢w_ If all P policies have approximate values
within € of their true values, then the maximum of the approximate values, that
is, ¥, cannot differ by more than € from the maximum of the true values, that is,

V. ]

The sample complexity of the algorithm is the number of samples needed to
ensure an accurate estimate of the value of the formula with high probability.
Note that for SAT, the number of policies is P = 2", MAJSAT, P = 1, and
E-MAjsaT, P = 2¢ < 2". Since the sample complexity for sampleevalssat is
logarithmically dependent on P, these SSAT problems have polynomial sample
complexity. However, for SSAT problems in which existential and randomized
quantifiers strictly alternate, P = ©(22"") (the n/2 randomized quantifiers in-
duce a policy tree with 2%/2? decision nodes). In this case, Theorem 3 gives an
exponential sample bound. In fact, there are SSAT formulas that require expo-

nentially many samples to compute an accurate estimate using the sampleevalssat
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algorithm [71].

Randomized Local Search

The basic approach just described is to randomly sample a set of assignments
to be used to evaluate policies, then systematically search the space of policies
to find one with the best approximate value. Although, for many problems, the
number of samples required is not too large, the search for the best policy will

be exponential in the number of existential variables in the formula.

Randomized local search can be used to substantially reduce the search time
for a good policy, at the cost of finding one that is only locally optimal. As
described earlier in this section, stochastic sampling can be used to construct a
partial policy tree and, given a policy, the partial policy tree can be evaluated
(its value is the proportion of the sample corresponding to satisfied leaves). The

goal is to search the space of policies to find one with high value.

The randevalssat algorithm in Figure 5.7 takes SSAT formula ¢ and returns
an approximation of its value, along with the policy that approximately produces
this value. The algorithm’s local search component operates by first converting
the partial policy tree to a two-level Boolean formula, called a treeSAT formula
(function construct_treesat_formula in Figure 5.7). As illustrated in Figure 5.4,
the effect of a policy on a leaf can be summarized by a Boolean formula, called
a path formula, for that leaf. A path formula for path p is the original formula
¢ simplified by the randomized variable assignments described by path p. Each
random sample can potentially produce a different path formula, and the union
of all the path formulas produces the treeSAT formula. Thus, on one level the
treeSAT formula is a collection of path formulas. while on another level it is

merely a collection of clauses (all the clauses in all the path formulas).
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A satisfying assignment to the treeSAT formula corresponds to a setting of
the decision variables that satisfies the original SSAT formula along all paths
in the partial policy tree. In general, it will not be possible to find such a
setting, so the challenge here is to find an assignment to the treeSAT formula
that maximizes the number of path formulas that are satisfied. This can be
accomplished by randomized local search. In the experiments in this paper, this
is done by hillclimbing on an objective function that counts both clauses satisfied
and path formulas satisfied. A satisfied path formula is weighted as heavily as the
number of clauses in the original SSAT formula, so that satisfying all the clauses in
a path formula contributes more to the treeSAT formula’s value than satisfying
the same number of clauses scattered over more than one path formula. The
function eval_treesat_formula calculates the value of the treeSAT formula using
this objective function.

The operation of randevalssat is similar to that of WALKSAT [100]. The main
difference is in the objective function. WALKSAT searches for an assignment that
maximizes the number of satisfied clauses. As described above, the two-level
structure of the treeSAT formula requires randevalssat to use an objective function
that counts both clauses satisfied and path formulas satisfied. (In fact, in the
tests conducted, counting satisfied clauses did not seem to be as important as
counting satisfied path formulas; randevalssat performed as well with an objective
function that counted only satisfied path formulas. Larger problems might exhibit
different behavior.)

Essentially, randevalssat randomly sets the values of the treeSAT variables,
then hillclimbs on the objective function described above. On each iteration (up
to a maximum of IterationLimit iterations), the algorithm randomly chooses an

unsatisfied clause. If it is possible to improve the value of the objective function
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by flipping the truth value of a variable in that clause, it does so. Otherwise, it
calculates which variable flip in that clause will lead to the least decrease in the
value of the objective function, and accepts that flip with a probability of 0.5.
The algorithm returns the treeSAT assignment that produced the highest value of
the objective function over all iterations. If the algorithm fails to make progress
on a prespecified number of consecutive iterations (FailureLimit) it restarts with
a new random setting of the treeSAT variables. A prespecified number of restarts

(RestartLimit) is allowed.

Related Work

Many other researchers have explored approximations for probability-based prob-
lems. Dagum and Luby showed that approximating probabilistic inference in
belief networks is NP-hard [26]. In particular, this means that the problem of
finding an absolute approximation of the value of an SSAT formula (i.e. find-
ing an approximate value ¥ of an SSAT formula with true value v such that
Pr[lv — 9| < 0.5] > 0.5) is NP-hard if NP C RP (where RP is the class of
problems that can be solved in polynomial time with a Monte Carlo Turing ma-
chine [91]). The difficulty in this general case is that one needs to compute
conditional probabilities and it may be exponentially difficult to generate the
cases that are needed for the denominator (i.e. those cases that are valid for the
particular conditional probability being calculated). Lemma 2, which shows that
it is possible to find an absolute approximation of the value of a M AJSAT problem
in polynomial time, is possible because in sampling to arrive at an estimate of
the value of the MAJSAT problem, every sample is useful for the estimate.

Roth [98] studied the complexity of inference in belief networks. He showed

that computing the probability of a query node (akin to evaluating a MAJSAT
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randevalssat(¢, W) := {
p := construct_treesat_formula(¢, W);
currentpolicy := generate a random truth assignment for p;
P := eval treesat_formula(p); bestP := P;  bestpolicy := currentpolicy;
for (r =1 to RestartLimit) {
numfailures := 0;
for (i = 1 to IterationLimit) {
if (all clauses in p are satisfied)
return(P, currentpolicy);
randomly choose an unsatisfied clause c in p;
bestflipvar := 0;  bestnewP := 0;
for (each literal [ in ¢) {
flip the truth assignment of the variable v corresponding to [;
newP = eval treesat_formula(p);
if (newP > P) {
numfailures = 0; P = newP;
if (newP > bestP) {
bestP = newP; bestpolicy = currentpolicy;

}

break out of literal loop and start next iteration;
}
else if (newP > bestnewP) {
bestflipvar = v; bestnewP = newP;
}
restore the truth assignment of the variable v corresponding to [;
} /* literal loop */
with probability 0.5 {
flip the truth assignment of variable bestflipvar; P = bestnewP;
}

numfailures := numfailures + 1;
if (numfailures > FailureLimit){
currentpolicy := generate a random truth assignment for p;
P := eval_treesat_formula(p);
break out of iteration loop and start next restart;
} /* iteration loop */
} /* restart loop */
return(bestP, bestpolicy);

}

Figure 5.7: A randomized algorithm for SSAT problems uses hillclimbing on a
SAT formula derived from a partial policy tree created by sampling.
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formula) is #P-complete. (#P is the “counting” version of PP; for example,
#SAT asks how many satisfying assignments there are for a given Boolean for-
mula.) In addition, approximating the probability of a query node to within a
multiplicative factor of its true value is just as hard as computing the exact value.
In contrast, Lemma 2 shows that the complexity of getting within an additive

factor for MAJSAT is polynomial.

Kearns et al. [62] show how approximately optimal actions can be chosen
with high probability in infinite-horizon discounted Markov decision processes.
Their strategy is to show that it is sufficient to consider the first H actions in the
sequence, for an appropriate choice of H. The space of all H-step action sequences
is then evaluated using random sampling. The sampleevalssat algorithm described

earlier in this section was directly inspired by their work.

Summary

The stochastic sampling algorithm randevalssat appears to be a promising approx-
imation method for SSAT problems. Its primary strength is the use of sampling
to convert the problem to a lower complexity problem and its use of randomized
local search to solve that problem efficiently. A feature of this process is that it
does not necessarily completely discard the probabilities of the original problem
(as would, say, a conversion that merely rounded off the probabilities of the ran-
dom variables to 0 and 1 and set their truth values accordingly). It would, for
example, be possible to modify the algorithm such that the probabilities of the
random variables are used to direct the construction of the partial policy tree. A
more substantial modification would be to iteratively build the partial policy tree
by using the solution of the partial policy tree in a given iteration to construct a

better partial policy tree (and solution) in the next iteration.
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This algorithm has some weaknesses. First, unlike WALKSAT, randevalssat
does not return an answer whose correctness is “easy” to certify; this is to be ex-
pected, given the complexity of SSAT problems. Second, there are SSAT problems
for which the algorithm needs provably large samples [71]|. Third, randevalssat is
subject to the same pitfalls as other randomized local search algorithms; in par-
ticular, it may become stuck in local optima. Allowing the algorithm to restart
after a period of no progress helps minimize, but does not erase, this problem. Fi-
nally, the memory requirements of the algorithm can be prohibitively large. This
weakness can be partially overcome by more memory-efficient implementations,
but problems that require a large number of samples to produce an accurate

answer will inherently generate large treeSAT formulas.

5.2.4 Experiments with Stochastic Sampling Algorithms

The performance of randevalssat for computing the value of SSAT instances was
tested on 27 sets of 100 random formulas. The characteristics of these 27 sets
of formulas were generated by taking the cross product of the following sets:
{n = 8,12,16}, {m = n,2n,3n}, and {k = 3,4,5}. As was the case for the
evaluation of heuristics in Section 5.2.2, these sets were generated according to
FFm using a modified version of makewff that guarantees a formula with exactly n
variables. For each problem, a SAT instance (all existential variables), a MAJSAT
instance (all randomized variables), and all possible instances that contain an
equal number of existential and randomized variables in alternating blocks of
the same size were constructed. This generated 8 instances for each 8-variable
problem (block sizes 1, 2, 4, and 8, each with an instance in which the initial
block is existentially quantified and an instance in which the initial block is

randomly quantified), 10 instances for each 12-variable problem (block sizes 1,
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2, 3, 6, and 12 with instances differing by initial quantifier), and 10 instances
for 16-variable problems (block sizes 1, 2, 4, 8, and 16 with instances differing
by initial quantifier). Thus, each set of 100 8-variable problems generated 800
distinct problems, and all other sets generated 1000 distinct problems, for a total
of 25,200 problems. For each of these problems, 10 different partial policy trees
were created by sampling random variable assignments and constructing the tree
paths specified by the samples. The number of assignments sampled w ranged
from 5 to 4086 on an approximately logarithmic scale; the larger the number of

samples, the greater the similarity of the partial tree to the full tree.

Both sampleevalssat and randevalssat were implemented in C. Each of the par-
tial policy trees generated for the 25,200 problem instances described above was
solved using randevalssat. For comparison, those problem instances with 12 vari-
ables, 24 clauses, and 3 literals per clause were also solved using sampleevalssat.
For randevalssat, the number of restarts and the number of iterations were both
specified as a multiple of the number of variables in the CNF formula constructed
from the tree, so increasing the number of samples tended to increase the number
of restarts and iterations. These tests were conducted on a 143 MHz Sun Ultra-1
with 128 Mbytes of RAM, running SunOS-5.7. Performance was measured by
comparing the estimate of (or, in the case of sampleevalssat, the exact calculation
of) the value of the partial policy tree to the exact value of the full policy tree
(and, hence, the formula). This difference is referred to below as the error in the
value estimate. Note that since the running time is proportional to the number
of restarts and iterations allowed, and since these limits are increased for larger
problems, running time is not a very informative measure of performance. For
perspective, however, running times, measured in CPU seconds, for 12-variable,

24-clause problems, with 4086 assignment samples, varied from 1 to 5 seconds.
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Figure 5.8: The partial policy tree produced by random sampling can be solved
exactly using a DPLL-style approach. Approximation error decreases as sample
size increases. These problems contained 12 variables, 24 clauses, and 3 literals
per clause.
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Figure 5.9: As the number of sampled assignments increases, the accuracy of
the randomized local search algorithm increases. Because of local optima in the
search space, increasing the number of sampled assignments does not drive the
error to zero. These problems contained 12 variables, 24 clauses, and 3 literals
per clause.
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Figure 5.8 shows results for the sampleevalssat algorithm on problems with
12 variables, 24 clauses, and 3 literals per clause; the graph shows mean squared
error in the value estimate as a function of the number of sampled assignments for
all problem types except the SAT problems. (The “tree” for a SAT problem is just
a single node containing all the existential variables, and sampleevalssat performs
a systematic search for satisfying assignments, so the value of the SAT problems
is estimated without error in all cases.) Since the algorithm is performing perfect
optimization on the partial tree, any error is due entirely to the incompleteness
of the partial tree due to sampling. As expected, the mean and variance of the
squared error approach zero as the number of assignment samples increases, and

the partial tree constructed approaches the full policy tree.

Figure 5.9 shows the same graphs for the results of the randevalssat algorithm.
Note that the results for all 27 sets of problems were similar; we show the results
only for the set of problems with 12 variables, 24 clauses, and 3 literal per clause.
(Again, results for the SAT problems are not reported. Stochastic local search was
able to find satisfying assignments, when they existed, in all cases except for the
very lowest level of sampling (5 samples), which limited the number of iterations
too severely to allow stochastic local search to work.) Here, the mean and variance
of the squared error decrease as the number of assignment samples increases. But,
even in the limiting case, where the number of assignments sampled is sufficient
to construct the full policy tree with high probability, randevalssat is not always
capable of finding the optimal setting of the decision variables. (Note that in
some cases, however, randevalssat can generate almost as accurate an answer as
sampleevalssat in far less time. For one problem with 36 variables, 72 clauses, and
3 literals per clause, randevalssat was able to return an answer with squared error

of approximately 10~* in 442 cpu seconds, while sampleevalssat required over 4
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times as long to compute an answer with squared error of approximately 107°.)

It should also be noted that the randevalssat algorithm can exhibit anomalous
behavior as the number of assignment samples increases. A set of 100 random
problems with 12 variables, 24 clauses, and 3 literals per clause was generated,
but with a block size of 4 and an initial block of existential variables. This set was
not included in the results reported above, since this quantifier ordering results in
problem instances with an unequal number of existential and random variables.
The mean squared error for this set of problems decreases to approximately 0.008
as the number of sampled assignments increases to 55. As the number of sampled
assignments increases further, however, the mean squared error also increases,
appearing to asymptote at approximately 0.016. Since this behavior does not
appear when the same problem instances are solved using sampleevalssat, the
anomaly appears to be due to the imperfect optimization technique employed
by randevalssat becoming trapped in local optima. Initially, generating a policy
tree with more branches allows the algorithm to return a more accurate estimate
of the value of the formula. Beyond a certain point, however, this advantage
seems to be outweighed by the increasing difficulty of the optimization problem;
because more policy-tree nodes means more treeSAT variables, the algorithm is
increasingly likely to become stuck in local maxima and, therefore, is less likely
to find the global maximum within the permitted number of restarts. Future
work will examine striking the proper balance between sampling completeness
and optimization difficulty.

Future work will also consider more sophisticated randomized local search
procedures. For instance, the algorithm could be modified to select the decision
node or the variable to flip in that decision node according to some set of criteria.

Another variation would use the entire local search algorithm in Figure 5.7 as a

81



subroutine in an algorithm that periodically restarts with a new set of samples.

The approach could also be refined using simulated annealing.

5.3 Summary

In Sections 3.2 and 5.1.1, I described four types of satisfiability problems: the de-
terministic satisfiability problem (SAT) and three types of stochastic satisfiability
problems (MAJSAT, E-MAJSAT, and SSAT). Each of these satisfiability problems
is complete for a particular complexity class containing an important probabilis-
tic planning problem. The three stochastic satisfiability problems completely fill
in the gaps in the chart of complexity classes, complete satisfiability problems,
and planning problems in Table 4.1, and they provide the basis for extending the
planning-as-satisfiability paradigm to probabilistic planning. Table 5.1 shows the
completed chart.

In Section 5.2, I described two algorithms for solving SSAT problems—an ex-
act algorithm and an approximation algorithm. I showed that solution techniques
developed for SAT problems could be extended to SSAT problems, and described
some empirical results for both algorithms on large sets of randomly generated
SSAT problems.

Stochastic satisfiability unites the fundamental computer science areas of sat-
isfiability and probabilistic models. As such, I expect that it will function as the
essential, defining problem for probabilistic domains in the same way that SAT
does for deterministic domains. In Chapters 6 and 7, I will show how stochastic

satisfiability can be used to encode and solve probabilistic planning problems.
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: Complete .
Complexity Satisfigbility Planning
Class Problem Problem
Probabilistic planning with:
PSRACE SSAT polynomially bounded plan size
or
polynomially bounded plan horizon
Probabilistic planning with:
NPPP E-MAJSAT polynomially bounded plan size
and
polynomially bounded plan horizon
PP MAJSAT Probabilistic planaluation
Deterministic planning with:
NP SAT polynomially bounded plan size
which is equivalent to
polynomially bounded plan horizon

Table 5.1: SSAT, E-MAJSAT, and MAJSAT provide the complete satisfiability
problems that correspond to various Probabilistic planning problems.
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Chapter 6

Planning Without Observability

Portions of this chapter have appeared in an earlier papers: “MAXPLAN:
A new approach to probabilistic planning” [75] with Littman and “Using

Caching to Solve Larger Probabilistic Planning Problems” [76] with Littman.

As described in Chapter 5, both E-MAJSAT, a type of stochastic satisfiability
problem, and probabilistic propositional planning with polynomial bounds on
plan size and plan horizon, are NPF-complete problems. This suggests a solution
strategy for this type of planning problem analogous to that of SATPLAN [59]. In
the same way that deterministic planning can be expressed as the NP-complete
problem SAT, is it possible to express probabilistic planning as the NP*F-complete
problem E-MAJSAT?

MAXPLAN provides an affirmative answer to this question. MAXPLAN is a
probabilistic planning technique that operates by converting a planning problem
into an instance of E-MAJSAT and solving that problem instead (Figure 6.1).
Briefly, this is accomplished by using the choice variables to encode candidate
plans and the chance variables to encode the uncertainty in the planning domain.
Given the E-MAJSAT encoding, MAXPLAN draws on techniques from Boolean sat-
isfiability, dynamic programming, and caching to solve this E-MAJSAT instance,
and the solution of the E-MAJSAT problem is directly interpretable as a solution
of the planning problem.

MAXPLAN assumes complete unobservability and, therefore, produces plans

that are a simple sequence of actions. I will refer to such plans—a finite se-
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Figure 6.1: MAXPLAN converts a probabilistic planning problem to an instance
of E-MAJSAT and solves that problem instead.

quence of actions that are executed in order without regard to the state of the
environment—as totally ordered plans (Figure 6.2(a)). These are the simplest of
three types of plans [ will be referring to in this and subsequent chapters. The sec-
ond type, acyclic plans are a generalization of totally ordered plans that include
contingent actions (Figure 6.2(b)). Finally, looping plans are a generalization of
acyclic plans in which actions can be repeated (Figure 6.2(c)).

In broad outline, the operation of MAXPLAN parallels that of SATPLAN. There
are, however, some significant differences due to the fact that MAXPLAN must
deal with a stochastic domain. As I described in Chapter 3, SATPLAN converts
a planning problem to an instance of SAT. Since there is no uncertainty in
the planning environment, SATPLAN can use choice variables to encode both the
plan and its outcome. In contrast, MAXPLAN makes a distinction between choice

variables, which encode the possible plans, and chance variables, which encode the
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(a) A totally ordered plan is a simple sequence of actions.

not(moat) not(moat)
moat moat

(b) An acyclic plan can express contingent actions.

not(moat) moat and not¢astle

moat

not(moat)

(c) In a looping plan, actions can be repeated.

Figure 6.2: Totally ordered plans, acyclic plans, and looping plans are three
types of probabilistic plans [70].
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uncertainty in the probabilistic planning problem. Together, the chance variables
determine the probability that a given truth assignment for the choice variables
(a given plan) will actually lead to a satisfying assignment (reach the goal).
Given a CNF formula with chance variables, MAXPLAN must find, not merely
a single satisfying assignment (as in SATPLAN), but rather the assignment of
choice variables that has the highest probability of producing a complete satisfy-

ing assignment. This means that MAXPLAN must, in effect:
e determine all possible satisfying assignments,

e calculate the probability of each satisfying assignment (based on the chance

variable probabilities)

e sum the satisfying assignment probabilities for each possible choice-variable

assignment, and

e return the choice variable assignment (plan) with the highest probability of

producing a satisfying assignment (successful plan).

Given these requirements, it is very difficult to avoid doing a systematic search
over the set of all assignments for those that are satisfying. In fact, as I will de-
scribe in more detail in Section 6.4, the MAXPLAN algorithm for solving E-MAJSAT
problems is based on evalssat, the extension of the systematic DPLL algorithm I
described in Section 5.2.1.

Thus, even if only totally ordered plans are considered, the problem of plan
evaluation is significantly more difficult in a stochastic domain. Intuitively, in the
deterministic setting, evaluating a plan means executing the plan and checking
the single execution trace to see whether the final state is a goal state; given
a polynomial-length plan, a restriction I assume for this research, this can be
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done in polynomial time. In the stochastic setting, however, one needs to do the
equivalent of checking each possible execution trace and summing the probability
of each trace whose final state is a goal state; this is a PP-complete problem [70].

To place this in perspective, recall that NP C PP C NP'Y C PSPACE.

Furthermore, plans in a stochastic domain frequently need to be more complex
than plans in a deterministic domain; a noncontingent plan that may suffice in
a deterministic setting frequently fails when uncertainty is introduced. Optimal
plans in a stochastic domain frequently require conditional branches that specify
different actions depending on the stochastic outcome of the current action, or
loops that repeat an action until a desired result is achieved. Complexity results
indicate that as plan complexity increases, both searching through plan space

and evaluating potential plans becomes more difficult [70].

6.1 Representing Probabilistic Planning Prob-

lems

Recall from Section 3.1 that a deterministic planning domain M = (S, s¢, A, G)
is characterized by a finite set of states S, an initial state sg € S, a finite set of
operators or actions A, and a set of goal states G C S. I will use the same tuple
to characterize probabilistic planning problems, except that now the initial state
is characterized by a probability distribution over states (i.e. the initial state is
uncertain) and the application of an action a in a state s results in a probabilistic
transition to a new state s’. The objective is to choose actions, one after another,
to move from the initial probability distribution to a probability distribution in

which the probability of being in a goal state is greater than or equal to some

88



threshold 6.

For the work described in this chapter, I have assumed a completely unob-
servable domain—the effects of previous actions cannot be used in selecting the
current action. This is a special case of the POMDP formulation of the problem
(which can be viewed as the control form of a hidden Markov model). Because
no information is gained during plan execution, optimal plans are noncontin-
gent sequences of actions. I relax this assumption in Chapter 7, where I discuss
contingent planning in the planning-as-satisfiability framework (C-MAXPLAN and

ZANDER).

All of my planners use a propositional representation called the sequential-
effects-tree representation (ST) [68], which is a syntactic variant of two-time-slice
Bayes nets (2TBNs) with conditional probability tables represented as trees [13,
15]. (This representation is also equivalent to probabilistic state-space operators
(PSOs) [43, 68].) A 2TBN is a probabilistic action representation in which the
effect of a probabilistic action is represented by a two-level Bayes net. Nodes
containing all the propositions that condition the action, or that the action has
an impact on, are contained in the first level, which represents the status of these
propositions at time ¢. These nodes are replicated in the second level, representing
the status of the propositions at time ¢t + 1. Each proposition on the second level
has arcs pointing to it from all propositions (on either level) that condition the
effect of the action on that proposition. Each node on the second level has a
conditional probability table that describes the status of that node’s proposition

after the action has been executed.

Tt is also possible to formulate the objective as one of maximizing expected discounted re-
ward [15], but the two formulations are essentially polynomially equivalent [22]. The only
difficulty is that compactly represented domains may require discount factors exponentially
close to one for this equivalence to hold.
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Recall that using such a factored state representation was one of the Al plan-
ning insights I mentioned earlier. Using a factored representation allows us to
reason about states more efficiently by reasoning about state attributes rather
than states as a whole. As we shall see in Sections 6.3 and 7.3.1, this compact-
ness and efficiency transfers to the SSAT formulas when planning problems are

converted to SSAT problems.

In the ST representation of a planning domain there is a finite set P of n
distinct propositions, any of which may be True or False at any (discrete) time
t. A state is an assignment of truth values to P. A probabilistic initial state
is specified by a set of decision trees, one for each proposition. A proposition
p whose initial assignment is independent of all other propositions has a tree
consisting of a single node labeled by the probability with which p will be True
at time 0. A proposition g whose initial assignment is not independent has a
decision tree whose nodes are labeled by the propositions that ¢ depends on and
whose leaves specify the probability with which ¢ will be True at time 0. As in
most propositional representations, the states in the set of goal states G are not
explicitly enumerated in ST. Instead, G is defined by a partial assignment G to

the set of propositions; any state that extends G is considered to be a goal state.

The set of actions A is explicitly enumerated in sT. Each of the finite set
A of actions probabilistically transforms a state at time ¢ into a state at time
t 4+ 1 and so induces a probability distribution over the set of all states. In this
work, the effect of each action on each proposition is represented as a separate
decision tree [16]. For a given action a, each of the decision trees for the different
propositions are ordered, so the decision tree for one proposition can refer to
both the new and old values of previous propositions. This allows the effects of

an action to be correlated (e.g. when action a is executed under a certain set
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of circumstances, proposition p is True with probability 0.35 and proposition ¢
takes on the same value as p). The leaves of a decision tree describe how the
associated proposition changes as a function of the state and action, perhaps
probabilistically. Note that using decision trees captures wvariable independence
(independence among variables regardless of their values) as well as propositional

independence (independence of specific variable assignments) [13].

The planning task is to find a plan that selects an action for each step ¢ as a
function of the value of observable propositions for steps before . We want to find
a plan that maximizes (or exceeds a user-specified threshold for) the probability

of reaching a goal state.

The ST representation of a planning domain M = (S, sy, A,t,G) can be de-
fined more formally as M = (P,I, A, T,Gy,Gg). Here, P is a finite set of n
distinct propositions. The set of states S is the power set of P; the propositions

in s € § are said to be “true” in s.

The transition function ¢ is represented by a function T, which maps each
action in A to an ordered sequence of binary decision trees. Each of these deci-
sion trees has a label proposition, decision propositions at the nodes (optionally
labeled with the suffix “:new”), and probabilities at the leaves. The ith decision
tree T(a); for action a defines the transition probabilities ¢(s, a, s') as follows. For
each decision tree i, let p; be its label proposition. Define p; to be the value of
the leaf node found by traversing decision tree T(a);, taking the left branch if
the decision proposition is in s (or s’ if the decision proposition has the “:new”
suffix) and the right branch otherwise. Finally, we let

H(s,a,8) = H{ Pi; if p; € ¢,

1 — p;, otherwise.

3
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This definition of ¢ constitutes a well-defined probability distribution over s’ for
each a and s.

To ensure the validity of the representation, we only allow “p:new” to appear
as a decision proposition in T(a); if p is a label proposition for some decision
tree T(a); for j < i. For this reason, the order of the decision trees in T(a) is
significant.

The initial state I can be thought of as a special transition from a state s;,;
in which all propositions are False (the actual truth values are immaterial) via
a mandatory “set-up” action as.—_,p that establishes the actual initial state for
a particular instance of the planning problem. Note that the decision trees for
Gset—up are either single nodes specifying the probability that p; is True in the
initial state (i.e. the probability does not depend on any other proposition in the
initial state), or all the decision propositions in the tree have the suffix :new (i.e.
the probability of p; being True in the initial state depends on the truth value of
one or more propositions whose decision trees precede that of p; in the ordering
of decision trees for aser—up)-

The sets G and G are the sets of propositions that are, respectively, True
and False in a goal state, so the set of goal states G is the set of states s such

that Gt C s and Gg C P—s.

6.2 Example Domain

To help make these ideas more concrete, I present the following simple probabilis-
tic planning domain based on the problem of building a sand castle at the beach
(SAND-CASTLE-67) [68]. There are a total of four states in the domain, described

by combinations of two Boolean propositions, moat and castle (propositions are
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State Propositions: moat, castle

Actions: dig-moat, erect-castle

dig-moat erect-castle
1: moat 2: castle 1: castle 2: moat
moat castle castle moat
T/\F T/\F T F T/}
1.0|[o.5 1.0][0.0 1.0| Mmoat castle
ks o] ‘/\ X [
1

|0.67| |0,25| |o.75| castle: new
e, 6 e, T/ \F

3
e4

Figure 6.3: The sequential-effects-tree representation of SAND-CASTLE-67 con-
sists of a set of decision trees. Decision tree leaves containing probabilities strictly
between 0.0 and 1.0 give rise to chance variables (d, e, es, €3, and ey).

written in boldface). The proposition moat signifies that a moat has been dug
in the sand, and the proposition castle signifies that the castle has been built.
In the initial state, both moat and castle are false, and the goal set is {castle}.

There are two actions: dig-moat and erect-castle (actions are given in sans
serif). Figure 6.3 illustrates these actions in the ST representation. Executing
dig-moat when moat is false causes moat to become true with probability 0.5; if
moat is already true, dig-moat leaves it unchanged. The dig-moat action has no
impact on castle. The dig-moat action is depicted in the left half of Figure 6.3.

The second action is erect-castle, which appears in the right half of Figure 6.3.
The decision trees are numbered to allow sequential dependencies between their
effects to be expressed. The first decision tree is for castle, which does not change
value if it is already true when erect-castle is executed. Otherwise, the probability

that it becomes true is dependent on whether moat is true; the castle is built
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with probability 0.67 if moat is true and only probability 0.25 if it is not. The
idea here is that first building a moat protects the castle from being destroyed

prematurely by the ocean waves.

The second decision tree is for the proposition moat. Because erect-castle
cannot make moat become true, there is no effect when moat is false. On the
other hand, if the moat exists, it may collapse as a result of trying to erect
the castle. The label castle:new in the diagram refers to the value of the castle
proposition after the first decision tree is evaluated. If the castle was already built
when erect-castle was selected, the moat remains built with probability 0.75. If
the castle had not been built, but erect-castle successfully builds it, moat remains
true. Finally, if erect-castle fails to make castle true, moat becomes false with
probability 0.5 and everything is destroyed.

Note the differences between this formulation of the problem and the deter-
ministic version of the problem described in Section 3.1. Unlike the deterministic
dig-moat action, the probabilistic dig-moat action does not always work. In the
probabilistic version of the problem, the erect-castle action sometimes works even
if there is no moat (unlike the deterministic version, in which moat is a pre-
condition for the erect-castle action), but sometimes the erect-castle action fails
even if there is a moat. Even worse, if the erect-castle action fails to produce a

castle, an existing moat may be destroyed.

6.3 Converting Planning Problems to
E-MAJSAT Problems

The problem conversion unit of MAXPLAN is a LISP program that takes as input

an ST representation of a planning problem and converts it into an E-MAJSAT
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domain states
the plan uncertainty encountered

A A\

C
dzq, ..., dxe, 872, 8022, Yy, L, Yy,

(E[(initial /goal conditions (y,z)-clauses)
(action exclusion (z)-clauses)
(action outcome (z,y,z)-clauses)] > 6).

c¢; = number of choice variables needed to specify the plan,

¢y = number of chance variables (one for each possible stochastic outcome at
each time step), and
c3 = number of state variables (one for each proposition at each time step).

Figure 6.4: A generic E-MAJSAT encoding of a noncontingent planning problem.

formula with the property that, given an assignment to the choice variables (the
plan), the probability of a satisfying assignment with respect to the chance vari-
ables is the probability of success for the plan specified by the choice variables.
A generic E-MAJSAT encoding of a planning problem is given in Figure 6.4.
The converter produces the E-MAJSAT encoding of the planning problem
by selecting a plan horizon T, time-indexing each proposition and action so the
planner can reason about what happens when, and then making satisfiability

equivalent to the enforcement of the following conditions:
e the initial conditions hold at time 0 and the goal conditions at time 7,
e actions at time ¢ are mutually exclusive (1 <t <T),

e proposition p is True at time ¢ if it was True at time ¢ — 1 and the action
taken at ¢ does not make it False, or the action at ¢ makes p True (1 <

t<T).

The first two conditions are not probabilistic and can be encoded in a straight-
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forward manner (Section 3.3), but the third condition is complicated by the fact
that chance variables sometimes intervene between actions and their effects on

propositions. Essentially, the encoding must be constructed to include:

e clauses that constrain the ways in which the initial conditions can be trans-

formed into the goal conditions, and

e clauses that attach probabilities to these transformations.

I will illustrate the conversion process by describing the construction of the CNF

formula corresponding to a one-step plan for SAND-CASTLE-67.

6.3.1 Variables

The converter first creates a set of propositions that capture the uncertainty in
the domain. For each decision-tree leaf [ labeled with a probability m; that is
strictly between 0.0 and 1.0, the converter creates a random proposition r; that
is true with probability 7;. For example, in the first decision tree of the dig-moat
action (Figure 6.3), d; is a random proposition that is True with probability 0.5.
The leaf [ is then replaced with a node labeled r; having a left leaf of 1.0 and a
right leaf of 0.0. This has the effect of slightly increasing the size of decision trees
and the number of propositions, but also of simplifying the decision trees so that
all leaves are labeled with either 0.0 or 1.0 probabilities.

Variables are created to record the status of actions and propositions in an
T-step plan by taking three separate cross products: actions and time steps 1
through T, propositions and time steps 0 through 7', and random propositions

and time steps 1 through 7. The total number of variables in the CNF formula
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is
V=(A+P+R)T+P,

where A, P, and R are the number of actions, propositions, and random propo-
sitions, respectively.

The variables generated by the actions are the choice variables. In our exam-
ple, these are the variables dig-moat-1 and erect-castle-1. The variables generated
by the random propositions are the chance variables. In our example, we have
five random propositions (di, e, €2, €3, and e4) and the variables generated are
d;-1, e;-1, ex-1, e3-1, and e4-1. (I will describe the generation and use of these

chance variables in more detail later in this section.)

The variables generated by the propositions for time steps 1 through 7" must
also be chance variables. The E-MAJSAT solver returns 1) the setting of choice
variables that yields the highest probability of a satisfying assignment given the
chance variables, and 2) that probability. Given a particular setting of the action
variables, there may be more than one setting of the proposition variables (we
can think of this as the proposition-status history as the plan executes) that
leads to a satisfying assignment, and we wish to sum the probabilities of all such
proposition-status histories for a particular plan. If propositions also generated
choice variables, the solver would return the best plan and proposition-status
history and its associated probability rather than the best plan and its probability.

I will refer to these proposition variables as pseudo-chance variables to dis-
tinguish them from the chance variables generated by decision-tree leaf node
probabilities. In the SAND-CASTLE-67 example, the pseudo-choice variables are
moat-0, castle-0, moat-1, and castle-1. The probability associated with all

pseudo-chance variables is 0.5, so that all proposition-status histories have the
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same probability mass with respect to the pseudo-chance variables. Note that
this lowers the probability of any choice variable setting by a factor of 0.57 and,
thus, a suitable adjustment to the probabilities calculated by the solver must be
made. This is not the only way to handle these proposition variables; they could
be encoded as choice variables (where the choice is forced, given a choice of val-
ues for the action variables and an instantiation of values for the chance variables
encoding the domain uncertainty). This is the approach taken by ZANDER (Sec-
tion 7.3.1). This produces an SSAT encoding (PSPACE-complete) rather than
an E-MAJSAT encoding (NP**-complete), and this increase in complexity is not
necessary. The values of the proposition variables will be forced, given a choice
of values for the action variables and an instantiation of values for the chance
variables encoding the domain uncertainty, whether the proposition variables are
choice variables or chance variables, so their values will be set efficiently by unit
propagation in either case.

Each variable indicates the status of an action, proposition, or decision-tree
leaf node at a particular time step. So, for example, the variable dig-moat-1,
if True, indicates that the dig-moat action was taken at time step 1, and the
variable e;-1, if True, indicates that the decision-tree leaf node associated with

ey is True at time step 1.

6.3.2 Clauses

Each initial condition and goal condition in the problem generates a unit clause
in the CNF formula. The initial conditions in our example generate the clauses
(moat-0) and (castle-0) and the goal condition generates the clause (castle-1).

The number of clauses thus generated is bounded by 2P.

Mutual exclusivity of actions for each time step generates one clause con-
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Initial Conditions:
1. (moat-0) A
2. (castle-0) A

Goal Conditions:
3. (castle-1) A

Exactly One Action Per Time Step:
4. (dig-moat-1V erect-castle-1) A

5. (dig-moat-1V erect-castle-1) A

Action Effects:

6. (dig-moat-1 vV moat-0 V moat-1) A

7. (dig-moat-1V moat-0 V d;-1V moat-1) A

8. (dig-moat-1V moat-0V d;-1V moat-1) A

9. (erect-castle-1 V moat-0 V castle-0 V e3-1 V moat-1) A
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

erect-castle-1 V moat-0 V castle-0 V e3-1 V moat-1) A
erect-castle-1 V moat-0 V castle-0 V castle-1 V moat-1) A
erect-castle-1 V moat-0 V castle-0 V castle-1V e4-1 V moat-1) A
erect-castle-1 V moat-0 V castle-0 V castle-1V e4-1 V moat-1) A

erect-castle-1 V moat-0 V moat-1) A
dig-moat-1 V castle-0 V castle-1) A
dig-moat-1 V castle-0 V castle-1) A
erect-castle-1 V castle-0 V castle-1) A

erect-castle-1 Vv castle-0 V moat-0 V e;-1 V castle-1

A
erect-castle-1 V castle-0 V moat-0 V e;-1 V castle-1) A
A

(
(
(
(
(
(
(dig-moat-1
(
(
(
(
(

1)
castle-1)
erect-castle-1 V castle-0 V moat-0 V e;-1 V castle-1)
castle-1)

erect-castle-1 V castle-0 V moat-0 V e;-1 V castle-1

Figure 6.5: The CNF formula for a 1-step SAND-CASTLE-67 plan constrains
the variable assignments.
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erect-castle

1: castle

castle
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moat
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0.67
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Figure 6.6: Each path through each decision tree generates clauses in the en-
coding.

taining all actions (one action must be taken) and (‘;) clauses that enforce the

requirement that two actions not be taken simultaneously.? In our example, the

clauses generated are (dig-moat-1Verect-castle-1) and (dig-moat-1V erect-castle-1).

The third condition—effects of actions on propositions—generates one or two
clauses for each path through each decision tree in each action. If the path is a
deterministic path (the probability in the leaf is either 0.0 or 1.0), the path gener-
ates a single clause modeling the action’s deterministic impact on the proposition
given the circumstances described by that path. If the path is a probabilistic path
(the probability in the leaf is strictly between 0.0 and 1.0), the path generates
two clauses modeling the action’s probabilistic impact on the proposition given
the circumstances described by that path. An example will clarify this process.

Figure 6.6 shows the erect-castle decision tree. The highlighted path describes
the impact of the erect-castle action on the castle proposition when there is no

castle but there is a moat. Note that the probability in the leaf is strictly between

2“Exactly-one-of” clauses (not implemented yet), which specify that exactly one of the literals
in the clause be True, would be a more efficient way of encoding mutual exclusivity of actions,
generating only a single clause for each time step. See Chapter 8 for further discussion.
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0.0 and 1.0; this path is a probabilistic path that will generate a chance variable
associated with this probability (e;) and two clauses, one describing the impact
of the action if the chance variable is True and one describing its impact if the
chance variable is False. For the 1-step plan, this path generates the following

two implications:

erect-castle-1 A castle-0 A moat-0 A e;-1 — castle-1

erect-castle-1 A castle-0 A moat-0 A e;-1 — castle-1

Note that a chance variable has the same time index as the action it modifies.
Negating the antecedent and replacing the implication with a disjunction pro-

duces Clauses 18 and 19 (Figure 6.5):

erect-castle-1 V castle-0 V moat-0 V e;-1 V castle-1

erect-castle-1 V castle-0 V moat-0 V e;-1 V castle-1

Figure 6.5 shows the complete formula for a 1-step plan.

The total number of action-effect clauses is bounded by 27 Zle L; where L;
is the number of leaves in the decision trees of action 7, so the total number of

clauses C' is bounded by
A A
2P 1)1T+2TY L,
+ ((2) + ) + ; i

which is a low-order polynomial in the size of the problem. The average clause

size is dominated by the average path length of all the decision trees.

Note that by using a compact representation of a factored state space, such as

the ST representation, and translating that representation directly into E-MAJSAT
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form, we preserve the compactness of such a representation in our E-MAJSAT
formula. The alternative—using a flat state space in which states are simply
enumerated without regard to their characteristics, encoding states as proposi-
tions, and encoding in our clauses the impact of each action on each possible

state—would be prohibitively expensive.

Also note that fixing a plan horizon does not prevent MAXPLAN from solving
planning problems where the horizon is unknown. By using iterative lengthening,
a process in which successive instances of the planning problem with increas-
ing horizons are solved, the optimal plan horizon can be discovered dynamically.
This, in fact, was the process used in the MAXPLAN/BURIDAN comparison de-
scribed later. 1 have not yet determined the feasibility of incremental iterative
lengthening, a more sophisticated approach, in which the current instance of the
planning problem with horizon 7" is incrementally extended to the instance with

horizon T+ 1 and earlier results are reused to help solve the extended problem.

6.4 Solving E-MAJSAT Problems

In this section I will describe the algorithm that solves the E-MAJSAT prob-
lem produced by the conversion described above in Section 6.3. The evalssat
algorithm described in Section 5.2.1 was an obvious choice for an E-MAJSAT
solver, but I decided to start with the most basic DPLL-style algorithm possi-
ble. The resulting algorithm, dpllssat, is essentially the evalssat algorithm without
thresholding. Although I eventually modified dpllssat significantly, and eventually
incorporated thresholding (in the contingent planners described in Chapter 7),
describing the history of these modifications provides insight into the operation

of the E-MAJSAT solver.
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The DPLL algorithm systematically searches for a satisfying assignment.
(Note that, although this is an exponential algorithm, recent work [52] indicates
that DPLL can be modified to give a subexponential worst-case bound: c”, where
¢ < 2.0 and n is the number of variables). We can produce an algorithm to find
all satisfying assignments by forcing the DPLL algorithm to continue until all
assignments have been examined. This process can be envisioned as constructing
and traversing an assignment tree. Recall from Section 3.4 that an assignment
tree is a binary tree in which each node represents a choice (chance) variable and
a partial assignment. A node can also be thought of as representing the subprob-
lem remaining given the partial assignment represented by that node. Thus, the
subtrees of a node can be thought of as representing the subproblems given the
two possible assignments (outcomes) to the parent choice (chance) variable. To
avoid evaluating an exponential number of assignments, it is critical to construct
only as much of the tree as is necessary.

In the process of constructing this tree:

e an active variable is one that has not yet been assigned a truth value,

e an active clause is one that has not yet been satisfied by assigned variables,

and

e the current CNF subformula is uniquely specified by the current set of

active clauses and the set of variables that appear in those clauses.

The value of a subformula is defined in Section 5.1.1.

Like the evalssat algorithm, dpllssat takes advantage of the fact that partial
assignments sometimes suffice to establish that the formula is already satisfied
or unsatisfied. In addition, in order to prune further the number of assignments
that must be calculated, dpllssat does the following, whenever possible:
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e select an active variable that no longer appears in any active clause (i.e. it
has become irrelevant) and assign True to that variable (irrelevant variable

elimination, IRR),

e select a variable that appears alone in an active clause and assign the ap-

propriate value (unit propagation, UNIT),? or

e select an active choice variable that appears in only one sense—always
negated or always not negated—in all active clauses and assign the appro-

priate value (pure variable elimination, PURE).

Irrelevant variable elimination is implicit in the evalssat algorithm (i.e. there is
no point in splitting on a variable that no longer appears in an active clause in
the formula), but dpllssat makes this “heuristic” explicit. This action is justified
since setting to True a variable v that no longer appears in an active clause will
not affect the satisfying assignments of the current subformula and will result in
the same value, or probability of satisfaction, as if v had been set to False. I have
already discussed and justified unit propagation and pure variable elimination as

elements of the algorithm evalssat (Section 5.2.1).

When there are no more irrelevant variables, unit clauses, or pure variables,
the algorithm dpllssat must select and split on an active variable. Note that, in
solving an E-MAJSAT problem, the algorithm must always give precedence to
choice variables, since splitting on a chance variable when any choice variables
remain unassigned would allow the solver to select different values for those choice
variables contingent on the random value assigned to that chance variable. Since

the chance variables encode the uncertainty in the environment as the plan is

3Note that for chance variable ¢ with probability 7;, this decreases the success probability by
a factor of m; or 1 — 7;.
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being executed, this is equivalent to getting a glimpse of the future while con-
structing the plan. If the algorithm splits on a choice variable, it returns the
maximum of the two satisfaction probabilities obtained by assigning True to the
variable and recurring or assigning False to the variable and recurring. If it splits
on a chance variable, it returns the average of these two probabilities weighted

by the probabilities that that variable is True or False.

The splitting heuristic used is as critical to the efficiency of the E-MAJSAT
solver as it is to the efficiency of SAT solvers [50]. In Section 5.2.2, I reported
some empirical results regarding the efficiency of various splitting heuristics in
the evalssat algorithm. These tests indicated that the impact of the splitting
heuristic used increased with the size of blocks of similarly quantified variables
in the problem. This is not surprising since contiguous, similarly quantified vari-
ables commute—they can be dealt with in any order—and large blocks of such
variables provide more opportunities for a splitting heuristic to reorder variables
advantageously. The results reported in Section 5.2.2 indicated that two heuris-
tics were particularly beneficial in solving randomly generated SSAT problems

with a block size of at least six:

e SATS_MOST (find the literal that satisfies the most clauses in the current

formula and choose that variable), and

e MOMS (choose the variable that has “Maximum Occurrences in clauses of

Minimum Size”).

Although MOMS seemed to be a slightly more efficient heuristic in terms of
the size of the assignment tree generated, SATS_MOST is computationally much
simpler. For this reason, I decided to use the SATS_MOST heuristic in my tests

of heuristics for the E-MAJSAT solver.
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In addition to the SATS_MOST heuristic, I tested a random heuristic (RAND)
and a new heuristic based on the time indexing of the variables (TIME_ORDERED).
Although the random heuristic performed poorly in the tests reported in Sec-
tion 5.2.2, it was possible that it would perform better on problems with structure—
the plan-generated E-MAJSAT problems—than on randomly generated problems.

The three heuristics I tested on E-MAJSAT plan encodings were:

e RAND (choose the next active variable from an initially random ordering

of the variables, giving precedence to choice variables),

e SATS_MOST (find the literal that satisfies the most clauses in the current

formula and choose that variable), and

e TIME_ORDERED (choose the active variable that would appear earliest in

the plan, exhausting all choice variables first).

The graph in Figure 6.7 compares the performance of these three heuristics on
a plan evaluation problem in the SAND-CASTLE-67 domain: given a plan that
alternates dig-moat and erect-castle (with erect-castle as the last action), eval-
uate its probability of success. Although they all scale exponentially with the
length of the plan, the TIME_ORDERED splitting heuristic, given a fixed amount
of time, is able to evaluate longer plans than the SATS_MOST heuristic, and
the SATS_MOST heuristic can evaluate longer plans than the RAND heuristic.
Empirically, this appears to be because TIME_ORDERED splitting increases the
opportunities for the application of heuristics, particularly unit propagation.

To verify the importance of the individual elements of DPLL, I compared

performance on the same plan-evaluation problem of the following:

e full DPLL with time-ordered splitting,
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Figure 6.7: For DPLL on plan evaluation, the time-ordered splitting heuristic
appears to work best.

e PURE and UNIT with time-ordered splitting,
e UNIT with time-ordered splitting, and
e time-ordered splitting alone.

As the graph in Figure 6.8 shows, removal of these DPLL elements severely
degrades performance, preventing feasible evaluation of plans longer than about
4 steps.

This exponential behavior was surprising given the fact that a simple dynamic-
programming algorithm (called “ENUM” in the next section) scales linearly with
the plan horizon for plan evaluation. This observation led me to incorporate
dynamic programming into the solver in the form of memoization: the algo-
rithm caches the values of solved subformulas for possible use later. Memo-
ization greatly extends the size of the plan the algorithm can feasibly evaluate
(Figure 6.9). With memoization, the algorithm can evaluate a 110-step plan in
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Figure 6.8: Full DPLL on plan evaluation performs better than DPLL with
various elements removed.

less time than it took to evaluate an 18-step plan previously. These results are
not surprising since the combination of time-ordered splitting and memoization
essentially reproduces the dynamic programming solution of the planning prob-
lem. Robson [97] has used memoization to speed up the calculation of maximum
independent sets, and has provided some theoretical results with respect to this
approach.

The behavior of the algorithm suggested, however, that DPLL was hindering
efficient subproblem reuse, so I gradually removed the DPLL elements as we had
done before. This time, I found that removing DPLL elements greatly improved
performance. As the graph in Figure 6.10 indicates, best performance is achieved
with unit propagation and time-ordered splitting, or time-ordered splitting alone.
Tests on other problems suggest that unit propagation and time-ordered splitting

provide the best performance.
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Figure 6.9: Full DPLL on plan evaluation runs faster with memoization.
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Figure 6.10: Full DPLL on plan evaluation with memoization performs worse
than DPLL with various elements removed.
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Solution
Plan Plan Probability Time
Length of Plan (CPU
(D = Dig-Moat, Success seconds,
E = Erect-Castle) average of
5 runs)
1 E 0.250000 0.01
2 D-E 0.460000 0.01
3 D-E-E 0.629650 0.02
4 D-E-E-E 0.727955 0.03
5 D-E-D-E-E 0.815863 0.05
6 D-E-E-D-E-E 0.865457 0.10
7 D-E-D-E-D-E-E 0.908290 0.21
8 D-E-D-E-E-D-E-E 0.933433 0.49
9 D-E-D-E-D-E-D-E-E 0.954304 1.17
10 D-E-D-E-E-D-E-D-E-E 0.966887 2.68

Table 6.1: Optimal plans found by MAXPLAN in the SAND-CASTLE-67 domain
exhibit a rich structure.

6.5 Results

Having identified a set of promising algorithmic components, I tested the resulting
system on the full plan-generation problem in SAND-CASTLE-67 for plan horizons
ranging from 1 to 10. The optimal one-step plan (the solution to the example
problem in the previous section) is erect-castle. Larger optimal plans found by
MAXPLAN exhibit a rich structure: beyond length 3, the optimal plan of length 4
is not a subplan of the optimal plan of length 7 + 1 (Table 6.1). The optimal 10-
step plan is D-E-D-E-E-D-E-D-E-E, where D indicates dig-moat and E indicates
erect-castle. This plan succeeds with probability 0.966887 and MAXPLAN finds
this plan in 2.7 seconds on a 400 MHz Dell Dimension XPS R400 with 128 Mbytes
of RAM, running SunOS-5.7.

I tested MAXPLAN on four other domains. In the SLIPPERY-GRIPPER do-

main [65], an agent with a possibly wet (probability 0.30) gripper must paint a
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block and then pick it up, ending up with a clean gripper. The pick-up action
succeeds with probability 0.95 if the gripper is dry, but only with probability
0.50 if it is wet. There is a drying action that succeeds with probability 0.80.
Painting always succeeds, but dirties the gripper with a probability that depends
on whether the gripper is holding the block (1.0, if holding the block, 0.10 if not).

A dirty gripper can be cleaned, and this action succeeds with probability 0.85.

The MEDICAL-SEQUENCE domain is my extension of the “drink-or-die” prob-
lem described in the original SENSORY GRAPHPLAN (SGP) paper [113]. In the
original problem, a patient may be infected. If so, she must be medicated in or-
der to eradicate the infection. If she takes the medication without being hydrated,
however, she will die. Since SGP does not handle probabilistic initial conditions
or probabilistic actions, the uncertain initial conditions are expressed as possible
worlds, and actions are either deterministic (the drink action always hydrates the
patient) or conditional (the effects are deterministic once the conditions under
which the action is executed are known). For example, if the patient is infected
and hydrated, the medicate action results in the patient becoming not infected,
whereas if the patient is infected and not hydrated, the action results in the pa-
tient becoming not infected, but dead. In the MEDICAL-SEQUENCE extension
of this problem, the patient must also eat after taking the medication in order
to avoid death. In addition, the actions are probabilistic. The drink, eat, and
medicate actions succeed with probability 0.90, 0.70, and 0.60, respectively.

The COFFEE-ROBOT-BLIND domain is an unobservable version of a problem
from the POMDP literature [16]. In this problem, a robot must go to the cafeteria
to fetch coffee for its user. It may be raining (probability 0.50), so the robot
must take its umbrella. In addition, all the robot’s actions may fail. Going to

the cafeteria (or returning to the office) succeeds with probability 0.90, buying
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coffee succeeds with probability 0.70, delivering coffee to the user succeeds with
probability 0.80, and getting the umbrella succeeds with probability 0.75.

The DISARMING-MULTIPLE-BOMBS domain is an extension of the BoMB-IN-
TOILET problems [65], in which varying number of packages possibly containing
bombs must be disarmed by dunking them in toilets that may clog but can be
unclogged by flushing. In the DISARMING-MULTIPLE-BOMBS domain, there is
some number of packages, any or all of which contain bombs. The disarm action
allows the agent to disarm all the bombs at once, but it requires that the agent

know where the bombs are. The scan action gives the agent this knowledge.

Results for the SAND-CASTLE-67, SLIPPERY-GRIPPER, MEDICAL-SEQUENCE,
and COFFEE-ROBOT-BLIND domains are reported in Figure 6.11. These tests
were done on a 400 MHz Dell Dimension XPS R400 with 128 Mbytes of RAM,
running SunOS-5.7. (Results for the DISARMING-MULTIPLE-BOMBS domain are
reported in Section 6.6.) The graph in Figure 6.11 plots log solution time against
increasing plan horizon and indicates growth in solution time exponential in the
plan horizon. SAND-CASTLE-67 is the smallest domain (2 fluents and 2 actions)
and shows slower growth. The SLIPPERY-GRIPPER, MEDICAL-SEQUENCE, and
COFFEE-ROBOT-BLIND domains are larger than the SAND-CASTLE-67 domain:
SLIPPERY-GRIPPER has 4 fluents and 4 actions, and MEDICAL-SEQUENCE and
COFFEE-ROBOT-BLIND each have 6 fluents and 4 actions. The larger domain
size is reflected not only in longer run times, but also in the fact that memoiza-
tion in SLIPPERY-GRIPPER, MEDICAL-SEQUENCE, and COFFEE-ROBOT-BLIND
exhausts the available memory before a plan length of 10 is reached. In the SAND-
CASTLE-67 domain, however, MAXPLAN can find a 15-step plan before exhaust-
ing memory (see Appendix A). I developed a caching technique to mitigate this

memory problem; for a full discussion, see Appendix A.
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Figure 6.11: MAXPLAN performs similarly on three domains larger than
SAND-CASTLE-67.

6.6 Comparison to Other Planning Techniques

I compared MAXPLAN to three other planning techniques:

e BURIDAN [65], described in Section 2.2.1,

e Plan enumeration with dynamic programming for plan evaluation (ENUM),

and

e Dynamic programming (“Lark” pruning) to solve the corresponding finite-

horizon POMDP (POMDP-DP) [20, 115].

These comparisons were motivated by a desire to compare MAXPLAN to other
algorithms that can determine the best plan in a probabilistic domain, includ-
ing domains in which no plan is certain of succeeding (thus ruling out lower

complexity minimax planners).
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A comparison of MAXPLAN and BURIDAN on SAND-CASTLE-67 is complicated
by the fact that BURIDAN’s performance varies depending on which of several
available plan-evaluation methods it uses. As noted in Section 2.2.1, there exist
problems for which each method is best and it is not possible, in general, to
determine beforehand which method will provide the best performance. For this

comparison, I will report the best results obtained.

BURIDAN operates by looking for a plan whose probability of success exceeds
some user-specified threshold. For this comparison, I provided BURIDAN with
probability thresholds that forced it to find increasingly longer plans. For ex-
ample, a threshold of 0.20 is satisfied by the 1-step plan erect-castle, whereas
a threshold of 0.70 requires the 4-step plan dig-moat, erect-castle, erect-castle,
erect-castle. The results are reported in Table 6.2. BURIDAN is able to find the
1-step plan in only 0.05 CPU seconds, but the time and space needed to find
longer plans grows exponentially and BURIDAN runs out of memory after about
875 CPU seconds searching for the 4-step plan that would exceed a probability of
0.70. In contrast, MAXPLAN is able to find this 4-step plan in 0.28 CPU seconds.
Note that this is a composite time arrived at by using MAXPLAN to find optimal
plans of increasing length until a plan is found that exceeds the threshold, and
then adding together the run times for all the plans found. (These tests, and all
tests in this section, were run on a 143 MHz Sun UltraSparc with 128 Mbytes of
RAM, running Sun0S-5.7.)

I next compared the scaling behavior of MAXPLAN—rather than its perfor-
mance on a single problem—to that of ENUM and POMDP-DP. Since ENUM and
POMDP-DP require that all 27 problem states be explicitly enumerated, these
methods necessarily scale exponentially in the number of propositions needed to

describe a state even in the best case (in the worst case, all methods are expected
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PROBABILITY CPU SECS

THRESHOLD PLAN MAXPLAN BURIDAN
0.20 ERECT 0.07 0.05
0.45 DIG-ERECT 0.13 0.53
0.60 DIG-ERECT-ERECT 0.20 52.59
0.70 DIG-ERECT-ERECT-ERECT 0.28 >876.43

Table 6.2: MAXPLAN outperforms BURIDAN on SAND-CASTLE-67.

to be exponential). ENUM necessarily scales exponentially in the plan horizon as

well, since all AT plans are evaluated.

MAXPLAN tries to explore only as much of the problem space as is necessary
to determine the best plan, and does not necessarily scale exponentially in either
the size of the state space or the plan horizon. This effort is not always success-
ful; Figure 6.12 shows performance results for MAXPLAN, ENUM, and POMDP-DP
as the horizon increases in SAND-CASTLE-67. ENUM, as expected, scales expo-
nentially, but so does MAXPLAN. We might expect POMDP-DP, which can solve
arbitrary POMDPs, to perform poorly here. POMDP-DP, remarkably, scales lin-
early as the horizon increases. This linear scaling is due to the fact that the class
of possibly useful policies (specifying what action to take for each belief state of
the agent) is particularly simple for the SAND-CASTLE-67 domain, and POMDP-
DP operates by iterating over sets of policies. In the SAND-CASTLE-67 domain,
POMDP-DP reduces the set of active (possible useful) policies to fewer than four
different policies after only a few iterations. This is true for all subsequent iter-
ations, so the set of policies that are active at iteration ¢ can be used to create
the set of policies active at iteration ¢ + 1 in constant time.

We see much different behavior in the DISARMING-MULTIPLE-BOMBS prob-

lem, a problem that allows us to enlarge the state space without increasing the
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Figure 6.12: MAXPLAN solves SAND-CASTLE-67 more slowly than two dynamic
programming-based approaches as plan length is increased.

length of the optimal plan. Recall that in the DISARMING-MULTIPLE-BOMBS
domain the agent is presented with a number of packages, each of which may con-
tain a bomb. The agent does not have time to scan each package separately, and
so must scan them en masse to determine which ones contain bombs. With this
knowledge, the agent can disarm them simultaneously by dunking all the packages
that contain bombs in a large pool. (The agent must avoid soaking packages that
do not contain bombs.) Thus, even as the state space scales exponentially with
the number of packages, there is always a successful 2-step plan. Figure 6.13
shows performance results for MAXPLAN, ENUM, and POMDP-DP as the number
of packages is increased. Both ENUM and POMDP-DP scale exponentially, while
MAXPLAN remains constant over the same range, solving each problem in less
than 0.1 seconds. Although DISARMING-MULTIPLE-BOMBS is a silly problem, it

makes a valid point regarding the abilities of MAXPLAN, ENUM, and POMDP-DP.
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Figure 6.13: MAXPLAN solves DISARMING-MULTIPLE-BOMBS faster than two
dynamic programming-based approaches as the number of packages is increased.

6.7 Summary

In this chapter, I described how a probabilistic planning problem can be solved by
encoding it as an E-MAJSAT problem and solving that problem instead. I showed
that, in spite of the potentially large complexity gap between SAT (NP-complete)
and E-MaJsaT (NPPP-complete), insights gained in developing solution tech-
niques for SAT can be successfully exploited in the more general, probabilistic
setting of E-MAJSAT.

MAXPLAN has a severe limitation. Because it produces noncontingent plans,
it is limited to problems for which the optimal plan is a noncontingent sequence
of actions. This is much too restrictive to allow MAXPLAN to be applied to
real-world planning problems. In this next chapter, I remove this restriction by
showing how the probabilistic-planning-as-stochastic-satisfiability paradigm can

be extended to support contingent planning in partially observable stochastic
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domains.
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Chapter 7

Contingent Planning

Portions of this chapter have appeared in an earlier paper: “Contingent

planning under uncertainty via stochastic satisfiability” [77] with Littman.

When planning under uncertainty, any information about the state of the
world is precious. A contingent plan is one that can make action choices contin-
gent on such information. In this chapter, I present an implemented framework
for contingent planning under uncertainty using stochastic satisfiability.

In both of the contingent planners I developed—C-MAXPLAN and ZANDER—a
subset of the state variables is declared observable, meaning that any action can be
made contingent on any of these variables. This scheme is sufficiently expressive
to allow a domain designer to make a domain fully observable, unobservable, or
to have observations depend on actions and states in probabilistic ways.

Recall that MAXPLAN uses a two-phase approach: a problem conversion unit
converts the planning problem to an E-MAJSAT problem, and an E-MAJsAT
solver solves the E-MAJSAT encoding of the planning problem. This framework
provides two ways to extend the paradigm to support contingent planning. The
E-MAJSAT encoding can be changed so that it can express contingent planning
problems, or the solution method can be changed so as to be able to extract
contingent plans from the encoding (see Figure 7.1).

C-MAXPLAN takes the first approach. C-MAXPLAN encodes the contingent
planning problem as an E-MAJSAT instance. In order to encode a contingent

planning problem, new types of variables and clauses are introduced and, al-
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Figure 7.1: Two approaches to extending MAXPLAN to support contingent plan-
ning.

though the encoding is still an E-MAJSAT instance, it is substantially different
from a MAXPLAN encoding. Because the C-MAXPLAN encoding is an E-MAJSAT
instance, however, C-MAXPLAN can use the same algorithm as MAXPLAN to solve

the E-MAJsAT-encoded problem.

ZANDER takes the second approach, although the problem encoding is some-
what changed. The variables and clauses are substantially the same as a MAX-
PLAN encoding. The main difference is the presence of clauses that describe how
observations are produced. Note that this allows for observations to be noisy,
allowing any degree of observability. The other difference—which has an impact
on the solution process rather than the encoding—is the quantifier ordering. A
ZANDER encoding models observations as chance variables and interleaves choice
and chance variables so that values for choice variables encoding actions can be
chosen contingent on the values of earlier chance variables encoding observations.

This interleaving means that ZANDER produces an SSAT instance rather than an
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E-MAJSAT instance, and requires a modified solution process. ZANDER encodings
are substantially more compact than C-MAXPLAN encodings, and this appears to
more than offset the fact that ZANDER’s SSAT encodings have a higher com-
plexity (SSAT is PSPACE-complete) than ¢-MAXPLAN’s E-MAJSAT encodings
(E-MaAJsAT is NP*P-complete). In fact, the size of the C-MAXPLAN encodings
cripples C-MAXPLAN’s performance severely, relative to that of ZANDER, and I
will not describe C-MAXPLAN in detail in this dissertation.

Both ¢c-MAXPLAN and ZANDER produce more complex plans than MAXPLAN.
While MAXPLAN was capable of producing only simple sequences of actions (to-
tally ordered plans (Figure 6.2(a)), both C-MAXPLAN and ZANDER are capable
of producing plans that branch (acyclic, contingent plans Figure 6.2(b)). Actions
in such plans can be made contingent on observations of the environment, and
represent a significant step toward a planner that can produce any type of plan
that is required, including plans in which actions can be repeated an unspecified

number of times (looping plans Figure 6.2(c)).

7.1 Representing Probabilistic Contingent Plan-

ning Problems

The contingent planners I developed work on partially observable probabilistic
propositional planning domains. The representation described in Section 6.1
is augmented by declaring a subset of the set of propositions to be observable
propositions. Each observable proposition has, as its basis, a proposition that
represents the actual status of the thing being observed. (Note that although
values are assigned to observable propositions in the initial state, no action at

time 1 makes use of these propositions in its decision trees, since there are no
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valid observations at time 0.)

The planning task is to find a plan that selects an action for each step ¢ as a
function of the value of observable propositions for steps before . We want to find
a plan that maximizes (or exceeds a user-specified threshold for) the probability

of reaching a goal state.

7.2 Example Domain

Consider a simple domain based on the TIGER problem [54]. The domain con-
sists of four propositions: tiger-behind-left-door, dead, rewarded and hear-
tiger-behind-left-door, the last of which is observable. In the initial state,
tiger-behind-left-door is True with probability 0.5, dead is False, rewarded
is False, and hear-tiger-behind-left-door is False (although irrelevant). The
goal states are specified by the partial assignment (rewarded, (not dead)). The
three actions are listen-for-tiger, open-left-door, and open-right-door (Figure 7.2).
Actions open-left-door and open-right-door make reward True, as long as the tiger
is not behind that door (we assume the tiger is behind the right door if tiger-
behind-left-door is False). Since tiger-behind-left-door is not observable,
the listen action becomes important; it causes the observable hear-tiger-behind-
left-door proposition to become equal to tiger-behind-left-door with proba-
bility 0.85 (and its negation otherwise). By listening multiple times, it becomes

possible to determine the likely location of the tiger.

7.3 ZANDER

ZANDER encodes a planning problem as an SSAT instance. Choice variables and

chance variables are interleaved in a way that allows action choices, encoded
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Figure 7.2: The effects of the actions in the TIGER problem are represented by
a set, of decision trees.
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by choice variables, to be made contingent on observations (encoded by chance
variables). The solution of the SSAT problem is a tree, each branch of which

describes a plan execution history in the optimal contingent plan.

7.3.1 Encoding Contingent Planning Problems as SSAT

Problems

In an SSAT formula, the value of an existential variable x can be selected on the
basis of the values of all the variables to x’s left in the quantifier sequence. Thus,
viewing an existential variable as an action choice, the value of all “earlier” vari-
ables in the quantifier sequence are observable at the time x’s value is selected.
So, the choice represented by z is contingent on the earlier variables. This allows
one to map contingent planning problems to stochastic satisfiability by encoding
the contingent plan in the decision tree induced by the quantifier ordering asso-
ciated with the SSAT formula. By alternating blocks of existential variables that
encode actions and blocks of randomized variables that encode observations, one
can condition the value chosen for any action variable on the possible values for
all the observation variables that appear earlier in the ordering. This is in con-
trast to MAXPLAN and C-MAXPLAN encodings, in which all the choice variables
occur before all the chance variables. A generic SSAT encoding for contingent
plans appears in Figure 7.3. Note that this approach is agnostic as to the struc-
ture of the plan; the type of plan returned is algorithm dependent. ZANDER
constructs tree-structured proofs; these correspond to tree-structured plans that
contain a branch for each observable variable. Other SSAT solvers could produce

DAG-structured, subroutine-structured, or value-function-based plans.

The quantifiers naturally fall into three segments: a plan-execution history,

the domain uncertainty, and the result of the plan-execution history given the do-
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¢; = number of variables it takes to specify a single action (the number of actions),

co = number of variables it takes to specify a single observation,

c3 = number of state variables (one for each proposition at each time step), and

¢4 = number of chance variables (one for each possible stochastic outcome at each
time step).

Figure 7.3: A generic SSAT encoding of a contingent planning problem.

main uncertainty. The plan-execution-history segment is an alternating sequence
of choice-variable blocks (one for each action choice) and chance-variable blocks
(one for each set of possible observations at a time step). This segment begins
with the action block for the first (noncontingent) action choice and ends with
the action block for the last action choice. (Although there may be observation
variables that are set by the last action, they are irrelevant to the success of the
plan.) The action choice encoded in each action block can, thus, be conditioned
on the values of all the preceding observation variables in all the observation-
variable blocks to the left of that action-variable block. In the TIGER problem,
each action variable block would be composed of the three possible actions—
listen-for-tiger, open-left-door, and open-right-door—and each observation variable

block would be composed of the single variable hear-tiger-behind-left-door.
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This means that the values of the variables in the second action-variable block
(i.e. the action chosen) can be conditioned on the value of hear-tiger-behind-
left-door in the observation-variable block immediately preceding them; i.e. the
planner can specify one action if the tiger is heard behind the left door, and a

different action otherwise.

A naive approach might try to accomplish this action conditioning by putting
the variables being observed in the observation-variable blocks (e.g. tiger-behind-
left-door instead of hear-tiger-behind-left-door). This would be both incorrect and
limiting. It is incorrect because an observation action cannot be allowed to set
the status of a chance variable that encodes uncertainty in the environment.
This would be equivalent to an observation forcing a certain reality. And, even if
conditioning actions on the observed variables could somehow be made to work,
it would be severely limiting, since conditioning on an observed variable—the
underlying reality—would make it impossible to model noisy, imperfect observa-

tions.

The domain uncertainty segment is a single block containing all the chance
variables that modulate the impact of the actions on the observation and state
variables. These variables are associated with randomized quantifiers; when the
algorithm considers a variable that represents uncertainty in the environment,
it needs to take the probability weighted average of the success probabilities
associated with the two possible settings of the variable. In the TIGER problem,
there would be a chance variable (probability = 0.85) associated with the outcome
of each listen-for-tiger action.

The result segment is a single block containing all the non-observation state
variables. These variables are associated with existential quantifiers, indicating

that the algorithm can choose the best truth setting for each variable. In reality,
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all such “choices” are forced by the settings of the action variables in the first
segment, and the chance variables in the second segment. If these forced choices
are compatible, then the preceding plan-execution history is possible and has a
non-zero probability of achieving the goals. Otherwise, either the plan-execution
history is impossible, given the effects of the actions, or it has a zero probability
of achieving the goals.

The probability of satisfaction, or value, of ¢ (under quantifier order @),
val(¢, Q), where ¢ and @) are an SSAT encoding of a contingent planning problem
is defined by induction on the number of quantifiers, and is similar to the value
of an SSAT formula defined in Section 5.1.1. Let z; be the variable associated

with the outermost quantifier. Then:

1. if ¢ contains an empty clause, then val(¢, Q) = 0.0;

2. if ¢ contains no clauses then val(¢, Q) = 1.0;

3. if Q(z1) = 3, then val(¢, Q) = max(val(¢[2,=0, Q), val p[2,=1, Q));

4. if Q(z1) = ¥" and z; is not an observation variable, then wval(¢, Q) =

(Ual(d){m:o’ Q) X (1'0 - 71') + Ual(d)[ﬂh:l’ Q) X ﬂ-);

5. if Q(z;) = ¥%° and x, is an observation variable, then val(¢, Q) =

val(@| zy—0, Q) + val(P[ 11, Q).

The only difference between these rules and those stated in Section 5.1.1 for
a general SSAT formula, is the addition of Rule 5 to handle chance (randomized)
variables encoding observations. This rule states that the value of a formula
whose outermost quantifier is a chance variable encoding an observation is the

sum of the value of the formula if that variable is assigned the value True and the
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value of the formula if that variable is assigned the value False, rather than the
probability weighted average of these two values (as in Rule 4, for the value of
a formula whose outermost quantifier is a chance variable that does not encode
an observation). This special treatment of some chance variables requires some

explanation.

The chance variables representing observations in the plan-execution history
are used only to mark possible branch points in the plan, and not to encode
the probability of actually making that observation. (The actual probability
of the observation being True is encoded by a chance variable that appears in
the domain uncertainty segment.) For example, in the 2-step TIGER problem,
there is a choice-variable block representing a choice between actions listen-for-
tiger, open-left-door, and open-right-door at time step 1, followed by a single
observation chance variable hear-tiger-behind-left-door, followed by another choice-
variable block, representing a choice between actions listen-for-tiger, open-
left-door, and open-right-door at time step 2. The function of chance variable
hear-tiger-behind-left-door is to allow the solver to choose one action at time step
2 if hear-tiger-behind-left-door is True and a different action if hear-tiger-behind-

left-door is False.

In order to calculate the correct probability of success of such a branching plan,
the algorithm needs to sum the success probabilities over all branches. Making
hear-tiger-behind-left-door a chance variable (instead of a choice variable) allows
one to combine the success probabilities of the two branches, but, as defined
for a standard SSAT problem (Rule 4 above), chance variables must combine the
success probabilities associated with their two values (True/False) by taking the
probability weighted average of these success probabilities, instead of the sum.

To get around this, I associate a probability of 0.5 with the chance variable hear-
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listen = listen-for-tiger o-left = open-left-door
hear-left = hear-tiger-behind-left-door o-right = open-right-door

Figure 7.4: ZANDER selects an optimal subtree.

tiger-behind-left-door and adjust the calculated probability of success upward by
a factor of 2. This is equivalent to summing the success probabilities of the two

branches.

7.3.2 Algorithm Description

In contrast to MAXPLAN and C-MAXPLAN, which find a single optimal choice-
variable assignment, ZANDER finds an assignment tree that specifies the optimal
choice-variable assignment given all possible settings of the observation variables.
Note that I am no longer limiting the size of the plan to be polynomial in the
size of the problem; the assignment tree can be exponential in the size of the
problem. The most basic variant of the solver follows the variable ordering ex-

actly, constructing a binary tree of all possible assignments. Figure 7.4 depicts
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such a tree; each node contains a variable under consideration, and each path
through the tree describes a plan-execution history, an instantiation of the do-
main uncertainty, and a possible setting of the state variables. The tree shows
the first seven variables in the ordering for the 2-step TIGER problem: the three
choice variables encoding the action at time step 1—listen-for-tiger-1, open-
left-door-1, open-right-door-1, the single observation chance variable hear-
tiger-behind-left-door-1, and the three choice variables encoding the action at
time step 2—listen-for-tiger-2, open-left-door-2, open-right-door-2. The
root node of the tree contains the variable listen-for-tiger-1, the two nodes on
the next level of the tree contain the variable open-left-door-1, and so forth
(triangles indicate subtrees for which details are not shown). The observation
variable hear-tiger-behind-left-door-1 is a branch point; the optimal assignment
to the remaining choice variables (listen-for-tiger-2, open-left-door-2, open-
right-door-2) will be different for different values of this variable.

This representation of the planning problem is similar to AND/OR trees and
MINIMAX trees [85]. Choice variable nodes are analogous to OR, or MAX, nodes,
and chance variable nodes are analogous to AND, or MIN, nodes. However, the
probabilities associated with chance variables (our opponent is nature) make the
analogy somewhat inexact. Our trees are more similar to MINIMAX trees with
chance nodes [5] but without the MIN nodes—instead of a sequence of alternating
moves by opposing players mediated by random events, our trees represent a
sequence of moves by a single player mediated by the randomness in the planning
domain. Note that the SSAT framework can accommodate a scenario in which
an agent faces an opposing player; the opposing player’s actions are modeled by

universally quantified variables [71].

The solver essentially implements the DPLL-based algorithm described in
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Section 5.2.1. It does a depth-first search of the tree, constructing a solution
subtree by calculating, for each node, the probability of a satisfying assignment
given the partial assignment so far. For a choice variable, this is a maximum
probability and produces no branch in the solution subtree; the solver notes
which value of the variable yields this maximum. For a chance variable, the
probability will be the probability weighted average of the success probabilities
for that node’s subtrees and will produce a branch point in the solution subtree.
The solver finds the optimal plan by determining the subtree with the highest
probability of success. In Figure 7.4, the plan portion of this subtree appears in
bold, with action choices (action variables set to True) in extra bold. The optimal
plan is: listen-for-tiger; if hear-tiger-behind-left-door is True, open-right-door;
if False, open-left-door.

Like the solutions found by ZANDER, the solution of an AND/OR tree is a
subtree satisfying certain conditions. Algorithms for solving these trees, such as
AO* [85, 79, 74] and LAO* [46, 47] try to combine the advantages of dynamic
programming (reuse of subproblems) with advantages of forward search (use of
heuristic estimates to avoid evaluating the entire state space and thereby speed
up the search process). These algorithms operate by repeating a two-phase op-
eration: use heuristic estimates to identify the next node to expand, then use
dynamic programming to re-evaluate all nodes in the current subgraph. LAO*
is of particular interest in that it extends this approach to find solutions with
loops (something ZANDER is currently unable to do) and, as a result, can solve
infinite-horizon MDPs (and, thus, problems in which the optimal plan requires
that an action be repeated an indefinite number of times).

In contrast to heuristic search approaches, which must follow a prescribed

variable ordering, ZANDER can consider variables out of the quantifier ordering
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specified in the SSAT problem when this allows it to prune subtrees (as in irrele-
vant variable elimination, unit propagation, and pure variable elimination). The
main novelty of my approach, in fact, lies in my use of the stochastic satisfiability
formulation of the problem, which allows ZANDER to use satisfiability heuristics,
such as unit propagation and pure variable elimination, to prune subtrees. It is
possible that the algorithm could use heuristic search to solve the trees generated
by our planning problems. A worthwhile area of research would be to compare
the performance of these two approaches and attempt to develop techniques that

combine the advantages of both.

7.3.3 Results

I tested three variants of ZANDER on problems drawn from the planning litera-
ture (see Figure 7.1). All tests were done on a 300 MHz UltraSparc II with 384
Mbytes of RAM, running SunOS-5.7. ZANDER:SPLIT, the basic solver, uses vari-
able splitting with no heuristics. It checks partial assignments for satisfiability or
unsatisfiability, but, otherwise, checks every possible assignment. ZANDER:HEUR
is the basic solver augmented with irrelevant variable elimination, unit propa-
gation, and pure variable elimination (see Section 6.4). ZANDER:THRESH is the
basic solver augmented with these heuristics and thresholding (see Section 5.2.1).
Note that the threshold probability provided to ZANDER:THRESH was the prob-
ability of success of the optimal plan, thus ensuring that the problems were not
made artificially easy by requiring plans with an unreasonably low probability of
success.

The problems selected cover a range of different conditions. The TIGER prob-
lems [54] (with horizon increasing from one to four) contain uncertain initial

conditions and a noisy observation action. In this domain, the agent is faced
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with two doors, one concealing a hungry tiger, the other concealing a treasure.
Before opening one of the doors, the agent can listen for the tiger, but this obser-
vation is accurate only 85% of the time. A unique feature of this problem is that,
in some cases (e.g. the 4-step TIGER problem), the agent needs to condition its

actions on the entire observation history in order to act correctly.

The SHIP-REJECT problem [32] has the same characteristics as the TIGER
problem (uncertain initial conditions and a noisy observation action), along with
a causal action (paint) that succeeds only part of the time. In this domain,
a part is initially flawed (not visible) and blemished (visible) with probability
0.30. The objective is to paint and process the part, where processing consists
of deciding whether to ship the part (if it is not flawed) or reject the part (if it
is flawed). While painting the part erases the blemish, it does not correct the
internal flaw, so the agent must observe whether the part is blemished, paint the

part, and then condition the ship/reject decision on it earlier observation.

In the MEDICAL-4ILL problem [113], there are uncertain initial conditions,
multiple perfect observations, and causal actions with no uncertainty. In this
domain, a patient is either healthy or has one of four illnesses (with equal prob-
ability). Fortunately, there is a medication for each illness that will cure the
patient with certainty. The patient, however, will die if she receives any medica-
tion for which she does not have the corresponding illness. Thus, it is critical to
disambiguate the initial conditions. There is a stain test that allows the agent to
determine which of the following three categories the patient’s illness falls into:
1) no illness, 2) illness 1 or 2, or 3) illness 3 or 4. There is a white cell count test
that allows the agent to distinguish between illnesses 1 and 2 and illnesses 3 and
4. Together, these tests allow the agent to determine the patient’s illness with

certainty and administer the correct medication.
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The EXTENDED-PAINT problems [86] have no uncertainty in the initial con-
ditions, but require that probabilistic actions be interleaved with perfect observa-
tions. A part must be painted, cleaned, and polished. These actions succeed only
half the time, so it is likely that they will need to be repeated. It is, however, an
error to paint, clean, or polish a part that is already painted cleaned, or polished,
respectively, so, beyond a certain point, the agent must condition its actions on
observations of the part.

Finally, the COFFEE-ROBOT problem, similar to a problem from the POMDP
literature [16], is a larger domain (7 actions, 2 observation variables, and 8 state
propositions in each of 6 time steps) with uncertain initial conditions, but perfect
causal actions and observations. In this domain, there is a robot that is capable
of going back and forth between a user’s office and the cafeteria. It can purchase
coffee at the cafeteria and deliver it to the user in her office. If the user does not
want coffee, the robot does not need to do anything. If the user does want coffee,
the robot must get and deliver the coffee. It may be raining and, since the robot
should not get wet, it must take an umbrella if it is raining. Initially, it is raining
with probability 0.50 and the user wants coffee with probability 0.50. The robot
can ask the user if she wants coffee and can look out the window to see if it is
raining.

As expected, the performance of ZANDER:SPLIT is poor except on the simplest
problems (Table 7.1). But, the results for ZANDER:HEUR and ZANDER:THRESH
are very encouraging; the techniques used in these variants are able to reduce
solution times by as much as five orders of magnitude or more (the reduction
from ZANDER:SPLIT to ZANDER:HEUR in the 7-step EXTENDED-PAINT problem
is unclear since ZANDER:SPLIT did not run to completion). I compared the per-

formance of these three variants of ZANDER to that of:
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Table 7.1: ZANDER with heuristics (ZANDER:HEUR) and ZANDER with heuristics

and thresholding (ZANDER:THRESH) outperform POMDP:LARK, MAHINUR, and

SGP on many problems.
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e the “Lark” pruning POMDP algorithm [20, 115] on the corresponding finite-

horizon pOMDP formulations of these problems,
e MAHINUR [88], and
e SGP (SENSORY GRAPHPLAN) [113].

The results of these comparisons are reported in Table 7.1.

The performance of ZANDER:HEUR equals or betters that of POMDP:LARK on
every problem except the 7-step EXTENDED-PAINT problem and the COFFEE-
RoBOT problem. Subsequent experiments indicate that augmenting the SSAT
encoding of the COFFEE-ROBOT problem in two simple ways can improve ZAN-

DER’s performance tremendously:

1. Enforce the implicit preconditions of the buy-coffee and deliver-coffee ac-
tions. For the former, the robot must be at the cafeteria; for the latter, the

robot must have the coffee and must be at the user’s office.

2. Forbid any actions in the final time step that do not directly support a
goal condition (change-location, buy-coffee, get-umbrella, look-out-window,

and ask-user-if-wants-coffee).

These two changes reduce the solution time of ZANDER:HEUR from 1425 CPU
seconds to 98 CPU seconds (compared to 34 CPU seconds for POMDP:LARK). The
performance of ZANDER:THRESH equals or betters that of POMDP:LARK on every
problem except the COFFEE-ROBOT problem. And, the augmented encoding
described above reduces the solution time of ZANDER:THRESH from 595 CPU
seconds to 23 CPU seconds (compared to 34 CPU seconds for POMDP:LARK).
MAHINUR [88] makes some limiting assumptions (see Section 2.2.1), but these
assumptions are not violated in any of my test problems, and, in principle,
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MAHINUR is applicable to all the problems in this test suite. In its current
form, however, MAHINUR is not capable of handling certain situations, and so
is not applicable to as broad a range of problems as POMDP:LARK. Although
MAHINUR provides a framework to reason about the relationship between ob-
servation actions (either the same observation action repeated or a sequence of
different observation actions), this capability has not been implemented yet [87].
This means that MAHINUR cannot currently solve some planning problems in the
TIGER domain (repeated observations), or any problems in the MEDICAL-4ILL

domain (a sequence of different observations).

Comparisons between ZANDER and MAHINUR are further complicated by the
fact that the two planners take different approaches to determining when to stop
in the search for a plan. ZANDER either searches until it finds the optimal plan
(ZANDER:SPLIT and ZANDER:HEUR) or until it finds a plan whose probability of
success meets or exceeds a specified threshold (ZANDER:THRESH). MAHINUR, as it
is currently implemented, constructs a skeletal plan and then attempts to improve
the plan a specified number of times by extending it to cover the most critical
contingency unaddressed by the current plan. I compared the two planners for
a given problem instance by increasing MAHINUR’s improvement iteration limit
until the probability of success of the plan produced equaled or exceeded that of
the plan produced by ZANDER on the same instance.

The performance of ZANDER:HEUR and ZANDER:THRESH equals or betters
that of MAHINUR on every problem that MAHINUR solved successfully except the
7-step EXTENDED-PAINT problem. And, in this problem, by enforcing implicit
action preconditions, the solution times of ZANDER:HEUR and ZANDER:THRESH
can be reduced to 67 CPU seconds and 15 CPU seconds respectively. Thus, with

this improvement in the encoding of the problem, ZANDER:THRESH is able to find
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the optimal plan faster than MAHINUR (23 CPU seconds).

MAHINUR'’s performance in the TIGER and COFFEE-ROBOT domains requires
some explanation. In the TIGER domain, because MAHINUR cannot reason about
repeated observations, it can only find plans with a horizon of one or two (no ob-
servations or one observation, respectively). On these problems, ZANDER equals
or exceeds MAHINUR’s performance; in the 2-step case, the solution times of the
ZANDER:HEUR and ZANDER:THRESH are an order of magnitude faster than that
of MAHINUR. For a plan horizon T greater than two, the optimal plan is to listen
for T'— 1 steps, then open-left or open-right as dictated by a majority vote of the
observations (with ties broken randomly). As the horizon increases, more listen
actions are possible, and the probability of success increases. ZANDER is able to
find such plans, while MAHINUR cannot.

In principle, MAHINUR should be able to handle the COFFEE-ROBOT problem.
Indeed, MAHINUR was able to find the optimal plan in a simplified version of this
problem, in which all uncertainty is removed (it is known initially that the user
wants coffee and that it is not raining). But, a run in which the initial conditions
were changed to specify that it is raining (with certainty) generated an error
condition. Because I have been unable to determine the source of this error, a
comparison on this problem is unavailable at this time.

Since the current version of sGP [113] is unable to handle probabilistic actions
or noisy observations, comparisons were restricted to two problems: MEDICAL-
41LL and COFFEE-ROBOT. The solution times of ZANDER:HEUR and ZAN-
DER:THRESH on the MEDICAL-4ILL problem are one and two orders of magni-
tude faster, respectively, than that of SGP. A comparison on the COFFEE-ROBOT
problem was impossible because SGP ran out of memory while attempting to solve

the problem.
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7.4 Summary and Discussion

In this chapter, I described ZANDER, a planner that extends the probabilistic-
planning-as-stochastic-satisfiability paradigm to support contingent planning in
partially observable stochastic domains. ZANDER encodes a contingent planning
problem as a more general SSAT problem. This allows ZANDER to interleave
choice variables encoding actions with chance variables encoding observations.
Since, in an SSAT problem, the value of a choice variable can be made contingent
on the value of the chance variables that precede it in the quantifier ordering,
this allows ZANDER to produce contingent plans. Interestingly, although plan
encodings in ZANDER allow a more complex quantifier ordering than those in
MAXPLAN, the actual variables and clauses in a ZANDER plan encoding are re-

markably similar to those in a MAXPLAN encoding.

Because ZANDER can encode any degree of observability (both in terms of
which state propositions can be observed, and how accurately they can be ob-
served) and because ZANDER does not limit the size (only the horizon) of the
resulting plan, ZANDER can solve arbitrary finite-horizon factored POMDPs. This
is in sharp contrast to both MAHINUR and SGP, both of which are limited in the
types of problems they can handle. As I pointed out in Chapter 2, MAHINUR as-
sumes a type of subgoal decomposability that limits its applicability. In addition,
MAHINUR cannot currently handle multiple observations. SGP cannot currently
handle probabilistic actions or noisy observations. Thus, both MAHINUR and
SGp are applicable only to a subset of partially observable planning problems.
ZANDER represents significant progress toward the goal of exploiting the state
information available in a factored POMDP in order to efficiently solve planning

problems in stochastic, partially observable domains.
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Chapter 8

Open Problems and Future Work

The results I have obtained with ZANDER are especially encouraging, given that;

e ZANDER can solve a more general class of problems than SGP and MAHINUR,

and

e there are a number of improvements to ZANDER that have shown promise

for scaling up to larger problems.

I think it is unlikely, however, that these improvements will be sufficient to allow
ZANDER to handle some of the larger, real-world problems I would like to be able
to attack. In order to scale up to these problems, it will probably be necessary
to develop approximate SSAT solution techniques. In this chapter, I will discuss
possible improvements to and extensions of ZANDER and approximation tech-
niques for SSAT problems. I will discuss the idea of constructing planners that
operate less independently (leading to the notion of human-computer collabora-
tive planning). Finally, I will discuss the potential of this paradigm for providing

a unifying framework for planning and scheduling under uncertainty.

8.1 Improvements to ZANDER

There are a number of improvements to ZANDER that have strong potential to
improve performance significantly. Given ZANDER’s two-phase approach, these

improvement naturally fall into two categories:

e improvements in the SSAT encoding of planning problems, and
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e improvements in the algorithm for solving the SSAT encodings.

In the following sections, I will describe each of these improvements and discuss

initial efforts to implement them in ZANDER.

8.1.1 Improved SSAT Encodings

Compiling Away State Variables

MAXPLAN’s efficiency could possibly be improved by using a more efficient CNF
encoding of the planning problem. One can use resolution to eliminate any subset
of variables [56], but this usually leads to an exponential blowup in the number of
clauses in the encoding. For GRAPHPLAN-based encodings, however, eliminating
the propositional variables that describe the state of the environment leads to an
increase that is polynomial in the number of these propositions [56]. Although I
have not conducted extensive tests, my SSAT solver seems to be more sensitive
to the number of variables than to the number of clauses. It is possible that
the efficiency of the solver could be improved as the result of identifying a group
of variables whose elimination would entail only a polynomial increase in the

number of clauses.

More Efficient Versions of Current Type of Encoding

There are some encoding efficiencies to be realized even within the current type
of SSAT encoding used by ZANDER. For example, the current encoding enforces
mutual exclusivity of actions with (g) binary clauses, where A is the number of
actions. These clauses, quadratic in the number of actions, merely specify that,
for each possible pair of actions, the negation of one of them has to be True.

By extending the SSAT formalism to include a type of clause that specifies that
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exactly one of the literals in that clause must be True, I could produce more
compact encodings and improve the performance of the solver. The increased
compactness of the encoding, of course, comes from replacing a quadratic number
of clauses with a single clause. The increased efficiency in the solver is due to
the fact that, currently, choosing an action a at a particular time step results in
A — 1 unit clauses; the mutual exclusivity clauses specify that since a is True,
all other actions at that time step must be False. The algorithm then goes
through a series of A — 1 recursive calls to process these A — 1 unit clauses. A
properly implemented “exactly-one-of” clause would cause the solver to make the
A —1 forced assignments as soon as one of the literals in the clause was assigned
the value True. The use of such a clause is not limited to mutual exclusivity
of actions. Plan encodings frequently contain groups of variables that represent
mutually exclusive states of some entity in the domain (e.g. discrete settings
on some control or gauge). Exactly-one-of clauses could be used to encode the

mutual exclusivity constraints on these variables as well.

Another possible efficiency improvement stems from the existence of action
decision trees that are essentially encoding a cascade of conditions. For example,
suppose there is a switch in the domain that can be ON or OFF, and that there
is an observe-switch action. Suppose further that there are five discrete levels of
lighting—LO0, L1, L2, L3, and L.4—and that the probability of correctly observing
the dial increases with the lighting level. At level LO there is no light and the
agent is guessing, so the probability of perc-switch-on being set correctly when
the switch is on is only 0.5. For each increased level of lighting, the probability
increases by 0.1 so that at level L4, the probability is 0.9. One possible decision
tree for proposition perc-switch-on is shown in Figure 8.1(a). This decision

tree would generate 18 clauses with an average of 6.6 literals per clause.
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(a) Decision trees are sometimes an inefficient cascade of conditions.
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(b

) A more efficient encoding can be thought of as being
produced by shorter decision trees and an exactly-one-of clause.

Figure 8.1: Cascaded decision trees can ne replaced by more efficient encodings.

143



Since L0, L1, L2, 1.3, and L4 are mutually exclusive, the same information can
be encoded by the “decision trees” shown in Figure 8.1(b) and one exactly-one-of
clause for LO, L1, L2, L3, and L4. Note that these are not real decision trees;
they are provided only for illustrative purposes. What they indicate is that the
clauses could separately model what happens if each of L0, L1, L2, L3, and L4 is
True. This produces 19 clauses, but now each clause has an average of 4.6 literals
(compared to 6.6 literals per clause for the previous encoding). This difference of
2.0 literals per clause may not seem significant, but 1) as the number of lighting
levels increases, so does this difference, and 2) since many splitting heuristics
operate by trying to produce shorter clauses (unit clauses) it seems likely that a
reduction in the clause size of the original encoding (with virtually no increase

in the number of clauses) would have a beneficial impact on performance.

Encoding Domain-Specific Knowledge

Domain-specific knowledge could be exploited in either the construction of the
SSAT formula or its subsequent solution. The first approach has been explored
by Kautz and Selman in the context of SATPLAN [61]. In their work, four types
of clauses that can be added to a SAT encoding of a planning problem were

described:

e Conflict clauses and derived effect clauses implied by the domain’s action

descriptions.

e State invariant clauses implied by the domain’s actions and initial condi-

tions.

e Optimality condition clauses implied by the actions, initial conditions, and
plan length.
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o Simplifying assumption clauses.

The first three types of clauses make knowledge that was previously implicit
in the problem domain explicit and are analogous to providing lemmas to a
theorem prover. The fourth type of clause is not implicit in the domain and,
in fact, may prevent some solutions from being found [61]. Adding such clauses
to the SAT encoding can accelerate the solution process enormously, particularly
for systematic satisfiability testers, reducing the solution time on some problems
from in excess of 48 hours to a few seconds [61].

Another way of incorporating domain-specific knowledge is to use such knowl-
edge to guide the SSAT solution process. For example, we might be able to use
optimality criteria or means-ends analysis to efficiently identify high probability

plans or prune low probability plans.

Alternate SSAT Encodings

Alternate SSAT encodings are of particular interest. Our current encodings are
analogous to the state-based encodings with classical frame axioms described by
Kautz, McAllester, and Selman [56]. Two other possibilities are state-based en-
codings with explanatory frame axioms, and GRAPHPLAN-style encodings [56].
A third alternative encodes a causal link representation of the planning prob-
lem [78].

I have begun preliminary explorations into the use of other types of encodings.
For example, in my current encodings, if all but one of A actions leaves a fluent
unchanged, each of the A — 1 actions that leave the fluent unchanged generates
two clauses at each time step modeling that fact. This is essentially using classical

frame axioms and is redundant, given that all that really needs to be encoded is
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the fact that the fluent will remain unchanged unless the one action that changes
it is executed. By using explanatory frame axioms that encode the latter notion,

the encodings could be made more compact.

GRAPHPLAN-style encodings are particularly attractive in that they allow for
the possibility of executing actions in parallel. Parallel action execution can
potentially reduce the length of the plan that needs to found and, thus, the
solution time. ZANDER should be able to accommodate parallel actions with

minimal difficulty.

A further interesting possibility is to construct hybrid encodings. Although
it is not always true that more constraints (clauses) is better, the more nonre-
dundant constraints encoded, the more efficiently the solver will be guided to a
solution. For example, in a more difficult version of the coffee-robot problem,
ZANDER needed about 9300 cpu seconds to solve the state-based (with classical
frame axioms) encoding of the problem. Using a state-based encoding with ex-
planatory frame axioms augmented with GRAPHPLAN-style axioms (actions imply
their preconditions, and facts at time ¢ imply the disjunction of all actions at time
t—1 that could produce that fact), reduced the solution time from approximately
9300 CPU seconds to less than a second.

There are two other possibilities for alternate SSAT encodings that are more
speculative. In Section 2.2.3, I discussed the power of using a value function—a
mapping from states to values that measures how “good” it is for an agent to
be in each possible state—to solve MDPs and POMDPs. POMDP:LARK, the most
successful of the three probabilistic planning techniques I compared ZANDER to
(Section 7.3.3), derives its excellent performance in part from this value-based
approach. Perhaps it would be possible to develop a value-based encoding for

ZANDER that would benefit from the power of this approach. If such an encoding
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could be used to perform value approximation, it would be particularly useful in
the effort to scale up to much larger domains.

The second possibility borrows a concept from belief networks to address
the difficulty faced by an agent who must decide which of a battery of possible
observations is actually relevant to the current situation. D-separation [23] is a
graph-theoretic criterion for reading independence statements from a belief net.
Perhaps there is some way to encode the notion of d-separation in an SSAT
plan encoding in order to allow the planner to determine which observations are

relevant under what circumstances.

8.1.2 Improved SSAT Solution Techniques

More Efficient Data Structures

More sophisticated data structures in which to store the CNF encoding would
almost certainly improve the efficiency of the solver. For example, the trie data
structure has been used to represent SAT problems [116]. Briefly, variables are
given unique integer indices (the index of a negated variable is the negative index
of the positive variable), and each clause is arranged so that the indices of its
literals are in ascending order by absolute value. A clause is represented as
a path through a trinary tree (a trie) in the following manner. Each node v
implicitly represents a clause prefix Cp (described by the path from the root to
that node), contains a positive variable index ¢ that extends that prefix, and has

three children:

1. a positive child containing the set of all clauses having the prefix Cp V 1,

2. a negative child containing the set of all clauses having the prefix Cp V —1,
and
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3. a remaining child containing the set of all remaining clauses having the

prefix Cp.

For example, the set of clauses {(1V 2), (=1V =3),(—=1V4),(—=2V 3)}, where the

integers are variable indices, would be represented by the trie:
<1: <27 D: (Z)a @), <37 Q)a D7 <47 D7 (Z)a (Z)»’ <2’ (Z)v <3’ D’ (Z)’ (Z)>’ Q)))

where (i, P, N, R) denotes the node containing variable index 7, with positive child
P, negative child N, and remaining child R, and O is the end-of-clause symbol.
In this manner, clauses are stored such that two clauses sharing a prefix of n
literals will share a path of length n in the trie. Several advantages have been

claimed for this use of tries [116]:

duplicate clauses are automatically eliminated when the trie is constructed,

e memory requirements are reduced due to shared clause prefixes,

unit clauses can be found quickly, and

the unit propagation operation can be computed efficiently; multiple unit

propagation operations can be done in a single trie traversal.

It seems likely that better data structures, such as tries, would improve the effi-
ciency of the SSAT solver by reducing the overhead associated with the operation

of the solver.

More Sophisticated Splitting Heuristics

The current splitting heuristic orders groups of candidate variables according to

the order of their appearance in the quantifier ordering. In the plan-execution
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history segment (variables encoding actions and observations), this coincides with
the ordering that would be imposed by time-ordered splitting. The chance vari-
ables in the domain uncertainty segment and the choice variables in the segment
that encodes the result of the plan-execution history given the domain uncer-

tainty, are time-ordered.

The current heuristic, however, does not specify an ordering for variables
within the blocks of similarly quantified variables that have the same time in-
dex. This may be insignificant in small problems, but in real-world problems
with a large number of variables at each time step, a splitting heuristic that ad-
dresses this subordering issue could provide a significant performance gain. The
experiments reported in Section 5.2.2 provide evidence that performance could
be improved by using more sophisticated variable ordering heuristics within such
groups.

It might also be possible to develop a dynamic measure of the “criticality”
of variables to make better choices when selecting the next variable to split on.
This notion is an extension of unit propagation, which gives priority to a vari-
able whose value is forced. The idea here would be to develop a measure of how
“forced” the value of each non-unit-clause variable is, and to give splitting prior-
ity to those variables with a high degree of “forcedness.” If this could be used to
locate the high-probability assignments quickly, it would be of tremendous use
in approximation algorithms. Initially, this index could be based on structural
considerations such as how many clauses a variable appears in, how small these
clauses are, and the ratio of positive to negative instances of the variable. Learn-
ing could possibly be used to refine this index (see the following section on Using

Learning to Improve Performance).
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Memoization of Intermediate Results

With regard to memoization, ZANDER separately explores and saves two plan
execution histories that diverge and remerge, constructing a plan tree when a
directed acyclic graph would be more efficient. ZANDER should be able to mem-
oize subplan results so that when it encounters previously solved subproblems, it
can merge the current plan execution history with the old history. Memoization
boosted MAXPLAN’s performance tremendously and it is likely that it would have

a similar beneficial effect on ZANDER’s performance.

Improved Caching Techniques

My initial experiments with caching yielded promising results, but there are at
least three areas where further work needs to be done. First, although smart LRU
caching yielded significant performance improvements (up to a 37% decrease in
CPU seconds compared to straight LRU caching), it is not practical unless I
can determine the optimal difficulty range for subformulas to be cached without
extensive testing. Second, the algorithm can, in principle, do better than smart-
caching. In one test, performance deteriorated significantly when the cache size
was set below 5000, yet only 1786 distinct subformulas were reused in the solution
process, implying that a more sophisticated cache replacement policy could yield
additional performance gains. Such a policy could be based on many attributes

of the cached subformulas, including difficulty, last use, and frequency of use.

Using CSP Techniques to Accelerate Performance

ZANDER could probably be improved by adapting other techniques that have been

developed for constraint satisfaction problems (CSPs). In CSP terms, ZANDER
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uses backtrack search with forward checking and a variable ordering heuristic
that gives priority to unit-domained and pure variables. I would like to explore
the possibility of incorporating CSP look-back techniques, such as backjumping
and learning (deriving no-goods) [7].

In backjumping, when the solver reaches a deadend, rather than backtracking
to the assignment immediately previous to the deadend (regardless of whether
that assignment is the one that caused the problem), the solver backjumps to the
most recent assignment that directly contributes to the current deadend. This
helps prevents the solver from engaging in needless backtracking. For example,
suppose I am going to the store to buy some groceries. Upon leaving the house,
I notice that my children have left some of their toys on the driveway, so I clear
all the toys from the driveway. I open the garage door, and then discover I
have forgotten the car keys. Simple backtracking would force me to close the
garage door, and put the toys back on the driveway before I returned to the
house to get the keys. Backjumping would allow me to jump over these most
recent activities without undoing them and return to the house for the keys.
Although backjumping is a very attractive idea, it is not immediately clear how
this could be applied to solving SSAT problems, where the solver needs to find
all the satisfying assignments.

Deriving no-goods is a process of dynamically augmenting the encoding to
record the reasons for deadends encountered in the solution process. In other
words, when the solver reaches a deadend, it analyzes the reason for that dead-
end (a “reason” being a partial assignment) and adds a clause encoding this
“no-good” to the formula to prevent that situation from arising again. Since
unbounded learning (saving all no-goods throughout the solution process) is, in

general, not feasible, a solver that uses this approach must deal with the same
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issue that arises when using memoization: If I can’t save everything, what should
I save? Bayardo and Schrag [7] suggest two solutions: size-bounded learning,
which retains indefinitely only those no-goods whose size is less than a specified
maximum, and relevance-bounded learning, which retains any no-good that con-
tains no more than a specified maximum number of variables whose assignments

have changed since the no-good was derived.

Using Learning to Improve Performance

In the previous section, I discussed the possibility of adapting a CSP learning
technique (learning no-goods [7]) for use in ZANDER. Learning could also po-
tentially improve the planner in two other areas: splitting heuristics and cache
replacement policies. Learning might be able to uncover an optimal subordering
of variables within the groups of variables specified by the quantifier ordering, or
even an entirely different heuristic that improves performance. Learning might
also be a suitable technique for finding a better cache replacement policy. There
are some obvious attributes of the cached subformulas on which to base a re-
placement policy, but it is not clear how these attributes should be weighted for
optimal performance. Learning provides a technique for optimizing these weights
automatically.

Learning could also be used to learn useful relationships among the variables
in the SSAT formula. In binary clauses, for example, the relationship is clear.
Assigning a value to one variable that is contrary to the sign of that variable as
it appears in the binary clause, forces the other variable’s assignment. During
the course of searching for satisfying assignments, the algorithm may be able
to learn other, less direct, relationships between variables, or among a group of

variables. Perhaps a group of variables has a single collective assignment that
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is overwhelmingly likely, so the algorithm does not need to consider any other
assignments for this group of variables in its search for high probability satisfying

assignments.

Another recent and highly successful use of learning that is closely related
to my work is STAGE, a learning approach that automatically improves search
performance on optimization problems [17]. This approach, which learns good
starting points for a specified local search technique, has been used to solve some
extremely difficult satisfiability problems, and could possibly be adapted for use
in an SSAT solver.

One important issue that would need to be addressed in order to use learning
successfully is the availability of a sufficiently long training period to ensure
adequate learning. With the exception of very large planning problems, such
a training period will not, in general, be attainable in the course of solving a
single problem. Thus, the problem becomes one of finding a set of “typical”
problems to train the system on, the results of which will transfer to the solution
of problems the system has not seen yet. Boyan and Moore report positive results

with respect to the transfer of learning between problem instances [17].

8.2 Extensions of ZANDER

The improvements discussed in the sections above focus on accelerating ZAN-
DER’s performance. This section discusses two extensions to ZANDER that would
significantly broaden its scope, both in terms of the type of planning problems it

is able to handle and in terms of its plan-evaluation criteria.
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8.2.1 Ability to Produce More Complex Plans

MAXPLAN produces totally ordered plans (Figure 6.2(a)); ZANDER produces a-
cyclic, contingent plans (Figure 6.2(b)). This is a significant improvement in
the potential usefulness of this paradigm for real-world planning, but it is not
hard to think of planning domains in which the only realistic plan is a looping
plan (Figure 6.2(c)), in which an action—or sequence of actions—is repeated an
indefinite number of times until some effect is achieved. I would like to extend
ZANDER to be able to produce looping plans. The problem of finding such plans
is still in PSPACE [70], so it is possible that ZANDER could be extended to find

such plans.

One possibility is suggested by an approach taken by C-MAXPLAN, a con-
tingent planning extension of MAXPLAN briefly described at the beginning of
Chapter 7. In one version of C-MAXPLAN, instead of searching for the optimal
contingent plan of a given length, the algorithm searches for an optimal small
policy to be applied for a given number of steps. Perhaps the SSAT encodings of
ZANDER could be modified to generate policy-like solutions as well. Such solu-
tions would allow ZANDER to specify plans in which an action is to be repeated as
many times as is necessary, up to the step limit specified. If no successful policy
could be found for a given step limit, because a particular action could not be
repeated often enough, iteratively increasing the step limit would eventually lead

to a successful combination of policy and step limit.

8.2.2 Incorporating Decision-Theoretic Criteria

Many Al planners evaluate plans according to a single, rather simplistic, criterion:

does the plan reach a goal state? Planning in the real world often requires more
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subtle evaluations. Partial goal fulfillment is sometimes better than complete
failure, but sometimes not. The existence of multiple independent goals brings
up issues of tradeoffs among these goals: if I can’t accomplish everything, what it
the best subset of goals to accomplish. Decision-theoretic planning, which incor-
porates utility-based preferences, allows one to answer these difficult questions
in a principled manner. Currently, ZANDER incorporates utility-based prefer-
ences in a very limited way, preferring plans with a higher probability of success.
Many types of utility can be encoded in success probabilities, but the resulting
encodings are prohibitively large. I would like to extend ZANDER so that it can
evaluate plans using a broader conception of utility than probability of success
alone. For example, ZANDER sometimes returns an unnecessarily large plan; a
modest initial goal would be to give ZANDER the ability to discriminate between

plans with equal probability of success using length as a criterion.

8.3 Approximation Techniques for Solving
SSAT Problems

Although improvements to the current planner may allow ZANDER to scale up
to problems of moderate complexity, they are unlikely to be sufficient to achieve
my ultimate goal of planning efficiently in large, real-world domains. I think
it is likely that I will need to develop an approximation technique for solving
SSAT problems to scale up to problems of this size. Optimality is sacrificed for
“anytime” planning and performance bounds, and although this may not improve

worst-case complexity, it is likely to help for typical problems.
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8.3.1 Removing Some of the Uncertainty

Another possibility is to convert the probabilistic planning problem into a de-
terministic planning problem by rounding each decision-tree leaf probability to
0.0 or 1.0, solving the resulting deterministic planning problem relatively effi-
ciently and then gradually reintroducing uncertainty to improve the quality of
the solution. It is not clear, however, how to reintroduce the uncertainty without

sacrificing the efficiency gained by removing it.

8.3.2 Using Stochastic Local Search

ZANDER systematically searches for satisfying assignments by setting the truth
value of each variable in turn and considering the remaining subformula. This
is significantly different from the WALKSAT approach in SATPLAN, which begins
with a complete truth assignment and adjusts it through stochastic local search
to achieve a satisfying assignment. In the same way that stochastic local search
can solve much larger SAT problems than systematic search (in general), it is
possible that adapting stochastic local search to the solution of SSAT problems
would provide significant performance gains. The fact that an SSAT solver needs
to systematically evaluate all possible assignments to solve the SSAT problem
exactly, argues for a systematic approach. There are, however, a number of ways
that stochastic local search could be incorporated into an SSAT solver.

One obvious possibility for adapting stochastic local search for use in an SSAT
solver is to use stochastic local search repeatedly to find many satisfying assign-
ments. Each time a satisfying assignment is found, the assignment would be
added to a list of “forbidden” assignments (or possibly encoded as a “no-good”)

to prevent the local search process from rediscovering satisfying assignments al-
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ready found, and a new local search would be started from a random assignment,
(discarding those that duplicate forbidden assignments). The probability of each
satisfying assignment could easily be calculated, and the probabilities of the sat-
isfying assignments found could be used to estimate the optimal plan and its
probability of success (in the same way that the true optimal plan and its prob-

ability of success would be calculated given all possible satisfying assignments).

Combining Systematic Search and Stochastic Local Search

The approach just described suggests a further possibility: combine systematic
search and stochastic local search by starting multiple local searches from points
in the space of assignments systematically chosen to cover the entire space. This
idea is similar to an underwater search in which multiple divers are sent down at
(roughly) evenly spaced points, and each diver randomly searches an area around
his entry point. A possible refinement of this idea is to use the results of the
stochastic local searches conducted so far to help choose the next point from
which to begin a new local search for additional satisfying assignments. This is
similar to the STAGE approach [17] mentioned in Section 8.1.2: Using Learning

to Improve Performance.

Using Stochastic Local Search in Plan Space

One possible approximation technique would be to use stochastic local search
in plan space in conjunction with simulation as an approximate plan-evaluation
technique. In this approach, I would start with a random setting of all the
variables (which implies a particular plan) and then, in the remaining available
planning time, adjust this plan through stochastic local search to improve its

probability of success. The probability of a given plan’s success would be esti-
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mated using random sampling (see Section 5.2.3).

The most promising approach, however, is to use stochastic local search in
a reduced plan space, i.e. adapt the approximation technique described in Sec-
tion 5.2.3 to planning problems. Recall that this approach uses random sampling
to select a subset of possible randomized variable instantiations (thus limiting
the size of the contingent plans considered) and stochastic local search to find
the best size-bounded plan. This approach has the potential to quickly generate
a suboptimal plan and then, in the remaining available planning time, adjust this
plan to improve its probability of success. This approach appears to be the most

promising possibility, and I will describe it further.

Once a probabilistic planning problem has been translated into an SSAT in-
stance, it would seem to be straightforward to apply the stochastic sampling
algorithm to the SSAT problem to find an approximation of the optimal contin-
gent plan and an approximation of its probability of success. The situation is
complicated, however, by the fact that randomized variables are used to describe
observations. This means that a random sample of the randomized variables de-
scribes an observation sequence as well as an instantiation of the uncertainty in
the domain, and the observation sequence thus produced may not be observation-
ally consistent. Informally, an observation sequence is observationally consistent
if there exists a sequence of actions and an instantiation of the environment that
could possibly produce that observation sequence. For example, assuming perfect
sensors, it would be observationally inconsistent to observe at time step ¢ that
some device is permanently failed and at time step ¢ + 1 that it is operational.

Applying the stochastic sampling algorithm directly to planning problems can
result in the generation of observationally inconsistent paths in the partial policy

tree. And these paths, which are unsatisfied paths regardless of the setting of
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the action variables chosen, need to be treated differently from observationally
consistent paths, which have the potential to become satisfied paths, depending
on the values chosen for the decision variables. If the algorithm includes observa-
tionally inconsistent paths in its estimate of the probability of success of a given
policy, it will tend to underestimate this probability. The algorithm needs to
either avoid generating observationally inconsistent paths in the first place, or

ignore them in its calculations.

Considerations of efficiency suggest that the first strategy is to be preferred
whenever possible, and this suggests two alterations to the stochastic sampling

algorithm in order to make it applicable to SSAT encodings of planning problems:

e Sample tree paths only from P, the set of paths that are observationally

consistent for some action sequence and instantiation of the environment.

e Adjust the evaluation of policy trees as follows: Instantiating the decision
variables in the policy tree selects P’ C P, the set of paths in P that are
observationally consistent for that setting of decision variables and some
instantiation of the environment. Let S C P’ be those paths in P’ that
are satisfied paths. Then, the probability of success of the contingent plan

S|

represented by that policy tree is ik

There are various algorithmic issues that need to be addressed. First, I need
to find an efficient way of constructing P and P’. One possibility is to use user-
supplied information to prune at least some of the observationally inconsistent
paths when constructing P. A second possibility is to construct encodings such
that unit propagation can be used to efficiently detect observational inconsisten-

cies.
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Second, the algorithm returns a partial assignment strategy, or policy, that
specifies how each decision variable should be set given the settings of the decision
and observation variables that precede it in the quantifier ordering, but this is
only specified for those situations represented by paths in the random sample used
to construct the partial tree. The algorithm implicitly assumes that performance
on missing branches is the same as the average performance over all paths in
the partial tree, but doesn’t actually find a plan that achieves this performance.
One possible strategy for addressing this issue would be an iterative approach
that alternates planning and evaluation. In this approach, each iteration would
perform an evaluation of the current policy (perhaps by simulating executions
of the policy) and use that evaluation to guide the construction of a partial
policy tree that would lead to a better policy. This is similar to approaches
that identify the most severe problems in an imperfect plan and then attempt to

correct them [33, 88].

One possible use for this (or any) approximation technique is to use the ap-
proximation technique in a framework that interleaves planning and execution,
in order to scale up to even larger domains than approximation alone could at-
tack. The idea here would be to use the approximation technique to calculate
a “pretty good” first action (or action sequence), execute that action or action
sequence, and then continue this planning/execution cycle from the new initial
state. This approach could improve efficiency greatly (at the expense of optimal-
ity) by focusing the planner’s efforts only on those contingencies that actually

materialize.
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8.4 Developing Planners With Less

Independence

One of the hallmarks of Al planning research has been an insistence on forcing
the planning algorithm to operate completely automatically and independently of
the particular domain. There has been less insistence on this in OR approaches to
planning, where planners are often engineered to take advantage of the peculiar
characteristics of the problem being addressed. While it is certainly worthwhile
to to push the planner to operate as automatically and independently as possible,
the OR approach allows techniques to be applied to larger domains. Combining

the best results of both approaches could be particularly productive.

Once one starts considering engineering planners to incorporate human knowl-
edge about the problem being addressed, it is natural to consider the possibility
of extended human-computer interaction: human-computer collaborative plan-
ning. My interest in this was sparked by a series of experiments I conducted in
which minimal human input, in the form of additional constraints on the desired
plan, had a significant positive impact on the efficiency of one of my planners.
This suggests that a powerful planner could be built by formalizing a human-
computer collaboration that combines human strengths (e.g. quickly recognizing
possible constraints that productively narrow the space of plans to consider) and
computer strengths (e.g. evaluating such suggestions rapidly and providing rea-
sons for their failure if they do not work). Such a planning system would be
particularly useful in situations in which humans need or desire to be part of the

planning process.
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8.5 A Unifying Framework for Planning and
Scheduling Under Uncertainty

I believe this paradigm also has strong potential to provide a unifying frame-
work for planning and scheduling under uncertainty. The line between these two
areas is not clearly defined, but the solution of a scheduling problem tends to
be less concerned with which action choices to make and more concerned with
placing a required set of actions on a timeline such that resource constraints
are respected and some metric is optimized. Many planning problems have a
strong scheduling component (e.g. probabilistic logistics, emergency evacuation
scenarios, and oil-spill management), and scheduling problems frequently require
some planning (e.g. production line scheduling with exogenous events—such as
machine breakdowns—that require a planned response).

Some very difficult, practical problems have characteristics of both planning
and scheduling. Existing techniques, which tend to focus on planning issues or
scheduling issues, find it difficult, if not impossible, to deal with these prob-
lems [102]. Although scheduling is a challenging area for the conversion-to-
stochastic-satisfiability paradigm and raises some difficult new issues (e.g. ex-
pressing and reasoning about exogenous events, continuous time, resources, and
metric quantities), successfully addressing these issues will considerably augment
the expressiveness and power of the paradigm, and will produce techniques that
can handle problems in which planning and scheduling are important compo-
nents.

Probabilistic logistics and space-related applications are two important ap-
plication areas for such techniques. New techniques to solve logistics problems

under conditions of uncertainty are likely to be a significant factor in the success
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of e-commerce. Billions of dollars are being spent on “last-mile delivery systems”
to narrow the gap between the time of a customer’s online order and its delivery,
and probabilistic reasoning will be necessary in order to optimize the scheduling
decisions made in these systems. Many problems in space-related applications
(e.g. autonomous spacecraft, planetary rovers, and space-based observatories)

would also benefit from a unified approach [102].

8.6 Summary and Discussion

ZANDER is a promising approach to contingent planning in partially observable
stochastic domains. Even relatively basic implementations of this planning tech-
nique are competitive with other planners, and, as I have outlined in this chapter,
there are a number of improvements and optimizations that show great poten-
tial for scaling up to larger problems: e.g. better data structures to optimize the
application of heuristics, more compact and efficient SSAT encodings, encoding
domain-specific knowledge, memoization for contingent planning, using learning
to accelerate the solution process, and more sophisticated splitting heuristics.
These improvements and extensions have already, in some cases, shown promise
for improving ZANDER’s performance significantly. I also outlined some possible
approaches to approximation techniques and described initial efforts to develop
one particularly promising approximation technique based on the randevalssat
algorithm described in Section 5.2.3.

But, although my research provides evidence that the conversion-to-stochastic-
satisfiability paradigm is a strong candidate in the search for an efficient, scalable
probabilistic planning technique, it has also raised some general issues that argue

for a broader perspective on planning under uncertainty in the real world.
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In spite of the increased interest among researchers in developing planning
techniques that explicitly reason about probabilities in the domain, it is an open
question whether such a framework is best for real-world planning under un-
certainty. First, this framework assumes that the probabilities describing the
uncertainty in the domain are always known; this may not always be the case,
particularly in domains where experience is limited or where certain events are
rare and even lengthy experience will fail to provide an accurate estimate of their
probability.

Second, probabilistic reasoning is very difficult and tends not to scale well. Is
exact probabilistic planning affordable in the real world? Currently, the answer
is “not in most cases.” As I noted in Chapter 2, much research using MDPs
and POMDPs as a framework has focused on approximation as a way of scaling
up to larger problems. I will almost certainly need to resort to approximation
techniques to scale up to very large problems. But, although approximation may
allow us to scale up, it raises its own set of questions. When is approximation
a good idea? Is it better to solve an approximation of the problem exactly, or

approximately solve the exact problem?

Finally, there are situations in which, due to expense or threat to life, a plan
that will succeed with “only” virtual certainty is unacceptable. In such situations,
regardless of the probability of success, one must have a fast replanning capability
to recover if the plan fails. The argument here is that calculating the probability
of success is both costly and not worth much, since the agent must be prepared to
replan anyway. In fact, some current approaches to planning under uncertainty
construct a plan as if the environment were deterministic and then replan if
the original plan fails. This type of approach works best in tightly-constrained

domains in which efforts have been made to engineer out uncertainty and there
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is usually time to replan (although, I would argue that, even in such domains, a
planner that calculated and planned for the most likely contingencies would be
valuable).

I am not suggesting that probabilistic planning is the wrong approach. I have
spent the last three years developing new probabilistic planning techniques and
none of my research suggests to me that this is the wrong road. But, although
I think that probabilistic planning will be an important element in a successful
approach to real-world planning under uncertainty, I think there are a number of
important issues that need to be addressed. What these issues highlight is the
need for a principled approach to planning under uncertainty in the real world,

and we are still many dissertations away from satisfying that need.
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Chapter 9

Conclusion

Planning is especially difficult under conditions of uncertainty. Many real-world
problems, however, demand techniques that can be applied to large problems in
situations where knowledge of the environment is imperfect and actions do not
always have their intended effects. Research in developing techniques to cope with
uncertainty in large domains is, therefore, critical to the acceptance and use of Al
planning techniques in the real world. As I described in Chapter 2, researchers
have developed a number of techniques for planning under uncertainty. All of
these planners, however, suffer from various limitations: they can handle only
certain types of uncertainty, they make assumptions that limit their applicability,
or they cannot scale up to larger problems.

In this dissertation, I have described a new probabilistic planning technique
that solves a very general class of planning problems at state-of-the-art speeds
and has strong potential for scaling up to large problems. I showed that a prob-
abilistic propositional planning problem can be solved by converting it into a
stochastic satisfiability (SSAT) problem and solving that problem instead. I
described efficient algorithms for both the conversion process and for solving
the resulting SSAT problems. These algorithms exploit the structure of both a
compact, factored state representation and a decision-tree action representation.
ZANDER, the most advanced planner, can solve arbitrary, finite-horizon partially
observable Markov decision processes, and operates at state-of-the-art speeds on
contingent planning problems drawn from the literature. I also described an SSAT

approximation algorithm that will form the basis of an SSAT-based approximate
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planning technique.

It has often been said that as soon as a longstanding AI problem has been
solved, people are quick to say “Oh, that’s not really artificial intelligence.” Chess
is usually cited as the most recent example of this phenomenon. Planning under
uncertainty remains a very active area of research and is in no immediate danger
of being removed from the pantheon of “true” AI problems. But, although many
difficult problems remain to be solved, significant progress has been made during
the last five years. This dissertation represents a facet of that progress and has,
I hope, moved the field a step closer to the day when planning under uncertainty

is no longer regarded as “real” Al
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Appendix A

Caching in MAXPLAN

As the tests in the Section 6.5 indicated, MAXPLAN’s use of memoization leads to a
significant problem. Because it stores the value of all subformulas encountered in
the solution process, MAXPLAN is very memory intensive and, in fact, is unable
to find the best plan with horizon greater than 6 in the SLIPPERY-GRIPPER
domain due to insufficient memory. The maximum plan horizon before exhausting
memory for the MEDICAL-SEQUENCE and COFFEE-ROBOT-BLIND domains is 8,
and the maximum horizon for the SAND-CASTLE-67 domain is 15. The situation
for the SAND-CASTLE-67 domain is illustrated in Figure A.1, which compares
the performance of full DPLL without memoization to that of modified DPLL
(UNIT/TIME) with memoization. Note that this is a log plot and that results
are shown starting with a plan horizon of 4 since the asymptotic behavior of the
algorithm does not become clear until this point. (These tests, and all tests in
this section, were run on a 143 MHz Sun UltraSparc with 128 Mbytes of RAM,
running Sun0S-5.7.)

The top plot shows the performance of full DPLL without memoization. We
can extrapolate to estimate performance on larger problems (dotted line), but
solution times become prohibitively long. The lower plot ending with an “X”
shows the performance of modified DPLL with memoization. The much lower
slope of this line (2.24 compared to 3.82 for full DPLL without memoization)
indicates the superior performance of this algorithm, but the “X” indicates that
no extrapolation is possible beyond horizon 15 due to insufficient memory. In

fact, performance data for the horizon 15 plan already indicate memory problems.
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Figure A.1: Full DPLL without memoization on SAND-CASTLE-67 runs into
a time bound. Modified DPLL with memoization runs into space limitations.
Modified DPLL with memoization and LRU caching overcomes these time and
space bounds.

The wall-clock time is more than three times the CPU time, indicating that the
computation is I/O-bound. Memoization allows the algorithm to run orders of

magnitude faster but ultimately limits the size of problems that can be solved.

A.0.1 LRU Caching

My solution was to treat the fixed amount of memory available as a cache for sub-
formulas and their values. Given a cache size appropriate for the amount of mem-
ory on the machine running the algorithm, the problem becomes one of finding the
best replacement policy for this cache. I compared two well-known cache replace-
ment policies: first-in-first-out (FIFO) and least-recently-used (LRU). Both were
implemented through a linked list of subformulas maintained in the order they
were saved. When the cache is full, the algorithm merely removes the subformula

at the head of the list. Under an LRU policy, however, whenever the algorithm

169



35

"FIFO CACHE ——
LRU CACHE —%—
% SMART LRU CACHE —&—

25
20

15

CPU SECONDS

10

O L L L L L L
0 5000 10000 15000 20000 25000 30000 35000
CACHE SIZE

Figure A.2: Smart LRU caching for the 10-step SAND-CASTLE-67 problem
allows the solver to use much less memory but still maintain performance.

uses a subformula it moves it to the end of the linked list. As shown in Figure A.2,
the LRU cache outperforms the FIFO cache by an average of approximately 18%

across the entire range of cache sizes for the 10-step SAND-CASTLE-67 plan.

I tested the LRU caching technique for generating SAND-CASTLE-67 plans
with horizons ranging from 1 to 20. For plan horizons from 1 to 15, it was pos-
sible to make the cache large enough to save all subproblems without producing
significant I/O problems. For larger plan horizons—with larger subformulas to
be saved—1I calculated cache size (expressed in maximum number of subprob-
lems that could be saved) so as to keep total cache bytes approximately constant.
Specifically, given a total cache size of Cr bytes for the largest plan horizon in
which all subformulas could be saved, and a subproblem size of C'p bytes in a
problem with a larger horizon, the cache size for the larger-horizon problem was

calculated to be g—}T) problems. (Note that, since I used a bit representation for
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subproblems, all subproblems for a given planning problem require the same size

storage space in the cache.)

These results are shown in Figure A.1; the performance plot for LRU caching
is essentially coincident with the modified DPLL plot up to a plan horizon of 15.
For longer plan horizons, LRU caching allows us to break through the memory
insufficiency that blocked the algorithm before (the “X”), yet retain a significant
degree of the improved performance that memoization provided. Solution times
for full DPLL without memoization grow as O(3.82"), where T is the plan hori-
zon. In contrast, modified DPLL with memoization scales as only O(2.24"), but
can only solve problems of a bounded size. Modified DPLL with memoization
and caching behaves like modified DPLL with memoization for small 7', and then
appears to grow as 0(2.96") once T is large enough for the cache replacement
policy to kick in. Thus, the rate of increase for the variant with caching exhibits
a growth rate comparable to that of modified DPLL with memoization while
eliminating that algorithm’s limitation on problem size—it trades away some
performance for the ability to solve larger problems. As reported above, ENUM

scales as 0(2.05") without any memory problems.

A.0.2 Smart LRU Caching

Sometimes performance can be improved by being selective about the subformulas
cached. The hierarchical relationship among subformulas makes it redundant
to save every subformula, but which ones should the algorithm save? Large
subformulas are unlikely to be reused, and small subformulas, whose value the
algorithm could quickly recompute, yield little time advantage. This suggests
a strategy of saving mid-size subformulas, but experiments indicate that this

approach fails for the SAND-CASTLE-67 problem. Another approach is to save
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subformulas based on difficulty, defined as the number of recursive function calls
required to solve that subformula. I experimentally determined that the optimal
difficulty range for the SAND-CASTLE-67 problem was 5 to 14. Saving only those
subformulas with a difficulty in this range allowed the algorithm to find the best
10-step plan for the SAND-CASTLE-67 problem with only an approximate 10%
increase in CPU time, and this performance was nearly constant over a broad
range of cache sizes (10,000 up to the maximum usable cache of 32,000); see
Figure A.2.

Applying this “smart” LRU caching technique to plan generation in the SAND-
CASTLE-67 domain, I obtained as much as a 37% decrease in CPU seconds
compared to straight LRU caching (Figure A.3). Unfortunately, the advantages
of smart caching seem to disappear as plan horizon increases. Also, it is not
obvious how this technique could be exploited in a practical algorithm since I
performed extensive tests to determine the optimal difficulty range, and this

range is problem dependent.
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