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ABSTRACT OF THE DISSERTATION

Efficient Model-based Exploration in Continuous

State-space Environments

by Ali Nouri

Dissertation Director: Michael L. Littman

The impetus for exploration in reinforcement learning (RL) is decreasing uncertainty

about the environment for the purpose of better decision making. As such, exploration

plays a crucial role in the efficiency of RL algorithms. In this dissertation, I consider

continuous state control problems and introduce a new methodology for representing

uncertainty that engenders more efficient algorithms. I argue that the new notion of

uncertainty allows for more efficient use of function approximation, which is essential

for learning in continuous spaces. In particular, I focus on a class of algorithms referred

to as model-based methods and develop several such algorithms that are much more

efficient than the current state-of-the-art methods. These algorithms attack the long-

standing “curse of dimensionality”— learning complexity often scales exponentially

with problem dimensionality. I introduce algorithms that can exploit the dependency

structure between state variables to exponentially decrease the sample complexity of

learning, both in cases where the dependency structure is provided by the user a priori

and cases where the algorithm has to find it on its own. I also use the new uncertainty

notion to derive a multi-resolution exploration scheme, and demonstrate how this new

technique achieves anytime behavior, which is very important in real-life applications.

Finally, using a set of rich experiments, I show how the new exploration mechanisms
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affect the efficiency of learning, especially in real-life domains where acquiring samples

is expensive.
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Chapter 1

Introduction

Many real-life learning applications, such as robotics and process control, can be formu-

lated as sequential decision-making problems. The essence of learning in these systems

is their temporal aspect, which requires the agents to chain actions together to form

behaviors. In these problems, the utility associated with a behavior is usually revealed

to the learner piece by piece through interaction with the environment.

For example, consider an automated pilot that is learning to fly an airplane. At any

time during flying, the pilot observes the current readings of all the sensors on board

and has to decide what controls to apply. To achieve optimality (flying smoothly and

avoid crashing), the learner needs to apply many different controls one after another to

keep the plane stable during the flight. The autopilot is never told directly what set of

controls to apply at each situation to achieve optimality. The only feedback it receives

is a penalty whenever the plane crashes. It is up to the learner to infer what set of

controls in the long history of actions it took are responsible for the crash.

Techniques from the field of reinforcement learning are an excellent choice for attack-

ing these tasks, since they address the problem of learning through interaction. Unlike

supervised learning algorithms, these algorithms carry out their learning without requir-

ing access to explicit examples of correct or incorrect behaviors. Instead, knowledge

is acquired via actively experimenting with different control strategies. Many of the

aforementioned learning problems, which includes robotics, computer games, adaptive

optimal control, sensor networks and many others, have the flavor of learning through

interaction and that is why reinforcement learning fits nicely with this rich body of

learning problems.

One of the central properties of real-life learning problems is that they all have very
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large state spaces. For example, a typical computer game can have more than 1010

distinct states, and some others have effectively an infinite number of states, as they

can take on a continuous range of states. For example, a very simple-minded represen-

tation of state in our auto-pilot example has to at least include position, velocity and

acceleration in the (x, y, z, yaw, pitch) coordinates, which is a 15-dimensional vector.

Although all machine-learning techniques are susceptible to having trouble with

large-scale problems, algorithms for sequential decision making are even more sensitive

to the size of the state space because of the need for active exploration to acquire useful

data, the temporal aspect of learning, and the nature of tabula-rasa search.

RL algorithms can affect the samples they collect during the learning. But, they can

only do so indirectly via the actions they choose. Therefore, they are faced with a double

optimization task: First, they need to take actions that maximize the performance given

the current knowledge about the environment (exploitation of knowledge), and second

they need to take actions that result in collecting potentially useful samples, which

in part can be used to achieve better performance (exploration of the environment).

These two optimization tasks may be conflicting because actions that gather information

about the environment are not necessarily the optimal ones. As a result, an effective

strategy for exploring the environment and a way to balance between exploration and

exploitation is a vital component of any RL algorithm.

Continuous spaces broaden the applicability of RL algorithms to a whole new level.

But, unfortunately, most of the theoretically sound and practical RL algorithms are de-

signed for finite spaces. This thesis takes a step toward constructing efficient algorithms

for continuous spaces. In particular, we focus on the problem of efficiently balancing

exploration and exploitation in RL algorithms in continuous state-space problems.

The challenging fact about continuous state spaces is that since they have an infinite

number of states, lookup-table approaches, which are widely used in RL algorithms for

finite spaces, cannot be applied directly. Hence, some sort of function approximator

that can generalize knowledge from one state to another must be used. The bulk of

this thesis focuses on investigating efficient exploration techniques when a function
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approximator is used within an RL algorithm. In particular, it introduces a new family

of model-based algorithms that use an uncertainty measure to actively drive exploration

toward less-known areas of the state space. It both presents theoretical properties of

this group of algorithms and empirically evaluates several instances of such algorithms

in multiple environments including simulations and a real robotics domain.

1.1 Contributions

This thesis introduces a family of new techniques for efficiently balancing exploration

and exploitation in model-based algorithms in continuous state spaces. At the heart

of these algorithms is an uncertainty-driven exploration mechanism that enables these

algorithms to systematically drive exploration toward less-known areas of the state

space, resulting in a more accurate model from which higher rewards can be obtained.

This strategy is achieved by the introduction of a new concept called “knownness”.

The knownness is a continuous variable in the range from 0 to 1 that measures the

certainty level of an agent’s function approximator for any given input. The algorithms

proposed in this dissertation directly incorporate this uncertainty level into the value

of states in the form of a bonus value, thus forming an implicit exploration strategy.

A similar but more restrictive concept was already presented in the literature—

widely known as “Rmax exploration” (Brafman and Tennenholtz, 2002). This ap-

proach divides states into two groups— known and unknown states—and constructs an

exploration strategy that focuses on reaching unknown states by assigning them max-

imum possible values. The knownness concept generalizes this approach to something

that better suits function approximation and is far more data efficient. To demonstrate

the versatility of this approach, we introduce several algorithms using this new concept,

all of which follow the same skeleton structure.

The first algorithm in this family is an extension of the existing algorithm fitted-

Rmax, which uses Rmax exploration. This algorithm is designed to attack a broad class

of continuous state-space MDPs. The only assumption the algorithm makes about

the environment is that its dynamics are smooth and that the transition function of
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each state-action pair can be modeled using the mean of the probability distribution it

generates over the states. A formal analysis of the sample complexity of this algorithm

is provided, making it the first algorithm in this class of environments with guarantees

in the probably approximately correct MDP (PAC-MDP) framework. Experimental

data shows that the new algorithm is empirically much more data efficient than its

predecessors.

The next method we examine is an algorithm that can take in prior knowledge from

the user to exponentially increase the learning speed in factored continuous spaces. The

user provides information about what state variables are irrelevant to the prediction of

the next state using a dependency structure similar to the ones used in graphical models

such as dynamic Bayesian networks. The algorithm uses this information in its function

approximator and knownness function. In a sense, the information is used to perform

dimension reduction while approximating the transition function. By reducing the space

in which the algorithm makes predictions and computes knownness, the algorithm is

able to dramatically reduce its sample complexity. This algorithm is reminiscent of the

factored-Rmax algorithm for finite spaces, but extends it to continuous state spaces and

the cases where function approximation is used.

The next algorithm introduced in this dissertation is a technique that employs di-

mension reduction in exploration without any prior knowledge. This algorithm au-

tomatically discovers relevant dimensions of the environment and maintains a low-

dimensional representation of the transition function using techniques from dimension

reduction in regression. Using the same “self-aware” exploration scheme as before, in

combination with the compact representation of the system dynamics, this algorithm is

able to achieve significant speedup in learning—just like the previous algorithm—but

without any prior knowledge.

Finally, an algorithm is developed that uses the same knownness concept to derive

a hierarchical exploration strategy. The performance metric that Rmax exploration

achieves is one that demands near-optimal behavior in all but polynomial number of

timesteps with high probability, but unlike regret minimization techniques (Auer et al.,
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2010), it does not insist on improving performance after near-optimality is achieved,

nor does it have any guarantee before that. We show that a hierarchical exploration

strategy can be used to achieve this anytime behavior.

This algorithm achieves anytime behavior by forming a multi-resolution discretiza-

tion of the state space and variable levels of generalization. These features, which are

made possible by using the continuous knownness metric, allow the agent to make very

accurate predictions in parts of the state space with a lot of samples (that is, using

a fine discretization), while still managing to use data efficiently in other parts of the

state space with sparser data (using coarse discretization).

1.2 Overview

The remainder of this dissertation is organized as follows: Chapter 2 is an overview of

the reinforcement-learning problem. It provides some background information about re-

inforcement learning, interesting problems in the field, and also nomenclature necessary

for the development of the rest of the dissertation.

Chapter 3 focuses on model-based algorithms and a mechanism for performing ex-

ploration called self-aware exploration. It first surveys existing work in this class of

algorithms, and then introduces the concept of knownness. It formalizes this concept

using a learning framework called “Continuous Knows What It Knows” or CKWIK,

develops an abstract RL algorithm called CKWIK-Rmax that uses this newly developed

framework, and analyzes its sample complexity in the PAC-MDP framework.

Chapter 4 introduces two instantiations of the CKWIK-Rmax algorithm for the cases

where no information about the dynamics of the environment is available (other than

general Lipschitz assumption), and the cases where the user can provide dependency

structures between the state variables to the algorithm. A sample complexity analysis

of these two algorithms is also provided. This analysis shows that the second algorithm

can use prior knowledge to learn significantly faster.

Chapter 5 extends the algorithms in the previous chapter to improve learning in

cases where no prior knowledge is received from the user. The algorithm developed in



7

this chapter uses dimension-reduction techniques from supervised learning to automati-

cally discover relevant features in the state space, and dramatically improve the sample

complexity without any prior knowledge about the environment.

Chapter 6 introduces an algorithm that uses the knownness concept to derive a hier-

archical exploration mechanism. This algorithm, called MRE, expands the effectiveness

of model-based techniques beyond the PAC-MDP framework, by creating behaviors

that are more anytime.

I conclude the dissertation in Chapter 7. Also, two appendices are provided. The

first one provides technical details of the environments used to evaluate the algorithms

in the dissertation, and the second one gives some useful mathematical facts that were

used in this document.
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Chapter 2

Reinforcement-Learning Background

The purpose of this chapter is to familiarize the reader with the concept of reinforce-

ment learning, both as a learning paradigm and a subfield of machine learning. We will

discuss some of the basic results and challenges and introduce the necessary notation

that will be used in the rest of this dissertation. However, the content of this chapter

is not intended to be a complete RL overview; only materials necessary for the devel-

opment of the rest of the dissertation are included. Readers who need more thorough

information can refer to more general surveys about RL, such as Sutton and Barto

(1998), (Littman, 1996) and (Szepesvári, 2010).

2.1 Learning Through Interaction

Reinforcement learning (RL) is the study of learning through interaction between an

intelligent agent and an environment. The ultimate goal of the learning process is for

the agent to behave optimally in the environment. The interaction between these two

entities refers to the agent’s ability to both perceive information about the state of the

environment, and send back commands to potentially influence the environment state.

The optimality of agent’s behavior is measured using a reinforcement signal for the

task that signifies how good each state is. Figure 2.1 is a pictorial illustration of this

interaction between the agent and the environment.

According to this definition, reinforcement learning is a very broad concept. In fact,

one can argue that the whole universe and the life we are living is an instance of a

reinforcement-learning problem. In this instance, an individual is born into the world,

having very little knowledge about its surrounding environment; through various sets

of sensory information, it then collects information about the world. Furthermore, the
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Figure 2.1: Interaction between the agent and the environment in a reinforcement-
learning problem.

universe constantly changes due to the collective actions of all the beings in it. Each

individual is motivated by various types of intrinsic and/or extrinsic concerns to behave

optimally in the world and has to achieve this goal by learning through interaction.

Of course, as scientists we are faced with the challenge of constructing a framework

that can capture as broad of a learning paradigm as possible, while keeping it mathe-

matically justifiable and viable. Numerous mathematical formulations of RL have been

used in the literature depending on many different factors, such as how accurately the

agent perceives the world, what the nature of the states and actions is, how complicated

the dynamics of the world are and how the interaction occurs between the two entities.

Each model makes some compromises and assumptions so as to make the development

of algorithms feasible. Below, we discuss assumptions that have been made in a rich

body of the RL literature and are also adopted in this dissertation:

Single agent. Unlike in the general RL setting, where multiple agents can coexist

in an environment and interact with each other, the single-agent setting considers the

case where only one agent interacts with the environment. The notion of system control

has also been used to emphasize that the agent tries to control a system (environment)

in an optimal fashion (Szepesvári, 2010; Ernst et al., 2009).

Synchronous discrete timesteps. In this setting, learning happens during a se-

ries of discrete time intervals—we call them timesteps. In each timestep t, the agent
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first makes an observation about the environment’s state, denoted by ot, along with a

scalar reward signal rt. It then executes an action at. At the end, the environment

transitions to another state based on the action it receives from the agent and ad-

vances the timestep. Some contrary configurations include having a continuous notion

of time (Doya, 2000), and the case where the agent’s observation of the current state

is delayed due to some sort of latency (Walsh et al., 2009).

Full Observability. In this setting, the agent is capable of observing the full

state of the environment. When this assumption holds true, we use state (denoted s)

and observation (denoted o) interchangeably. Other frameworks include having partial

observability of the states, or no observability altogether (Littman, 1996; Kaelbling

et al., 1998; Jaakkola et al., 1995).

Markovian Assumption. The behavior of a dynamical system is a function that

maps the entire history ht = {s1, r1, a1, ..., st, rt} and at to a probability distribution

over the next state. The Markovian assumption dictates that st is a sufficient statistic

of this function, so Pr(s|ht, at) = Pr(s|st, at).

When these assumptions hold true, a mathematical framework called the Markov

Decision Process—or MDP for short—can be used to model the environment (Puter-

man, 1994). The following section provides a summary of this framework.

2.2 Markov Decision Processes (MDPs)

A Markov decision process is a mathematical model of a dynamical system with the

property that the current state is a sufficient statistic of the dynamics. This assumption

provides a huge advantage in terms of the learnability of the system because important

quantities can be estimated directly, and therefore a much more compact representa-

tion of the behavior can be established. An MDP is formally defined using a 5-tuple:

〈S,A, T,R, γ〉. The two variables S and A are the sets of possible states of the system

and available actions to the agent, respectively. Function T is the transition kernel of the

system that defines how the system responds to agents’ actions. More formally, it maps

a state-action pair to a probability distribution over the next states T : S × A → PS .
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Figure 2.2: Combination lock, a simple stochastic finite MDP. The probability of each
transition is specified on its corresponding edge in the graph.

In the degenerate case, when the model forces all the probability distributions to con-

centrate on only one state, the MDP is termed deterministic. Function R : S → R is

the reward function that specifies the reinforcement signal in each state, and 0 ≤ γ < 1

is a discount factor that modifies how much future rewards are worth to the agent.

Depending on the types of the variables, we can construct several MDP definitions

with different complexity levels. In all the models considered here, A is a discrete

nonempty set of actions A = {a1, . . . , a|A|}. In this work, two types of MDPs are

mainly addressed, which are formally defined next.

Discrete stochastic MDP. In this model, also called the finite stochastic MDP

model, the state space is a countable nonempty set of states S = {s1, . . . , s|S|} and we

allow for arbitrary stochastic transition functions.

Figure 2.2 shows an example of such an MDP. In this example, there are four states

marked by s1 to s4 and two actions marked by a1 (the solid lines) and a2 (the dashed

lines). The reward function is also specified under each state. The transition function

of this MDP is graphically displayed using edges of the graph. The number on each

edge specifies the probability of that transition. For example, if we perform a1 in s3, the

system moves to s4 with 0.8 probability and s2 with probability 0.2. In more complex

systems, however, the transition function is often described intentionally as opposed to

being enumerated extensionally for all the state-action pairs.

Continuous MDP. In this model, the state space is a bounded, closed subset of the

Euclidean space S ⊂ Rn. Although similar to the finite case—the transition function is

a mapping from state-action pairs to a probability distribution over the next states—we



12

need to put some constraints on the possible transition functions to assure learnabil-

ity. In particular, there are two factors we need to pay attention to: (1) The shape

of the probability distributions over the next states, or the stochasticity assumptions,

and (2) The relationship between the transition functions of two nearby states s1 and

s2, or the smoothness assumptions. These factors are important because they allow for

generalization in learning—something essential for learning in continuous spaces. For

example, one can show that learning in continuous spaces becomes impractical if no as-

sumption is made about the smoothness and the stochasticity of the environment (refer

to Appendix D.1).

Below are some of the commonly-made assumptions about the stochasticity of an

environment.

Assumption 1 (Deterministic). In this class of MDPs, the probability distribution

T (s, a) is a Dirac function. In other words, we have T (s′|s, a) = 1.0 for some state s′

and 0 everywhere else. In this setting, the transition function can also be regarded as a

mapping from state-action pairs to next states. Therefore, the transition function can

be written as st+1 = f(st, a).

Assumption 2 (Parametric distribution). In this class of MDPs, the distribution over

the next state is a known parametric one. The set of parameters θ that define the

probability distribution can vary from one model to another, but usually the mean and

the covariance of the distribution is considered. An example of this class is when the

transition function is a multivariate normal distribution. It is also customary to assume

that the agent learns only the mean of the distribution and the other parameters are

known beforehand. Therefore, the transition function is fully described by its mean

function µs,a:

st+1 ∼ P(µst,at , θst,at),

where θst,at is the set of other parameters for the transition function.

Assumption 3 (White noise). This class is a particular instance of the previous class
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that allows for limited stochasticity in terms of white noise at the destination state.

Instead of defining the transition function in terms of a probability distribution, we

usually write the transition function as: st+1 = f(st, a) + ωt. The second term is a

white noise vector with each of its components selected i.i.d. from a distribution with 0

mean.

Most of the results in this dissertation assume that the environment conforms to

Assumption 2. These environments are usually referred to as general continuous MDPs

in this document, which distinguishes them from other classes that enforce more con-

strained assumptions.

While stochasticity measures how complex the transition out of one state is, smooth-

ness measures how much the transition is allowed to vary from one starting state to

another. We quantify the smoothness of a domain using the Lipschitz continuity mea-

sure. Depending on the stochasticity assumption, the definition of Lipschitz continuity

measure varies. For example, if the environment is deterministic, the smoothness can

be specified as:

‖ T (s1, a)− T (s2, a) ‖22≤ CT ‖ s1, s2 ‖22, ∀s1, s2 ∈ S, a ∈ A, (2.1)

where CT ∈ R+ is called the Lipschitz constant. We can also define smoothness in

stochastic domains. For example, suppose our transition function is in the form of

multivariate normal distribution with constant variance: T (s, a) ∼ N (µs,a,Σ). Then

we can write the smoothness as:

‖ µs1,a − µs2,a ‖22≤ CT ‖ s1, s2 ‖22, ∀s1, s2 ∈ S, a ∈ A, (2.2)

which relates the distance between the means of the two probability distributions over

the next states to the distance of the two starting states. As a general rule of thumb,

we can define smoothness based on how much the parameters of distributions change

from one state to another.

Given an MDP, a policy, denoted by π, is defined as a function that specifies what
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action to take from each state. If the policy is deterministic, it simply outputs an action

for each state: π ∈ Πdet : S → A. On the other hand, stochastic policies produce prob-

ability distributions over actions at each state: π ∈ Πstoch : S → PA. We concentrate

on deterministic policies in most of this document, and therefore use π to mean a deter-

ministic policy unless specified otherwise. This constraint is not very limiting because

although deterministic policies are less complex and easier to work with, existence of

an optimal deterministic policy in any MDP is always guaranteed (Puterman, 1994).

Following policy π means that for any timestep t, the agent executes π(st), where st is

the state observed at time t.

Given a policy π, the expected total discounted return that the agent collects over

an infinite horizon starting from an initial state s and following π is referred to as the

value of that state under π,

V π(s) = E

[ ∞∑
t=0

γtRπt |s0 = s

]
, (2.3)

where Rπt is a random variable that indicates the reward collected at timestep t when

following policy π. The goal of learning is to find a policy that achieves the maximum

value for all starting states. Such a policy is referred to as the optimal policy and is

denoted by π∗. Other quantities related to the optimal policy are also indicated by

the asterisk. For example, optimal value function V ∗ = V π∗ is the value of an optimal

policy and optimal action a∗ is the action that an optimal policy takes. We also use

a slight variation of the value function, denoted by Qπ(s, a), to indicate the expected

total discounted reward when the agent starts at state s, executes action a, and then

follows policy π.

A recursive formulation of the value function can also be constructed to relate the

value of different states to each other. This recursive equation is known as the Bellman

equation:

V π(s) = R(s) + γ
∑

s′∈S T (s′|s, π(s))V π(s′) Discrete MDP

V π(s) = R(s) + γ
∫
S T (s′|s, π(s))V π(s′)ds′ Continuous MDP.

(2.4)
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It can be shown that the optimal value function V ∗, which we sometimes simply

call the value function V , can be written as:

V (s) = R(s) + maxa
(
γ
∑

s′∈S T (s′|s, a)V (s′)
)

Discrete MDP

V (s) = R(s) + maxa
(
γ
∫
S T (s′|s, a)V (s′)ds′

)
Continuous MDP.

(2.5)

Similarly, we can derive the equations for the Q-function (Sutton and Barto, 1998):

Q(s, a) = R(s) + γ
∑

s′∈S T (s′|s, a)V (s′) Discrete MDP

Q(s, a) = R(s) + γ
∫
S T (s′|s, a)V (s′)ds′ Continuous MDP.

(2.6)

2.3 Planning vs. Learning in MDPs

As mentioned earlier, the goal of solving an MDP is to find an optimal policy. When

all the parameters of the MDP are given, the task of finding the optimal policy is called

planning (Puterman, 1994). But, when only S, A, and the discount factor are specified,

and the agent needs to find the optimal policy by interacting with the MDP, the task

is called learning.

These definitions are of course not unique, and we can find several variations of

them in the literature.

In particular, there is not a fine line between planning and learning when dealing

with settings that provide more information to the agent than our definition of learning,

but less than what we defined for planning. Figure 2.3 shows some of these settings in

a spectrum between learning and planning. The most complete information is available

when the solver has access to the full MDP tuple (Puterman, 1994). A generative

model provides access to the transition function only through sampling, so instead of

providing the full description of the probability distribution, it allows the solver to

query the transition function for any state-action pair (Kearns et al., 1999; Kocsis and

Szepesvári, 2006). Trajectories with reset is a setting where the notion of current state

and trajectory come into play, just like the learning problem; the difference between the

two settings is that the solver in the former can push a reset button at anytime during
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Figure 2.3: Problem configurations stretching between planning and learning.

a trajectory to go back to the first state (Fiechter, 1997; Kakade and Langford, 2002).

We focus most of our attention on the learning problem in this dissertation. How-

ever, Appendix B provides a quick overview of some of the existing algorithms for

planning in MDPs.

2.4 Challenges

All machine-learning techniques are susceptible to having trouble in large-scale domains.

This problem is mostly due to the fact that they fail to use information efficiently. Hu-

mans, as an example, are very good at learning complicated tasks with little informa-

tion, because they are able to generalize experience from one situation to others very

efficiently. Machine-learning methods on the other hand, have not been as successful in

making good use of available knowledge. They either do not exploit available data to

reason about unvisited situations, or they have so much data to process that learning

becomes intractable in large environments.

RL algorithms are even more sensitive to the size of the problem because they

contend with unique challenges that algorithms in other paradigms, such as supervised

learning, do not need to face. Below, some of these challenges are summarized.

Delayed partial feedback. We can think of the Q-function as the utility function

of actions because it reveals what the best action is in each state. Unfortunately, RL
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agents do not immediately receive the utility associated with their actions from the

environment. That is, the reinforcement signal of a particular state does not reveal the

correct action to be taken from that state. In fact, the agent never receives the correct

actions from a supervisor, and the only information it receives from the environment

is some partial data that can be used to construct the utility of the action it chooses.

Therefore, the algorithm has to infer the optimal behavior by putting together the

partial information collected over time. This indirect information is completely different

from supervised learning, where correct labels are provided for some training data.

Complex data. In many machine-learning paradigms, including those used in the

majority of the supervised-learning literature, the learner does not have any control over

either the training, or the testing data. The data is usually selected from some fixed

distribution and the learner has to focus all its attention on how to predict labels for

the testing data. Learning becomes more complex when the learner has the ability to

choose the input data for training. The reason for this complication is two-fold: First,

apart from having to predict labels, the learner has to figure out a way to choose good

training data. Second, since the learner affects the distribution of the training data, the

hypothesis it learns could be biased toward that particular choice, which might lead to

sub-optimality in the testing data.

RL agents directly affect the data they observe by choosing different actions. More-

over, since there is no notion of training and testing phases in RL, the agent faces a

unique dual control problem that we study next. In a sense, reinforcement learning

has a flavor of both active learning (Freund et al., 1995; Settles, 2010), in which the

agent selects the training data itself, and online learning (Littlestone, 1988; Vovk et al.,

2005), in which learning examples are presented in a sequence, one data at a time.

Exploration vs. exploitation. As mentioned before, RL agents control their

input data in a unique way by deciding what action to take at each timestep. The

goal of the agent is to take actions that accrue maximum total reward. A second goal

of the agent, which is internal to its structure, is to select actions that result in a

good distribution of data for learning. In other words, at each timestep the agent has



18

to decide whether to select an action that results in exploring of the environment to

gain better information, or to select an action that seems to collect maximum utility

according to the current knowledge. This dual control problem is referred to as the

exploration vs. exploitation dilemma in reinforcement learning, and is an important

component of any successful RL algorithm. An algorithm that always seeks to explore

the environment suffers because it is totally blind to the utility of its actions. On the

other hand, an algorithm that always tries to maximize its performance might never

learn the optimal behavior because it does not have thorough knowledge about the

environment.

Although neither of these challenges is unique to reinforcement learning, their com-

bination creates a unique framework that is both very general and also complex. Other

challenges that arise in machine learning, such as generalization and overfitting, also

apply in reinforcement learning.

2.5 Efficiency of RL Algorithms

Performance of RL algorithms is usually measured using two completely different met-

rics: Sample complexity measures how much interaction with the environment is needed

for the agent to learn, while computational complexity measures the amount of com-

putation the agent needs per timestep. Both of these metrics are important for the

success of any algorithm because a computationally fast algorithm that learns very

slowly wastes a lot of valuable experience, and a fast learning algorithm that needs a

lot of computation might not be practical to implement or may not react fast enough

in real-time. Nevertheless, most of the attention of this dissertation is focused on the

study of sample complexity of algorithms.

During the history of the RL field, different criteria have been used for evaluating

the sample complexity of algorithms. Here, we summarize some of these criteria.

Asymptotic convergence. This type of criteria states that the algorithm always

finds and converges to the optimal policy if it is given enough time. More formally, let

Vt be the set of value functions at timestep t. The asymptotic convergence states that
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Vt → V ∗ as t → ∞. This metric provides some basic information about the stability

of the algorithm and was the method of choice for analyzing RL algorithms in the

1990s (Sutton and Barto, 1998). While it is a useful theoretical analysis tool, it barely

provides any practical information about the behavior of an algorithm, as we cannot

execute an algorithm for an infinite number of steps. Also, the metric does not provide

any information about the actual followed policy by the agent. The next two metrics

provide information about the goodness of learning when the algorithm has experienced

a finite number of samples.

Regret minimization. This metric is borrowed from the field of optimization in

k-armed bandits (Auer et al., 2002). It compares the difference between the reward

obtained by the algorithm to that of the optimal one over time. Arguably, this metric

is ideal because it exactly measures the quantity that the learner tries to minimize.

More technically, the regret of an algorithm at any time t is measured by:

Reg(t) = E

[
T∑
i=1

(r(i)− r∗(i))

]
, (2.7)

where r(i) and r∗(i) are two random variables denoting the reward the agent and the

optimal policy receive at time i, respectively. Unfortunately, while the formulation of

this metric is very appealing, it is very hard to analyze if no further assumption is

made. Therefor, algorithms often make very strict assumptions about the dynamics of

the MDP to be able to derive their bounds (Auer and Ortner, 2007; Auer et al., 2010).

At the time of this dissertation, no regret-minimization analysis has been done for RL

in continuous spaces to the best of my knowledge.

PAC-MDP learning. Probably approximately correct (PAC) learning has been

used for analysis of distribution-free supervised-learning model for a long time (Valiant,

1984). However, the PAC-MDP metric was first introduced by Fiechter (1994) for

reinforcement learning, and then refined by Kearns and Singh (1998), Kakade (2003)

and Strehl (2007). This metric bounds, with high probability, the total number of

timesteps that the algorithm does not follow a near-optimal policy. The reason we try

to settle on near-optimality with high probability is that we cannot expect to fully learn
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a stochastic system using a finite number of samples with full confidence. Therefore,

the algorithm takes in a near-optimality parameter ε > 0 and a failure probability

δ > 0 beforehand and achieves ε-optimal behavior with a probability more than (1−δ).

There are subtle differences between the two available definitions for PAC-MDP. We

shall mostly follow the second definition used by Strehl (2007) because it is a simpler

definition that avoids mixing times in MDPs. The following definition formally defines

the sample complexity of an algorithm according to the following:

Definition 4. Let ht = (s1, r1, a1, ..., st, rt) be a path generated by an RL algorithm up

to time t. Denote the algorithm’s policy at time t by χt. For any fixed ε > 0, the sample

complexity of the algorithm is the total number of timesteps in which the algorithm’s

policy at that time is not ε-optimal: V χt(st) ≤ V ∗(st)− ε.

According to this definition, the sample complexity of algorithms is measured by the

number of times they make mistakes (that is, does not follow a near-optimal policy). In

PAC-MDP analysis, we bound the number of times the algorithm makes such mistakes.

Note that we do not state when those mistakes occur in the execution path and only

put a cap on their total number.

2.6 Reinforcement-Learning Algorithms

The ultimate goal of an RL algorithm is to behave (near) optimally. To achieve this

goal, several approaches have been widely used in the literature. These algorithms are

mainly distinguished from each other by the types of quantities they maintain in their

internal structures and how they update them to generate the final policy. Here, we

briefly mention some of these techniques.

2.6.1 Policy-Search Methods

These algorithms are considered to be the most direct methods in reinforcement learning

because they explicitly search the space of policies (Baxter and Bartlett, 2001; Sutton

et al., 2000). Many policy-search algorithms have been studied in the literature, most of

which rely on parametrization of the policy that allows for gradient-ascent searches to be
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applied. The general architecture of such algorithms consists of maintaining a specific

policy as the current policy, developing a mechanism to evaluate the performance of

the current policy, and finally a mechanism to derive another policy from the current

one that has a better performance.

2.6.2 Value-based Methods

Value-based methods take a more indirect approach to solving the reinforcement-

learning problem by maintaining information about the value of states, either in the

form of Equation 2.5 or 2.6. Since the Bellman equation defines the value of a state

recursively based on the value of other states, to which the agent does not have access,

it has to use some sort of bootstrapping in learning. A family of algorithms called “tem-

poral difference learning methods” do exactly that by using their own predictions as

targets during the course of learning (Sutton, 1988, 1996). Below, we briefly describe

one of the algorithms in this family called Q-learning (Watkins, 1989).

Q-learning maintains an estimate of Q∗(s, a) and updates its estimates based on

transition tuples (st, at, rt+1, st+1). The algorithm performs a stochastic approximation

of the Bellman equation by moving its estimate Qt(st, at) toward the value of st+1:

δt+1 = rt+1 + γmax
a′∈A

Q(st+1, a
′)−Q(st, at)

Q(st, at)← Q(st, at) + αtδt+1. (2.8)

The first equation defines δt+1, which is the difference between the estimated values

of two consecutive states st and st+1—hence the name of temporal difference. The

algorithm requires a sequence of small nonnegative numbers [αt]t∈N, called learning

rate, to operate. Implementation of this algorithm is very easy when dealing with finite

state spaces because a lookup table can be used to store the Q-function. However, it

becomes more complicated when using some sort of generalization (Boyan and Moore,

1995).
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2.6.3 Model-based Methods

Model-based algorithms take an even more indirect approach to solving the RL problem.

These methods learn the value of states by first directly estimating the parameters of

the unknown MDP (the transition function, the reward function or both), and then

using a conventional planning algorithm to solve the estimated MDP (Kumar and

Varaiya, 1986; Sutton, 1990). One of the philosophies behind these algorithms is that

learning the unknown parameters of the MDP, which is very close to regular supervised

learning, is much easier than learning the indirect and complex value function. Once

the parameters are estimated, the planning step to derive the value function is again an

easier task than learning the value function in an online fashion using data. Therefore,

these algorithms break the complicated task of online learning the value function into

two simpler subtasks.

There are two important caveats in this approach that need to be carefully ad-

dressed. First, learning the parameters of the MDP is not exact, therefore the con-

structed internal MDP will always be different from the true one. For the model-based

methods to be successful, an analysis needs to be done on the relationship between

the model estimation error and the sub-optimality of the final policy. Second, it is

not obvious how the decision making should be done before the parameters are fully

learned.

Several people have shown the relationship between the similarity of two MDPs and

their corresponding policies both for finite and continuous MDPs, which takes care of

the first caveat. The general result is that if the dynamics of two MDPs are close to

each other, so are their optimal policies (Kearns and Singh, 1998; Kakade et al., 2003).

The second problem is dealt with using the exploration-exploitation strategy of

the algorithm. A standard technique for doing so is to continuously use the partial

information to build new models and replan as new information comes in. Meanwhile,

an exploration scheme has to be devised to make sure that the internal model gets

closer to the true MDP as more data comes in. A schematic illustration of such an

algorithm is depicted in Figure 2.4.
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Figure 2.4: Illustration of the structure of a typical model-based algorithm (Sutton and
Barto, 1998).

The next chapter provides detailed information about a class of model-based algo-

rithms that use self-aware exploration to solve the exploration-exploitation dilemma.
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Chapter 3

Self-aware Exploration

This chapter studies the concept of self-aware exploration in model-based algorithms

and how it helps with the efficient discovery of information in unknown environments.

These algorithms are called “self-aware” because at any time during learning, in ad-

dition to being able to estimate the parameters of the environment, they are able to

identify whether their estimates are accurate or not. So, in a sense, they are aware of

how much they know about each part of the state space. This extra information allows

them to focus their attention on those parts where their estimates are not as good.

The main idea behind this type of exploration is the so-called “optimism in the face

of uncertainty” maxim (Thrun, 1992). According to this concept, learning agents need

to be optimistic in the quantities they are estimating. In reinforcement learning, this

behavior can be realized by acting according to an overly optimistic value function with

respect to the observations so far. Model-based algorithms are studied here because

they have been particularly successful in incorporating this idea.

In the rest of this chapter, the implementation of optimism in the face of uncertainty

is explored in model-based methods in two sections: First, an overview of the exist-

ing literature is presented in Section 3.1. Then, in Section 3.2, a new concept called

“knownness” is developed as an extension of the commonly-used known/unknown con-

cepts.

3.1 Known vs. Unknown

To study the concept of known states, we consider the Rmax algorithm (Brafman and

Tennenholtz, 2002), which was one of the first techniques that exploited the idea of
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self-aware exploration in finite MDPs. Although the focus of this document is on

continuous spaces, Rmax is selected as an introductory example because it is simple

to study, yet provides insight into how self-aware exploration can be used in model-

based RL algorithms in general. In what follows, Rmax is explained in the setting

where only the transition function is unknown. Learning algorithms for other scenarios

are constructed in a similar fashion and have been studied elsewhere, (Brafman and

Tennenholtz, 2002; Strehl, 2007).

The Rmax agent (described in Algorithm 1) maintains an internal model of the

environment that—given the data—has the most likelihood. Since the transition func-

tion of each state-action pair forms a multinomial distribution over the next states,

the maximum-likelihood (ML) estimate can be constructed using a table of counts:

c(s′; s, a) keeps the number of times we ended up in s′ after taking a from s, and c(s, a)

keeps track of how many times action a was executed in s. The maximum-likelihood

estimate is computed using the following equation:

T̂ (s′|s, a) =
c(s′; s, a)

c(s, a)
. (3.1)

The agent incorporates exploration into its internal model by using only those esti-

mates with guaranteed high accuracy, and replacing the rest with optimistic initializa-

tion. More technically, the algorithm distinguishes between two types of state-action

pairs when estimating the model: knowns and unknowns 1. The agent starts out by con-

sidering all the state-action pairs unknown. As it collects data during learning, it marks

a pair as known whenever the total variation between the estimated transition function

for that pair and the true one becomes less than εT with probability at least (1−δT ). It

can be shown that for the values of c(s, a) > C, where C = 2(ln(2|S|−2)−ln(δT ))
ε2T

, the ML

estimate satisfies this condition (Strehl et al., 2009). The value of the two constants εT

and δT are computed based on user inputs before the learning starts.

During the construction of the internal model, the agent replaces its estimates for

1Sometimes, these notions are used with states. There, a known state s means that (s, a) is known
for all a’s.
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unknown pairs by a bogus transition function that causes their Q-functions to become

Vmax—the maximum achievable value. With this technique, the agent is attracted to

unknown regions because of their high values.

Algorithm 1 Rmax, a model-based algorithm for solving finite MDPs.

1: Input: Threshold constant C.
2: Initialize counter c(s, a) to 0 for all s ∈ S and a ∈ A.
3: Initialize internal MDP M̂ = 〈S,A, T̂ , R̂, γ〉:

T̂ (s′|s, a) = II(s′ = s), R̂(s) = Rmax.

4: Compute π∗
M̂

as the optimal policy of M̂ .
5: for all timesteps t = 1, 2, · · · do
6: Observe st and rt, execute action at = π∗

M̂
(st), transition to st+1.

7: Increment counter: c(st, at)← c(st, at) + 1.
8: if c(st, at) = C then
9: Update T̂ (st, at) and R̂(st) using ML estimate of the data (eqn. 3.1).

10: Update M̂ and subsequently π∗
M̂

.
11: end if
12: end for

There are two key factors that guarantee the success of Rmax theoretically. First,

it can be shown that if the parameters of two MDPs (that is, their transition and

reward functions) are close to each other, their value functions are also close. Moreover,

executing the optimal policy of one of the MDPs in the other one will not incur a huge

loss. This result can be used to show that as long as the agent remains inside the known

parts of the state space, its performance will be close to optimal with high probability.

Second, based on the pigeon-hole principle, the number of times the agent can be in an

unknown state-action pair is bounded. Therefore, we can bound the number of times

the algorithm makes mistakes by not following a near-optimal policy.

While the table-based estimation of the model in Rmax limits its applicability to

finite MDPs with no function approximator to carry information from one state to

another, it turns out that the principle of known and unknown states can be used in a

variety of different settings. The KWIK framework, which will be briefly studied next,

captures this insight.
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3.1.1 KWIK and Rmax

Several independent analyses have shown that Rmax is PAC-MDP (Strehl et al., 2009;

Brafman and Tennenholtz, 2002). But, perhaps the most comprehensive analysis is due

to Li (2009), which provided a relationship between the efficiency of learning the tran-

sition and reward functions in a learning framework called “knows what it knows” (Li

et al., 2008), or KWIK for short, to that of a general model-based algorithm called

KWIK-Rmax. This algorithm, which is described in Algorithm 2, maintains one KWIK

learner for each unknown parameter of the MDP. At each timestep, it rebuilds its inter-

nal representation of the world using its KWIK learners, forming known and unknown

state-action pairs depending on whether the KWIK learners return an estimate or say

“I don’t know” respectively. Similarly to Rmax, it then computes the optimal value

function of its internal model and follows the greedy policy. The details of the KWIK

framework will be discussed shortly.

Algorithm 2 KWIK-Rmax, a general model-based algorithm.

1: Input: KWIK learner FT , accuracy parameter εT , and confidence parameter δT .
2: Initialize transition function approximator FT with εT and δT .
3: Initialize the internal MDP M̂ and its optimal policy π∗

M̂
.

4: for all timesteps t = 1, 2, · · · do
5: Observe st and rt, execute action at = π∗

M̂
(st), transition to st+1.

6: Update FT using (st, at, st+1).
7: Update internal MDP M̂ = 〈S,A, T̂ , R′, γ〉, where T̂ and R′ are defined as:
8: if FT (s, a) returns u then
9: T̂ (s′|s, a) = II(s′ = s) and R′(s) = Rmax.

10: else
11: T̂ (s′|s, a) is the output of FT and R′(s) = R(s).
12: end if
13: end for

In this dissertation, the definition of KWIK online learning is slightly abused to

be specific to learning the transition function. Otherwise, KWIK can be used as a

general online-learning framework. With this in mind, let us first formalize the notion

of closeness for transition functions:

Let the total variation between two continuous probability distributions P1 and P2
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be:

dvar(P1,P2)
def
=

∫
x
|Pr1(x)− Pr2(x)|dx. (3.2)

The closeness of two transition functions is defined as follows:

Definition 5. Let T1 and T2 be two transition functions defined over the same state/action

spaces. We say T1(s, a) is ε-close to T2(s, a) if the total variation between T1(s, a) and

T2(s, a) is less than ε.

Definition 6. Let T̂ be an estimate of a transition function T . We say T̂ (s, a) is (ε, δ)-

close to T (s, a) if T̂ (s, a) is ε-close to T (s, a) with probability at least (1− δ). Similarly,

T̂ (s, .) is (ε, δ)-close to T (s, .) when T̂ (s, a) is (ε, δ/|A|)-close for all a ∈ A.

Definition 7 (KWIK online learning). An algorithm online-learns a transition function

in the KWIK framework using the following protocol: The learner is first given an

accuracy parameter ε > 0 and an allowed probability of failure 0 < δ < 1 (we are mostly

interested in the cases where ε and δ are close to 0). At each timestep t = 1, 2, . . ., the

learner is presented with (st, at) and is asked for an estimate of T (st, at). The learner

can either present its estimate T̂ (st, at), in which case it has to be (ε, δ)-close, or it can

say its estimate is not (ε, δ)-close (that is, it says I don’t know or the special symbol

u). In the latter case, the algorithm is given an i.i.d. sample from T (s, a) as a training

example. An algorithm has a KWIK bound of B(ε, δ,S,A) if the number of times it

outputs u is bounded by the function B for any adversarially selected sequence.

Observation 8. The ML estimator for the transition function in Rmax has a KWIK

bound of C|S||A|. The reason is that for any (st, at), the algorithm returns u if

c(st, at) < C. Otherwise, it returns the ML estimate, which is in fact (ε, δ)-close to

the true function.

In fact, Rmax forms known and unknown state-action pairs based on whether its

transition function estimator returns a value or u. Theorem 21 of Li (2009), which

we summarize here in Theorem 9, generalizes this connection and provides a relation-

ship between the PAC-MDP learnability of KWIK-Rmax and the KWIK bound of its

transition (and reward) function learner.
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Theorem 9. If the transition function of a class of MDPs can be KWIK-learned with

a bound B that is polynomial w.r.t. its arguments (ε, δ,S,A), then KWIK-Rmax is PAC-

MDP. In particular, if the following parameter values are used:

εT = Θ
(
ε(1− γ)2

)
, δT = Θ(δ),

then the sample complexity of KWIK-Rmax is2:

O
(

Vmax

ε(1− γ)

(
B(ε(1− γ)/Vmax, δ,S,A) + ln

1

δ

)
ln

1

ε(1− γ)

)
.

Proof. Readers are referred to (Li, 2009; Theorem 21) for the proof of this theorem.

According to this theorem, the sample complexity of KWIK-Rmax is dependent on

S and A only through a linear dependence on B—the KWIK sample complexity of FT .

Therefore, it is highly desirable to study different classes of MDPs that allow for faster

KWIK learners. Below, some of these classes are briefly described.

3.1.2 More Examples

The relationship between KWIK-learnability of MDPs and the sample complexity of

model-based learning has been investigated for several classes of MDPs in the past few

years. Some of these classes are described below.

Factored-Rmax (Guestrin et al., 2002). This algorithm is a variant of Rmax for envi-

ronments in which the state space is finite but is represented in a factored form (Kearns

and Koller, 1999): s = {s(1), . . . , s(k)}. Furthermore, the value of each component of

the next state is dependent only on a subset of the current state’s components. That

is, we have:

T (s′|s, a) =
k∏
i=1

Ti(s
′(i)|s(depa(i)), a), (3.3)

where depa(i) is the list of components that are sufficient to estimate s′(i) when action a

is applied, and s(depa(i)) is a vector constructed from s by selecting those components

2The function Θ is the standard growth rate function.
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Figure 3.1: The DBN structure of an MDP whose transition function is described in
Eqn. 3.4

that are also in depa(i). If the same ML estimator as Rmax is used, a sample complexity

that scales exponentially in the factor size k is obtained because k can be much smaller

than |S| or even log(S). Factored-Rmax uses the dependency structure of the individual

components to (exponentially) reduce the sample complexity, while remaining in the

KWIK framework.

Factored-Rmax uses a set of ML estimators F ia(.), each estimating the value of the

i-th component of the next state when action a is applied. The algorithm takes as input

the dependency sets depa(i) in the form of dynamic Bayesian networks (DBNs). The

input to F ia is s(depa(i)). Each time a transition (s, a, s′) is observed, the algorithm

updates F ia for all the i’s. When a query for T (s, a) is received, the algorithm queries

F ia for all i’s, and concatenates all the results. If any individual F ia returns u, the

algorithm returns u. Figure 3.1 shows an example of such dependency structures for

an MDP with two actions {a1, a2} and the following transition function structure:

T (., a1) :



s′(1) = f1(s(1), s(2), s(4), a1)

s′(2) = f2(s(3), a1)

s′(3) = f3(s(2), s(3), a1)

s′(4) = f4(s(3), s(4), a1)

T (., a2) :



s′(1) = f5(s(2), s(3), a2)

s′(2) = f6(s(1), s(3), a2)

s′(3) = f7(s(3), a2)

s′(4) = f8(s(4), a2).

(3.4)

It can be shown that if T̂i is (ε/k, δ/k)-close to Ti for all i’s, then T̂ is (ε, δ)-close to

the true transition function (Strehl, 2007). A maximum-likelihood estimator is able to
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learn a (ε/k, δ/k)-close estimation of Ti with a sample complexity that is exponential

in |depa(i)|. Assuming that the size of depa(i) is bounded by k, the KWIK sample

complexity of this learning scheme can be exponentially smaller than the one we studied

in Rmax provided that k is sufficiently small. Consequently, the exploration sample

complexity of factored-Rmax, which according to Theorem 9 is linearly dependent on

the KWIK bound, is exponentially smaller than the sample complexity of Rmax.

The relationship between KWIK-learnability of the transition function and the sam-

ple complexity of model-based learning carries over to the continuous spaces. For ex-

ample, as we shall see later, the PAC-MDP sample complexity of learning in Lipschitz-

continuous MDPs has a lower bound that scales exponentially in the dimensionality of

the state space. However, by considering a subclass of continuous MDPs that can be

KWIK learned faster, we can construct RL algorithms that scale polynomially as the

dimensionality increases. One such subclass is described below.

Linear Transition Function. Let us consider continuous MDPs whose transition

functions can be captured by a noisy linear function. In other words, the dynamics of

the world is in the form of:

st+1 = AΦat(st) + ωt, (3.5)

where A is a (|S| × n) matrix and Φa(.) : R|S| → Rn is a (basis or kernel) function

associated with action a and satisfying ‖ Φa(.) ‖≤ 1. Finally, ωt is a white noise with

each of its components selected independent and identically distributed (i.i.d.) with

mean 0 and a known variance of σ2.

Strehl and Littman (2008a) introduced an algorithm that is able to learn a noisy

linear function f : R|S| → R in the KWIK framework (Algorithm 3). They showed that

the number of times the algorithm outputs u is bounded by Õ(|S|3/ε4).

An Rmax-type algorithm can be constructed based on KWIK-LR in the following

way: The algorithm needs to maintain |A|×|S| instances of the regressor —denoted by

F ia. Upon observing a transition (s, a, s′), the algorithm updates F ia for i = 1 . . . |S| with

(s, s′(i)) as the training example. To answer a query (s, a), the algorithm queries F ia

for all i = 1 . . . |S| and outputs an answer by concatenating all of them into a vector. If
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Algorithm 3 KWIK-LR, a linear regression algorithm in the KWIK framework.

1: Inputs: Accuracy parameter ε, confidence parameter δ.
2: Initialize X = [ ] and y = [ ].
3: for t = 1, 2, 3, . . . do
4: Let xt denote the input at time t.
5: Compute q̄ and v̄ as follows:

XTX = UΛUT

q̄
def
= XŪΛ̄−1Ū

T
xt

v̄
def
= [0, . . . , 0, vTk+1xt, . . . , v

T
nxt]

T

6: if ‖ q̄ ‖≤ ε and ‖ v̄ ‖≤ δ then
7: Choose θ̂ that minimizes Σi[y(i)− θ̄TX(i)]2 subject to ‖ θ̄ ‖≤ 1, where X(i) is

the transpose of the i-th row of X and y(i) is the i-th component of y.
8: Output valid prediction xTθ̂.
9: else

10: Output u.
11: Receive output yt.
12: Append xTt as a new row to the matrix X.
13: Append yt as a new element to the vector y.
14: end if
15: end for

any of the regressors return u, the algorithm marks that state-action pair as unknown.

Again, we can use the result of Theorem 9 that relates the sample complexity of

exploration to the KWIK sample complexity of learning the transition function. In this

case, the sample complexity of exploration depends polynomially on k (it is Õ(k3) to

be exact)3 instead of exponentially (Strehl and Littman, 2008a).

Constructing model-based algorithms using the concept of known states has also

been studied in the scenarios where theoretically sound KWIK-learners have not yet

been found for the underlying transition function or a particular suitable function ap-

proximator in mind is not compatible with the KWIK framework. In these situations,

the known states are computed based on some sort of heuristic function in the learner.

For example, the next algorithm learns the general continuous-space MDPs with smooth

stochastic transition functions using kernel regression.

Fitted-Rmax (Jong and Stone, 2007). This algorithm is a counterpart of Rmax

3The notation Õ is the same as O but ignoring the logarithmic factors.
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for continuous spaces and has the same structure as KWIK-Rmax. It uses instance-

based function approximation (Russell and Norvig, 1994) for estimating the transition

function.

To better study this algorithm, let us first take a closer look at kernel regression. A

kernel regressor F is a local function approximator that receives training data in the

form of D = {(x1, y1), . . . , (xn, yn)}, xi ∈ Rm and yi ∈ Rk, and outputs ŷ as:

ŷ
def
= F(x;D) =

∑
xi∈D k(x, xi)yi∑
xi∈D k(x, xi)

, (3.6)

where k(., .) is called the “kernel function” and is a metric that measures the similarity

between the two arguments. Equation 3.6 uses an average of all the training instances,

weighted by their similarities to the query point according to the kernel metric. A

detailed overview of kernel functions can be found in Appendix D.2, but one of the

functions called Gaussian kernel is reiterated here:

kg(x1, x2) =
1

σ
√

2π
e−
‖x1−x2‖

2
2

σ2 . (3.7)

This function has the shape of a bell and is peaked when x1 = x2 and diminishes to

0 as the distance between the two arguments goes to infinity. The parameter σ controls

how fast the function degrades to 0 (refer to Appendix D.2 for more information).

Fitted-Rmax maintains one instance of kernel regression for each action, Fa(.), to

estimate the transition function. Updating Fa is done naturally using Da, which are

the samples in D with their actions equal to a. Unlike Rmax, this algorithm cannot use

counts for each state to distinguish between knowns and unknowns because there is an

infinite number of states in a continuous space and we may never visit any state twice.

Therefore, the algorithm needs to make some kind of generalization to use information

from nearby states to compute the known regions. Jong and Stone (2007) suggested

that a heuristic based on the sum of the kernel values of the training data and the query

point be used to decide whether a query point is known or not. In particular, they used
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the following formula:

T̂ (s, a) :

{
known , if ñ(s, a)

def
=
∑

si∈Da exp
(
−‖s−si‖

2
2

σ2

)
> C

unknown , otherwise,
(3.8)

where C is a threshold parameter. Similar to the counter in Rmax, ñ(s, a) counts

the samples that exist in the training set for (s, a). But, it also partially counts the

training samples that are close to the query points, weighted by their un-normalized

kernel values.

The generalization used in the computation of ñ can be taken even further if the

user has prior knowledge about the relationship between different actions. That is, if

T (s, a1) is related to T (s, a2), we can compute ñ as follow:

ñ(s, a)
def
=
∑
si∈D

δaai exp

(
−‖ s− si ‖

2
2

σ2

)
, (3.9)

where 0 ≤ δa1a2 ≤ 1 is a function that provides the similarity of actions a1 and a2.

This algorithm does not have the PAC-MDP guarantee of the previous methods we

discussed, but can tackle a broader class of environments and has been shown to be

very successful in practice (Jong and Stone, 2007).

It is easy to change the heuristic function for computing the known states. For

example, the ball-heuristic is another heuristic we can use in fitted-Rmax. This method

partitions the state space into knowns and unknowns based on whether enough training

points exist in an ε-ball around the query point—hence the name. More precisely, let

Nε(s, a) be the set of points in Da that are ε-close to s:

Nε(s, a) = {s′ ∈ Da| ‖ s′ − s ‖22≤ ε}. (3.10)

The ball-heuristic identifies a state-action pair as known iff |Nε(s, a)| > C for prede-

fined values of ε and C. Figure 3.2 depicts the ball-heuristic schematically in 2D when

the value of C is 5.
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Figure 3.2: A schematic illustration of the ball-heuristic. The query point in part (a)
is known because there are more than C training points in its ε-vicinity. The point in
(b) is unknown because only two points exist in the ε-ball around it.

Although these two heuristics do not provide a formal guarantee about our estima-

tion at the query point, they are related to the smoothness assumptions of the transition

function. For example, the ball-heuristic uses an ε-ball because, according to Lipschitz-

continuity, the transition function of any point s′ in the ε-ball around s can only be

different from the transition function of s by a maximum amount of εCT . For a transi-

tion function that has the form of a normal distribution (Assumption 2), it means we

have: ‖ µ(s, a)− µ(s′, a) ‖22≤ εCT .

3.1.3 Disadvantages of the KWIK framework

Self-aware exploration still suffers from a kind of data inefficiency due to the way the

knownness concept is designed and also the nature of the KWIK framework. The

algorithms developed with a discrete separation between known and unknown states

have to sacrifice data for estimation accuracy because they are only allowed to make

predictions if they are ε-accurate. For example, Rmax does not make any estimation

of T (s, a) unless it has seen C samples from (s, a), effectively ignoring all the training

samples in the first C − 1 steps. In real-life applications, where collecting data is

typically very expensive, ignoring precious data points is often unacceptable 4.

4An exception to this rule is the Model-based Interval Estimation algorithm (Strehl and Littman,
2005) that uses all the available information instead of forming known and unknown states. Unfortu-
nately, no version of this algorithm has been published detailing its use in continuous spaces.
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In most implementations of these algorithms, the user has no choice but to re-

place the conservative large values of C—dictated by the bounds5—with smaller hand-

selected values to overcome the inefficient use of data. This approximation often has its

own set of problems. For example, apart from the difficulty of choosing an appropriate

value of C for a domain, this crude approximation sometimes undermines the effective-

ness of self-aware exploration. In this framework, once a state-action becomes known,

the algorithm stops systematically searching for samples from that pair. If the value of

C is set too small (to increase data efficiency of the algorithm), there is a high chance of

underestimating the value of good states and failing to converge to the optimal policy

altogether.

An exception algorithm that avoids these problems, yet achieves a PAC-MDP guar-

antee is model-based interval estimation (MBIE) (Strehl and Littman, 2005) for finite

state space MDPs. This algorithm does not form known/unknown state-action pairs

and uses confidence intervals along with its parameter estimations to maintain an op-

timistic value function. Because of this approach, this algorithm makes a better use

of data by using all of the available experience to build its internal model (as opposed

to throwing out the experience collected from unknown state-action pairs). Another

variation of MBIE was later developed by Strehl and Littman (2008b), which converted

confidence intervals into bonus values—a concept closer to known/unknown partitioning

of state-action pairs. Unfortunately, the ideas behind MBIE has not been successfully

applied to continuous space MDPs.

In the next section, a novel extension of the knownness concept is developed that

allows for more efficient use of samples during learning for continuous MDPs.

3.2 Continuous Knownness

Continuous knownness (or simply knownness) is a generalization of the known function

with binary output {0, 1}. It is a function, denoted by ψ, that given a set of transition

data, maps state-action pairs to the interval [0, 1] and identifies how much the agent

5For example, the threshold for Rmax is C = O
(
S+ln(SA/δ)
ε2(1−γ)4

)
.
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knows about the transition function for that pair. This section provides details about

how this function can be constructed and how it can help with the data efficiency of

model-based algorithms. A new framework called CKWIK is also developed to formal-

ize the knownness concept, similar to the way KWIK formalized the use of Boolean

knownness function.

Definition 10 (CKWIK online learning). An algorithm online-learns the transition

function of an MDP in the CKWIK framework using the following protocol: Unlike

the KWIK protocol, the learner does not receive any accuracy parameters upfront. At

each timestep t = 1, 2, . . ., the learner is presented with (st, at) and δt. It is then asked

for T (st, at). The learner outputs T̂ (st, at) and ε(st, at) and guarantees that T̂ (st, at) is

(ε(st, at), δt)-close to T (st, at) (According to Def. 6). Context permitting, we sometimes

use εt to mean ε(st, at). The learner is then given access to s′, which is an i.i.d. sample

from T (st, at). The agent has a CKWIK bound of B(ε, δ,S,A) if the following holds

for any input sequence and any ε and δ:

B(ε, δ,S,A) ≥
∞∑
t=1

II(εt ≥ ε|δt ≥ δ). (3.11)

The difference between the new framework and KWIK is that the learner always

outputs an estimate of the transition function and never returns u. It also outputs

the accuracy of the estimate, according to the given failure probability. The next

proposition shows that CKWIK is a special case of KWIK.

Proposition 11. If Algorithm A solves a problem in the CKWIK framework with the

bound B(ε, δ,S,A), the same problem can be learned in the KWIK framework with the

same bound B(ε, δ,S,A).

Proof. We can prove this statement by constructing Algorithm B from A as follows:

• Initialize: save ε and δ internally, and initialize A.

• Query (st, at): Query A with (st, at, δ), receive output T̂ (st, at) and εt. Output

u if εt > ε, otherwise return T̂ (st, at). After receiving s′, pass it to A.
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Each time B returns an estimate, it is indeed (ε, δ)-close according to the protocol

of CKWIK. The number of times it returns u is bounded by the number of times A

returns an accuracy εt > ε (note that we use δt = δ for all timesteps). This number is

bounded by B(ε, δ,S,A) according to our assumptions.

A direct result of this proposition, which extends Theorem 9, is presented in the

following corollary.

Corollary 12. If the transition function of a class of MDPs M is CKWIK-learnable

with a bound B that is polynomial w.r.t. its arguments, we can construct an algorithm

for the online RL problem that is PAC-MDP in M.

Although the new framework is stronger than KWIK, it turns out that most of

the known techniques in KWIK can be easily converted to work in CKWIK. In fact,

one of the intuitions behind this new setup is that most of the available learners in

the KWIK framework know the accuracy of their estimates for each input, but use a

threshold to convert that information to a binary output, just to be compatible with

the Boolean knownness concept in Rmax-type exploration. By changing this concept

to have a continuous range of values, we effectively allow the agent to use all of the

available information at anytime during learning (see next section).

Given the CKWIK framework, we are now ready to establish the relationship be-

tween CKWIK learning and model-based PAC-MDP learning.

3.2.1 CKWIK-Rmax

Li (2009) introduced the abstract algorithm KWIK-Rmax that formally relates KWIK

learning to the sample complexity of model-based RL algorithm (Li et al., 2008). Here,

a similar relationship is developed between CKWIK learning and the sample complexity

of exploration by constructing a new algorithm called CKWIK-Rmax.

This algorithm extends Boolean knownness to a continuous function based on the

prediction accuracy of its CKWIK learner. Continuous knownness can be formally

defined as follows:
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Definition 13. For a given desired accuracy εT , and allowed failure probability δT , and

a CKWIK learner FT , the (continuous) knownness of a state-action pair is denoted by

ψ(s, a) and is defined as:

ψ(s, a) = min

(
1− ε(s, a)

1− εT
, 1.0

)
,

where ε(s, a) is the output of FT (s, a, δT ).

Given the above definition for knownness, CKWIK-Rmax constructs an augmented

transition function T̂ ′ based on its estimation of the transition function T̂ and the

knownness function ψ as follows:

T̂ ′(s′|s, a) = ψ(s, a)T̂ (s, a). (3.12)

To make sure T̂ ′ is a well-defined probability distribution and an optimistic value

function, the algorithm assigns the remaining probability, which is 1 − ψ(s, a), to a

fictitious state sf that has the highest possible value Vmax. Algorithm 4 shows the

details of CKWIK-Rmax. The two inputs (εT , δT ) are constructed from user inputs

(ε, δ) as will be described later.

Algorithm 4 CKWIK-Rmax: A general model-based algorithm that works with any
CKWIK learner.

1: Input: CKWIK learner FT , accuracy parameter εT , and confidence δT .
2: Initialize the internal MDP M̂ and its optimal policy π∗

M̂
.

3: for all timesteps t = 1, 2, · · · do
4: Observe st and rt, execute action at = π∗

M̂
(st), transition to st+1.

5: Update FT using (st, a, st+1).
6: Update internal MDP M̂ = 〈S,A, T̂ ′, R′, γ〉, where T̂ ′ is computed from T̂ using

Eqn. 3.12, and T̂ is computed by using FT with δt = δT .
7: end for

Sample-Complexity Analysis. The sample complexity of CKWIK-Rmax can be

analyzed similarly to the analysis of KWIK-Rmax. Assume that FT has a CKWIK

bound of B(ε, δ,S,A). The following theorem provides a PAC-MDP bound for the

sample complexity of CKWIK-Rmax.

Theorem 14. Let M be a class of MDPs and assume that FT is a CKWIK-learner
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of the transition function of M with a bound of B(ε, δ,S,A). Then, CKWIK-Rmax is

PAC-MDP with a sample complexity of:

O
(

Vmax

ε(1− γ)

(
B(ε(1− γ)/Vmax, δ,S,A) + ln

1

δ

)
ln

1

ε(1− γ)

)
,

provided that the accuracy parameters for FT are set as:

εT = Θ(ε(1− δ)2), δT = Θ(δ).

Proof (sketch). The proof of this theorem follows the same steps as in the proof of (Li,

2009; Thm. 21). We just need to define the set Kt from (Strehl, 2007; Thm. 1) as:

Kt
def
= {(s, a) ∈ S ×A|ε(s, a) ≤ εT },

Due to the length of the proof and the similarity, readers are referred to (Li, 2009)

for details.

This sample-complexity bound is very loose for CKWIK-Rmax. In fact, although

this algorithm is more data efficient than KWIK-Rmax in general, the two bounds are

the same. The reason for having the same bound is that the loss caused by the agent

when navigating in state-action pairs outside the set Kt is upper-bounded by Vmax

in the proof. While this upper bound is logical in KWIK-Rmax because no intelligent

estimation is made for these pairs, it is very loose for CKWIK-Rmax because state-

action pairs outside Kt can still have knownness values more than 0. The purpose of

the theorem is to show that this algorithm, with clear practical advantages, does not

pay a theoretical cost in the worst case. It is still an open question to find a tighter

bound for CKWIK-Rmax.

In the next chapters, we introduce some algorithms instantiated from CKWIK-Rmax

and study their properties.
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Chapter 4

Model-based Learning with CKWIK Framework

This chapter introduces two novel algorithms derived from CKWIK-Rmax in two differ-

ent classes of continuous MDPs. The first algorithm, which is an extension of fitted-

Rmax called Cfitted-Rmax (or CF-Rmax), learns in the general continuous MDP setting

that follows Assumption 2. While this algorithm makes a few assumptions about the

smoothness of the environment, it does not receive any other information about the

world. This algorithm is the first practical method to have a PAC-MDP guarantee in

general Lipschitz-smooth continuous domains.

The next algorithm, which is called factored fitted-Rmax or FF-Rmax, builds on the

idea of CF-Rmax for scenarios in which the user can provide extra information about

the dependency between state variables. It is shown that this algorithm can use the

extra information to gain an exponential speedup in learning.

4.1 CF-Rmax

Fitted-Rmax, as discussed in the previous chapter, is a model-based algorithm designed

for continuous spaces. It uses instance-based function approximation (kernel regression

to be exact) to estimate the transition function and a heuristic to compute the known

state-action pairs. Although the specific heuristic that is used in the algorithm breaks

the PAC-MDP guarantee of the algorithm, it is still widely used in practice because

it makes fewer limiting assumptions about the environment than the ones with the

PAC-MDP guarantee.

This section introduces CF-Rmax, which is a similar algorithm to fitted-Rmax in that

they both use kernel regression for estimating the transition function. However, the new
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algorithm is designed to work in the newly developed CKWIK framework, and in that

regard, is an instantiation of the CKWIK-Rmax introduced in the previous chapter.

Unlike its counterpart in the KWIK framework, CKWIK-Rmax has a provably effi-

cient PAC-MDP sample complexity in continuous domains as well. This achievement

derives from the development of a kernel regression algorithm with an efficient CKWIK

sample complexity. CKWIK-Rmax marks the first practical algorithm with PAC-MDP

guarantee in general continuous MDPs.

4.1.1 CKWIK Kernel Regression

The CKWIK framework is an online learning setting. On the other hand, kernel regres-

sion (KR) takes place in a batch setting; similar to the original fitted-Rmax, we need to

repeatedly use KR at each timestep.

Suppose that an MDP M satisfies the parametric form of Assumption 2 and we wish

to CKWIK-learn its transition function using kernel regression. Also, suppose that the

only unknown parameter of the transition function for each state-action pair is its mean

µ(s, a). The rest of this section assumes that the transition function has the shape

of a multivariate normal distribution for each state-action pair with a fixed covariance

matrix Σ. However, the results carry over to more general known distributions. Finally,

let the smoothness assumption be defined according to Equation 2.2—the means of the

two distributions are close to each other if the two starting states are close.

At each timestep t = 1, 2, . . ., the algorithm is given a state-action pair (st, at) along

with a failure probability δt and is asked for an estimate for T (st, at) (or equivalently

µ(st, at)). The regressor needs to return µ̂(st, at) along with ε(st, at) and guarantee

that T̂ (st, at) is (ε(st, at), δt)-close to T (st, at). A kernel regressor F , when given a set

of training data points D = {(x1, y1), . . . , (xn, yn)}, and a kernel function k, estimates

the function at the query point x by:

ŷ
def
= F(x;D) =

∑
xi∈D k(x, xi)yi∑
xi∈D k(x, xi)

. (4.1)

Since the smoothness assumption is defined on individual actions, no generalization
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is allowed between different actions. Therefore, one data set for each action a should

be maintained in the kernel regression. Let Da be the training points for action a and

Fa be the corresponding regressor. Each data set is constructed as follows:

Da = {(si, s′i)| (si, ai, s
′
i) ∈ D, ai = a}. (4.2)

Note that the prediction at time t is performed before s′t is provided, so the training

data contains points up to timestep t−1. The kernel regressor’s output at each timestep

is then Fat(st, Da). The regressor also outputs ε(st, at), whose value will be determined

shortly.

Several variations of kernel regression exist. We build our algorithm based on one

of these variations that approximates Equation 4.1 using a smaller number of points.

The basic idea behind this approximation is improving computational complexity. The

running time of kernel regression is linearly dependent on the number of samples in Da,

which makes it impractical in many applications. Approximate kernel regression is a

technique that combines kernel regression with another nonparametric method called

“k-nearest neighbors” (Russell and Norvig, 1994). In this method, the sum
∑

xi∈D is

replaced with another sum
∑

xi∈Nc(x), where Nc(x) is the set of c-closest points to x.

Hence, the approximate kernel regression becomes:

ŷ
def
= F(x;D) =

∑
xi∈Nc(x) k(x, xi)yi∑
xi∈Nc(x) k(x, xi)

. (4.3)

The running time of this new method is much faster because it only depends linearly

on c plus the time needed to compute Nc(x) from Da. There is a huge literature on

performing k-nearest neighbors in sub-linear time, (Arya et al., 1994; Vijayakumar and

Schaal, 2006).

Equation 4.3 is usually a good approximation of the original kernel regression. The

reason is that kernel functions typically decay to 0 very fast as the distance between

the points increases. Therefore, most of the contributions to the output of the ker-

nel regression come from the nearby points anyways, so eliminating far points from
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computation of the regression does not incur much loss.

The CKWIK-KR algorithm is an extension of approximate KR that computes a

different neighbor count c for each individual query point. We show that if c’s are

selected carefully, CKWIK-KR will have a CKWIK bound. The variable c is computed

based on the relative position of the query point w.r.t. other points in Da, as well as the

allowed failure probability δt and the Lipschitz smoothness constant CT . The algorithm

computes the optimal c using a loss function L. We will see later on that the particular

choice of L that is defined next helps the algorithm achieve a CKWIK bound:

L(c, x)
def
=

√√√√ ln(2/δt)
∑

sj∈Nc(x) k(sj , s∗)2

2[
∑

sj∈Nc(x) k(sj , s∗)]2
+
CT
c

c∑
i=1

‖ si − s∗ ‖22 . (4.4)

CKWIK-KR computes cs for each query point as:

cs = argmin
c
L(c, x). (4.5)

If optimizing L over all possible values of c is computationally hard, a greedy search

approximation can be applied by sorting all the points according to their distance to the

query point and introducing them one at a time to Equation 4.4. It is straightforward

to update this equation in constant time with each new point. The algorithm then stops

whenever L(c+ 1) > L(c) (described in Algorithm 5). Figure 4.1 shows the behavior of

L as a function of c for a simple example. The picture on the left is a set of 40 training

points scattered in [0, 1] along with a query point. The graph on the right shows the

value of L when c is varied. Different lines denote different values for CT . As you

can see, the loss function first goes down as more points are included in the set. But,

at some point it goes back up as including more training points means using farther

and farther points that might not be related to the query point. The higher values of

CT have a more steep incline because they are less smooth (their transition function is

allowed to change more).

This algorithm dynamically adjusts how many points from the data set are used

to estimate the value at any query point. The number of nearest points used for each
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Figure 4.1: A simple example showing the effect of number of neighbors used in kernel
regression on the error bound function L(x, c). (a) shows a training set along with a
query point, (b) shows the error bound computed for different values of c.

state is selected such that the loss function is minimized. In general, the more samples

we use to estimate a transition function, the closer the estimation becomes to the true

function. On the other hand, the farther the points are from the query points (which is

a direct result of including more points), the less reliable they become. The loss function

L tries to capture this tradeoff. The first term tends to go down as c grows larger, while

the second term goes up. That is why we need to find the optimal c that minimizes

the loss function. As we will see later on, function L bounds the difference between the

means of the estimated and the true transition functions. The total variation between

T̂ (s, a) and T (s, a)) is related to the difference between their means:

dvar(T̂ (s, a), T (s, a)) ≤

√
‖ µ̂s,a − µs,a ‖22

λn
, (4.6)

where λn is the smallest eigenvalue of the covariance matrix Σ (Li, 2009; Lemma 19).

Therefore, the algorithm returns Lvar as the accuracy of the estimate:

Lvar(s) = λnL(s, cs). (4.7)

Next, the theoretical properties of this algorithm is studied.
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Algorithm 5 CKWIK-KR, a learner of transition functions in the CKWIK framework.

1: Inputs: the kernel function k, Lipschitz constant CT .
2: Initialize dataset Da for all a’s.
3: for all timesteps t = 1, 2, · · · do
4: Observe (st, at).
5: Initialize counter i to 0.
6: repeat
7: i← i+ 1.
8: Compute L(i, st) using Eqn. 4.4 and Dat .
9: Compute ŷi using Eqn. 4.3 and Ni(st).

10: until L(i, st) > L(i− 1, st) AND i > 1
11: output (ŷi−1,Lvar(i− 1, st)).
12: Receive st+1 as an i.i.d. sample from T (st, at).
13: Add (st, st+1) to Dat .
14: end for

Sample-complexity Analysis

Let us start by investigating an individual Fa. The set Da contains {s1, s2, . . . , sn}

along with samples from their transition functions {s′1, s′2, . . . , s′n}. Let {P1,P2, . . . ,Pn}

be the multivariate normal distributions representing the transition functions for each

si. In other words, we have s′i ∼ Pi = N (µi,Σ). The following lemma relates the

distribution mean of a query point to that of nearby points, when kernel regression is

applied.

Lemma 15. Let s∗ be a query point and µ∗ be mean of its transition function. If we

have ‖ µi − µ∗ ‖22≤ εi for all the states si ∈ Nc(s∗), we then have:

‖ E [Fa(s∗;Nc(s∗)]− µ∗ ‖22≤
1

c

c∑
i=1

εi. (4.8)

Proof. Without loss of generality, assume that d(s∗, s1) ≤ d(s∗, s2) ≤ · · · ≤ d(s∗, sc).

Define random variable Z to be Fa(s∗;Nc(s∗)), Xi to be the random variable drawn
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from Pi, and ki = k(si,s
∗)∑

j k(sj ,s
∗) . We have:

‖ E [Z]− µ∗ ‖22 =‖
c∑
i=1

kiE [Xi]− µ∗ ‖22 (4.9)

=‖ k1µ1 + · · ·+ kcµc − µ∗ ‖22 (4.10)

=‖ k1µ1 + · · ·+ kcµc − k1µ∗ − · · · − kcµ∗ ‖22

≤ k1 ‖ µ1 − µ∗ ‖22 + · · ·+ kn ‖ µc − µ∗ ‖22 (4.11)

≤ (1/c) ‖ µ1 − µ∗ ‖22 + · · ·+ (1/c) ‖ µc − µ∗ ‖22

=
1

c

c∑
i=1

εi. (4.12)

In this derivation, (4.10) is because of the linearity of expectation operator, (4.11)

is because
∑
ki = 1 and finally, (4.12) is because we assumed the points are sorted

according to their distance to the query point and ki’s sum up to 1.

The following lemma analyzes the accuracy of kernel regression based on the set of

points in Nc(s∗).

Lemma 16. Given 0 < δ < 1, a set of training data Da, and positive integer c ≥ 1, let

La(s∗, Da, c) be the loss occurred by using c neighbors of s∗ in the kernel regression:

La(s∗, Da, c) =‖ Fa(s∗;Nc(s∗))− µ∗ ‖22 .

The following accuracy holds with probability at least (1− δ):

La(s∗, Da, c) ≤

√√√√ ln(2/δ)
∑

sj∈Nc(s∗) k(sj , s∗)2

2[
∑

sj∈Nc(s∗) k(sj , s∗)]2
+
CT
c

c∑
i=1

‖ si − s∗ ‖22 . (4.13)

Proof. Let us first bound the difference ‖ Fa(s∗;Nc(s∗))−E [Fa(s∗;Nc(s∗))] ‖22 or equiv-

alently ‖ Z − E [Z] ‖22. We can rewrite kernel regression as:

Fa(s∗;Nc(s∗)) =

c∑
i=1

kiXi. (4.14)
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Consider random variables kiXi. The boundary of these variables is 0 ≤ kiXi ≤
k(xi,x

∗)∑
k(sj ,s∗)

. Now, apply the Hoeffding inequality (Hoeffding, 1963) to the sum of these

random variables:

Pr(‖ Z − E[Z] ‖22≥ t) ≤ 2 exp

(
−2t2[

∑
k(sj , s

∗)]2∑
k(sj , s∗)2

)
. (4.15)

Given a failure probability δ, we can compute t based on the number of samples c

as follows:

2 exp(
−2t2[

∑
k(sj , s

∗)]2∑
k(sj , s∗)2

) ≤ δ (4.16)

t ≥

√
ln(2/δ)

∑
k(sj , s∗)2

2[
∑
k(sj , s∗)]2

. (4.17)

So, for any t that satisfies Equation 4.17, it is guaranteed that Pr(‖ Z − E[Z] ‖22≥

t) ≤ δ. Using Lemma 15 and the result above, we have:

Pr

(
‖ Fa(s∗;Nc(s∗))− µ∗ ‖22≥ (

1

c

c∑
i=1

εi + t)

)
≤ Pr(‖ Z − E [Z] ‖22≥ t). (4.18)

Therefore, for c samples, the following inequality holds with probability at least

(1− δ):

‖ Fa(s∗;Nc(s∗))− µ∗ ‖22≤

√
ln(2/δ)

∑
k(sj , s∗)2

2[
∑
k(sj , s∗)]2

+
CT
c

c∑
i=1

‖ si − s∗ ‖22,

where the second term is due to the expansion of the definition of εi.

This lemma guarantees that the output of CKWIK-KR is indeed εt-accurate as com-

puted in the algorithm. This lemma also gives detailed information about the behavior

of kernel regression and establishes the relationship between the accuracy of the esti-

mator and the points in the training set. In particular, the estimation error in Equa-

tion 4.13 is decomposed into two different errors: The first term measures how accurate
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we estimate a stochastic quantity—the mean of a probability distribution—using a fi-

nite set of samples; therefore, the error goes down as the sample size goes up. The

second term measures the error caused by not using samples from the same distribu-

tion, but rather from similar distributions (gathered from nearby points); therefore, as

we include more points that are farther away from the query point in our estimation,

the accuracy goes down. Computation of the optimal value of c has to be done online

and is dependent on the relative position of the training data to each query point.

The following lemma bounds the error of kernel regression based on the distance of

the points in Nc(s∗) for any data set Da.

Lemma 17. Given a training data Da, a query point s∗, and an ε1
2CT

-ball around s∗,

if c1 points from Da are in the ε1
2CT

-ball, where c1 is:

c1 >
18√

18ε21
ln(2/δ) + 1− 1

+ 1, (4.19)

the accuracy of CKWIK-KR is bounded by:

‖ Fa(s∗;Da)− µ∗ ‖22≤ ε1, (4.20)

with probability at least (1 − δ) for any input Da, provided that the kernel width σ is

larger than
√

ε1
2CT

.

The proof of this lemma is provided in Appendix A.2 due to its length. The next

step completes our analysis of the sample complexity of CKWIK-KR in the CKWIK

framework.

Theorem 18. LetM be a class of MDPs as defined in Assumption 2, with ‖ S ‖∞≤ 1.

The CKWIK-KR algorithm CKWIK-learns the transition function of any MDP in M

with the following bound:

B(ε, δ,S,A) = O

(√
ln(1/δ)|A|

(
|S|
ε

)|S|/2)
. (4.21)
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Proof. The theorem is proved by bounding the number of times the algorithm outputs

an accuracy εt > ε when δt = δ. It is trivial to show that having δt > δ will not

increase this bound. Consider one of the Fa’s. Denote |S| by m and let ξ be a uniform

discretization over the state space with the following resolution along each axis:

h =

√
2mCT
λnε2

. (4.22)

This discretization populates |ξ| = hm cells. The distance between any two points

in each cell is at most:

max
xi,xj∈ξk

‖ xi − xj ‖22≤
λnε

2

2CT
.

We apply Lemma 17 to each cell ξ setting ε1 = λnε
2. For any query point in a cell,

if there are c1 training points inside ξ(s∗) (as defined in Eqn. A.6), the output of the

regressor is at least ε1-close to the true mean w.p. at least (1 − δ). According to (Li,

2009; Lemma 19), when the mean of two normal distributions are ε-close, their total

variations are
(√

ε
λn

)
-close. Applying this lemma to ε1, we get that the total variation

between the transition function generated by the kernel regression and the true one is

ε.

The only step left to do is to count the number of times a query point with less

than c1 training points in its cell can be encountered—denoted by event G. But, that

quantity is bounded by:

|G| ≤ c1|ξ|

= c1h
m

=

 18√
18ε2

ln(2/δ) + 1− 1
+ 1

(2mCT
λnε2

)m/2

= O
(

(ln(1/δ))1/2
(m
ε2

)m/2)
. (4.23)

The proof is completed by extending this result to consider all the actions.
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4.1.2 The Proposed Algorithm

Algorithm 6 shows the pseudo-code of CF-Rmax, which is an implementation of CKWIK-

Rmax. This algorithm resembles fitted-Rmax in that they both use KR for estimating the

transition function, and they both turn uncertainty in model estimation into optimistic

values. However, the new algorithm takes into account the partially-known estimates of

the transition function in a principled way when it solves its internal model. Therefore,

it creates optimistic values that are tighter to the true value function.

Algorithm 6 CF-Rmax, a model-based algorithm for continuous space MDPs.

1: Inputs: CKWIK-KR regressor F , accuracy εT and confidence δT .
2: Initialize the internal MDP M̂ and its optimal policy π∗

M̂
.

3: for all timesteps t = 1, 2, · · · do
4: Observe st and rt, execute action at = π∗

M̂
(st), transition to st+1.

5: Update F using (st, at, st+1).
6: Update internal MDP M̂ = 〈S + sf ,A, T̂ ′, R′, γ〉,

where T̂ (., a) = Fa(., δT ) and T̂ ′ is defined as:

T̂ ′(s′|s, a) =

{
(1− ψ(s, a)), if s′ = sf

ψ(s, a)T̂ (s′|s, a), otherwise.
(4.24)

7: end for

Sample-complexity Analysis. The sample complexity of CF-Rmax can be di-

rectly derived using the result of Theorem 14 using the CKWIK bounds of CKWIK-KR.

In particular, since the sample complexity of CKWIK-Rmax is:

O
(

Vmax

ε(1− γ)

(
B(ε(1− γ)/Vmax, δ,S,A) + ln

1

δ

)
ln

1

ε(1− γ)

)
,

and the CKWIK sample complexity of AT in CF-Rmax is:

B(ε, δ,S,A) = O

(√
ln(1/δ)|A|

(
|S|
ε

)|S|/2)

The PAC-MDP sample complexity of CF-Rmax becomes:

O

(√
ln(1/δ)|A|

(
Vmax|S|
ε(1− γ)

)|S|/2
+ ln

1

δ

)
. (4.25)
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Again, it is important to note that the lower bound for planning an ε-optimal policy,

which is a much easier problem, is Ω
(
1
ε

)|S|
.

4.1.3 Empirical Results

This section provides some experimental results, demonstrating the performance of CF-

Rmax in several test domains. Two widely-used domains in the reinforcement-learning

literature were used for comparison, as described next.

Mountaincar (Sutton and Barto, 1998). In this domain, an underpowered car tries

to climb up to the right side of a valley, but has to gain its energy through several

back and forth travels to the left of the valley. The state space is 2-dimensional and

consists of the horizontal position of the car x, and its velocity v. The action set

is forward, backward, and neutral, which correspond to accelerating in the intended

direction. Agent receives −1 penalty at each timestep except for when it escapes the

valley to receive a reward of 0 and end the episode. Technical details of this domain

can be found in Appendix C.1.

Puddleworld (Sutton, 1996). In this domain, the agent is placed inside a bounded

region ([0,1],[0,1]) and its goal is to move to a small goal region using 4 available actions:

{north, east, south, west}. Along the way, the agent has to avoid moving over some

parts of the state space marked as puddles. The state space of this domain is the

position of the agent in the world (X,Y ). Each of the 4 available actions move the

agent in the intended direction by some fixed step size to which a small amount of

Gaussian noise is added. Each timestep in Puddleworld accrues −1 penalty if the

agent is outside the puddle regions. The agent receives more penalty when it enters the

puddle. The amount of the penalty depends on how close to the center of the puddle

the agent is. The episode ends when the agent gets to the goal region or a cap of 300

steps is reached. The details of this domain can be found in Appendix C.2.
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Figure 4.2: Performance of CF-Rmax and fitted-Rmax algorithms in Mountaincar.

Experiment Setups

To compare the performance of different algorithms, we evaluated them in an online

reinforcement-learning setting. The parameters of the domains were their default values

as explained in the Appendix C unless specified otherwise. In each experiment, the

algorithm was executed for some fixed E episodes and its sum of collected rewards for

each episode was saved. The whole experiment was repeated 20 times for the sake of

statistical significance.

We first compared CF-Rmax with its sister algorithm fitted-Rmax in Mountaincar.

Both algorithms used σ = 0.3, fitted value iteration (FVI) (§ B.2.2) as the planner and

resolved their models every 50 timesteps. The parameters for FVI for both algorithms

were as follows: a discretization with h = 30 was used to generate the backup points

and 5 samples were used for each Bellman backup. Figure 4.2 shows the result of the

two algorithms in Mountaincar when 50 episodes are used for learning.

Although fitted-Rmax is a very powerful algorithm, CF-Rmax managed to converge

faster to the optimal policy. In particular, fitted-Rmax spent a couple of episodes just

collecting data without using them because most of the states rendered unknown due

to the nature of the Boolean function used to compute known states. CF-Rmax started

using the data right from the beginning, using the continuous knownness function.
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Figure 4.3: Performance of CF-Rmax and fitted-Rmax algorithms in Puddleworld.

Therefore, it did a better job in the early episodes.

The same experiment was performed in Puddleworld. As Figure 4.3 shows, similar

results were obtained. Both algorithms were able to converge to the optimal policy, but

CF-Rmax did better in the early stages of learning.

To get more insight into why CF-Rmax was superior to fitted-Rmax, we investigated

the knownness function in a simple experiment. We selected a part of Mountaincar’s

transition function: f(x, y) = vt − 0.0025 cos(3xt). We then compared the knownness

functions in both algorithms using a training set of 50 points. Figure 4.4(a) shows

the training points in the normalized space [0, 1]2, along with the knownness values

across the entire space for both algorithms in part (b) and (c). The darker parts of

the image indicate smaller knownness values (0 is black and 1 is white). Since fitted-

Rmax used a Boolean function for the knownness, it only generated black and white

regions. Parameters for computation of knownness in both algorithms were selected

in such a way that the algorithms created similar regions with knownness equal to 1.

As you can see in part (b), fitted-Rmax created hard boundaries between known and

unknown regions. This algorithm was not data efficient because it refused to make any

predictions for the black region. The fact that the algorithm completely trusted its

estimates in the close-to-boundary points in the white region and did not make any
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predictions for close-to-boundary points in the black region explains why the algorithm

is data inefficient. On the other hand, CF-Rmax produced a smooth knownness function

that decayed to 0 as it got farther from the training points.

0 0.5 10

0.5

1

(a) Training points (b) fitted-Rmax (c) CF-Rmax

Figure 4.4: Comparison of the knownness functions in fitted-Rmax and CF-Rmax using
data from Mountaincar. Graph (a) shows the training data, (b) and (c) show the
knownness computed in fitted-Rmax and CF-Rmax respectively.

We then tested the effect of varying the kernel width on the performance of both

algorithms in Mountaincar with the same setup. Both algorithms were sensitive to the

value of the kernel width in a classical tradeoff between bias and variance. Small kernel

widths created regressors with very low bias, but spiky, with high variance outcomes.

The effect of this configuration on the performance of CF-Rmax was detrimental. On

the other hand, very high values of kernel width created regressors with low variance

but high bias, which were not able to capture the shape of the transition function.

Again, the effect of this configuration on the RL algorithm was detrimental. The best

configurations happened to be values that created a balance between the bias and

variance of the regressor.

4.2 Factored Learner for Continuous Spaces

In the previous section, we saw how continuous knownness helped balancing exploration-

exploitation in a more data-efficient way in continuous spaces. We also developed the

first algorithm using this concept in the CKWIK framework, and showed that it is

PAC-MDP.

This algorithm is appealing because it marries two lines of works for solving general
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Figure 4.5: The effect of varying the kernel width on the performance of CF-Rmax and
fitted-Rmax in Mountaincar.

continuous MDPs. Kakade et al. (2003) introduced an abstract algorithm called Metric

E3 that learns efficiently in the PAC-MDP framework, but left important implemen-

tation details—such as a concrete way to learn the model and how to glue it to the

planner—to the user. On the other hand, some algorithms (for example, fitted-Rmax)

provided a concrete way of learning the model, without providing any convergence

guarantees. The algorithm we proposed in the previous chapter followed the practical-

ity of fitted-Rmax by providing a concrete algorithm designed for general continuous

MDPs, yet inherited the theoretical properties of Metric E3 by providing a PAC-MDP

bound. This bound relates the number of mistakes the algorithm makes to some rel-

evant quantities, including 1
ε ,

1
1−δ and the complexity of the environment with high

probability.

Unfortunately, one of the common misconceptions about the efficiency of learning in

continuous spaces is that the complexity of a system is measured by the dimensionality

of its state space, which is not the case for general continuous MDPs. In fact, one of

the difficulties of learning in general continuous MDPs is that their complexity scales

exponentially with respect to the dimensionality of their state spaces.

The reason for this scaling mismatch is due to the way the smoothness conditions are

defined in these MDPs. According to Lipschitz-continuity assumption, the difference

between the transition functions of two points is bounded by a linear function of their
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Euclidian distance. With this condition, any information about the transition function

at one point can be used as an ε-close approximation for the transition function of

another point only if the second point lies inside a ball around the first point with a

radius of ε
CT

, where CT is the Lipschitz constant.

It can be shown that given a filling of the space with ε
CT

-balls, the value of the

transition function needs to be specified in at least one point in each ball, or otherwise

an ε-approximation cannot be guaranteed.

It is well-known that the volume of a mathematical space grows exponentially as

the dimensionality increases. For example, if we use 100 points evenly distributed in

a unit interval, we have effectively covered the space with 0.01-balls. Achieving the

same covering in a 10-dimensional unit hypercube will require 1020 points, which is

in fact 1018 times larger than the former1. Therefore, the complexity of a continuous

MDP scales exponentially in the dimensionality of its state space under the Lipshitz-

continuous assumption (2.2).

As a consequence of this phenomenon, our reinforcement-learning algorithm is also

bound to the exponential blowup. In fact, one can show that even computing a near-

optimal policy of a completely known continuous MDP (the planning problem) has

a lower bound that scales exponentially w.r.t the dimensionality of the state space in

general. In particular, Chow and Tsitsiklis (1989) showed that any algorithm computing

an ε-optimal policy in a d-dimensional continuous MDP needs at least Ω(ε−d) samples

from T and R. If the planning problem, which is a much easier problem than learning,

has an exponential lower bound, we certainly cannot hope to construct an RL algorithm

that scales polynomially in the dimensionality of the state space. To summarize, an

algorithm that is allowed to make an exponential number of mistakes w.r.t. the state-

space dimensionality is the best one can achieve in general continuous MDPs in the

PAC-MDP framework.

The same problem, which is also referred to as “curse of dimensionality” or the

“Hughes effect” (Bellman, 1961), has been studied in many disciplines in machine

1Example borrowed from Bellman (1957).
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learning and optimization (Pearson, 1901; Guyon and Elisseeff, 2003; Kriegel et al.,

2009). An intuitive way to attack this problem is to investigate algorithms that avoid

the exponential blowup either by assuming a more structured model class (Draper and

Smith, 1998) or by trying to find patterns and structures directly from the data (Liu

and Motoda, 1998; Guyon and Elisseeff, 2003).

Some of these techniques have been followed up in the reinforcement-learning lit-

erature as well. For example, Strehl and Littman (2008a) studied an algorithm that

provably scaled polynomially with the number of state variables, provided that the

transition function had the form of a linear function. While this restriction may look

very limiting, it provided an insight into how RL methods can be related to meth-

ods from control theory. Also, Brunskill et al. (2009) studied environments where the

transition function can be described in terms of a series of constant functions for a non-

overlapping partitioning of the state space. They introduced an algorithm that would

scale polynomially with the number of partitions of the state space. Assuming that the

environment has relatively few partitions, this algorithm can exploit this information

to provide exponential speedup.

In this section, we consider factorized environments and construct an algorithm

based on CF-Rmax that can exploit prior knowledge about the dependency structure in

the environment (if any) to gain (possibly) exponential speedup in learning.

4.2.1 Factored-state MDPs

In continuous spaces, the state space of an MDP is naturally defined in a factored

form. The state space S is a closed subset of Rn, which means each state s ∈ S can be

represented by a vector of size n. We call each element of this vector a state variable

or a factor of the state. The transition function in general MDPs on the other hand,

is not necessarily representable in factored form. This function maps state-action pairs

to a probability distribution over the next states in their entirety, and therefore the

function T (s′|s, a) might not be decomposable in general. We say a transition function

is decomposable if the state variables of s′ are conditionally independent of each other.
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In other words, we have:

T (s′|s, a) =

|S|∏
i=1

T (s′(i)|s, a). (4.26)

The above equation states that each component of the state at time t + 1 is only

dependent on the components of the state and action at time t, and not on any infor-

mation from time t + 1. This setup is reminiscent of the way DBNs are constructed,

where a graph is formed by using variables at time t and t+ 1 and the dependency set

of all the variables at time t+ 1 contains only variables from time t.

This class of environments is actually very rich and covers a lot of real-life domains.

In fact, it is not very easy to construct a physical control task outside the scope of

this class. Even more so, it is typical for an environment to exhibit some weak form

of decoupling between state variables even across timesteps. In other words, we do not

usually need all the state variables at time t to predict each individual component of

the next state. For example, consider several robots that are placed in an environment.

Each robot has its own set of state variables to identify its current state, and the state of

the environment is the concatenation of all state variables of all the robots. Predicting

the value of each robots’ variables in the next timestep typically requires the current

state of that particular robot, but not the status of the others. We are interested in

providing learning algorithms for environments that fall into this category.

Factorization of a transition function can be formally represented by the following

structure: For each action a, a bipartite graph Ga(X,Y,E) with |X| = |S| and |Y | = |S|

is used to represent the interdependency of factors when action a is performed. Each

node in the X and Y parts of the graph represents one state variable at time t and t+1

respectively. The edge between x(i) and y(j) is missing from E if and only if we have:

T (s′(j)|s, a) = T (s′(j)|s(1), . . . , s(j − 1), s(j + 1), . . . , s(|S|), a), (4.27)

that is, there is conditional independence between the two variables. For example,

Figure 4.6 shows the dependency graphs of a 3-dimensional MDP with 2 actions. The

graph on the left indicates that the value of the first state variable, s(1), at time t+ 1
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Figure 4.6: A simple example of dependency graphs for a 3-dimensional MDP.

is only dependent on the values of s(1) and s(2) at time t when action 1 is executed,

while the value of s(2) at time t + 1 is dependent only on the value of s(2) at time t.

The rest of the graph is interpreted the same way.

The goal of this section is to construct an algorithm that can use these dependency

structures to improve the sample complexity of learning.

4.2.2 FF-Rmax

Factored fitted-Rmax—or FF-Rmax for short—behaves very similarly to CF-Rmax in

that they both use CKWIK-KR to maintain an internal model of the world. They also

augment their internal models by bonus values based on the knownness of state-action

pairs. And finally, they both act greedily with respect to their internal model while

updating their models on a regular basis. The key difference between the two algorithms

is in the way they train their function approximators and how they compute knownness.

This difference is best understood by a simple example of an online regression problem

in the CKWIK framework (Nouri and Littman, 2008).

Suppose we want to online-learn the function z
def
= f(x, y) = ax+b, where a and b are

constants. This function maps R2 to R, but its output is independent of the variable

y, in other words Pr(z|x, y) = Pr(z|x). CKWIK-KR can solve this regression with a

sample complexity that is exponential in the dimensionality (Thm. 18). However, if

the dependency structure in f is known (that is, the independence of z on y), the

algorithm can transform this regression problem into another one that maps R to R.

Consequently, any training data point ((x, y), z) can be converted to (x, z) and fed

into the new regressor. It is obvious that this space reduction does not incur any
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information loss as y does not have any effect on the value of z. After this reduction,

the same regressor can be used with a new sample complexity that is dependent on the

new dimensionality. In general, depending on how many variables are eliminated from

the regression, the sample complexity can be improved exponentially. The process

of mapping the regression problem into another one with a smaller input space is

also referred to as dimension reduction in regression or feature selection in supervised-

learning literature (Geladi, 1986; Fukumizu et al., 2009; Cook, 2007).

The main idea of FF-Rmax is to use the same technique described above to learn the

transition function faster when the dependency structures are known a priori. Since

the output components are uncorrelated, T (s′|s, a) can be factored into T (s′(i)|s, a) for

all i’s. Each of these individual univariate regressions in turn can be transformed into

a simpler regression based on the dependency structure of s′(i) as we saw earlier.

To make things more concrete, let us define factored kernel regression as follows:

Suppose the dependency graph Ga = (X,Y,E) is available for each action a. Let depa,j

be the set of nodes in X that are adjacent to y(j) in Ga:

depa,j = {x(i)| x(i) ∈ X, (x(i), y(j)) ∈ E, y(j) ∈ Y, Ga = (X,Y,E)}. (4.28)

Also, let (s⊥depa,j) be the projection of vector s into the space spanned by the

components of depa,j . Assuming that the output components are uncorrelated, a fac-

tored kernel regressor (FKR) breaks up the estimation of T (.|., a) into |S| univariate

kernel regressors F ja , each estimating the value of one of the components of the next

state. With any training data (st, at, st+1), each F jat is updated by (st⊥depat,j , st+1(j)).

The response for a query (st, at, δt) is constructed using the response of F jat ’s for the

query point (st⊥depat,j ,
δt
|S|). Let (ŷj , ε

j
t ) be the output of F ja . The final output ŷ is

constructed by concatenating all the ŷj ’s. The accuracy of the estimate is computed

using:

εt =

|S|∑
i=1

εit. (4.29)

When each F j is a CKWIK-KR, we call the factored state-space learner CKWIK-FKR.
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The pseudo-code is available in Algorithm 7.

Algorithm 7 CKWIK-FKR, a factored learner of transition functions in the CKWIK
framework.

1: Inputs: Kernel function k, Lipschitz constant CT , and Ga’s .
2: Initialize dataset Da for all a’s.
3: Initialize all F j ’s with (k,CT ).
4: for all timesteps t = 1, 2, · · · do
5: Observe (st, at).
6: Query F j with (st⊥depat,j , at) using the data (Dat⊥depat,j) for all j’s.
7: Construct ŷ by concatenating all ŷj ’s.
8: Compute ε(st, at) according to Eqn. 4.29.
9: Observe st+1 as an i.i.d. sample of T (st, at).

10: Add (st, st+1) to Dat .
11: end for

FF-Rmax uses CKWIK-FKR as the regressor for learning an internal model of the

world. Apart from this regressor, this algorithm is the same as CF-Rmax developed

earlier. Algorithm 8 contains the pseudo-code of FF-Rmax.

Algorithm 8 FF-Rmax, a factored model-based learner for continuous MDPs.

1: Inputs: Accuracy εT , confidence δT , and dependency graphs Ga for all a’s.
2: Initialize CKWIK-FKR regressor F using Ga’s.
3: for all timesteps t = 1, 2, · · · do
4: Observe st and rt, execute action at = π∗

M̂
(st), transition to st+1.

5: Update F using (st, at, st+1).
6: Update internal MDP M̂ = 〈S + sf ,A, T̂ ′, R′, γ〉,

where T̂ (., s) = Fa(., δT ) and T̂ ′ is defined as:

T̂ ′(s′|s, a) =

{
(1− ψ(s, a)) if s′ = sf

ψ(s, a)T̂ (s′|s, a) otherwise.
(4.30)

7: end for

4.2.3 Discussion

This algorithm is closely related to factored E3 (Kearns and Koller, 1999) and factored-

Rmax (Guestrin et al., 2002; Strehl, 2007) for finite MDPs. The lower bound for plan-

ning in finite MDPs has a polynomial dependency on the number of available states.

However, the state space of many complex environments is presented to the learner in

terms of a combination of factors (or state variables), each taking up value from a finite

domain. This set of environments, which are modeled by the so-called DBN-MDPs,
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has been widely used in many real-life applications (Boutilier et al., 1996). But, it also

brings challenges to the learner as the total number of states in such MDPs grows ex-

ponentially in the number of factors. The two aforementioned algorithms are variations

of E3 and Rmax algorithms. They take in the graphical structure of the dependency

between the factors as input and use it to learn the transition function faster. The

sample complexity of both algorithms are proved to have an exponential dependency

only on the size of the maximum dependency set of any factor instead of the total

number of factors. FF-Rmax implements the same machinery used in these algorithms

to achieve dramatically better sample complexity in continuous spaces.

The factorization of the state space is even more natural in continuous spaces.

Finite MDPs are defined using a nonempty set of states, that is the states are usually

indexed by natural numbers. Unless an explicit factorization is believed to exist for

the problem at hand, it is not possible to provide a graphical dependency structure for

it. Therefore, factored state-space learners in finite spaces become relevant only if the

underlying domain admits to the factorization.

The state space of continuous MDPs, on the other hand, are defined as a closed

subset of Rn, which is by definition in a factored form. Therefore, any continuous MDP

has a corresponding dependency graph in principle. Of course, this fact does not mean

FF-Rmax always perform exponentially better than CF-Rmax. But, we argued that

in the cases where the dependency structure is a bipartite graph and the maximum

dependency set of nodes is smaller than the number of state dimensions, the algorithm

can use this prior information to dramatically decrease its sample complexity.

The two above conditions that allow FF-Rmax to gain performance improvement

over CF-Rmax are not very limiting. The conditional independence of state variables

at each timestep, which results in a bipartite graph, naturally occurs in many real-life

systems, especially in those based on physical domains. For example, it is easy to show

that all the deterministic domains belong to this class, as well as all the stochastic

domains with a noise term selected i.i.d. from each dimension.

The second assumption is perhaps more restricting because it requires that only a
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subset of state variables at time t be necessary for estimating the value of each factor

at time t+ 1. But, we can get insight into the generality of this constraint by looking

more closely at the process of constructing the state space of a complex domain. From

the perspective of an application designer, the factors that constitute a state usually

come from different sources, like different sensory information on a robot or different

properties of an object in an environment. It is natural in many complex domains that

some of the factors be independent of each other. For example, a controller for a car

might need information about the position of the car as well as the amount of gas in

the tank, but predicting the amount of gas is independent of the position of the car.

Another set of environments that makes a good example of factored-state MDP are

the ones that track information about multiple objects. For example, if we maintain

information about multiple cars in an environment, chances are that predicting the

properties of one car is independent of predicting those of others.

Perhaps the most limiting part of the algorithm that may affect its usability in

practice is that the user needs to know the dependency structure of the state variables

beforehand. The algorithm can still use partial information if a complete dependency

relationship cannot be established. In this case, the more thorough the user’s informa-

tion is about the independence structure, the faster the learning becomes. To formalize

this idea, let G1 ≥ G2 on graphs denote that edge set E1 is a superset of E2. The algo-

rithm always converges to a near-optimal policy if we have Ga ≥ G∗a for all a’s, where

G∗a is the true dependency graph of action a and Ga is the graph that was given to the

learner. In other words, as long as all the true dependencies are present in the input

graph, the algorithm will indeed converge to a near-optimal solution. Of course, the

number of mistakes will increase exponentially as the size of the maximum dependency

set increases, and in the degenerate case, if all Ga’s are complete bipartite graphs, the

sample complexity of the algorithm becomes the same as CF-Rmax. The algorithm

might never find a near-optimal solution if any dependency edge is omitted from the

input graphs. Hence, a good practice in the design stage is to be cautious about the

dependencies and if one is not sure whether two variables are dependent on each other

or not, it is important to assume they are.
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4.2.4 Analysis

According to Theorem 14, the sample complexity of FF-Rmax is directly dependent

on the CKWIK sample complexity of the factored transition function learner. So, we

start by analyzing the sample complexity of Algorithm 7 in the CKWIK framework.

The next theorem states that the sample complexity of CKWIK-FKR is exponentially

dependent on k instead of |S|, where k is the maximum size of the dependency sets.

Proposition 19. Let M be a continuous state-space MDP according to Assumption 2.

Assume that a set of dependency graphs Ga is provided. Let k be the maximum size of

the dependency sets. The CKWIK-FKR algorithm CKWIK-learns the transition function

of M with the following bound:

B(ε, δ,S,A) = O

(√
ln(1/δ)

|S|
|A|2

(
|S|2

ε

)k/2)
.

Proof. The proof is done in two steps: First, we show that the output of the algorithm

is indeed εt-close to the true function with probability at least (1− δt), and second, we

bound the number of times εt is bigger than ε.

To show that the first condition holds, consider two points x1 and x2 in Rn. If we

have (x1(i)− x2(i))2 ≤ εi with probability at least (1− δ/n) for all i’s, we also have:

‖ x1 − x2 ‖22≤
n∑
i=1

εi, w.p. (1− δ). (4.31)

To see why, let Ai be the event that (x1(i) − x2(i))2 > εi, which according to the

assumption has probability at most Pr(Ai) = δ/n. Apply the Union bound on the set

of events Ai. The probability that none of these events happens is bounded by:

Pr

(
n⋂
i=1

Ai

)
≥ 1−

n∑
i=1

δ

n
= 1− δ.

This quantity is the probability that (x1(i) − x2(i))2 ≤ εi holds for all i’s. In this
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case, the Euclidian distance between the two points is computed as:

‖ x1 − x2 ‖22 =
n∑
i=1

(x1(i)− x2(i))2

≤
n∑
i=1

εi,

which is exactly the accuracy parameter computed by CKWIK-FKR in Equation 4.29.

The second part is proved by observing that εt > ε iff εit > ε/n for at least one εit.

But, the number of times each εit is larger than ε/n when δ/n is given is bounded by

BCKWIK-KR(ε/n, δ/n, ki, |A|), where ki = maxa depa,i. Putting it all together, we get:

B(ε, δ,S,A) = O

(√
ln(1/δ)

|S|
|A|2

(
|S|2

ε

)k/2)
.

The sample complexity of FF-Rmax can be computed based on the result of The-

orem 14 and the CKWIK sample complexity we just derived. Putting these results

together, we get:

O

(√
ln(1/δ)

|S|
|A|2

(
Vmax|S|2

ε(1− γ)

)k/2
+ ln

1

δ

)
,

which is exponentially dependent on the maximum size of the dependency set. This

result contrasts the exponential dependence on the dimensionality of the state space in

the CF-Rmax algorithm.

4.2.5 Experimental Results

This section provides empirical results for FF-Rmax. Several experiments were per-

formed to illustrate the benefits of factored learning.

The first environment in which we tested FF-Rmax was an extension of Puddle-

world called n-Puddleworld. In this domain, the 2-dimensional box of the original

domain was replaced by an n-dimensional unit hypercube. The set of actions was also
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extended to include two actions per dimension for moving the agent along that dimen-

sion, resulting in a total of 2n actions. The puddles and the goal region were projected

into the extra dimensions (that is, only the first two state variables were used to decide

whether the agent was in a puddle or the goal region). With this setup, it is straight-

forward to show that the value functions of all the n-Puddleworlds are the same. The

technical details of this domain are presented in Appendix C.2.1.

The n-Puddleworld domain provides a natural way to factor the transition func-

tion. Independent of the state space dimensionality, the dependency sets are always

depa,j = {xj} because the value of a state variable is independent of other variables

(due to the grid-based navigation).

The first experiment compared the performance of CF-Rmax with FF-Rmax in 4-

Puddleworld. The experiment was performed in 50 episodes, each having a cap of 300

steps. FF-Rmax was given the dependency graphs of the environment. Other parameters

were selected as in Section 4.1.3. Figure 4.7 shows the result of this experiment. As

was expected, CF-Rmax was not able to learn the optimal policy in the short amount of

time given to it because it had to explore a 4-dimensional space. It was only successful

in learning to avoid the puddles. However, FF-Rmax used the independence sets to

eliminate 3 out of 4 input dimensions for estimating each output component. Therefore,

its performance hardly changed from 2-Puddleworld.

To put this result into perspective, we tried the same experiment in n-Puddleworld

for n = 2, 3, 4, 5. For each domain, the average collected reward per episode was

reported. The x-axis in Figure 4.8 shows the dimensionality of the domain, while the

y-axis shows the average collected reward per episode.

Although CF-Rmax is a very powerful algorithm, its performance dropped quickly

because the number of collected samples in 50 episodes was just not enough to cover

higher than a 3-dimensional space. On the other hand, the performance of FF-Rmax was

not directly dependent on the dimensionality of the space. Instead, it was dependent

on the maximum size of the dependency set, which was always 1 independent of n. For

that reason, the algorithm performance did not suffer much with the introduction of
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Figure 4.7: Performance of FF-Rmax and CF-Rmax in 4-Puddleworld.
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more dimensions in the environment.

The gap between the two lines signifies the effectiveness of factored learning. In par-

ticular, the difference between the performance of the two algorithms in 4-Puddleworld

is close to the difference between the optimal and random policies.

Similar to the experiment for CF-Rmax, we examined the knownness function to

get more insight into why the performance of FF-Rmax was much better. Fifty points

were generated from the state space—shown in Figure 4.9(a)—with the target function

f(x, y) = x+0.05+N (0, 0.01), which is part of the transition function of Puddleworld.

The FF-Rmax algorithm was told that the output is not dependent on y. The heat-

map graph in Figure 4.9(b) shows the knownness computed in the entire state space

using CF-Rmax and Figure 4.9(c) shows the knownness of FF-Rmax. Dark red signifies

a completely known state and dark blue means a completely unknown state2. While

the number of training points in the top center part of the state space was not very

high, FF-Rmax produced a very high knownness value because it knew the y dimension

is irrelevant to the regression problem at hand. So, in a sense, it allowed for a much

broader generalization along the y-axis.

0 0.5 1

0.5

1

(a) Training points (b) CF-Rmax (c) FF-Rmax

Figure 4.9: Comparison of the knownness function in CF-Rmax and FF-Rmax using data
from Puddleworld. The dark red in the heat-map graphs signifies a completely known
state and dark blue is completely unknown.

The next experiment the algorithms were tested on was a real robotic task. This

environment was inspired by Puddleworld, but implemented a navigation task using

2For a print in black/white, the dark red area will be dark gray (the area in the middle), and the
areas with lower knownness values are represented with lighter grays. The completely unknown areas
are black around the edges of the pictures, which correspond to dark blue.
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an Aibo Robot—which is a four-legged dog robot by SONY. In this task, an Aibo was

placed inside a closed field and had to navigate to a tiny goal region. To create a more

interesting version of the puddles, a moving object called Bumbleball was introduced

into the environment, and the robot had to avoid it. Bumbleball is a motorized toy

ball that randomly moves around. The state of the system consisted of five variables:

position and orientation of the robot and position of the ball. The robot was equipped

with 6 actions for moving forward and backward, turning right and left, and strafing

right and left. This set of actions was more restrictive than the one in Puddleworld.

Since the robot was not holonomic, it had to mix turns and walks to move in an intended

direction. Technical details of this environment can be found in Appendix C.4.

This experiment was selected because it provided an example of a situation where

factorization could be performed easily in a real-life domain. Given the two objects

in the world (i.e., the robot and the ball), it was easy to observe that the movement

of the robot and the ball were almost independent of each other. Therefore, a set of

dependency graphs that reflected this independence was easily created without having

an in-depth knowledge of how the robot works.

The goal of this experiment was to learn as much as possible with only 3000 steps.

Two algorithms were tested in this domain: CF-Rmax and FF-Rmax. Both algorithms

used the same set of parameter values. The kernel width was hand-tuned on a simulator

to 0.8 and planning was redone every 20 steps. Finally, the whole experiment was

repeated 3 times.

Table 4.1 summarizes the result of this experiment. To get a sense of what the

numbers mean in the table, we also included the results of a randomly moving agent.

As you can see, CF-Rmax was not able to perform much better than the random agent.

Again, FF-Rmax learned much faster in this domain because it had prior access to the

dependency graphs of the state variables. In particular, it quickly learned to avoid the

ball even in the early stages of learning. This experiment showed how factorization

can be used in applications with real data to significantly improve upon state-of-the-art

algorithms.
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Algorithms: Random CF-Rmax FF-Rmax

Total cumulative reward: −24269 −21461 −3917.0
Number of collisions: 533 463.7 38
Percent finished episodes: 8.6% 13% 81.3%

Table 4.1: Performance of three algorithms in the Bumbleball domain.
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Figure 4.10: The true dependency graph of n-Mountaincar. This structure was the
same for all actions.

The last experiment we considered for FF-Rmax investigated the effect of hav-

ing imperfect dependency graphs. For this experiment, we selected another domain

called n-Mountaincar as it had a more complicated dependency structure than n-

Puddleworld. This new environment extended Mountaincar in the same way n-

Puddleworld extended Puddleworld. In an instance of n-Mountaincar, n cars were

placed in n parallel worlds with the same three available actions. At the beginning of

each experiment, the effect of different actions on each car was randomly permuted.

For example, action right might have moved the first car to the right while moving the

second car to the left. The goal of the experiment was to drive the first car to the top

of the hill. Hence, similar to n-Puddleworld, the value function of n-Mountaincar

was the same for all values of n.

The dependency graphs of this environment (which are the same for all the actions)

are presented in Figure 4.10. The next state of each car is dependent only on the

previous state of that particular car. We called this set of graphs Gtrue.

In addition to the true dependency graph, two other graphs were also given to FF-

Rmax to illustrate what happens when the graphs are not accurate. The first set of
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Figure 4.11: Two alternative dependency graphs for 3-Mountaincar. The one in (a)
is a conservative one because its edge set is a superset of the true edge set. The one in
(b) is completely wrong because it misses some important dependencies.

graphs were generated from Gtrue by making the velocity of each car dependent on

the position of half of the cars. We called these graphs Gconservative as they were a

superset of the true graphs. The second set was constructed from Gtrue by connecting

the velocity of each car to the position of the next car instead of its own. We called

these Gwrong as they described a wrong set of dependencies. Figure 4.11 shows these

two dependency sets for 3-Mountaincar.

Figure 4.12 shows the results of executing CF-Rmax as well as FF-Rmax on n-

Mountaincar for different values of n when the three aforementioned graphs were

provided. FF-Rmaxtrue did not suffer much from adding more dimensions to the envi-

ronment because it was only dependent on the maximum size of the dependency set,

which was 2 in all the domains. FF-Rmaxconservative did not scale well as its maximum

dependency set was dependent on n. Therefore, as the dimensionality grew larger, it

needed exponentially more samples to learn. But, it still performed better than CF-

Rmax, which treats all the variables as dependent on each other. FF-Rmaxwrong was

not able to solve any of the environments as it did not include the variables that were

necessary to estimate the transition function. This experiment demonstrated the fact

that it is important to make sure none of the true dependencies between the variables

are missing from Ga’s. Although being conservative when the true dependencies are

not known might hurt the sample complexity of the algorithm, removing an important
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Figure 4.12: The result of CF-Rmax and three versions of FF-Rmax on n-Mountaincar.

edge by mistake can completely ruin the convergence behavior of the algorithm.
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Chapter 5

Automatic Discovery of Relevant Features

Chapter 3 introduced a novel PAC-MDP algorithm for behavior learning in general

continuous MDPs. While this method was the first practical algorithm with theoretical

guarantees in general continuous MDPs, Section 4.2 showed that the problem of the

“curse of dimensionality” still looms large in complex domains, and unless we find a

way to take out the exponential dependency on the dimensionality of the state space,

our algorithms cannot hope to scale well to real-life complex domains.

The last chapter also introduced one way to get rid of the exponential dependency. It

showed how prior knowledge about the dependency structure between the state variables

can be used to exponentially decrease the sample complexity of CF-Rmax in continuous

spaces. However, a big challenge still remained for using FF-Rmax in practice, and that

was obtaining the dependency structures beforehand.

From a system designer’s perspective, unless extensive knowledge of the system can

be obtained from an expert, only the most obvious independencies can be established.

So, in the more general cases where the environment is not fully known to the de-

signer in advance, FF-Rmax does not quite achieve the goal of dealing with the curse of

dimensionality.

This chapter investigates some other machine-learning techniques for dealing with

high-dimensional data and the curse of dimensionality, and introduces a way to incorpo-

rate them into a reinforcement-learning algorithm. The goal of the proposed algorithm

is to: (1) automatically discover the relevant dimensions of the data without the need for

the user to provide them a priori, and (2) incorporate that knowledge into exploration

to reduce the sample complexity of learning.



75

5.1 Background

A classic approach in machine learning for dealing with high-dimensional spaces is to

explicitly use a simpler representation of data by projecting it to lower-dimensional

spaces—known as dimension reduction. In fact, the history of using dimension reduc-

tion in machine learning goes back several decades, with a large number of success

stories (Jolliffe, 1986). Methods such as principal component analysis (PCA) have long

been used in various scientific disciplines as a preprocessing step for handling high-

dimensional data, and are now considered standard for dealing with complex data.

More recently however, the applicability of these methods has been extended a great

deal, thanks to advances in the field of statistical learning theory. Robust dimension

reduction in regression using nonlinear kernel transformation functions is an example

of such an advance (Weinberger and Tesauro, 2007; Fukumizu et al., 2009).

The idea of dimension reduction has also been studied in the reinforcement-learning

community. For example, Kolter and Ng (2009) and Parr et al. (2008) learned the rel-

evant basis functions (for example, from a large pool), when approximating the value

function in the context of least-squares temporal difference learning (LSTD). Discarding

irrelevant basis functions reduces the number of free parameters and provides a more

overfitting-resistant estimation. Some research makes an even tighter connection to the

dimension-reduction literature by directly using some of the existing techniques and tai-

loring them to the RL framework. For example, Smart (2004) used manifold learning for

low-dimensional representation of the value function, and Mahadevan (2009) proposed

a framework using Laplacian operators for representing and controlling MDPs.

The main contribution of this dissertation has been providing data-efficient explo-

ration techniques. In particular, this chapter provides a method for using dimension

reduction to attack the exploration problem in continuous state-space problems, and

because of the focus on exploration, this research is orthogonal to existing dimension-

reduction work in RL, which has emphasized on either statistical efficiency of learning

or exploitation.
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In what follows, dimension reduction is first studied in a broader context of regres-

sion. Then, an RL algorithm is introduced that uses dimension reduction for faster

learning.

5.2 Dimension Reduction in Regression

The task of dimension reduction in regression (DRR) is to find a low-dimensional rep-

resentation of the input space such that the transformed data can predict the output

independent of the original covariates. To be more precise, let us define the data as a

set of observations of the form (x, y), where x ∈ Rm and y ∈ Rl, and the regression as

the problem of estimating the conditional probability density of y given x.

The task of DRR is to find a transformation function Φ : Rm → Rr, with r <

m, such that x and y are conditionally independent given the transformation Φ(x)

(Fukumizu et al., 2009). For convenience, we use matrix notation X to denote the row-

wise concatenation of xTi for i = 1 . . . n. We call the regression univariate whenever

l = 1, and multivariate if l is greater than 1.

Here, DRR is investigated through kernel regression, which is a nonparametric and

nonlinear technique (as discussed in Chapter 4). We show how computing a linear

transformation function can be translated into learning a customized metric for kernel

regression, and provide an efficient way of doing so. We also briefly overview some

other techniques for performing DRR from the literature that might be useful for RL

algorithms.

5.2.1 Kernel Regression and Metric Learning

Chapter 4 introduced CKWIK-KR, which performed kernel regression in the CKWIK

framework. Here, a special type of kernel regression is developed to perform dimension

reduction in regression. This work is built on the work of Weinberger and Tesauro

(2007) on univariate kernel-metric learning.
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To reiterate, kernel regression computes an estimate using the following equation:

ŷ∗
def
= f̂(x∗) =

∑n
i=1 k(x∗, xi)yi∑n
i=1 k(x∗, xi)

, (5.1)

where k(., .) ≥ 0 is the kernel function. Here, we focus on the Gaussian kernel :

k(xi, xj) =
1

σ
√

2π
e−

d2(xi,xj)

σ2 , (5.2)

where d is the distance metric and σ is a constant that determines how fast the kernel

decays with respect to d.

Metric learning refers to the tuning of the distance function in the kernel so as to

minimize the regression error. For example, if one of the dimensions of the input space

is irrelevant to the true function f , a distance metric that is oblivious to that dimension

is expected to achieve better results.

The example in Figure 5.1 demonstrates this relationship. Suppose we need to

estimate the value of the function f(x, y) = ax + b at the query point q1 using the

value of the function at the training points t1, . . . , t12. The ellipsoids in both images

are equidistant contours of two different metrics: The one on the left is the Euclidian

distance and the one on the right is a metric that is stretched along the y dimension. It

is easy to see that the kernel regressor that uses the metric on the right side will have

a better estimation at the query point because it puts more weights on the values of

t1, . . . , t6 than the points t7, . . . , t12. Since f is only dependent on x and not y, all the

points t1, . . . , t6 and q1 have the same output value. Therefore, putting more weight

on t1, . . . , t6 results in a better prediction of function at a1 by making better use of the

data.

To tune the metric, we must first select a differentiable distance function with respect

to some parameter θ. This setup allows us to perform gradient descent to find the

optimal value. More precisely, let L be a loss function defined by the cumulative

leave-one-out error of the training set: L =
∑

i ‖ yi − ŷi ‖22. The metric-learning

algorithm updates θ iteratively using the gradient descent rule: ∆θ = −α∂L∂θ , where



78

1t

2t

t

1t

2t

t3t

1q

4t
10t 11t 12t9t8t7t

3t

1q

4t
10t 11t 12t9t8t7t

5t

6t
5t

6t

(a) (b)

1

Figure 5.1: A simple example of a set of training points and a single query point in
2D along with two different metrics: (a) Euclidian, (b) a customized metric based on
Euclidian that is stretched along the Y axis.

α is a learning rate (Nouri and Littman, 2010). Any differentiable distance function

works in this procedure. Here, we use the Mahalanobis metric, which can be written

as:

d2m(xi, xj) = (xi − xj)TM(xi − xj), (5.3)

where M can be any symmetric positive semi-definite matrix. Basically, the matrix

M provides a way to customize the Euclidian metric by skewing and rotating the

equidistant contours in any direction; Figure 5.1 shows one such transformation. In

the degenerate case, setting M = I allows Mahalanobis metric to capture the Euclidian

metric. Unfortunately, it is not easy to learn the matrix M directly. Since the matrix

has to be positive semi-definite, the learning becomes a nonlinear optimization, which

is computationally hard. But, we can use the decomposition M = ATA to learn A

instead of M. The benefit of this decomposition is twofold: First, the matrix A is

totally unconstrained (Strang, 1980) and optimization can be done via regular gradient

descent methods; second, matrix A provides a mapping between dimension reduction

and metric learning as we will see shortly. Given the decomposition, we can write the

Mahalanobis metric as:

d2m(xi, xj) =‖ A(xi − xj) ‖22 . (5.4)
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We use subscripts on k to indicate what metric is being used inside the kernel.

For example, ku denotes the kernel function with the Euclidian metric and km denotes

Mahalanobis. The following result shows how to compute the gradient of the loss

function when the Mahalanobis metric with a Gaussian kernel is used.

Proposition 20. The gradient of L when the Mahalanobis metric is used in the kernel

function is:

∂L
∂A

= 4
∑
i

(ŷi − yi)
∑

j(ŷi − yj)Akm(xi, xj ; A)xijx
T
ij∑

j 6=i km(xi, xj ; A)
. (5.5)

Proof. Let xij be (xi − xj) and kij be km(xij). The gradient can be expanded as:

∂L
∂A

=
∂L
∂ŷ
· ∂ŷ
∂k
· ∂k
∂d2
· ∂d

2

∂A
.

To compute ∂L
∂A , we can start backward and compute ∂d2

∂A , ∂k
∂A , and ∂ŷ

∂A in turn.

∂d2

∂A
= 2Axijx

T
ij

Therefore, the gradient of the kernel function is:

∂km
∂A

=
∂

∂A
exp(−d2m(xij))

= −2(Axijx
T
ij)kij .
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The gradient of ŷi is:

∂ŷ

∂A
=

∂

∂A

∑
j kijyj∑
j kij

=
−2
[∑

j(Axijx
T
ij)kijyj

]
·
∑

j kij(∑
j kij

)2
−
−2
[∑

j(Axijx
T
ij)kij

]
·
∑

j kijyj(∑
j kij

)2
=
−2
∑

j(Axijx
T
ij)kijyj∑

j kij
−
−2
[∑

j(Axijx
T
ij)kij

]
· ŷi∑

j kij

=
−2
∑

j(Axijx
T
ij)kij(yj − ŷi)∑
j kij

.

Given these results, the gradient of L is:

∂L
∂A

=
∂

∂A

∑
i

(yi − ŷi)T(yi − ŷi)

= 4
∑
i

(ŷi − yi)
∑

j(Axijx
T
ij)kij(ŷi − yj)∑
j kij

. (5.6)

As with all other local search methods, this process of learning A is dependent on

its initial value and might get stuck in local minima. Multiple starting points for A

can be used to resolve this issue, although we did not find it necessary to do so in our

implementations. Initial values of A could be I or a totally random matrix. When

used in the RL setting, where the dimension reduction is applied repetitively, previous

values of A are also good choices of starting points.

A challenging problem in kernel regression in general is to make sure the different

dimensions of the input space have the same meaning, otherwise using the Euclidian

metric does not make sense. For example, if one of the input dimensions is the weight of

an object measured in kg, and another dimension is its velocity in m/s, these two are not

directly comparable with each other unless they are somehow intelligently normalized.
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This normalization is not always easy. The user has to first decide the right unit for

each dimension to make the Euclidian distance makes sense. For example, given that

the unit used in the velocity is fixed, representing weight in terms of grams, pounds,

or kilograms creates very different distances. Furthermore, the user has to make a

justifiable numerical connection between possibly two totally unrelated numbers, which

is not always easy.

Since the optimized A is a completely data-driven distance metric, we do not have

to normalize the data points anymore. The self-adjusting A automatically finds a

normalization that best fits the data. In fact, the parameter σ and the leading coefficient

in the kernel function can also be omitted, as they are also captured inside A. Therefore,

we can simply replace the Gaussian kernel in Equation 5.2 with the following one:

k(xi, xj) = e−d
2(xi,xj). (5.7)

Tuning the constants in Equation 5.2, which are eliminated in the above equation,

is one of the crucial steps in regular kernel regression. For example, the parameter σ,

which is known as kernel width or kernel radius, acts as a smoothing parameter. High

values of σ create kernel functions that are more widely-spread, and smaller values create

more spiky functions. Fine-tuning the value of this parameter involves having a good

understanding of the problem at hand, and its value greatly affects the performance of

the regression. As an example, Figure 5.2 compares two values of σ for a 1D regression

problem using a set of training points. Part (a) shows the shape of the kernel function

when σ = 0.1 and (c) shows the same kernel with σ = 1.0. As you can see, the larger

values of σ produce flatter functions. The slim dotted lines in parts (b) and (d) are

both the same function y = cos(x). The regressors have access to training data from

this function, which are shown in both images by the (+) signs. The solid line in part

(b) is the outcome of kernel regression when the kernel function in (a) is used, and part

(d) shows the same kernel regression when the kernel in (c) is used. The output in (d)

is much smoother than (b) because it allows for more generalization to happen across

the space. Because of the smoothing, (b) provides a regressor with less variance, but
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higher bias. Unfortunately, deciding on the right value of σ that best balances variance

and bias is a challenging task and often requires an optimization of its own (Sheather

and Jones, 1991). The approach in this chapter for self-adjusting A automatically

eliminates the need to pick the right bandwidth.
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Figure 5.2: Two kernel functions with σ equal to 0.1 and 1.0 are displayed in (a) and
(c) respectively. Kernel regression with kernels from (a) and (c) are used to estimate a
function in (b) and (d).

Equation 5.4 reveals that kernel regression with the Mahalanobis metric is equivalent

to regular kernel regression after the transformation X ← XAT. So, A plays the role

of the transformation function in DRR. It is important to note that this transformation

does not explicitly reduce the dimensionality of the data as in a typical DRR application.

But, kernel regression does not care about the dimensionality of the points, as long as

the correct distance metric is used. Therefore, explicit dimension reduction is not

necessary in this case.



83

Nevertheless, we can still incorporate explicit dimension reduction into the metric-

learning process if our algorithm design requires it. For example, we can construct

more complex regressors by transforming the data into a lower-dimensional subspace

as a preprocessing step, and then using a more appropriate regressor afterward. This

step is reminiscent of the commonly-used ideas of unsupervised data preprocessing

to simplify data representation before performing the actual learning (Jolliffe, 1986;

Fukumizu et al., 2009).

If the desired target dimensionality is known beforehand, forcing A to be an (r×m)

matrix ensures that a transformation that maps the data into the r-dimensional space

is directly learned. If the target dimensionality is not known ahead of time, we can

use an unsupervised dimension-reduction method after the XAT
m×m transformation.

In particular, it can be shown that directly learning Ar×m is similar to learning Am×m

and mapping (XAT
m×m) into an r-dimensional space using PCA. Refer to Weinberger

and Tesauro (2007) for more details.

Algorithms 9 and 10 highlight the details of the whole process depending whether

we wish to perform the explicit dimension reduction using PCA or not. The W in line 7

of Algorithm 10 is the transformation matrix of PCA.

Algorithm 9 Multivariate MLKR, a metric learning algorithm for kernel regression.

1: function train(X,Y)
2: Initialize A.
3: repeat
4: ∆A← −α ∂L

∂A {using Eqn. 5.6}
5: until ‖ ∆A ‖∞< threshold
6: Return A.
7: end function

8: function test(x,A)
9: return f̂(x; A) using Eqn. 5.1;

10: end function

We are now ready to introduce a variant of MLKR that is suitable for model-based

RL algorithms.
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Algorithm 10 Multivariate MLKR with explicit dimension reduction.

1: function train(X,Y)
2: Initialize A.
3: repeat
4: ∆A← −α ∂L

∂A {using Eqn. 5.6}
5: until ‖ ∆A ‖∞< threshold
6: X̃← XAT;
{ explicit dimension reduction step:}

7: W = PCA(X̃);
8: X̃← X̃WT;
9: Return W.

10: end function

11: function test(x,W)
12: x̃←Wx;
13: return f̂(x̃) using Eqn. 5.1 with ku kernel, and trained on (X̃,Y) ;
14: end function

5.2.2 Factorization of MLKR

For a given regression, the minimal of all the input subspaces that maintains the con-

ditional independence of y and x is called the central subspace (Fukumizu et al., 2009).

This concept provides important insight into the statistical efficiency of dimension re-

duction as it signifies what portion of the input data is redundant or irrelevant.

Estimating the transition function of a continuous state-space MDP involves solving

a regression problem from R|S| to itself, with the target covariates being the next-state

components. A large class of real-life environments including most physical control

problems have a factorized transition function in which the individual components of

the next state are independent of each other (i.e., Pr(y(i)|x, y(j)) = Pr(y(i)|x) when

i 6= j). In fact, coming up with a control problem that is not in this class is not an

easy task. For this type of environments, we introduce a factorized variation of MLKR,

or FMLKR, that achieves better statistical efficiency. This improvement is achieved

by breaking up the original regression into several easier ones with smaller central

subspaces.

This extension is similar to the factorization used in FF-Rmax and is pretty straight-

forward to construct: the Rm → Rl regression is broken up into l univariate MLKR

problems, one for each output component. Upon receiving the training data set, the
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algorithm feeds {(x1, y1(j)), ..., (xn, yn(j))} to the j-th MLKR learner, where yi(j) is

the j-th component of yi. To estimate the value of a query point x∗, it queries all MLKR

learners and constructs ŷ∗ from their outputs.

It can be shown that the central subspace of each univariate regression is smaller

than or equal to the central subspace of the original multivariate formulation. In

fact, since each univariate regression is dealing with only one component of the out-

put, less information from the input space is typically needed, yielding smaller sub-

spaces. We demonstrate this claim by a simple example. Consider learning the function

f(x) = I(x)+rd(x), where I is the identity function and the rd operator shifts the com-

ponents of x downward. For this specific function, the dependency set of all the output

components is all of the input variables, and therefore the whole input space is required

to describe f . However, each output component depends on only two dimensions of the

input.

The factored MLKR turns its regression into l sub-regressions and one might be

concerned about the accumulation of errors caused by this process. But, fortunately,

since the output variables are independent of each other, the sum of the errors of the

univariate regressors is not more than the error of the multivariate regressor. On the

other hand, smaller central subspaces of the factored regressors create exponentially

better estimations due to the properties of the curse of dimensionality.

As an example, we estimated the above function in R10 using the two methods,

FMLKR and MLKR. Figure 5.3 shows what happens if we force different target dimen-

sionalities on the regressors. To produce this graph, we generated 100 points uniformly

distributed in the unit square and used the above function plus a small amount of Gaus-

sian noise to construct the training set. The x-axis shows the internal dimensionality

we forced on the regressors. The y-axis shows the mean-squared-error measured on

another set of 100 randomly selected points.

Since only one dimension is statistically sufficient to produce each component of

the output (using the linear combination of the two dependent components), FMLKR

quickly achieves good performance, even when the algorithm has to map the input data
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Figure 5.3: Comparison of MLKR and FMLKR on a simple regression problem.

into scalars. On the other hand, MLKR requires all the input dimensions in order to

maintain the link between the input and output. That is why the result for MLKR

improves as more dimensions are allowed in the transformation. MLKR cannot solve

the regression problem as well as FMLKR even when it uses the whole input space,

because a training set of 100 points is simply not enough to cover a 10-dimensional

space.

5.3 The Proposed Algorithm

This section introduces a novel model-based algorithm called Dimension Reduction in

Exploration (DRE). This algorithm is derived in the spirit of the algorithms in Chapter 3

and 4, and also several other published papers in model-based reinforcement learning

that use model uncertainty to drive the exploration toward parts of the state space in

which the algorithm is uncertain about its predictions (Brafman and Tennenholtz, 2002;

Kakade, 2003). In particular, the skeleton of DRE is very similar to CF-Rmax and differs

only by the way the transition function is trained and the knownness is computed in the

kernel regression. While CF-Rmax used CKWIK-KR to model the transition function,

DRE uses FMLKR (or MLKR).

DRE uses |A| multivariate FMLKR regressors to estimate the transition function,
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each responsible for estimating the next state for one action—denoted by Fa. Each

of these regressors in turn consists of |S| MLKR regressors inside, each responsible for

estimating one of the components of the next state. Let F ia be the univariate MLKR

regressor responsible for estimating the i-th component of the next state when action

a is used. Upon receiving a query point (st, at), the estimated transition function T̂ is

constructed by concatenating the output of F iat for all i’s.

The accuracy of component i at time t—denoted εit—is computed by the kernel

regressor F iat using the same procedure as in CKWIK-FKR with the accuracy of the

transition function as εt =
∑

i ε
i
t.

The rest of the algorithm works exactly the same as CF-Rmax. In particular, let sf

be a new special state with self-loop transition on all actions and a reward of Rmax.

DRE constructs its internal model as M̂ = 〈S + sf ,A, T̂ ′, R, γ〉, where the augmented

transition function T̂ ′ is computed as follows:

T̂ ′(s′|s, a) =

{
1− ψ(s, a), if s′ = sf

ψ(s, a)T̂ (s′|s, a), otherwise.
(5.8)

The knownness function ψ(s, a) is computed from εt using Definition 13. After the

construction of M̂ , the algorithm uses an approximate planner to find a near-optimal

policy for it. It then takes the greedy action according to this policy.

The pseudo-code of DRE, which is provided in Algorithm 11, is exactly the same as

the one we developed for FF-Rmax except that it uses FMLKR instead of CKWIK-FKR.

The pseudo-code of DRE is provided in Algorithm 11. Although this algorithm has

a similar structure to CF-Rmax, it performs a much better job in practice because of the

way it handles the estimation of the transition function and computes the knownness

function in the reduced-dimension space.

5.4 Discussion

There are two important characteristics that are vital to the success of DRE. First, the

algorithm uses metric learning for estimating the transition function, and second, it
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Algorithm 11 DRE, a model-based algorithm for continuous state space MDPs.

1: Inputs: Accuracy parameter εT , confidence parameter δT .
2: Initialize FMLKR regressor F .
3: for all timesteps t = 1, 2, . . . do
4: Observe st and rt, execute action at = π∗

M̂
(st), transition to st+1.

5: Update F using (st, at, st+1).
6: Update internal MDP M̂ using the augmented transition function in Eqn. 5.8.
7: end for

computes the knownness function in a subspace of the original state space.

One of the most important properties of dimension-reduction techniques in regres-

sion is that they provide stable approximation when the sample size is small. In fact,

many practical applications of these methods are for when the number of samples is

on the order of the number of variables, in which case the classic approaches typically

fail (Geladi, 1986; Fukumizu et al., 2009). DRE is able to build very realistic models of

the world in the early stages of learning due to the efficiency of dimension reduction in

regression.

The space in which the knownness is computed directly affects the sample complexity

of the algorithm. For a query point to have a high knownness value, several points

need to exist in its vicinity. Therefore, covering a space with known points requires a

training set that is exponential in size with respect to the dimensionality of that space.

By reducing the dimensionality of the space in which the knownness is computed, far

fewer samples are needed to get high knownness values for the entire space.

The computational complexity of relearning the metric every planFreq steps seems

burdensome because |A| × |S| gradient descent instances need to be solved. However,

our experiments indicate that the most time-consuming component of the algorithm is

still the planning step. Part of this phenomenon stems from the way gradient descent

searches the solution space. If we use the current A as the starting point of the gradient

descent (Line 2 of Algorithm 9), after performing dimension-reduction once or twice,

the starting point is usually very close to the optimal solution. As a result, gradient

descent returns very quickly. If local optima are a concern and we can afford more

computation, we can start the search using several initial matrices; we did not see
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much improvement using this technique in practice.

DRE is closely related to FF-Rmax too because in FF-Rmax, the dependency graphs

given to the algorithm effectively reduce the size of the model class of possible tran-

sition functions by projecting the data into the space spanned by only those variables

inside the dependency set of the output component. Essentially, each Ga provides the

transformation function Φ used in dimension reduction.

The transformation used in DRE has two main advantages to the DBNs used in

FF-Rmax: First, the DBNs had to be provided by the user beforehand whereas DRE

automatically discovers the transformations during the learning; and second, the DBN

supported only those transformations that could be made by eliminating some of the

input variables. Thus, it was always aligned with the original axis and it also had

all the problems a kernel regressor is faced with in the design stage, such as picking

the right value for σ and normalizing the variables. The dimension reduction process

used in FMLKR, on the other hand, can handle any linear transformation of the original

space, which effectively eliminates the problem of working with normalization and kernel

width.

The next section provides some avenues of further research for dimension reduction

in model-based RL.

5.5 Related Work and Future Extensions

MLKR was developed as a seamless integration of kernel regression with dimension

reduction. We saw earlier that incorporating this technique into DRE decreases the

sample complexity of exploration. However, it is important to note that DRE is not

limited to kernel regression as the only choice for the transition-function estimator, nor

is it restricted to the use of the particular dimension-reduction technique in MLKR. As

mentioned earlier, the determinant factor in the success of DRE is the ability to discover

the underlying relevant subspace of the state space w.r.t. the transition function, which

allows the algorithm to compute the knownness values in that reduced-dimensional

space.
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This section investigates how some other dimension-reduction techniques can be

incorporated into DRE. In particular, three case studies are presented in the rest of

this section: 1) an unsupervised explicit dimension reduction used in combination with

kernel regression, 2) a linear dimension reduction in combination with a multivariate

linear regressor, and finally 3) dimension reduction in feature space using Gaussian

processes.

5.5.1 Kernel Regression with Unsupervised Dimension Reduction

MLKR used the relationship between the input and output variables to discover the

relevant subspace when estimating the transition function. In some situations, the

distribution of the input data itself comes from within a subspace of the original space

independent of the regression. In fact, examples of such scenarios are so abundant in

practice that the majority of the dimension-reduction literature focuses on unsupervised

methods. These algorithms typically compute a simpler representation of data while

trying to minimize the reconstruction error.

Some of the applications of unsupervised dimension reduction occur in scenarios

where the states are represented using many correlated variables, or cases where the

input data can exist naturally in a smaller subspace of the original state space. For

example, the state of a humanoid robot might be represented by its joint positions as

well as the current torques at its motors; but, not all combinations of joint positions or

motor torques are physically possible for the robot.

Many machine-learning techniques have been presented to deal with high-dimensional

data that may have come from some underlying low-dimensional space. For example,

as we saw earlier, PCA is an algorithm that linearly projects data into a subspace

that captures as much variance of the data as possible. Some other techniques such

as Isomap (Tenenbaum et al., 2000), local linear embedding (Roweis and Saul, 2000),

Laplacian eigenmaps (Belkin and Niyogi, 2001), local multidimensional scaling (Venna

and Kaski, 2006), and many of their variations discover manifolds with smaller dimen-

sionality using a nonlinear transformation of the data.
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Although these nonlinear embedding methods have been successfully applied to

many industrial applications, no robust algorithm to the date of this writing is available

to address the problem of online nonlinear dimension reduction with non-i.i.d. data.

Nevertheless, we show here how to conceptually add unsupervised dimension reduction

to DRE in case more suitable algorithms for performing nonlinear dimension reduction

are developed in the near future. It is straightforward to modify DRE to work with

any unsupervised dimension-reduction technique that explicitly represents data using

a new coordinate system with a fewer number of dimensions.

Let φa be the transformation function that is learned using Da as the training data.

To incorporate φa into DRE, one needs to train and query the kernel regressors using the

data points after the φ transformation. In this way, the regression (and subsequently,

the computation of knownness function ψ) takes place in the reduced-dimensional space,

and therefore, we get the benefits of unsupervised dimension reduction in exploration

similar to the way the original DRE did. Algorithm 12 summarizes these changes.

Algorithm 12 DRE with unsupervised dimension reduction.

1: Inputs: Kernel regressor Fa, dimension reduction transformer function φa.
2: Initialize history data-sets Da.
3: for all timesteps t = 1, 2, . . . do
4: Observe st and rt, execute action at = π∗

M̂
(st), transition to st+1.

5: Add (st, st+1) to the set Dat .
6: Update the transformation function φat based on the new Dat .
7: Retrain Fat using the training points φat(Dat).
8: Estimate the transition function using:

T̂ (s, a) = Fa(φa(s)).

9: Update internal MDP M̂ using the augmented transition function in Eqn. 5.8.
10: end for

As mentioned earlier, this algorithm treats the transformation function and how it

is updated as a black box, and any linear or nonlinear dimension-reduction technique

can be used. It is important to note however, that most of the practical nonlinear

dimension-reduction algorithms at the time of this writing are not quite suitable for use

in this procedure as they might produce unstable results when points are not sampled
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i.i.d. from the state space. In particular, applying the current nonlinear dimension

reduction techniques to an online RL setting is problematic. These algorithms look at

the distances between nearby points to discover manifolds that the data could have come

from. In most RL settings, the set of states in the history form a smooth trajectory

inside the state space. This trajectory will look like a one-dimensional manifold, no

matter how complicated the space is. Perhaps linear methods will suffer less from this

phenomenon as they produce simpler transformations.

5.5.2 Partial Least Squares

Partial least squares (PLS) is an old but effective way to perform dimension reduction

with linear regression. It is one of the covariance-based statistical methods also known

as “structural equation modeling”, and is particularly powerful in dealing with high-

dimensional data with few training points (Geladi, 1986).

Given a training set (Xn×m,Yn×l), PLS identifies a set of factors constructed by a

linear combination of the input variables that best describe the output data when least-

squares linear regression is used. The idea behind PLS is very simple. A linear regressor

constructs its model by forming Y = XA and estimating its parameter matrix A using

the data. It is well-known that when X is ill-conditioned, computation of an optimal

A is not easy. Several factors contribute to having an ill-conditioned input matrix.

For example, when data points are very high dimensional and the training points are

relatively few, matrix X will not be full rank. Another frequent situation that results

in having an ill-conditioned matrix is when individual factors of the data are highly

correlated with each other, for example when several variables that are related to each

other by a fixed equation are used to describe the data. Ordinary least-squares methods

cannot easily deal with these kinds of situations.

PLS extends the linear regression by computing a factor score matrix T = Xn×mWm×r

for an appropriate weight matrix W. This matrix transforms data from m-dimensional

space into a smaller r-dimensional one. Once this transformation is performed, we can

solve the equation Y = TQ for the parameter matrix Q. Once Q is computed, we can
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substitute it in the original linear formulation: Y = X(WQ).

Computing Q and W simultaneously, such that the final regression has minimum

error in the training set, is the goal of PLS algorithms. Several techniques exist for

performing PLS, some of which work only for univariate regression and some others

for multivariate regression. Two widely-used methods for performing PLS are NI-

PALS (Geladi, 1986) and SIMPLS (de Jong, 1993). A detailed overview of these al-

gorithms is outside the scope of this document. However, pseudo-code for SIMPLS is

provided in Algorithm 13 for reference.

Algorithm 13 SIMPLS (de Jong, 1993), an algorithm for performing partial least
squares regression.

1: Inputs: Dimensionality of the latent matrix c.
2: Set B0 = XTY.
3: Set M0 = XTX.
4: Set C0 = I.
5: for each t = 1, . . . , c do
6: Compute qt, the dominant eigenvector of BT

t Bt.
7: wt = Btqt, ct = wT

t Mtwt, wt = wt√
ct

.

8: Store wt into W as a column.
9: pt = Mtwt, and store pt into P as a column.

10: qt = BT
t wt, and store qt into Q as a column.

11: vt = Ctpt, and vt = vt
‖vt‖ .

12: Ct+1 = Ct = vtv
T
t and Mt+1 = Mt − ptpTt .

13: Bt+1 = CtBt.
14: end for
15: Return transformation matrix W and regression coefficient matrix A = WQT.

PLS methods are not designed for CKWIK (or KWIK) frameworks because they do

not provide a way to assess the uncertainty of their predictions. To use PLS in DRE,

we need to find a mechanism to create the knownness values.

One such method that was studied in this dissertation was the ball-heuristic. This

function uses ε-balls to generate knownness values. To cover any space using ε-balls, a

number that is exponential in the dimensionality is required. However, if the balls are

used in the subspace generated by the W transformation instead of the original space,

exponentially fewer samples will be required to cover the space.

Another way we can apply PLS to a model-based algorithm is to use the setup

of KWIK linear regression in Algorithm 3, if we decide to use a Boolean knownness
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instead. Again, we use that algorithm on the input data after the transformation into

the smaller subspace.

5.5.3 Gaussian Processes

Recently, another technique was developed by Jung and Stone (2010) that is worth

mentioning here; this technique uses Gaussian processes (GPs) in a model-based al-

gorithm similar to DRE. A Gaussian process is a nonparametric regression technique

that assumes the entire function is selected from a Gaussian distribution over func-

tions (Rasmussen and Williams, 2006). GP provides a way to compute the posterior

over this distribution given a prior and some data from the actual function. GP has

been used in many different disciplines as a robust and powerful regression technique,

and since it is a nonparametric method, it provides great modeling flexibility.

There are three more properties of GP that make it very suitable for use in a model-

based RL algorithm. (1) GP easily integrates with projection of the input data into

a feature space using basis functions. Once the original data is transformed into the

high-dimensional space of features, GP becomes much more expressive and powerful.

(2) GP provides a way to learn the hyper-parameters of the basis functions, which

can be used to perform dimension reduction in the feature space. (3) GP provides

a natural way to compute the uncertainty of its estimations because it expresses its

predictions using the posterior in the form of a Gaussian distribution. The mean of the

distribution can be used as the output of the regressor and the variance can be used as

an uncertainty measure. The uncertainty measure can be translated into a knownness

value using the techniques from Chapters 3 and 4. These three properties make GP a

good fit for model-based reinforcement learning.

Let us see how to incorporate GP into CKWIK-Rmax. The FT regressor is a mixture

model that combines |S| univariate GP regressors. The factorization is performed the

same way as in FMLKR. Let φ be the feature transformation function and Φ be the

input matrix after the data has been transformed from m-dimensional space into the

feature space with dimension p using φ (for now we assume the basis functions are
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given). It can be shown that the output associated with a query point x has the

following posterior distribution:

f(x; X, y) ∼ N
(

1

σ2n
φ(x)TB−1Φy, φ(x)TB−1φ(x)

)
, (5.9)

where B = σ−2n ΦΦT + Σ−1p . Readers are referred to Rasmussen and Williams (2006)

for more details about the procedure. GP outputs a Gaussian distribution for each

query point, which can be used both as a prediction and an uncertainty measure. At

each timestep, calling GP with (X, y) = Dat and x = st will provide an estimate

of the transition function as well as a variance that can be used directly as εjt after

normalization. Knownness can be computed using the same definition used in CKWIK-

Rmax.

GPs can be described using an alternative way of interpreting the same results di-

rectly in the function space. In this view, any GP is fully described by its mean function

m(x) and a covariance function k(x, x′). The covariance function can be thought of as

a function that measures the relationship between the two points x and x′. From this

perspective, we can treat them as the kernel function in MLKR. In fact, a popular

covariance function that is widely used in GP is the squared exponential function that

is very similar to the Gaussian kernel in Equation 5.2:

k(x1, x2) = exp(−1

2
‖ x1 − x2 ‖22). (5.10)

We can customize this covariance function in the same way we customized the

Gaussian kernel:

k(x1, x2; v0, b,M) = v0exp(−1

2
(x1 − x2)TM(x1 − x2)) + b, (5.11)

where θ = {v0, b,M} is the set of hyper-parameters of the covariance function that need
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to be learned. Some of the widely-used structures of M are:

M1 = lI, uniform distance (5.12)

M2 = diag(l1, . . . , lm), variable selection (5.13)

M3 = BBT + (l1, . . . , lm), linear transformation, (5.14)

where the parameter matrix M is reduced to scalar l in M1, vector (l1, . . . , lm) in M2,

and {M, (l1, . . . , lm)} in M3. The hyper-parameters in M2 play the role of characteris-

tic length-scales for each dimension, which basically means how far in each dimension we

need to go before the points become uncorrelated with each other. This covariance func-

tion is a way to detect the relevant features because it measures the inter-dependency

of points along each dimension differently—something also known as “automatic rel-

evance determination” (Rasmussen and Williams, 2006). The last function resembles

the decomposition we used in the Mahalanobis metric of the Gaussian kernel.

Figure 5.4 illustrates three classes. The dotted line in each example is an equidistant

contour if M = I was used. The solid lines are some examples when the parameters

of the matrix are changed. As we can see, M1 can only control how wide the contour

is without changing its shape (similar to the width parameter of the Gaussian kernel).

M2 can vary the width of the contour along each dimension individually (producing

vertical and horizontal ellipsoids), and finally M3 allows for rotation and scaling along

any direction.

(a) (b) (c)

Figure 5.4: Examples of different parameter values for M1, M2 and M3 in (a), (b) and
(c) respectively. In each figure, the dotted line represents an equidistance contour when
I is used. The solid lines show how different parameter values change that contour.
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The parameter set θ can be learned using likelihood maximization. It is common

to have a mixture of different classes of functions and have the GP figure out the right

model. This process creates a hierarchical specification of models. At the lower level,

we have the parameters of a specific model, for example (l1, . . . , lm) in M2. At the top

level, we have a set of possible model classes Hi, for example a probability distribution

over M1,M2 and M3.

Inference on these parameters can be done one level at a time from bottom to top.

At the lower level, the posterior is computed as:

Pr(θ|y,X,Hi) =
Pr(y|X, θ,Hi)Pr(θ|Hi)

Pr(y|X,Hi)
, (5.15)

where Pr(θ|Hi) is the prior for the hyper-parameters. The normalizing constant in the

denominator is computed as:

Pr(y|X,Hi) =

∫
Pr(y|X, θ,Hi)Pr(θ|Hi)dθ. (5.16)

At the top level, the posterior for the model is computed as:

Pr(Hi|y,X) =
Pr(y|X,Hi)Pr(Hi)

Pr(y|X)
, (5.17)

where Pr(y|X) =
∑

i Pr(y|X,Hi)Pr(Hi) assuming the model classes are finite. Of

course, computation of some of these equations, particularly the integral in Equa-

tion 5.16, requires numerical approximations. Efficient implementation details of GP

can be found in the numerous available handbooks (Rasmussen and Williams, 2006).

5.6 Experimental Results

We used several experiments to evaluate DRE and investigate its properties. The first

experiment was designed to demonstrate the statistical efficiency of learning the transi-

tion function using dimension reduction. For this purpose, we ignored the exploration

problem and evaluated the algorithms on offline data. We used n-Mountaincar with
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Figure 5.5: Batch reinforcement learning results in n-Mountaincar using two algo-
rithms.

different values of n as the environment for this experiment. For each individual do-

main, we collected 500 transitions using a policy that selected actions randomly from

100 random start states and ran for 5 timesteps. Each algorithm learned a model using

the data. We then chose another 100 random start states as the test set, and evaluated

each algorithm by starting from these states and running its learned policy. For the

sake of statistical significance, the experiment was repeated 20 times.

Fitted-Rmax and DRE were tested in this experiment (the behavior of CF-Rmax

would have been similar to fitted-Rmax because they both use a regular kernel regression

to estimate the model). The y-axis of Figure 5.5 shows the average reward-per-episode

when the agent started the episode from the test points. The x-axis shows the number

of cars in the world (state-space dimensionality is 2x). Error bars represent standard

deviation.

All the algorithms used the same planner (FVI with a resolution of 30 per dimension

and C = 5). Fitted-Rmax used σ = 0.3 as the kernel width. As mentioned earlier,

the optimal value function was the same in all n-Mountaincars, and any performance

degradation was only due to the model-approximation error.
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Figure 5.6: Online evaluation of three algorithms in n-Puddleworld for different di-
mensions.

As expected, the performance of fitted-Rmax degraded as the dimensionality in-

creased because 500 samples were not enough to learn a kernel regression in higher

than four-dimension spaces. Therefore, at 3-Mountaincar, the fitted-Rmax algorithm

behaved very close to the random policy. DRE, on the other hand, managed to keep

the dimensionality low even in 4-Mountaincar because of the fact that only a subset

of dimensions were necessary to predict each component of the output. The internal

dimension of the univariate MLKRs never went above 2 in this experiment.

The second experiment tested a set of algorithms in an online setting. For that

reason, we included CF-Rmax in the experiment, along with DRE and fitted-Rmax. We

used n-Puddleworld as the first environment. Each algorithm ran 50 episodes in each

n-dimensional Puddleworld—with a cap of 300 steps—and the results were averaged

over 20 runs. Figure 5.6 shows the average performance-per-episode (cumulative re-

ward divided by the number of episodes) as dimensionality increased. Similarly to the

previous result, DRE retained a low-level representation in all the domains (it never

used more than one dimension in each MLKR). Therefore, it created high knownness

values very quickly, as they were computed in low-dimensional spaces. CF-Rmax and

fitted-Rmax did not perform well in high-dimensional Puddleworlds.

We then compared the knownness functions of these three algorithms using a simple
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experiment. We selected part of Puddleworld’s transition function: f(x) = x(2) +

0.05+N (0, 0.01), and compared the knownness functions of the algorithms after training

on 50 samples. The heat-map graphs in Figure 5.7 show the knownness values across

the entire space. Dark red indicates a completely known state and dark blue means an

unknown state. The training points are shown in part (a). DRE discovered the fact that

the vertical dimension was not relevant to the function, so it accumulated knownness

values along that axis. Since CF-Rmax had to work in 2D, which resulted in weaker

generalization, it produced much smaller knownness values. Fitted-Rmax did a worse

job of generalizing because it had to convert the knownnesses into a Boolean output.

0 0.5 0.90

0.5

1

(a) Training set

(b) fitted-Rmax (c) CF-Rmax (d) DRE

Figure 5.7: Comparison of the knownness function computed by three algorithms using
the same set of training points. Sub-figures (b),(c), and (d) show the knownness function
computed by fitted-Rmax, CF-Rmax, and DRE, respectively.

Next, a similar online experiment was performed in n-Mountaincar for two values

n = 1 and n = 3. Figure 5.8 provides a more detailed comparison of DRE and fitted-

Rmax in 1-Mountaincar (the solid lines) and 3-Mountaincar(the dotted lines). This

set of graphs shows the learning curves for the two algorithms (the x-axis is the episode

number and the y-axis shows the collected rewards per episode). Results are averaged

over 20 runs and smoothed over a window of size 5.
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Both algorithms performed highly comparably in 1-Mountaincar; but, fitted-Rmax

completely failed to learn in 3-Mountaincar using 50 episodes, whereas DRE did not

suffer much.
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(a) fitted-Rmax
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Figure 5.8: The learning curves of (a) fitted-Rmax and (b) DRE in two environments:
1-Mountaincar and 3-Mountaincar.

We tried DRE in several other benchmarks and have found it very robust and stable.

One of the contributing factors to this behavior is that it has very few parameters to

tune in, and that the algorithm performance is not very sensitive to their values. In

fact, as mentioned above, we used only one set of parameter values to run the algorithm

across all the environments.

To showcase this advantage using empirical data, we tested Q-learning with a widely-

used function approximator, CMAC (Sutton and Barto, 1998), on several different

RL benchmarks and measured the sensitivity of the algorithm performance on CMAC

parameters. In other words, we were interested in knowing what the best parameter

values were for each test benchmark, and how much they varied from one domain to

another. A set of seven domains were used for this experiment: (1,2,3)-Mountaincar,

(2,3,4)-Puddleworld, and another continuous control problem called Acrobot (Sutton

and Barto, 1998). Four different tiling resolutions were used as the parameter values of

CMAC: 1,2,3, and 5 tiles per dimension.

Figure 5.9 shows the effect of these parameters on the performance of Q-learning.

The X-axis contains the environments and the Y -axis is the average cumulative reward

per episode. Each line in the graph corresponds to a fixed tile resolution for CMAC. For
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Figure 5.9: Evaluating Q-learning in seven environment when different parameter values
are used. One instance of DRE outperforms the best instance of Q-learning in nearly
every domains.

each environment, the parameter that achieved the best result is identified by a circle.

Comparison of the different lines in different domains revealed interesting observations.

For example, while a resolution of size 3 achieved the best performance in Acrobot,

it had almost the worst performance in 3-Mountaincar. DRE with one fixed set of

parameter values performed comparatively to the best instance of Q-learning in all

domains. In fact, it outperformed Q-learning in most of the domains.

The next experiment investigated the relationship between FF-Rmax and DRE. We

mentioned earlier that an independence graph provides a special way of performing

dimension reduction because the agent can eliminate some of the input variables dur-

ing the model estimation process. However, this particular type of graph is not able

to model transformation functions other than variable elimination. In particular, DRE

computes a linear transformation of the input space, which is a much broader transfor-

mation than variable elimination. The next experiment demonstrated this difference.

Warpedworld is a generalization of the Puddleworld domain. These environments

are exactly the same except for their transition functions. While executing each action

in Puddleworld results in a movement in the intended direction by a constant value,
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actions in Warpedworld move the agent in the intended direction by a length that is

computed using a linear combination of the state variables. For example, the action

right would change s(1) to s(1)+0.05 in Puddleworld, but to as(1)+bs(2) in Warped-

world (a and b are two constants). Similarly, one can generate n-Warpedworld from

n-Puddleworld. Please refer to Appendix C.3 for more details.

We compared three algorithms in 3-Warpedworld: DRE and FF-Rmax with two dif-

ferent inputs. FF-Rmaxcorrect used the correct DBN of Warpedworld and FF-Rmaxwrong

used the graph for 3-Puddleworld, which was not a good representation of the depen-

dencies in 3-Warpedworld. It is easy to see that each component of the next state

variable in Warpedworld is dependent on all the input variables because it is computed

using a linear combination of all the variables. So, the true maximum dependency size

was 3 for all the graphs. FF-Rmaxwrong used the DBN of Puddleworld. Since the tran-

sition function of Puddleworld was much simpler than Warpedworld, these DBNs

missed several important edges.

Figure 5.10 presents the learning results of the above algorithms. As was expected,

FF-Rmaxwrong was not able to learn anything as it could not model the dynamics of the

world. But, an interesting outcome of this experiment was that FF-Rmaxcorrect was not

able to learn a good behavior either, although the true dependency graphs were given

to it. Given the limited amount of experience it had, it was not able to fully learn the

3-dimensional regression. However, DRE achieved a much better result because it used

a linear transformation that mapped the input space into a 1-dimensional one without

losing information.

The final experiment we considered was testing DRE in Bumbleball. Attempting to

make the Table 4.1 from the previous chapter more complete, we tested DRE using the

same settings as before. Table 5.1 provides a complete summary of all four algorithms

tested in Bumbleball. Obviously, FF-Rmax performed better than DRE because the

structure was given to it. But, DRE was also able to learn this 5-dimensional task using

only 3000 samples, without any prior information from the user.
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Figure 5.10: Evaluating three algorithms in 3-Warpedworld: DRE and two versions of
FF-Rmax that used correct and incorrect dependency graphs.

Algorithms: Random CF-Rmax FF-Rmax DRE

Total cumulative reward: −24269 −21461 −3917 −4077
Number of collisions: 533.0 463.7 38.0 53.3
Percent finished episodes: 8.6% 13.0% 81.3% 77.0%

Table 5.1: Performance of DRE in the Bumbleball domain.
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Chapter 6

Extension: Multi-resolution Exploration

This chapter extends the utility of the knownness concept, which was introduced earlier

for data-efficient model-based learning, to a novel hierarchical exploration scheme. This

multi-resolution exploration expands the effectiveness of the model-based approach be-

yond what has been achieved in the PAC-MDP framework. The algorithm developed in

this chapter successively refines how it interprets the uncertainty level, which allows it

to systematically look for better and better predictions about the world as the learning

progresses.

The performance metric used in all the algorithms we have studied so far demands

(1) near-optimal behavior in all but polynomial number of timesteps with high prob-

ability, but does not insist on (2) performance improvements after convergence, nor

does it (3) provide performance guarantee at any particular timestep. Such “anytime”

behavior is encouraged by algorithms with regret bounds (Auer and Ortner, 2007), but

unfortunately no such algorithm has yet been developed for regret minimization in con-

tinuous state spaces. The goal of this chapter is to devise an algorithm that has these

properties. That is, we are interested in an algorithm that never stops systematically

searching for better behaviors and can provide a performance guarantee anytime the

learning is stopped.

As a motivating example for the work presented in this chapter, consider how a

discrete state-space algorithm might be adapted to work for a continuous state-space

problem. The practitioner must decide how to discretize the state space. While finer

discretizations allow the learning algorithm to learn more accurate policies, they require

much more experience to learn well. The dilemma of picking fine or coarse resolution has

to be resolved in advance. Some of the factors that are involved in this decision making
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are based on the dynamics and reward structure of the environment, the desired level

of optimality and also on the quantity of resources (in terms of samples) are available.

For example, if you are working with a robot, you need to know beforehand how many

samples you can afford to collect with the robot. The more samples you can collect, the

finer the discretizations you can afford with the algorithm. Meanwhile, the performance

of the algorithm depends critically on these a priori choices, because the algorithm does

not respond dynamically based on the available resources.

This chapter develops an algorithm called multi-resolution exploration or MRE to

address this situation. This algorithm has a similar skeleton to CKWIK-Rmax, except

that it does not receive the PAC-MDP input parameters (ε, δ) from the user. To

satisfy conditions (1) and (2) mentioned earlier, the algorithm changes the way ε(s, a)

is computed in FT and how it is interpreted. In fact, there is a fundamental difference

between the way uncertainty is measured in MRE and the algorithms developed in the

previous chapters. The uncertainty parameter ε(s, a) used to measure how close the

estimation was to the actual transition function. This interpretation of uncertainty

is independent of time and depends only on the distance between the estimation and

the true value. The knownness value was then computed based on the relative values

of ε(s, a) and the target accuracy εT . To make sure the algorithm always searches

for better behaviors, MRE successively refines the interpretation of εT during learning.

This process, which is borrowed from the literature on regret minimization, changes εT

such that a fixed estimation looks less accurate as time goes on. MRE also maintains

a hierarchical mapping structure over the state space to make sure it can provide an

estimation of its performance at any time the learning stops.

In the rest of this chapter, the concept of hierarchical mapping and multi-resolution

exploration is first developed, and then it is integrated into a model-based algorithm.

Following the same pattern used in previous chapters, a discussion section investigates

the properties of the algorithm including, in this case, how this exploration can be

extended to value-based RL algorithms.
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6.1 Multi-resolution Discretization

Let us go back to the idea of the ball-heuristic from Chapter 3 and investigate its

properties a little further. To reiterate, ball-heuristic is used in regression to measure

uncertainty. It does so by forming an ε-ball around any query point and counting the

number of training points inside that ball. We can extend this heuristic to something

computationally faster by discretizing the space using an ε-granularity. Such a dis-

cretization creates a structure ζ such that each cell ς ∈ ζ can be contained inside an

ε-ball. Given this discretization, the uncertainty of a query point is computed based

on the number of training points inside the cell that contains the query point. Since

any point in that cell is also inside the ε-ball of the query point, this method can be

thought of as a more constrained version of the ball-heuristic.

The intuition behind this heuristic comes directly from the smoothness assumptions

in the regression space. For example, consider learning a transition function that has

the form of a parametric distribution P(µ,Σ) with a Lipschitz continuity constant CT .

Let ς(s∗) be the cell containing s∗ and Nς(s∗;Da) be the set of points in Da that

lie inside ς(s∗). Also, suppose we use the following simple averager as the function

approximator:

Fa(s∗;Da) =
1

k

∑
si∈Nς(s∗;Da)

s′i, (6.1)

where s′i is a sample from the transition function of si or Pi and c = |Nς(s∗;Da)|.

Similar to Lemma 15, it can be established that:

‖ E [Fa(s∗)]− µ∗ ‖22≤ εCT , (6.2)

where CT is the Lipschitz constant. Again, we can use the same technique used in

Lemma 16 to show that the following equation holds with probability at least 1− δ.

‖ Fa(s∗;Da)− µ∗ ‖22≤
√

ln(2/δ)

2c2
+ εCT , (6.3)

where the first term is because we used a finite number of samples to estimate µ∗
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and the second term is because the samples were taken not from P∗ but from some

other distributions Pi’s. Therefore, Equation 6.1 provides a principled way to perform

exploration that can be used in CKWIK-Rmax because in addition to making predictions,

it also provides the accuracy of its predictions (according to Equation 6.3).

In this setup, the discretization resolution has a crucial role in the outcome of the

function approximator because it controls the degree of generalization in Equation 6.1.

The larger the value of ε is, the further the training points are allowed to be in order

to have an impact on the outcome of the averager at a certain query point. In a

sense, this parameter plays the role of the characteristic length in GP (for example,

in Equation 5.12). In Chapter 5, we saw how hyper-parameters like this one can be

optimized using data in an RL algorithm.

Instead of optimizing for a single value of ε, MRE automatically adjusts the degree

of generalization for different parts of the state space depending on the distribution

of the input data. In other words, MRE constructs a variable degree of generalization

across the state space.

Figure 6.1 compares the discretizations created by the ball-heuristic and MRE. Fig-

ure 6.1(a) shows a fine resolution discretization of the state space. This partitioning

produces accurate estimations, but with the cost of creating narrow generalization in

the entire space—high sample complexity. Figure 6.1(b) shows a discretization that

creates wide generalizations due to its big cell size, but might result in poor estima-

tions. Figure 6.1(c) shows a variable discretization created by MRE. Cells with small

sizes correspond to parts of the state space with a lot of sample points. The algorithm

makes narrow, but accurate, generalizations in areas with a high-density of data, and

wide generalizations in low-density ones.

These two properties that allow variable generalization across space and time provide

the necessary tools for MRE to develop the two behavioral conditions we were looking

for at the beginning of the chapter. To implement these ideas, MRE maintains a data

structure called an “uncertainty tree” that is explained next.
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(a) (b) (c)( )

Figure 6.1: (a) a fine resolution discretization of the space that allows for accurate
estimates, but requires a lot of samples, (b) a discretization that allows for wide gener-
alization, but with less accuracy, (c) variable discretization in MRE that combines the
good properties of (a) and (b).

6.1.1 Uncertainty Trees

Regression trees are a well-known class of local function approximators that partition

the input space into non-overlapping regions and use the training samples of each region

for predicting the value of query points inside that region. Their ability to maintain

a non-uniform discretization of high-dimensional spaces with relatively fast query time

has proven to be very useful in various algorithms (Ernst et al., 2005; Munos and Moore,

2002).

For the purpose of our RL algorithm, we develop a new regression tree algorithm

called “uncertainty tree” that conforms to the protocol of the CKWIK framework.

An uncertainty tree ζ is an online multivariate local regressor. Since this algorithm

works in the CKWIK framework, it can be used to construct an RL algorithm using

the structure of CKWIK-Rmax. In particular, we can use |A| uncertainty trees, each

estimating the transition function when one of the actions is performed. The following

explains how T̂ (st, at) and εt are computed by uncertainty trees.

In an uncertainty tree ζ, each node ς covers a bounded region in the state space and

keeps track of the points inside that region, with the root covering the whole space. Let

Rς be the region of ς and denote its boundaries by two k-dimensional vectors r< and

r>, representing the minimum and maximum values in each dimension, respectively.

Each internal node splits its region into two half-regions along one of the dimensions

to create two children. Parameter ν determines the maximum number of points allowed
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Figure 6.2: Illustration of an uncertainty tree: (a) shows the structure of a tree and (b)
shows how the tree partitions a 2D space.

in each leaf. For a given node ς, let ες be the smallest ε-ball that contains ς and D(ς)

be the set of data pairs in the training set D that fall inside Rς . Also, the normalizing

size of the tree, denoted by τ , is defined as the region size of a hypothetical uniform

discretization of the space that would have (on average) ν
|S| data points inside each cell,

provided that the points were uniformly distributed in the space:

τ(D) =
1

b |S|
√
|D| × |S|/νc

. (6.4)

Figure 6.2 illustrates the structure of an uncertainty tree. The tree structure on the

left induces a partitioning of the state space, which is depicted on the right.

The algorithm maintains the structure in an online fashion. At each timestep t =

1, 2, . . ., a query point xt is given, for which the algorithm outputs ŷt along with ε(xt).

It then receives a sample from the true function x′t ∼ f(xt).

To insert (xt, yt), the algorithm starts at the root and travels down the tree, de-

pending on which child contains xt. Once inside a leaf ς, the algorithm adds (xt, yt) to

ς’s data set. if |D(ς)| is more than ν, the node splits and creates two new half-regions.

Splitting is performed by selecting a dimension j ∈ [1..|S|], and splitting along the j-th
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dimension according to a split value sv.

Similar to conventional regression trees, computing j and sv can be done according

to a number of different splitting heuristics. For example, a standard way to select j is

to use a round-robin strategy. If the parent of a node has split in the direction j, the

child splits in (j + 1) mod |S|. The value of sv can be selected to be the middle of the

region (that is, (r<(j)+r>(j))/2) or the value of si(j), where si ∈ ς is the median point

of the cell’s data set according to dimension j. More detailed discussions on various

splitting criteria can be found in (Preparata and Shamos, 1985; de Berg et al., 2008).

Given the query point (xt), the tree first locates the leaf containing xt by traveling

down the tree like before, denoted by ς(xt). Then, it uses the local function approxi-

mator used in ς(xt) to compute the estimate ŷt. For the sake of concreteness, consider

a simple averager as the function approximator inside each leaf:

Fς(x)
def
=

1

|D(ς(x))|
∑

(xi,yi)∈D(ς(x))

yi.

This regressor creates piece-wise constant estimation of the transition function for

each cell. A more sophisticated regressor would be to use a least squares linear regression

trained on D(ς(s)).

As mentioned before, the accuracy output ε(xt) does not have the same meaning as

before. Intuitively, this output provides an incentive for the RL agent to explore differ-

ent regions of the state space. Here, we consider two heuristic functions for computing

ε(xt). These heuristics will not create algorithms with PAC-MDP guarantee because

they do not satisfy the closeness assumption of the CKWIK framework. Instead, they

are constructed from heuristic functions that have been used in both k-armed ban-

dit (Auer et al., 2002) and reinforcement-learning (Auer and Ortner, 2007) literatures.

The first heuristic function uses a mixture of the relative size of the cell w.r.t. the

normalizing size of the tree and a function based on ball-heuristic to compute ε(xt):

ε(xt) =

(
1− |D(ς(s))|

ν

)(
‖ ς(s) ‖22
τ(D)

)
. (6.5)
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The first term is based on the idea of ball-heuristic. It measures the accuracy based

on how many points exist in the cell (after normalizing it with the maximum number

of points allowed in each cell). The second term is based on the size of the cell; smaller

cells have better accuracies (smaller ε’s). The normalizing size of the tree is used in the

denominator as a mean to provide dependency on the sample size. The more time is

passed (bigger sample size), the smaller the normalizing size becomes. Therefore, given

a fixed cell size, the value of ε(xt) will get bigger as |D| increases.

The second heuristic is based directly on the bonus values used in regret-minimization

algorithms for k-armed bandit problems. These algorithms add a bonus value of the

form
√

ln(t)
na

to their estimates of each arm’s payoff function, where t is the current

time and na is the number of times arm a is pulled (Auer et al., 2002; Bubeck et al.,

2008; Kocsis and Szepesvári, 2006). It has been shown that this type of bonus function

results in an exploration strategy that pulls each arm infinitely many times, but pulls

the optimal arm exponentially more often than the others.

The second uncertainty tree heuristic uses the same function to add uncertainty

to its estimates. Suppose ζa is used for estimating T (., a) using Da. The accuracy is

computed as:

ε(xt, a) =

(
1− |D(ςa(s))|

ν

)
+ CT ‖ ςa(s) ‖22 +

√
ln(|D(ς(xt))|)
|Da(ςa(xt))|

, (6.6)

where |D(ςa(xt))| is the number of training points in ςa(xt) and |D(ς(xt)| is the sum of

|D(ςi(xt))| for all i’s. In other words, the bonus in the third term is computed based

on the total number of samples the algorithm has seen so far from the neighborhood

of xt and the number of times it has selected to execute a. The first two term of this

function resemble the accuracy estimate of ball-heuristic.

6.2 Proposed Algorithm

This section constructs an RL algorithm that uses uncertainty trees to maintain an

internal model of the world. This algorithm, which is called Multi-resolution Exploration
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(MRE), is very similar to CKWIK-Rmax because they both use the knownness function

to provide exploration bonuses to those state-action pairs with uncertain transition-

function estimates. The only difference between the two algorithms is that MRE does

not receive ε and δ from the user, and therefore does not work in the PAC-MDP

framework. As a result of this change, the transition-function estimator does not receive

the previously-used δt as an allowed probability of failure. Also, the knownness function

is computed differently because no εT is available. The new knownness function is

computed as:

ψ(s, a)
def
= max (1− ε(s, a), 0) , (6.7)

where ε(s, a) is provided by the transition function estimator. MRE uses |A| uncer-

tainty trees for estimating the transition function—denoted by ζa. Once the known-

ness is computed, the algorithm uses the same technique from CKWIK-Rmax to build

its internal model. In particular, it constructs its internal model of the world as

M̂ = 〈S + sf ,A, T̂ ′, R, γ〉, where ζa is used to create T̂ and the augmented transi-

tion function T̂ ′ is computed from T̂ as:

T̂ ′(s′|s, a) =

{
1− ψ(s, a), if s′ = sf

ψ(s, a)T̂ (s′|s, a), otherwise.
(6.8)

A sketch of MRE is provided in Algorithm 14.

Algorithm 14 MRE, a model-based algorithm for continuous state space MDPs.

1: Initialize uncertainty trees ζa for all a’s.
2: for all timesteps t = 1, 2, . . . do
3: Observe st and rt, execute action at = π∗

M̂
(st), transition to st+1.

4: Update ζa using (st, st+1).
5: Update internal MDP M̂ using the augmented transition function in Eqn. 6.8.
6: end for
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6.3 Discussion

The two main properties of MRE are its multi-resolution discretization that allows it

to apply variable-resolution generalization across the state space and its dynamic ac-

curacy measure that allows it to keep exploring the environment as more experience is

obtained. This method shares many positive properties with existing algorithms. For

example, if the dynamic accuracy measure, which is dependent on time, is replaced

with something similar to the ball-heuristic, the algorithm will be similar to CF-Rmax,

because it works in the CKWIK framework (maintains a continuous knownness) and

applies a variable degree of generalization across the state space. Furthermore, if the

variable discretization in MRE is also replaced with a uniform discretization, the al-

gorithm becomes similar to MBIE (Strehl and Littman, 2005) for finite spaces. This

similarity is a result of MBIE being the only previously developed algorithm in the

KWIK framework that used all the available data instead of forming a binary distinc-

tion between known/unknown states. Finally, if the knownness in MRE is forced into

a binary output, the algorithm will become similar to metric E3 (Kakade et al., 2003)

and fitted-Rmax.

6.3.1 Application to Value-based RL

The idea of multi-resolution exploration can also be used in other approaches like value-

based methods. This section explains how to incorporate uncertainty trees into a value-

based algorithm called fitted Q-iteration. This algorithm is an offline batch learner, but

it has been integrated with other exploration mechanisms like ε-greedy or Rmax-type

exploration to work as an online algorithm (Li et al., 2009). The same procedure

can be used to apply this exploration strategy to other value-based methods, such as

LSPI (Lagoudakis and Parr, 2003).

The fitted Q-iteration algorithm accepts a set of four-tuple samples:

S = {(sl, al, rl, s′l), l = 1..n}
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and uses regression trees to iteratively compute increasingly accurate Q̂-functions. In

particular, let Q̂ji be the regression tree used to approximate Q(·, j) in the i-th iteration.

Let Sj ⊂ S be the set of samples with action equal to j. The training samples for Q̂j0

are Sj0 = {(sl, rl)|(sl, al, rl, s′l) ∈ Sj}. Q̂ji+1 is constructed based on Q̂i in the following

way:

xl = {sl|(sl, al, rl, s′l) ∈ Sj}

yl = {rl + γmax
a∈A

Q̂ai (s
′l)|(sl, al, rl, s′l) ∈ Sj} (6.9)

Sji+1 = {(xl, yl)}.

Random sampling is usually used to collect S for fitted Q-iteration when used as an

offline algorithm. In online settings, ε-greedy can be used as the exploration scheme to

collect samples. The batch portion of the algorithm is applied periodically to incorpo-

rate the new collected samples.

Combining uncertainty trees with fitted Q-iteration is very simple. Let ζj correspond

to Q̂ji for all i’s, and be trained on the same samples. The only change in the algorithm

is the computation of Equation 6.9. To use optimistic values, we elevate Q̂-functions

according to their knownness:

yl = ψ(sl, j)
(
rl + γmax

a∈A
Qai (s

′l)
)

+
(

1− ψ(sl, j)
)
Vmax.

6.4 Experimental Results

The first experiment was performed on Mountaincar and compared MRE against two

other algorithms that used fixed-length discretizations instead of uncertainty trees. One

of these algorithms had a fine discretization (normalized length of 0.05), whereas the

other used a coarse one (normalized length of 0.3). MRE applied the first heuristic

defined earlier and set the maximum number of points in each cell to 10. FVI was

used as the planner and was called every 50 steps. The learning was conducted in 200
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Figure 6.3: Performance of three algorithms in Mountaincar: MRE and two algorithms
based on fine and coarse discretizations.

episodes, where each episode had a cap of 300 steps. The results were averaged over 20

runs and smoothed over a window of size 5 to avoid a cluttered graph.

The learning curves of these algorithms are shown in Figure 6.3. The algorithm

with finer fixed discretization converged to a very good policy, but took a long time to

do so because it trusted only very accurate estimations throughout the learning. The

one with coarse discretization, on the other hand, converged very fast, but not to a

very good policy; it constructed rough estimations early on and did not compensate

as more samples were collected. Since MRE refined the notion of knownness over time,

it managed to make rough estimations at the beginning and accurate ones later on.

Therefore, it quickly converged to a good policy.

A more detailed comparison of this result is available in Figure 6.4, where the average

performance of each algorithm is provided for three different periods: at the early stages

of learning (episode 1 − 100), in the middle of learning (episode 100 − 200), and near

the end (episode 200− 300). Standard deviation is used as the error bar. Performance

of MRE was very close to the one with fine resolution in the last stage because they

both had learned the optimal policy; however, it performed much better in the first

period. Also, it learned as fast as the one with coarse discretization in the beginning,

but managed to converge to the optimal policy as more samples were gathered.
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Figure 6.4: Performance of three algorithms in Mountaincar broken down into three
stages of learning. A fine resolution discretization learns the optimal policy, but takes
a long time. A coarse discretization learns fast, but cannot make good estimates. MRE
learns fast and converges to good estimates.

To take a closer look at why MRE performed better than the one with fine reso-

lution during the early stages of learning (note that both of them achieved the same

performance level at the end), the two algorithms’ value functions were examined at

t = 1500 (Figure 6.5).

(a) (b)

Figure 6.5: Snapshot of the value function at timestep 1500 in MRE and another algo-
rithm that used a fixed discretization of size 0.05 in Mountaincar.

In the algorithm with fixed discretization, a large portion of the state space was

unknown. These were the states with 0 values (the flat surface on the top of the

value function). The reason for having a lot of states with 0 knownness was the narrow
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generalization of the algorithm. MRE, on the other hand, achieved a much more realistic

and smooth value function by allowing coarser generalizations in parts of the state space

with fewer samples.

A similar experiment was also tried with fitted Q-iteration and compared different

exploration strategies and their effects on the algorithm performance. Three exploration

techniques were tested: ε-greedy and two versions of uncertainty trees. The first one,

denoted by UTcontinuous, computed the knownness based on the second heuristic we

discussed for uncertainty trees. The second one, denoted by UTboolean, used a threshold

C to convert the knownness value to a Boolean function similar to the algorithms in

the KWIK framework.

For ε-greedy, the value of ε was set to 0.3 at the beginning and decayed linearly

to 0.03 at t = 10000, and kept constant afterward. The constant C was set to 0.8 in

UTboolean. These parameter settings were hand-tuned by a rough optimization, through

a few trial and error runs.

The result of this experiment is shown in Figure 6.6. As expected, ε-greedy per-

formed poorly, as it could not collect good samples to feed the batch learner. Both

versions of uncertainty tree converged to the same policy at the end, although the one

that used continuous knownness did it faster.

For a better understanding of why the continuous knownness helped fitted Q-iteration

at the early stages of learning, snapshots of the knownness functions from the two

versions were compared to each other at timestep 1500.

Figure 6.7 shows the knownness functions of action right computed in each algo-

rithm, along with the set of visited states. Black indicates a completely unknown region,

while white means completely known; gray is used for intermediate values.

Although UTboolean used a variable discretization, it had to output a Boolean func-

tion, so it ran into the same data-inefficiency issues that fitted-Rmax did (c.f. (§ 3.1.2)).

In particular, the set of visited states in UTcontinuous had a better covering of the whole

space, including several trajectories to the goal region. We believe this covering of the

state space helped UTcontinuous to perform better than the other version.
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Figure 6.6: Comparison of three different exploration strategies for fitted Q-iteration
tested in Mountaincar.

6.5 Conclusion

This chapter showed that the same knownness concept can be used to derive a hierar-

chical exploration strategy, which encourages anytime behavior. This development of

showed that the knownness idea can be used to expand the effectiveness of model-based

exploration to beyond what has been achieved by the PAC-MDP framework.

This algorithm achieved anytime behavior by forming a multi-resolution discretiza-

tion of the state space and variable levels of generalization. These features, which were

made possible by using the continuous knownness metric, allowed the agent to make

very accurate predictions in parts of the state space with a lot of samples (that is,

using a fine discretization), while still managing to use data efficiently in other parts

of the state space with sparser data (using coarse discretization). This chapter also

showed how to use the same knownness idea in a value-based algorithm. Although this

technique could not be used to derive a PAC-MDP bound in the case of a value-based

algorithm, empirical evaluations showed that it can be used to boost up the performance

of many existing value-based algorithms that are often used with primitive exploration

schemes.
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(a) UTboolean

(b) UTcontinuous

Figure 6.7: Knownness function computed in two versions of uncertainty trees with
fitted Q-iteration: one that outputs Boolean values, and one that works with contin-
uous ones. Black indicates completely unknown and white means completely known.
Collected samples are also shown for the same two versions at timestep 1500.
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Chapter 7

Concluding Remarks

This dissertation considered continuous-state control problems and introduced a family

of new techniques for efficiently balancing exploration and exploitation in model-based

algorithms. At the heart of these methods was a new learning framework called CK-

WIK. This learning paradigm introduced a new methodology for representing uncer-

tainty in the model estimation part of these algorithms, which could be used to achieve

a more data-efficient exploration of the environment. These algorithms represented

uncertainty using a concept called knownness, which was a continuous variable in the

range of 0 to 1 indicating how much the algorithm would know about the transition

function of each state-action pair.

Several algorithms were introduced that used this uncertainty measure to accom-

plish more data-efficient learning. The first algorithm to use the CKWIK framework

was called CF-Rmax and was a continuation of an existing algorithm from the Rmax-

exploration family called fitted-Rmax. This algorithm targeted a broad class of con-

tinuous state-space MDPs and was shown to have better performance than its sister

algorithm in practice. A formal analysis of the sample complexity of this algorithm was

also provided. Two more methods were introduced based on CF-Rmax, which targeted

a smaller class of environments. These algorithms, called FF-Rmax and DRE, were de-

signed to achieve even better performance in the case where the environment could

be represented in a more compact way. FF-Rmax achieved this speedup by using the

domain knowledge provided by the user a priori. DRE accomplished the same goal by

automatically discovering these compact representations without the help of the user.

Finally, an algorithm was introduced that used the same knownness concept to derive

a hierarchical exploration strategy. It was shown that this exploration scheme insists
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on continuously exploring the environment while making efficient use of available data.

These behaviors are especially beneficial in real-life situations where the user does not

know a priori the quantity of resources he/she has during the learning.
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Appendix A

Proofs

This appendix contains the proofs of the theorems that either were lengthy or tangent

to the flow of the dissertation, and thus were removed from the main content.

A.1 Proof of Theorem 14

We first state the theorem one more time:

Theorem 21. Let M be a class of MDPs and assume that FT is a CKWIK-learner

of the transition function of M with a bound of B(ε, δ,S,A). Then, CKWIK-Rmax is

PAC-MDP with a sample complexity of:

O
(

Vmax

ε(1− γ)

(
B(ε(1− γ)/Vmax, δ,S,A) + ln

1

δ

)
ln

1

ε(1− γ)

)
,

provided that the accuracy parameters for FT are set as:

εT = Θ(ε(1− δ)2), δT = Θ(δ).

The proof relies on a general PAC-MDP result from Strehl et al. (2006), which is

provided here as a reference:

Theorem 22. Let A(ε, δ) be an algorithm that takes ε and δ as inputs (in addition

to other algorithm-specific inputs), acts greedily according to its estimated state-action

value function, denoted Qt at timestep t. Define Vt(s)
def
= argmaxa∈AQt(s, a). Suppose

that on every timestep t, there exists a set Kt of state-acion pairs that depends only on

the agent’s history up to timestep t. We assume that Kt = Kt+1 unless, during timestep

t, an update to some state-action value occurs or the escape event AK happens. Let
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MKt be an MDP that has the same transition and reward function as M on set Kt, and

let πt be the greedy policy with respect to Qt. Suppose that for any inputs ε and δ, with

probability at least 1− delta/2, the following conditions hold for all timesteps t:

1. (Optimism) Vt(st) ≥ V ∗(st)− ε/4,

2. (Accuracy) Vt(st)− V πt
MKt

(st) ≤ ε/4, and

3. (Bounded surprises) The total number of updates of action-value estimates plus

the number of times the escape event from Kt, AK , can occur is bounded by a

function ζ(ε, δ). The function ζ may depend on |M |.

Then, with probability at least 1− δ, the sample complexity of exploration of A(ε, δ)

is

O
(

Vmax

ε(1− δ)

(
ζ(ε, δ) + ln

1

δ

)
ln

1

ε(1− δ)

)
.

We use the above theorem by defining the set Kt as follows:

Definition 23. Let M = 〈S,A, T,R, γ〉 be an MDP. At timestep t of the execution of

CKWIK-Rmax, define the set Kt of state-action pairs as follows:

Kt
def
= {(s, a) ∈ S ×A|ε(s, a) ≤ εT }.

We first provide a version of the simulation lemma (Li, 2009; Lemma 33), and then

verify the three conditions in Theorem 22 in Lemmas ??, ??, and ?? to show that

CKWIK-Rmax is PAC-MDP. We choose the following parameter values:

εT =
ε(1− γ)

γVmax
, δT = δ/4 (A.1)

Lemma 24. (Simulation Lemma) Let M1 = 〈S,A, T1, R, γ〉 and M2 = 〈S,A, T2, R, γ〉

be two MDPs with the same state/action spaces and discount factor. Let Q∗1 and Q∗2

(V ∗1 and V ∗2 ) be their optimal state-action value (state-value) functions, respectively.
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Assume the two transition functions are close in the following sense: there exists a

constant εT , such that for every (s, a), we have:

|T1(·|s, a)− T2(·|s, a)| ≤ εT .

Then, for any s ∈ S and a ∈ A, we have:

|Q∗1(s, a)−Q∗2(s, a)| ≤ γVmaxεT
1− γ

|V ∗1 (s)− V ∗2 (s)| ≤ γVmaxεT
1− γ

.

Proof. Define the Bellman operators, B1 and B2, for M1 and M2, respectively: for

i = 1, 2 and any state-action value function Q ∈ RS×A,

BiQ(s, a)
def
= R(s, a) + γ

∫
s′∈S

Ti(s
′|s, a) sup

a′∈A
Q(s′, a′)ds′.

It is known that Q∗i is the fixed point of Bi: BiQ∗i = Q∗i . Define two errors: the

`∞ approximation error e =‖ Q∗1 − Q∗2 ‖∞ and the `∞ Bellman backup error b =‖

B1Q∗2 − B2Q∗2 ‖∞. Then,

e =‖ B1Q∗1 − B2Q∗2 ‖∞

≤‖ B1Q∗1 − B1Q∗2 ‖∞ + ‖ B1Q∗2 − B2Q∗2 ‖∞

≤ γ ‖ Q∗1 −Q∗2 ‖∞ + ‖ B1Q∗2 − B2Q∗2 ‖∞

= γe+ b, (A.2)

where the first step is due to the fixed-point property of Bi, the second due to the

triangle inequality, the third due to the contraction property of Bi, and the last due to

the definitions of e and b. It follows immediately that (1− γ)e ≤ b, and so

e ≤ b

1− γ
. (A.3)
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We now give an upper bound for b:

b = sup
s,a
|B1Q∗2(s, a)− B2Q∗2(s, a)|

= sup
s,a
|γ
∫
S

(T1(s
′|s, a)− T2(s′|s, a)) sup

a′
Q∗2(s

′, a′)ds′|

≤ γ sup
s,a

∫
S
|T1(s′|s, a)− T2(s′|s, a))| sup

a′
|Q∗2(s′, a′)|ds′

≤ γVmax sup
s,a

∫
S
|T1(s′|s, a)− T2(s′|s, a)|ds′

≤ γVmaxεT , .

Combining this result with Equation A.3, we have for all (s, a) that

|Q∗1(s, a)−Q∗2(s, a)| ≤ e ≤ b

1− γ
≤ γVmaxεT

1− γ
.

The second part of the lemma follows immediate based on the relationship between the

value function and state-action value functions.

Lemma 25. With probability at least 1 − δ/2, Qt(s, a) ≥ Q∗(s, a) − ε/4 for all t and

(s, a).

Proof. Let M̂t be the internal MDP of the algorithm at time t. Also, let MKt be the

known state-action MDP, where Kt is given in Definition 23. The transition function in

MKt agrees with M̂t for state-action pairs outside Kt and with M for the pairs inside

Kt. Since the transition function of M̂t for state-action pairs in Kt are accurate with

probability at least δT = δ/4, using Lemma 24 we get:

|QM̂t
(s, a)−Q∗MKt

(s, a)| ≤ γVmaxεT
1− γ

. (A.4)

On the other hand, according to the construction of MKt and since it is identical to M

for all the state-action pairs inside Kt and the assumption about the FT , we have that

the optimal state-action value function of MKt is optimistic with probability at least
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1− δ/4. Combining the inequalities, we have:

Qt(s, a)−Q∗(s, a) ≥ Q∗
M̂t

(s, a)−Q∗(s, a)

≥ Q∗MKt
(s, a)− γVmaxεT

1− γ
−Q∗(s, a)

≥ −γVmaxεT
1− γ

.

(A.5)

with probability at least 1−δ/2. The parameter values chosen in Equation A.1 satisfies

the requirement of the lemma.

Lemma 26. The total number of timesteps in which Qt changes or a state outside Kt

is visited, denoted by ζ(ε, δ), is at most BT (εT , δT ).

Proof. Since Qt is only changed when Kt changes (the value of ε(s, a) for at least one

state-action pairs becomes less than εT ), we may only bound the number of timesteps

in which the outcome of FT for a query point has ε(s, a) greater than εT when δT is

provided, which is indeed BT (εT , δT ).

The proof of Theorem 14 is completed by using the previous lemmas and the result

of Theorem 22.

A.2 Proof of Lemma 17

This section provides the proof of lemma 17 in Chapter ??, which was skipped for

making the flow of the chapter more coherent. The lemma is restated here:

Lemma 27. Given a training data Da, a query point s∗, and an ε1
2CT

-ball around s∗,

if c1 points from Da are in the ε1
2CT

-ball, where c1 is:

c1 >
18√

18ε21
ln(2/δ) + 1− 1

+ 1, (A.6)
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the accuracy of CKWIK-KR is bounded by:

‖ Fa(s∗;Da)− µ∗ ‖22≤ ε1, (A.7)

with probability at least (1 − δ) for any input Da, provided that the kernel width σ is

larger than
√

ε1
2CT

.

Proof (of Lemma 17). For a query point x∗, fix the training data Da. We can write the

accuracy of kernel regression as:

‖ Fa(x∗;Da) ‖22= min
c
L(s∗, Da, c).

In particular, this equation holds for c = c1:

‖ Fa(x∗;Da) ‖22 ≤ L(s∗, Da, c1)

≤

√√√√ ln(2/δ)
∑

sj∈Nc1 (s∗)
k(sj , s∗)2

2[
∑

sj∈Nc1 (s∗)
k(sj , s∗)]2

+
CT
c1

c1∑
i=1

‖ si − s∗ ‖22 (A.8)

≤ L1 + L2, (A.9)

where L1 and L2 denote the loss due to the corresponding terms of the previous sum.

According to the assumption, at least c1 points from Da lie in the ε1
2CT

-ball around s∗.

We need to bound the loss function for any such Da. To achieve this objective, we

bound each term in the above inequality separately. For any Da that has c1 points in

the ε1
2CT

-ball around s∗, L2 is bounded by:

L2 =
CT
c1

c1∑
i=1

‖ si − s∗ ‖22

≤ CT
c1

c1∑
i=1

ε1
2CT

≤ ε1
2
. (A.10)
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We now bound the first term. Let kj be defined as:

ki =
k(si, s

∗)∑
sj∈Nc1 (s∗)

k(sj , s∗)
.

The maximum loss of the first term is:

max
Da

√√√√ ln(2/δ)

2
·
c1∑
i=1

(ki)2, //subject to having c1 points in the ball. (A.11)

It is straightforward to show that this term is maximized when one of the points

equals s∗ and the rest are located at the border of the ball. Without loss of generality,

suppose s1 = s∗ and let si>1 be the points located at the boundary of the ball. We

have:

ki>1 =

1
σ
√
2π
· exp(− ε1

2CT σ2 )∑
k(sj , s∗)

(A.12)

=

1
σ
√
2π
· exp(− ε1

2CT σ2 )

(c1 − 1)
(

1
σ
√
2π
· exp(− ε1

2CT σ2 )
)

+ 1
σ
√
2π

(A.13)

=
exp(− ε1

2CT σ2 )

(c1 − 1) exp(− ε1
2CT σ2 ) + 1

(A.14)

=
1

(c− 1) + exp( ε1
2CT σ2 )

. (A.15)

Perform a variable exchange of f for exp( ε1
2CT σ2 ). We get:

ki>1 =
1

(c1 − 1) + f
. (A.16)

Furthermore, if we denote ki>1 by w, we can write k1 using w:

k1 = (1− (c1 − 1)w).
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Now, let us rewrite L1 using these recent developments:

(L1)2 = max
Da

ln(2/δ)

2
·
c1∑
i=1

(ki)
2 (A.17)

=
ln(2/δ)

2
·
(
(c1 − 1)w2 + (1− (c1 − 1)w)2

)
(A.18)

=
ln(2/δ)

2
·

[
(c1 − 1)

[(c1 − 1) + f ]2
+

(
f

(c1 − 1) + f

)2
]

(A.19)

=
ln(2/δ)

2
·

[
x

[x+ f ]2
+

(
f

x+ f

)2
]

(A.20)

≤ ln(2/δ)

2
·

[
1

x
+

(
3

x

)2
]
, (A.21)

where the last step follows because of our assumption that f ≤ 3. The last function is

strictly decreasing w.r.t. x, so its maximum occurs for the minimum value of x. But,

the minimum value of x (or c− 1) is bounded according to our assumptions. Plugging

in the value of c1 in the equation, we get:

(L1)2 ≤
ln(2/δ)

2
·


√

18ε21
ln(2/δ) + 1− 1

18
+


√

18ε21
ln(2/δ) + 1− 1

6

2
 (A.22)

≤
(ε1

2

)2
//simplifying the equation. (A.23)

Therefore, we have L1 ≤ ε1
2 .

Putting it all back together, the following holds with probability at least (1− δ):

‖ Fa(x∗;Da) ‖22 ≤ L(s∗, Da, c1) (A.24)

≤ L1 + L2 (A.25)

≤ ε1
2

+
ε1
2

= ε1. (A.26)
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Appendix B

Planning in Markov Decision Processes

Planning in an MDP refers to the act of computing the optimal policy when the descrip-

tion of the MDP is given. Planning is closely related to reinforcement learning because

they both have the same goal of behaving optimally in an environment (which is mod-

eled by an MDP). Furthermore, planning is an important sub-step in all model-based

algorithms as explained in Figure 2.4.

In all the algorithms that were developed in this dissertation, the reader was left

to decide how to perform the planning step using the internal model. In practice,

planning is typically computationally challenging and an approximation to the optimal

policy needs to be made, especially in continuous spaces. Sine the performance of any

model-based algorithm is highly dependent on the accuracy of its planner (Li, 2009), this

chapter surveys some useful techniques for planning in continuous state-space MDPs.

B.1 Value Iteration

Value iteration is one of the oldest and simplest algorithms for solving an MDP (Puter-

man, 1994). Although it is designed to solve finite MDPs, it is interesting to study here

because it is the core of most of the sophisticated techniques for solving both finite and

continuous MDPs. Value iteration maintains estimates of value function (or action-value

function) and is therefore a value-based method.

Starting with an estimate of the value function V0, it repetitively uses the Bellman

operator to improve the estimate. Alternatively, the algorithm can maintain the Q-

function during the whole process. Algorithm 15 shows the pseudo-code for Value

iteration.
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Algorithm 15 Value Iteration: A planning algorithm for finite MDPs.

1: Inputs: M = 〈S,A, T,R, γ〉.
2: Initialize V (s) = Vmax.
3: for t=1, 2, . . . do
4: for all s ∈ S do
5: Update V (s) according to Bellman equation (2.5).
6: end for
7: end for

There are two important properties of value iteration that are worth mentioning.

First, it can be shown that as t goes to infinity, Vt converges to the optimal value

function. This convergence is independent of the value used in the initialization step

at line 2—we could have used any value instead of Vmax. Second, the sequence of value

function estimates Vt approaches the optimal value function at a geometric rate γ:

‖ Vt+1 − V ∗ ‖∞≤ γ ‖ Vt − V ∗ ‖∞ . (B.1)

This result is due to an important property of the Bellman operator called contrac-

tion. This property relates the difference of two functions before and after an operator

is performed on them. In particular, Bellman operator B is a γ-contraction because:

‖ BV1 − BV2 ‖∞≤ γ ‖ V1 − V2 ‖∞ . (B.2)

The geometric convergence is obtained simply by observing that V ∗ is the fixed

point of the Bellman operator: BV ∗ = V ∗. Given the geometric convergence, it is

important to have a starting estimate V0 that is as close to V ∗ as possible to ensure the

algorithm converges to the optimal value function faster. Although the convergence to

V ∗ occurs only in the limit, one does not need to compute the exact value function to

find an optimal policy. In fact, it can be shown that value iteration converges to the

optimal policy in finite time (Puterman, 1994). One way to detect convergence is to

stop the algorithm when ‖ Vt+1−Vt ‖∞ drops below a certain threshold (Williams and

Baird, 1993).

There are many variations of the value iteration algorithm. A large number of
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algorithms known as asynchronous value iteration (Bertsekas, 1982) replace the inner

loop of Algorithm 15 by something that updates the value of only one state. In other

words, these algorithms select a state according to some strategy at each iteration

and update its value using the Bellman equation. Different algorithms adopt different

strategies for selecting states in each iteration. For example, prioritized sweeping (Moore

and Atkeson, 1993; Peng and Williams, 1993) updates states based on a priority queue

maintained over the states. States have more priority if their Bellman error (aka |Vt+1−

Vt|) is higher. Another example is real-time dynamic programming (RTDP) (Barto et al.,

1995), which updates the value of states that are actually visited by an agent (forming

an online planning problem).

Value iteration can be extended to the situations where the complete description

of the transition function is not available. If access to the transition function is only

provided through samples from the transition function, the model is called a generative

one because we can generate samples from the transition function, but do not have

access to the description of the entire probability distribution. The Bellman backup

in value iteration cannot be applied in this case because we do not have access to

T (s′|s, a). Sample-based value iteration, described in Algorithm 16, uses C samples

from the transition function of each state-action pair to estimate the Bellman backup

operator.

Algorithm 16 Sample-based Value Iteration, a planning algorithm using generative
MDP models.

1: Inputs: M = 〈S,A, T,R, γ〉, C.
2: Initialize V (s) = Vmax.
3: for t=1, 2, . . . do
4: for all s ∈ S and a ∈ A do
5: Generate C samples from the transition function of (s, a): s′i ∼ T (s, a), i =

1, . . . , C.
6: Update the Q-function of (s, a) as follows:

Q(s, a) = R(s) +
γ

C

C∑
i=1

V (s′i). (B.3)

7: end for
8: end for
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B.2 Approximate Planning in Continuous Spaces

The value iteration algorithm, as well as other exact planning algorithms, can only

be used in finite MDPs with relatively few number of states because they store state

values in lookup tables. Most of the finite MDPs that are of practical interest have

too many states to be presentable this way. A classical example of this is the popular

game of GO, which is estimated to have 2.08×10170 different legal board configurations.

Continuous MDPs have infinite number of states by nature, which effectively eliminates

the possibility of using lookup table to store the value function. In these domains, except

for few special cases, neither the exact computation of the the Bellman operator, nor

the exact representation of the resulting functions is possible. Therefore, approximate

planning techniques are required for computing the optimal policy in these MDPs.

Some of these techniques are presented next.

B.2.1 Discretization

Abstraction is a widely-used technique in artificial intelligence to make compact repre-

sentations of large problems (Giunchiglia and Walsh, 1992). Abstraction has also been

extensively studied in the reinforcement-learning community. In an MDP framework,

abstraction is any mechanism that provides compact representation of a quantity re-

lated to the MDP. In particular, state abstraction aggregates the states into a (smaller)

set with the hope of constructing a more compact representation of functions defined

over the state space (such as value function or policy). A comprehensive list of different

state abstractions and their properties can be found in (Li et al., 2006). Some planning

algorithms (Tsitsiklis and Van Roy, 1996; Van Roy, 2006; Taylor et al., 2009) have used

abstraction for faster computation of the optimal policy.

Discretization is a particular type of state abstraction in continuous spaces, and

in mathematics, it is generally referred to as the process of transferring a continuous

model into a discrete one. Discretization of the state space is typically carried out by

partitioning the state space into a finite number of non-overlapping regions (Dougherty

et al., 1995). For example, suppose S is a unit hyper-cube of dimension n. A uniform
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discretization with resolution h creates a grid that evenly splits each dimension into h

intervals, each having a length of 1
h . Therefore, a total of (hn) cells will be created—

denoted by ξ1 . . . ξ(hn).

A finite MDP M̃ = 〈S̃,A, T̃ , R̃, γ〉 can be constructed from the original MDP using

discretization. Once this model is built, it can be solved using one of the existing

methods for finite spaces. Below, two ways for constructing M̃ are explored.

Cell state. In this method, each cell in the discretization becomes a state in the

new MDP. More precisely, s̃i ∈ S̃ is represented by ξi. The transition and the reward

function of s̃i are computed using samples from T and R, similar to sample-based value

iteration algorithm. First, C samples from ξi are generated according to some fixed

distribution (for example, uniform distribution)—denote them by (s1, . . . , sC). The

mean of the reward function of these points is used as the reward function of ξi, that

is R(s̃i) = 1
C

∑
iR(si). For computing the transition function of (s̃i, a), one sample

is generated from the transition function of each si, that is s′i ∼ T (si, a). Then the

set ξ(s′1), . . . , ξ(s
′
C) is constructed, where ξ(s′i) is the cell containing s′i. Finally, the

maximum-likelihood estimate is used to compute T̃ (s̃′|s̃, a) based on this set. Likewise,

if we only need a generative model of the MDP, each time we are asked for a sample from

T̃ (s̃, a), we uniformly sample one point s from the corresponding cell, generate a sample

from its transition function s′ ∼ T (s, a), and return ξ(s′) as the answer. Figur B.1 shows

the details of this process. The picture on the left shows a 2-dimensional state space

along with a discretization with resolution 3. The picture in the middle is a zoom-in

on the cell at the bottom-right corner. It shows 5 randomly selected states from this

cell along with their next states when action a1 is performed. The picture on the right

shows the discretized MDP along with the transition function T (ξ9, a1).

Corner state. In this method, the corners of the grid are used as the states in M̃ .

For constructing the transition function, we need to first study Kuhn-triangulation (Moore,

1992) and an interpolation mechanism called “barycentric interpolators” (Munos and

Moore, 1998).

Kuhn-triangulation is a technique for partitioning a k-dimensional hyper-cube into
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Figure B.1: The process of discretizing a 2D state space using the cell-state method.

non-overlapping k-dimensional simplexes. Given this partitioning, we can associate

each point in a cell to one of the simplexes. This process is explained below.

For ease of exposition, let us consider an ordering for the corners of the i-th cell.

The corners (ξi,j |j = 1 . . . 2k − 1) can be ordered using the binary encoding of j. This

process is best explained using a picture. Figure B.2 shows the ordering for 2D and

3D cells. As you can see, the first two points ξi,0, ξi,1 always cover the corners of the

line spanning the first axis, the four points ξi,0, . . . , ξi,3 cover the corners of the square

spanning the first two axes, and so on.

Let j0, j1, . . . , jd−1 be a permutation of components of s such that we have s(j0) ≥

s(j1) ≥ . . . ≥ s(jd−1), that is a permutation achieved by sorting the components of s.
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Figure B.2: The ordering of the cell corners are depicted in 2D and 3D worlds in (a)
and (c) respectively. (b) and (d) show the simplexes formed by the corner-state method
in the corresponding worlds.

The k + 1 indices of the corresponding simplex are then:

i0 = 0

i1 = i0 + 2j0

...

il = il−1 + 2jl−1

...

ik = ik−1 + 2jk−1 = 2k − 1.
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Figure B.2 (b) and (d) show how the simplexes are formed in 2D and 3D hyper-

cubes.

Now, let us look at how the barycentric interpolation works given a Kuhn-triangulation.

For any point s ∈ S, let ξi0 , . . . , ξik be the set of the corners of the simplex that s belongs

to. The barycentric coordinates λ0, . . . , λk of s are coefficients of a linear combination

of ξi0 , . . . , ξik used to represent s. In other words, the barycentric coordinates for a

state s satisfy the following two conditions:

1. Their sum equals to 1:
∑k

j=0 λj = 1

2. They are the coefficients of the linear function of corners that produce that state:

s =
∑k

j=0 λjξij

It is straightforward to show that given the Kuhn-triangulation, barycentric coor-

dinates are (uniquely) defined as:

λ0 = 1− sj0

λ1 = sj0 − sj1
...

λl = sjl−1
− sjl

...

λk = sjk−1 − 0.

To recap, these two steps allow us to represent any state using a linear combination

of the k + 1 corners of a simplex containing that point. Given this setup, it is easy to

construct T̃ : If a generative model is intended, a sample from the original transition

function is generated (that is, s′ ∼ T (ξi, a)). Then, the corners of the simplex containing

s′ and their corresponding barycentric coefficients are computed. And finally, one of the

corners is selected randomly according to the distribution defined by the barycentric

coefficients. Algorithm 17 shows the detail of this process. The construction of the full

transition function follows the same procedure.
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Algorithm 17 Generating samples from T̃ (ξi, a) in the corner-state model.

1: Generate a sample from the underlying continuous MDP: s′ ∼ T (ξi, a).
2: Compute the indices of the corners of the simplex containing s′: (ξi0 , . . . , ξik).
3: Compute the corresponding barycentric coefficients: (λ0, . . . , λk).
4: Randomly return ξij according to the probability λj .

B.2.2 Fitted Value Iteration (FVI)

Fitted value iteration (Gordon, 1995) is a generalization of the corner-state method we

studied earlier. This algorithm generates a sequence of value functions V1, V2, . . ., each

Vt computed from the previous one Vt−1 by applying an approximate Bellman operator.

Assuming that Vt is presented using the function approximator Ft, the algorithm goes

through two procedures to obtain Ft+1. First, an approximate Bellman operator is

applied to a set of backup points si by using a Monte-Carlo estimate.

V̂t+1(si) = R(si) + max
a

γ

C

C∑
j=1

Ft(y(si,a)j ), i = 1, . . . , N, (B.4)

where each y
(si,a)
j is a sample from T (si, a). This estimate is reminiscent of the technique

used in sample-based value iteration. The second step in each iteration is to learn Ft+1

using the training set {(si, V̂t+1(si))|i = 1..N}.

There are a couple of important parameters in FVI that need to be examined. The

Monte-Carlo parameter C specifies how accurately the Bellman backup for a particular

state needs to be approximated. In the degenerate case of deterministic transition

function, setting C = 1 is all we need. As a general rule of thumb, the more stochastic

the environment is, the higher the value of C should be. The number of samples N

and the way the samples are selected from the state space has a direct impact on the

expressiveness of the approximation. Intuitively, N should be small enough so that we

can perform the backup operator on all of the data points. But, at the same time, it

should be large enough so that the entire value function can be reasonably represented

by only N points. The choice of the distribution used to select these samples is more

complicated (Munos and Szepesvári, 2008). Again, the distribution should be such that

the value function of the entire MDP can be reasonably expressed by only the values
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at the points from it. An empirical evaluation of different heuristics will be provided

later on.

Perhaps the most important part of the algorithm is the choice of F . We saw

earlier that the Bellman operator is a contraction operator and that is the reason why

estimations of value iteration approaches the optimal value function at a geometric rate.

Unfortunately, the combination of the approximate Bellman operator and the function

approximation might not always be a contraction operator, and therefore, the whole

process might never converge. In fact, many people have showed that this situation

arises in the context of a lot of popular choices of function approximators in many

MDPs (Boyan and Moore, 1995; Tsitsiklis and Van Roy, 1996). But, the situation is

not that hopeless either. Gordon (1995) showed that at least for one class of function

approximators, called “averagers”, the combination with approximate Bellman operator

is indeed a contraction, and therefore, convergence to the optimal value function is

guaranteed.

A function approximator is an averager if F is a weighted average of zero or more of

yi’s (a constant term is also allowed), where (xi, yi) is in the training data. The weights

of this average can be dependent on xi’s but not on any of the yi’s.

More than a decade later, Munos and Szepesvári (2008) provided a detailed analysis

on the finite-time convergence of FVI depending on the choice of its parameters.

B.3 Forward Planning

All the algorithms presented in the previous sections compute the value function for

the entire MDP. That is, after the planning is done, the value function V (s) is readily

available for all states. In this section, another set of algorithms are presented that

compute the value function of only one state (that is, the current state). The intuition

behind this approach is that sometimes a huge portion of the state space is not relevant

to the planning problem at hand. For example, consider a player in the game of GO.

We saw that the state space of this game is bigger than the total number of atoms in

the whole universe. However, at any given time, the player does not need to know the
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Figure B.3: A schematic view of a sparse-sampling tree. Each node has C|A| children.

value function of all the states to be able to play the game. All it needs to know is

the Q-function of the current board configuration, from which it can compute a policy

to play the game. Assuming that the planning for one state is faster than solving the

entire MDP, the player can repetitively replan for the current state as the game goes

on. These planning algorithms usually create a forward search tree to compute the

value of the current state—hence the name.

Indeed, it has been shown that forward planning can be done (arbitrarily) faster than

full planning. A forward-planning algorithm called “sparse sampling” was introduced

by Kearns et al. (1999), whose running time was independent of the size of the state

space. This algorithm creates a new MDP M ′ whose state space is the set of reachable

states from the current state and an ε-horizon time.

This MDP is generated as a tree: The root of the tree is the current state. Each

internal node of this tree is expanded by trying each action C times, and the expansion

stops at the depth of:

H = logγ

(
ε(1− γ)

Rmax

)
. (B.5)

Figure B.3 shows a schematic view of this tree1. It can be shown that the estimate

1This figure is taken from (Kearns et al., 1999).
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of the value function at the root is ε-close to the true value function, provided that the

value of each node at depth h is computed as:

V̂h(s) = R(s) + max
a

γ

C

∑
s′∼T (s,a)

V̂h+1(s
′), (B.6)

and VH(s) = 0 by default. So, the value at the root is computed recursively using

the value of all its descendent nodes. Sparse sampling generates a full tree of depth H

with a fanning parameter C|A|. Therefore, while its running time is independent of the

size of the state space, it is exponential in 1
ε and 1

1−γ , which makes it computationally

not feasible in practice as they both are usually very large numbers. This type of

tree construction is sometimes called “stage-wise construction” because the values are

computed recursively in stages from bottom to top. Therefore, the value of an internal

node can be computed only when the entire sub-tree of that node is in place.

B.3.1 UCT

Forward planning can be effective because instead of wasting a lot of resources for

computing the value at all the states, it only computes the value at the current state.

However, the full tree that sparse sampling generates makes the algorithm very ineffi-

cient. The upper confidence bounds applied to trees (UCT) was introduced by Kocsis

and Szepesvári (2006) as a Monte-Carlo search planner to address the inefficiency of

sparse sampling.

The intuition behind UCT is to focus the computation resources on parts of the

search-tree that are more promising (that is, states that are more probable to be part

of the optimal policy). To achieve this goal, UCT uses another approach to building the

tree. UCT constructs the tree using rollouts from the current state, instead of using a

stage-wise approach. In Monte-Carlo rollout construction, trajectories of length H are

generated from the current state one at a time. UCT uses the available information at

each node (that is, the current estimated value function) to help with the process of

generating the next trajectories.

In particular, UCT uses a technique from k-armed bandit called UCB (Auer et al.,
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2002) to select an action at each node when generating a trajectory. This algorithm

selects arms based on their estimated payoff and a specially constructed bonus function.

UCT applies the same algorithm at each node of the tree using the estimated Q-function

of that node. Algorithm 18 shows the detail of this process.

Algorithm 18 UCT: A Monte-Carlo tree-search planner.

1: Function UCT(s, Cp, H, g):
2: while we have time do
3: V = search(s, 0, Cp, H, g);
4: end while
5: return V ;
6: End Function
7:

8: Function search(s, d, Cp, H, h):
9: if d = H then

10: Qd(s, a) = g(s) for all a ∈ A.
11: Return 0.
12: else

13: a∗ = argmaxa

(
Qd(s, a) + Cp

√
ln(nsd)
na∗sd

)
.

14: s′ ∼ T (s, a∗).
15: V = R(s) + γUCT(s′, d+ 1). //recursively generate the trajectory.
16: Inc(nsd).
17: Inc(na∗sd).

18: Qd(s, a
∗) = V+(na∗sd−1)Qd(s,a∗)

na∗sd
. //maintain an average for Qd.

19: Return V .
20: end if
21: End Function

The heuristic function g that estimates the value of states at the leaves of the tree

is usually a vanilla Monte-Carlo method that runs random trajectories from that leaf

(perhaps, running until the end of the episode if possible). Please refer to the work

of Gelly and Silver (2007) for more details on the heuristic function. The constants H

and Cp indicate the depth of the search tree and the exploration-exploitation tradeoff

constant, respectively.

UCT has been extremely successful in practice. It has been used for solving some

computer games with huge number of states, such as Go (Gelly and Wang, 2006) and

poker (Van den Broeck et al., 2009). One of the factors for the success of UCT is that it

is possible to run deep trajectories in practice. In contrary, sparse sampling can only be
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run with a very short values of H due to the exponential blowup. Due to the nature of

sequential decision making, many times the agent has to chain a long series of actions

to each other to form the optimal policy. In these cases, short sequences of actions will

not be sufficient to distinguish the optimal policy from the others.

While UCT is designed for finite MDPs, we can use the same discretization tech-

niques used in SectionB.2.1 to run UCT in continuous spaces.



145

Appendix C

Technical Details of Environments

This appendix explains the technical details of the environments used for evaluating

different algorithms.

C.1 Mountaincar

This domain is probably the most widely-used environment in the field of reinforcement

learning. It describes an underpowered car trying to move up a hill (Sutton and Barto,

1998). But, since it does not have enough power to do so, it needs to travel back

and forth the hill several times to build up the necessary speed. Figure C.1 shows an

illustration of this domain.

The state space of this domain consists of two variables: the horizontal position of

the car that has a range in [−1.2, 0.6] and its velocity in the range of [−0.07, 0.07]. The

car is equipped with three action: left, neutral, and right. These actions accelerate the

car in the intended direction. The reward function of this environment is computed as:

R(x, v) =

{
−1 if x < 0.5

0 if x ≥ 0.5

G

Figure C.1: Mountaincar domain.
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The next state is computed using the following equations:

vt+1 = 0.0001f(at)− 0.0025 cos(3xt)

st+1 = st + vt+1,

where f(at) is defined as (−1) for left, (0) for neutral, and (1) for right. The state

variables were brought back within the boundaries of the state space if they went

outside.

Each time the car reached the goal region, the episode ended. Also, the episode

ended if the car did not manage to get to the top after 300 steps. The starting state

was selected to be hard. The car was always started at the bottom of the hill with a

tiny random velocity selected from N (0, 0.005).

C.1.1 n-Mountaincar

This environment is an extension of Mountaincar that contains multiple cars (Nouri

and Littman, 2010). In an instance of n-Mountaincar, n cars are placed in n parallel

worlds—cars do not clash with each other—and are controlled using the same set of

three actions. The effect of each action is different on each car. For example, while

action right accelerates the first car to the right, it might accelerate the second car to

the left. The effect of each action on each car is picked at random at the beginning

of each experiment. The goal of this domain is to drive the first car to the top of

the hill. Therefore, the value functions of all n-Mountaincar domains are the same,

independent of n.

C.2 Puddleworld

This environment is a simulated navigation problem. An agent is placed inside a

bounded region [0, 1]2. Its task is to navigate to a goal region while avoiding two

existing puddles in the box (Sutton, 1996). Figure C.2 explains how the environment

works. The state space of this environment is the position of the agent:
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G1

0
0

1

Figure C.2: Puddleworld domain.

S = {(x, y)|x ∈ [0, 1], y ∈ [0, 1]}.

The agent is equipped with four actions: up, down, left, right. Intuitively, these

actions are designed to move the agent in the intended direction by a fixed amount plus

some noise. More precisely, the transition function is:

st+1|st, up = st + (0, 0.05) + ωt (C.1)

st+1|st,down = st + (0,−0.05) + ωt (C.2)

st+1|st, right = st + (0.05, 0) + ωt (C.3)

st+1|st, left = st + (−0.05, 0) + ωt, (C.4)

(C.5)

where ωt is selected from a normal distribution as follows: ωt ∼ N (0, 0.01). The goal

region is defined as the set of points that are 0.1-close to (1, 1) in 1-norm:

G(s)
def
=‖ x− (1, 1) ‖1≤ 0.1.

Two puddles are present in the environment in the form of two ellipsoids, whose

centers are located at:

pud1 = 〈(0.1, 0.75), (0.45, 0.75)〉

pud2 = 〈(0.45, 0.40), (0.45, 0.80)〉.
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The reward function is computed based on the position of the agent. If it is in the

goal region, a reward of 0 is received and the episode is terminated. If its distance to

the center of any of the puddles is less than 0.1, the reward is computed as R(s) =

−400(0.1 − d), where d is the distance to the center of the ellipsoid. If the agent

is outside the puddles, it receives a −1 penalty. Finally, the episodes are started by

selecting a random state according to a uniform distribution outside of the goal region

and the puddles.

C.2.1 n-Puddleworld

This environment is an extension of Puddleworld to n-dimensional space (Nouri and

Littman, 2010). The agent is placed in the n-dimensional unit hyper-cube [0, 1]n, and

its goal—similarly to Puddleworld—is to reach the goal region while avoiding the

puddles. The goal and the puddles are projected into the dimensions higher than 2,

such that the value function of all n-Puddleworlds are the same. That is, the goal

region is defined as:

G(s) =‖ (s(1), s(2))− (1, 1) ‖1≤ 0.1,

and the distance to the puddles is computed the same way. Actions are also manipulated

to match the new space; there are 2n actions in n-Puddleworld. Actions a2i and

a2i+1 move the agent along the i-th dimension by the same constant amount as in

Puddleworld.

C.3 Warpedworld

This environment is basically a more complicated version of Puddleworld. Everything

in these two environments is exactly the same, except for the transition function. While

in Puddleworld, the agent moves by a constant amount after executing each action,

the effect of actions in Warpedworld is based on a linear combination of the state

variables:
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Figure C.3: A top view of the Bumbleball field.

st+1|st, a =
n∑
i=1

Ciast(i) + ωt,

where ωt is the same noise function used in Puddleworld and Ca is a vector of coef-

ficients defined individually for each action. In our experiments, these constants were

selected to be the same for all actions and were set to (0.01, 0.02) and (0.01, 0.02, 0.03)

for 2-Warpedworld and 3-Warpedworld, respectively. Note that because of these new

dynamics, the value functions of n-Warpedworld would not be the same for different

values of n.

C.4 Bumbleball

This section explains the technical details of how Bumbleball was implemented.

The Bumbleball domain was inspired by a widely-used simulation environment in

the RL community called Puddleworld (Sutton, 1996). In this robotic navigation

task, an Aibo robot was placed inside a box with a size of approximately 4 × 6 feet,

and had to navigate to a goal region, while avoiding contact with a randomly moving

ball (Figure C.3).

Aibo is a programmable four-legged dog robot that was first introduced in 1999 by

Sony as an intelligent pet toy. However, it received a lot of attention from robotics
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Figure C.4: Pictures of three generations of Aibo: ERS-111 was the first model, followed
by ERS-210 and finally ERS-7.

Figure C.5: Picture of a bumble ball.

researchers, especially after it was introduced as a league in international RoboCup

competition. The production of Aibo was discontinued in 2006 after three generations

of different models. Figure C.4 shows pictures of different Aibo generations.

The last generation of the Aibo is equipped with a lot of sensors, including pressure

sensors, infra-red sensors, acceleration and vibration sensors, and microphone. It is

equipped with 64MB RAM, 64-bit RISC processor, and wireless network card. The

operating system that runs on Aibo is called MIPS, but a cross-compiler for Linux is

available. Furthermore, an impressive library called Tekkotsu is available for developing

applications for Aibo in C++.

The moving ball used in the experiment was called “bumble ball”. It was a motorized

toy ball from Ertl toys company. A picture of it can be found in Figure C.5.

The Bumbleball environment was implemented using a distributed system archi-

tecture. A camera mounted on the top of the field captured the current state of the

environment. This information was processed in a PC computer. This machine also ran

http://www.robocup.org
http://www.tekkotsu.org
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Figure C.6: Distributed architecture of the Bumbleball environment.

the code for the RL experiment including the agent. The actions executed by the agent

was transferred over the wireless network to another program running on the Aibo.

This program executed the encoded action and the loop repeated. This architecture is

shown in Figure C.6.

The state space of the environment consisted of 5 variables: Two for the position of

the robot (its center of mass), two for the position of the ball, and one for the orientation

of the robot. The current state was captured by placing a special marker on the back

of the robot and using a video-processing program called “dogtracker” developed by

Chris Mansley, who is a current graduate student in RL3 lab at Rutgers.

The Aibo had 6 available macro actions that allowed the robot to move around.

These actions were MoveForward, MoveBackward, TurnRight, TurnLeft, StrafeLeft,

and StrafeRight. These low-level implementation of these actions were hard-coded

into the robot using gait patterns in the Tekkotsu library. Specifically, applying each

of these actions resulted in the robot executing the corresponding gait pattern for a

fixed amount of time. This execution time was based on whether the current action

executed was the same as the previous one or not. If it was the same, the gait pattern

was executed for 1.0 second, and if it was not, the gait pattern was executed for 1.3

second. The reason for this change was to make sure the effect of actions were as close

to Markovian as possible (going forward when the robot is already moving forward is
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easier than moving forward when the robot is already moving backward).

The Bumbleball domain was implemented as an Environment-module in the RL-

GLUE framework and will be available for download from the RLGLUE website.

http://glue.rl-community.org/
http://glue.rl-community.org/
http://glue.rl-community.org/
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Appendix D

Mathematical Facts

D.1 Learnability of Continuous MDPs

We discussed several sample-complexity learning analyses. The following theorem states

that learning—using any of these analyses—becomes impossible in continuous state-

space MDPs if no assumption is made about the smoothness of the transition function.

Theorem 28. Given a continuous state-space MDP M = 〈S,A, T,R, γ〉, if no smooth-

ness assumption is made on T , that is, if T (s1, a) and T (s2, a) can be arbitrarily dif-

ferent for any pairs of states s1 6= s2, no algorithm is able to guarantee learning of M

according to any of the following MDP learning frameworks: asymptotic convergence,

regret minimization or PAC-MDP analysis.

Proof (sketch). This problem is unlearnable in all the frameworks because of the same

reason: there are an infinite number of states in a continuous state space and no matter

how much data the agent collects, there are always some unvisited states. Since no

smoothness assumption is available, the agent has no information about those states,

so it can behave arbitrarily badly in those states. Here is an example of such domain.

Consider an environment with a one-dimensional state space in the interval [0, 1]

and two actions. Imagine that the agent starts at s = 1. Both actions result in a

transition to s/2. However, the payoff of one action is 0 and the other action is 1, as

a function of the state s. This mapping can be arbitrary, so, on every step, the agent

has a 50-50 chance of getting high reward and a 50-50 chance of getting low reward.

No learning can take place because no state is ever visited twice and no generalization

is possible.
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D.2 Kernel Functions

Kernel functions are widely used in statistical machine learning as a particular kind of

similarity function. For example, they are used in kernel density estimation (Hastie

et al., 2003), time series (Warren Liao, 2005), kernel regression, and many other re-

search disciplines.

A kernel function is a non-negative integrable scalar function defined on u, satisfying

the following two conditions:

•
∫ +∞
−∞ k(u)du = 1.

• k(−u) = k(u).

In the cases where kernel function is used to measure the similarity between two

points x1 and x2 in some space Rn, u becomes the distance between the two points. Let

d(x1, x2) be a distance metric in Rn. Then, the kernel function becomes k(x1, x2) =

k(d(x1, x2)). Many forms of kernel functions have been used in various literatures.

Here, we summarize some of the more popular ones:

• Uniform: k(u) = 1
2σ II(|u| ≤ σ).

• Triangle: k(u) = (σ − |u|)II(|u| ≤ σ).

• Cosine: k(u) = π
4σ cos

(
π
2σu
)

II(|u| ≤ σ).

• Gaussian: k(u) = 1
σ
√
2π

exp
(
−u2

σ2

)
.

All these kernel functions are peaked at u = 0 and decay to 0 when |u| → ∞. The

difference between them is how do so, while maintaining the two above assumptions.

The parameter σ is usually referred to as “kernel width” or “smoothing parameter”.

It controls the rate at which the kernel function decays to 0. Typically, larger values

of σ means that the kernel function is wider. That is, the rate at which it goes to 0

is smaller. The shape of these kernel functions are depicted in Figure D.1 for a fixed

value of σ = 1.
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Figure D.1: Several examples of kernel functions. The value of σ was set to 1 for all
the functions.

Figure D.2 illustrates the effect of changing the kernel width in Gaussian kernel.

Four values are shown in the figure. Smaller values of σ create functions that are closer

to a dirac function, whereas larger values make the function more spread-out. Usually,

depending on the type of application, one needs to search for the right value of σ that

optimizes performance (Sheather and Jones, 1991).
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Rémi Munos and Csaba Szepesvári. Finite-time bounds for fitted value iteration. Jour-

nal of Machine Learning Research, 9:815–857, 2008.

Ali Nouri and Michael L. Littman. Multi-resolution exploration in continuous spaces.

In Proceedings of the 22nd Neural Information Processing Systems, pages 1209–1216,

2008.

Ali Nouri and Michael L. Littman. Dimension reduction and its application to model-

based exploration in continuous spaces. Machine Learning, 81(1):85–98, 2010.

Ronald Parr, Lihong Li, Gavin Taylor, Christopher Painter-Wakefield, and Michael L.

Littman. An analysis of linear models, linear value-function approximation, and

feature selection for reinforcement learning. In Proceedings of the 25th International

Conference on Machine Learning, 2008.



164

K. Pearson. On lines and planes of closest fit to systems of points in space. Philosophical

Magazine, 2(6):559–572, 1901.

Jing Peng and Ronald J. Williams. Efficient learning and planning within the Dyna

framework. Adaptive Behavior, 1(4):437–454, 1993.

Franco P. Preparata and Michael Ian Shamos. Computational Geometry - An Intro-

duction. Springer, 1985. ISBN 3-540-96131-3.

Martin L. Puterman. Markov Decision Processes—Discrete Stochastic Dynamic Pro-

gramming. John Wiley & Sons, Inc., New York, NY, 1994.

Carl E. Rasmussen and Christopher Williams. Gaussian Processes for Machine Learn-

ing. MIT Press, 2006.

Sam Roweis and Lawrence Saul. Nonlinear dimensionality reduction by locally linear

embedding. Science, 290(5500):2323–2326, 2000.

Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.

Prentice-Hall, Englewood Cliffs, NJ, 1994. ISBN 0-13-103805-2.

Burr Settles. Active learning literature survey. Technical report, Carnegie Mellon

University, 2010.

S. J. Sheather and M. C. Jones. A reliable data-based bandwidth selection method for

kernel density estimation. Journal of the Royal Statistical Society. Series B (Method-

ological), 53(3):683–690, 1991.

William D. Smart. Explicit manifold representations for value-function approxima-

tion in reinforcement learning. In Prceedings of the 8th International Symposium on

Artificial Intelligence and Mathematics, 2004.

Gilbert Strang. Linear Algebra and its Applications. Academic Press, Orlando, FL,

2nd edition, 1980.



165

Alexander L. Strehl. Probably Approximately Correct (PAC) Exploration in Reinforce-

ment Learning. PhD thesis, Department of Computer Science, Rutgers, the State

University of New Jersey, 2007.

Alexander L. Strehl and Michael L. Littman. A theoretical analysis of model-based

interval estimation. In Proceedings of the Twenty-second International Conference

on Machine Learning (ICML-05), pages 857–864, 2005.

Alexander L. Strehl and Michael L. Littman. Online linear regression and its application

to model-based reinforcement learning. In Advances in Neural Information Processing

Systems 20, pages 737–744, 2008a.

Alexander L. Strehl and Michael L. Littman. An analysis of model-based interval

estimation for Markov decision processes. Journal of Computer and System Sciences,

74:1309–1331, 2008b. special issue on Learning Theory.

Alexander L. Strehl, Lihong Li, and Michael L. Littman. Incremental model-based

learners with formal learning-time guarantees. In Proceedings of the 22nd Conference

on Uncertainty in Artificial Intelligence (UAI 2006), 2006. URL http://www.cs.

rutgers.edu/~strehl/papers/UAI06IncrementalModelBasedRL.pdf.

Alexander L. Strehl, Lihong Li, and Michael L. Littman. Reinforcement learning in

finite MDPs: PAC Analysis. Journal of Machine Learning Research, 10:2413–2444,

2009.

Richard S. Sutton. Learning to predict by the method of temporal differences. Machine

Learning, 3(1):9–44, 1988.

Richard S. Sutton. First results with Dyna, an integrated architecture for learning,

planning and reacting. In Neural networks for control, pages 179–189. MIT Press,

Cambridge, MA, USA, 1990. ISBN 0-262-13261-3.

Richard S. Sutton. Generalization in reinforcement learning: Successful examples using

sparse coarse coding. In Advances in Neural Information Processing Systems 8, pages

1038–1044, Cambridge, MA, 1996.

http://www.cs.rutgers.edu/~strehl/papers/UAI06IncrementalModelBasedRL.pdf
http://www.cs.rutgers.edu/~strehl/papers/UAI06IncrementalModelBasedRL.pdf


166

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.

The MIT Press, 1998.

Richard S. Sutton, David Mcallester, Satinder Singh, and Yishay Mansour. Policy gra-

dient methods for reinforcement learning with function approximation. In Advances

in Neural Information Processing Systems 12, volume 12, pages 1057–1063, 2000.
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