
PROBABLY APPROXIMATELY CORRECT (PAC)
EXPLORATION IN REINFORCEMENT LEARNING

BY

ALEXANDER L. STREHL

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Michael Littman

and approved by

New Brunswick, New Jersey

October, 2007

c© 2007

Alexander L. Strehl

ALL RIGHTS RESERVED

ABSTRACT OF THE DISSERTATION

Probably Approximately Correct (PAC) Exploration in

Reinforcement Learning

by Alexander L. Strehl

Dissertation Director: Michael Littman

Reinforcement Learning (RL) in finite state and action Markov Decision Processes

is studied with an emphasis on the well-studied exploration problem. We provide a

general RL framework that applies to all results in this thesis and to other results

in RL that generalize the finite MDP assumption. We present two new versions of

the Model-Based Interval Estimation (MBIE) algorithm and prove that they are both

PAC-MDP. These algorithms are provably more efficient any than previously studied

RL algorithms. We prove that many model-based algorithms (including R-MAX and

MBIE) can be modified so that their worst-case per-step computational complexity is

vastly improved without sacrificing their attractive theoretical guarantees. We show

that it is possible to obtain PAC-MDP bounds with a model-free algorithm called

Delayed Q-learning.

ii

Acknowledgements

Many people helped with my research career and with problems in this thesis. In partic-

ular I would like to thank Lihong Li, Martin Zinkovich, John Langford, Eric Wiewiora,

and Csaba Szepesvári. I am greatly indebted to my advisor, Michael Littman, who

provided me with an immense amount of support and guidance. I am also thankful to

my undergraduate advisor, Dinesh Sarvate, who imparted me with a love for research.

Many of the results presented in this thesis resulted from my joint work with other

researchers (Michael Littman, Lihong Li, John Langford, and Eric Wiewiora) and have

been published in AI conferences and journals. These papers include (Strehl & Littman,

2004; Strehl & Littman, 2005; Strehl et al., 2006c; Strehl et al., 2006a; Strehl et al.,

2006b; Strehl & Littman, 2007).

iii

Table of Contents

Abstract . ii

Acknowledgements . iii

List of Figures . viii

1. Formal Definitions, Notation, and Basic Results 4

1.1. The Planning Problem . 5

1.2. The Learning Problem . 5

1.3. Learning Efficiently . 6

1.3.1. PAC reinforcement learning . 6

1.3.2. Kearns and Singh’s PAC Metric 7

1.3.3. Sample Complexity of Exploration 7

1.3.4. Average Loss . 9

1.4. General Learning Framework . 10

1.5. Independence of Samples . 15

1.6. Simulation Properties For Discounted MDPs 18

1.7. Conclusion . 25

2. Model-Based Learning Algorithms . 26

2.1. Certainty-Equivalence Model-Based Methods 26

2.2. E3 . 28

2.3. R-MAX . 29

2.4. Analysis of R-MAX . 33

2.4.1. Computational Complexity . 33

2.4.2. Sample Complexity . 34

iv

2.5. Model-Based Interval Estimation . 37

2.5.1. MBIE’s Model . 39

2.5.2. MBIE-EB’s Model . 44

2.6. Analysis of MBIE . 44

2.6.1. Computation Complexity of MBIE 44

2.6.2. Computational Complexity of MBIE-EB 47

2.6.3. Sample Complexity of MBIE . 48

2.6.4. Sample Complexity of MBIE-EB 52

2.7. RTDP-RMAX . 56

2.8. Analysis of RTDP-RMAX . 58

2.8.1. Computational Complexity . 58

2.8.2. Sample Complexity . 60

2.9. RTDP-IE . 60

2.10. Analysis of RTDP-IE . 61

2.10.1. Computational Complexity . 61

2.10.2. Sample Complexity . 63

2.11. Prioritized Sweeping . 67

2.11.1. Analysis of Prioritized Sweeping 68

2.12. Conclusion . 69

3. Model-free Learning Algorithms . 70

3.1. Q-learning . 70

3.1.1. Q-learning’s Computational Complexity 70

3.1.2. Q-learning’s Sample Complexity 71

3.2. Delayed Q-learning . 71

3.2.1. The Update Rule . 74

3.2.2. Maintenance of the LEARN Flags 74

3.2.3. Delayed Q-learning’s Model . 75

3.3. Analysis of Delayed Q-learning . 75

v

3.3.1. Computational Complexity . 75

3.3.2. Sample Complexity . 76

3.4. Delayed Q-learning with IE . 82

3.4.1. The Update Rule . 82

3.4.2. Maintenance of the LEARN Flags 84

3.5. Analysis of Delayed Q-learning with IE 85

3.5.1. Computational Complexity . 85

3.5.2. Sample Complexity . 85

3.6. Conclusion . 94

4. Further Discussion . 95

4.1. Lower Bounds . 95

4.2. PAC-MDP Algorithms and Convergent Algorithms 104

4.3. Reducing the Total Computational Complexity 105

4.4. On the Use of Value Iteration . 106

5. Empirical Evaluation . 107

5.1. Bandit MDP . 108

5.2. Hallways MDP . 111

5.3. LongChain MDP . 113

5.4. Summary of Empirical Results . 114

6. Extensions . 116

6.1. Factored-State Spaces . 116

6.1.1. Restrictions on the Transition Model 117

6.1.2. Factored Rmax . 118

6.1.3. Analysis of Factored Rmax . 120

Certainty-Equivalence Model . 120

Analysis Details . 121

Proof of Main Theorem . 125

vi

6.1.4. Factored IE . 126

6.1.5. Analysis of Factored IE . 127

Analysis Details . 127

Proof of Main Theorem . 130

6.2. Infinite State Spaces . 131

Conclustion . 132

Vita . 137

vii

List of Figures

1.1. An example of a deterministic MDP. 5

1.2. An MDP demonstrating the problem with dependent samples. 16

1.3. An example that illustrates that the bound of Lemma 3 is tight. 23

4.1. The MDP used to prove that Q-learning must have a small random

exploration probability. 97

4.2. The MDP used to prove that Q-learning with random exploration is not

PAC-MDP. 100

4.3. The MDP used to prove that Q-learning with a linear learning rate is

not PAC-MDP. 101

5.1. Results on the 6-armed Bandit MDP . 109

5.2. Hallways MDP diagram . 111

5.3. Results on the Hallways MDP . 112

5.4. Results on the Long Chain MDP . 113

viii

1

Introduction

In this thesis, we consider some fundamental problems in the field of Reinforcement

Learning (Sutton & Barto, 1998). In particular, our focus is on the problem of explo-

ration: how does an agent determine whether to act to gain new information (explore)

or to act consistently with past experience to maximize reward (exploit). We make

the assumption that the environment can be described by a finite discounted Markov

Decision Process (Puterman, 1994) although several extensions will also be considered.

Algorithms will be presented and analyzed. The important properties of a learning

algorithm are its computational complexity (to a lesser extent, its space complexity) and

its sample complexity, which measures it performance. When determining the non-

computational performance of an algorithm (i.e. how quickly does it learn) we will

use a framework (PAC-MDP) based on the Probably Approximately Correct (PAC)

framework (Valiant, 1984). In particular, our focus will be on algorithms that accept

a precision parameter (ε) and a failure-rate parameter (δ). We will then require our

algorithms to make at most a small (polynomial) number of mistrials (actions that are

more than ε worse than the best action) with high probability (at least 1 − δ). The

bound on the number of mistrials will be called the sample complexity of the algorithm.

This terminology is borrowed from Kakade (2003), who called the same quantity the

sample complexity of exploration.

Main Results

The main results presented in this thesis are as follows:

1. We provide a general RL framework that applies to all results in this thesis and

to other results in RL that generalize the finite MDP assumption.

2

2. We present two new versions of the Model-Based Interval Estimation (MBIE)

algorithm and prove that they are both PAC-MDP. These algorithms are provably

more efficient any than previously studied RL algorithms.

3. We prove that many model-based algorithms (including R-MAX and MBIE) can

be modified so that their worst-case per-step computational complexity is vastly

improved without sacrificing their attractive theoretical guarantees.

4. We show that it is possible to obtain PAC-MDP bounds with a model-free algo-

rithm called Delayed Q-learning.

Table

Here’s a table summarizing the PAC-MDP sample complexity and per-step computa-

tional complexity bounds that we will prove:

Summary Table

Algorithm Comp. Complexity Space Complexity Sample Complexity

Q-Learning O(ln(A)) O(SA) Unknown,

Possibly EXP

DQL O(ln(A)) O(SA) Õ
(

SA
ε4(1−γ)8

)

DQL-IE O(ln(A)) O(SA) Õ
(

SA
ε4(1−γ)8

)

RTDP-RMAX O(S + ln(A)) O(S2A) Õ
(

S2A
ε3(1−γ)6

)

RTDP-IE O(S + ln(A)) O(S2A) Õ
(

S2A
ε3(1−γ)6

)

RMAX O

(
SA(S+ln(A)) ln 1

ε(1−γ)

1−γ

)
O(S2A) Õ

(
S2A

ε3(1−γ)6

)

MBIE-EB O

(
SA(S+ln(A)) ln 1

ε(1−γ)

1−γ

)
O(S2A) Õ

(
S2A

ε3(1−γ)6

)

We’ve used the abbreviations DQL and DQL-IE for the Delayed Q-learning and

the Delayed Q-learning with IE algorithms, respectively. The second column shows the

per-timestep computational complexity of the algorithms. The last column shows the

best known PAC-MDP sample complexity bounds for the algorithms. It is worth em-

phasizing, especially in reference to sample complexity, is that these are upper bounds.

What should not be concluded from the table is that the Delayed Q-learning variants

3

are superior to the other algorithms in terms of sample complexity. First, the upper

bounds themselves clearly do not dominate (consider the ε and (1 − γ) terms). They

do, however, dominate when we consider only the S and A terms. Second, the upper

bounds may not be tight. One important open problem in theoretical RL is whether

or not a model-based algorithm, such as R-MAX, is PAC-MDP with a sparse model.

Specifically, can we reduce the sample complexity bound to Õ(SA/(ε3(1−γ)6) or better

by using a model-based algorithm whose model-size parameter m is limited to some-

thing that depends only logarithmically on the number of states S. This conjecture

is presented and discussed in Chapter 8 of Kakade’s thesis (Kakade, 2003) and has

important implications in terms of the fundamental complexity of exploration.

Another point to emphasize is that the bounds displayed in the above table are

worst-case. We have found empirically that the IE approach to exploration performs

better than the näıve approach, yet this fact is not reflected in the bounds.

4

Chapter 1

Formal Definitions, Notation, and Basic Results

This section introduces the Markov Decision Process (MDP) notation (Sutton & Barto,

1998). Let PS denote the set of all probability distributions over the set S. A finite

MDP M is a five tuple 〈S, A, T,R, γ〉, where S is a finite set called the state space, A

is a finite set called the action space, T : S × A → PS is the transition distribution,

R : S × A → PR is the reward distribution, and 0 ≤ γ < 1 is a discount factor on

the summed sequence of rewards. We call the elements of S and A states and actions,

respectively. We allow a slight abuse of notation and also use S and A for the number

of states and actions, respectively. We let T (s′|s, a) denote the transition probability

of state s′ of the distribution T (s, a). In addition, R(s, a) denotes the expected value

of the distribution R(s, a).

A policy is any strategy for choosing actions. A stationary policy is one that produces

an action based on only the current state, ignoring the rest of the agent’s history. We

assume (unless noted otherwise) that rewards all lie in the interval [0, 1]. For any

policy π, let V π
M (s) (Qπ

M (s, a)) denote the discounted, infinite-horizon value (action-

value) function for π in M (which may be omitted from the notation) from state s. If

H is a positive integer, let V π
M (s,H) denote the H-step value of policy π from s. If

π is non-stationary, then s is replaced by a partial path ct = s1, a1, r1, . . . , st, in the

previous definitions. Specifically, let st and rt be the tth encountered state and received

reward, respectively, resulting from execution of policy π in some MDP M . Then,

V π
M (ct) = E[

∑∞
j=0 γjrt+j |ct] and V π

M (ct, H) = E[
∑H−1

j=0 γjrt+j |ct]. These expectations

are taken over all possible infinite paths the agent might follow in the future. The

optimal policy is denoted π∗ and has value functions V ∗
M (s) and Q∗

M (s, a). Note that

a policy cannot have a value greater than 1/(1− γ) by the assumption of a maximum

5

reward of 1. Please see Figure 1.1 for an example of an MDP.

1

2

Figure 1.1: An example of a deterministic MDP. The states are represented as nodes
and the actions as edges. There are two states and actions. The first is represented
as a solid line and the second as a dashed line. The rewards are not shown, but are
0 for both states and actions except that from state 2 under action 1 a reward of 1
is obtained. The optimal policy for all discount factors is to take action 1 from both
states.

1.1 The Planning Problem

In the planning problem for MDPs, the algorithm is given as input an MDP M and

must produce a policy π that is either optimal or approximately optimal.

1.2 The Learning Problem

Suppose that the learner (also called the agent) receives S, A, and γ as input. The

learning problem is defined as follows. The agent always occupies a single state s of the

MDP M . The agent is told this state and must choose an action a. It then receives

an immediate reward r ∼ R(s, a) and is transported to a next state s′ ∼ T (s, a).

This procedure then repeats forever. The first state occupied by the agent may be

chosen arbitrarily. Intuitively, the solution or goal of the problem is to obtain as large

as possible reward in as short as possible time. We define a timestep to be a single

interaction with the environment, as described above. The tth timestep encompasses

the process of choosing the tth action. We also define an experience of state-action pair

6

(s, a) to refer to the event of taking action a from state s.

1.3 Learning Efficiently

A reasonable notion of learning efficiency in an MDP is to require an efficient algorithm

to achieve near-optimal (expected) performance with high probability. An algorithm

that satisfies such a condition can generally be said to be probably approximately correct

(PAC) for MDPs. The PAC notion was originally developed in the supervised learning

community, where a classifier, while learning, does not influence the distribution of

training instances it receives (Valiant, 1984). In reinforcement learning, learning and

behaving are intertwined, with the decisions made during learning profoundly affecting

the available experience.

In applying the PAC notion in the reinforcement-learning setting, researchers have

examined definitions that vary in the degree to which the natural mixing of learning

and evaluation is restricted for the sake of analytic tractability. We survey these notions

next.

1.3.1 PAC reinforcement learning

One difficulty in comparing reinforcement-learning algorithms is that decisions made

early in learning can affect significantly the rewards available later. As an extreme ex-

ample, imagine that the first action choice causes a transition to one of two disjoint state

spaces, one with generally large rewards and one with generally small rewards. To avoid

unfairly penalizing learners that make the wrong arbitrary first choice, Fiechter (1997)

explored a set of PAC-learning definitions that assumed that learning is conducted in

trials of constant length from a fixed start state. Under this reset assumption, the task

of the learner is to find a near-optimal policy from the start state given repeated visits

to this state.

Fiechter’s notion of PAC reinforcement-learning algorithms is extremely attractive

because it is very simple, intuitive, and fits nicely with the original PAC definition.

However, the assumption of a reset is not present in the most natural reinforcement

7

learning problem. Theoretically, the reset model is stronger (less general) than the

standard reinforcement learning model. For example, in the reset model it is possible

to find arbitrarily good policies, with high probability, after a number of experiences

that does not depend on the size of the state space. However, this is not possible in

general when no reset is available (Kakade, 2003).

1.3.2 Kearns and Singh’s PAC Metric

Kearns and Singh (2002) provided an algorithm, E3, which was proven to obtain near-

optimal return quickly in both the average reward and discounted reward settings,

without a reset assumption. Kearns and Singh note that care must be taken when

defining an optimality criterion for discounted MDPs. One possible goal is to achieve

near-optimal return from the initial state. However, this goal cannot be achieved be-

cause discounting makes it impossible for the learner to recover from early mistakes,

which are inevitable given that the environment is initially unknown. Another possible

goal is to obtain return that is nearly optimal when averaged across all visited states,

but this criterion turns out to be equivalent to maximizing average return—the dis-

count factor ultimately plays no role. Ultimately, Kearns and Singh opt for finding a

near-optimal policy from the final state reached by the algorithm. In fact, we show

that averaging discounted return is a meaningful criterion if it is the loss (relative to

the optimal policy from each visited state) that is averaged.

1.3.3 Sample Complexity of Exploration

While Kearns and Singh’s notion of efficiency applies to a more general reinforcement-

learning problem than does Fiechter’s, it still includes an unnatural separation between

learning and evaluation. Kakade (2003) introduced a PAC performance metric that

is more “online” in that it evaluates the behavior of the learning algorithm itself as

opposed to a separate policy that it outputs. As in Kearns and Singh’s definition,

learning takes place over one long path through the MDP. At time t, the partial path

ct = s1, a1, r1 . . . , st is used to determine a next action at. The algorithm itself can

8

be viewed as a non-stationary policy. In our notation, this policy has expected value

V A(ct), where A is the learning algorithm.

Definition 1 (Kakade, 2003) Let c = (s1, a1, r1, s2, a2, r2, . . .) be a path generated by

executing an algorithm A in an MDP M . For any fixed ε > 0, the sample complexity

of exploration (sample complexity, for short) of A with respect to c is the number

of timesteps t such that the policy at time t, At, is not ε-optimal from the current state,

st at time t (formally, V At(st) < V ∗(st)− ε).

In other words, the sample complexity is the number of timesteps, over the course of

any run, for which the learning algorithm A is not executing an ε-optimal policy from

its current state. A is PAC in this setting if its sample complexity can be bounded by

a number polynomial in the relevant quantities with high probability. Kakade showed

that the Rmax algorithm (Brafman & Tennenholtz, 2002) satisfies this condition. We

will use Kakade’s (2003) definition as the standard.

Definition 2 An algorithm A is said to be an efficient PAC-MDP (Probably Ap-

proximately Correct in Markov Decision Processes) algorithm if, for any ε and δ, the

per-step computational complexity and the sample complexity of A are less than some

polynomial in the relevant quantities (|S|, |A|, 1/ε, 1/δ, 1/(1− γ)), with probability at

least 1− δ. For convenience, we may also say that A is PAC-MDP.

One thing to note is that we only restrict a PAC-MDP algorithm from behaving

poorly (non-ε-optimally) on more than a small (polynomially) number of timesteps.

We don’t place any limitations on when the algorithm acts poorly. This is in contrast

to the original PAC notion which is more “off-line” in that it requires the algorithm to

make all its mistakes ahead of time before identifying a near-optimal policy.

This difference is necessary. In any given MDP it may take an arbitrarily long

time to reach some section of the state space. Once that section is reached we expect

any learning algorithm to make some mistakes. Thus, we can hope only to bound

the number of mistakes, but can say nothing about when they happen. The first two

performance metrics above were able to sidestep this issue somewhat. In Fiechter’s

9

framework, a reset action allows a more “offline” PAC-MDP definition. In the perfor-

mance metric used by Kearns and Singh (2002), a near-optimal policy is required only

from a single state.

A second major difference between our notion of PAC-MDP and Valiant’s original

definition is that we don’t require an agent to know when it has found a near-optimal

policy, only that it executes one most of the time. In situations where we care only

about the behavior of an algorithm, it doesn’t make sense to require an agent to estimate

its policy. In other situations, where there is a distinct separation between learning

(exploring) and acting (exploiting), another performance metric, such as one of first

two mentioned above, should be used. Note that requiring the algorithm to “know”

when it has adequately learned a task may require the agent to explicitly estimate the

value of its current policy. This may complicate the algorithm (for example, E3 solves

two MDP models instead of one).

1.3.4 Average Loss

Although sample complexity demands a tight integration between behavior and evalua-

tion, the evaluation itself is still in terms of the near-optimality of expected values over

future policies as opposed to the actual rewards the algorithm achieves while running.

We introduce a new performance metric, average loss, defined in terms of the actual

rewards received by the algorithm while learning. In the remainder of the section, we

define average loss formally. It can be shown that efficiency in the sample complexity

framework of Section 1.3.3 implies efficiency in the average loss framework (Strehl &

Littman, 2007). Thus, throughout the rest of the thesis we will focus on the former

even though the latter is of more practical interest.

Definition 3 Suppose a learning algorithm is run for one trial of H steps in an MDP

M . Let st be the state encountered on step t and let rt be the tth reward received. Then,

the instantaneous loss of the agent is il(t) = V ∗(st) −
∑H

i=t γi−tri, the difference

between the optimal value function at state st and the actual discounted return of the

agent from time t until the end of the trial. The quantity l = 1
H

∑H
t=1 il(t) is called the

10

average loss over the sequence of states encountered.

In definition 3, the quantity H should be sufficiently large, say H À 1/(1 − γ),

because otherwise there is not enough information to evaluate the algorithm’s perfor-

mance. A learning algorithm is PAC-MDP in the average loss setting if for any ε and δ,

we can choose a value H, polynomial in the relevant quantities (1/ε, 1/δ, |S|, |A|, 1/(1− γ)),

such that the average loss of the agent (following the learning algorithm) on a trial of

H steps is guaranteed to be less than ε with probability at least 1− δ.

It helps to visualize average loss in the following way. Suppose that an agent pro-

duces the following trajectory through an MDP.

s1, a1, r1, s2, a2, r2, . . . , sH , aH , rH

The trajectory is made up of states, st ∈ S; actions, at ∈ A; and rewards, rt ∈ [0, 1],

for each timestep t = 1, . . . ,H. The instantaneous loss associated for each timestep is

shown in the following table.

t trajectory starting at time t instantaneous loss: il(t)

1 s1, a1, r1, s2, a2, r2, . . . , sH , aH , rH V ∗(s1)− (r1 + γr2 + . . . γH−1rH)

2 s2, a2, r2, . . . , sH , aH , rH V ∗(s2)− (r2 + γr3 + . . . γH−2rH)

· · ·
· · ·
· · ·
H sH , aH , rH V ∗(sH)− rH

The average loss is then the average of the instantaneous losses (in the rightmost

column above).

1.4 General Learning Framework

We now develop some theoretical machinery to prove PAC-MDP statements about

various algorithms. Our theory will be focused on algorithms that maintain a table of

11

action values, Q(s, a), for each state-action pair (denoted Qt(s, a) at time t)1. We also

assume an algorithm always chooses actions greedily with respect to the action values.

This constraint is not really a restriction, since we could define an algorithm’s action

values as 1 for the action it chooses and 0 for all other actions. However, the general

framework is understood and developed more easily under the above assumptions. For

convenience, we also introduce the notation V (s) to denote maxa Q(s, a) and Vt(s) to

denote V (s) at time t.

Definition 4 Suppose an RL algorithm A maintains a value, denoted Q(s, a), for each

state-action pair (s, a) with s ∈ S and a ∈ A. Let Qt(s, a) denote the estimate for (s, a)

immediately before the tth action of the agent. We say that A is a greedy algorithm

if the tth action of A, at, is at := argmaxa∈A Qt(st, a), where st is the tth state reached

by the agent.

For all algorithms, the action values Q(·, ·) are implicitly maintained in separate

max-priority queues (implemented with max-heaps, say) for each state. Specifically, if

A = {a1, . . . , ak} is the set of actions, then for each state s, the values Q(s, a1), . . . , Q(s, ak)

are stored in a single priority queue. Therefore, the operations maxa′∈A Q(s, a) and

argmaxa′∈A Q(s, a), which appear in almost every algorithm, takes constant time, but

the operation Q(s, a) ← V for any value V takes O(ln(A)) time (Cormen et al., 1990).

It is possible that other data structures may result in faster algorithms.

The following is a definition of a new MDP that will be useful in our analysis.

Definition 5 Let M = 〈S, A, T, R, γ〉 be an MDP with a given set of action values,

Q(s, a) for each state-action pair (s, a), and a set K of state-action pairs. We define

the known state-action MDP MK = 〈S ∪{zs,a|(s, a) 6∈ K}, A, TK , RK , γ〉 as follows.

For each unknown state-action pair, (s, a) 6∈ K, we add a new state zs,a to MK , which

has self-loops for each action (TK(zs,a|zs,a, ·) = 1). For all (s, a) ∈ K, RK(s, a) =

R(s, a) and TK(·|s, a) = T (·|s, a). For all (s, a) 6∈ K, RK(s, a) = Q(s, a)(1 − γ) and

TK(zs,a|s, a) = 1. For the new states, the reward is RK(zs,a, ·) = Q(s, a)(1− γ).

1The results don’t rely on the algorithm having an explicit representation of each action value (for
example, they could be implicitly held inside of a function approximator).

12

The known state-action MDP is a generalization of the standard notions of a “known

state MDP” of Kearns and Singh (2002) and Kakade (2003). It is an MDP whose

dynamics (reward and transition functions) are equal to the true dynamics of M for a

subset of the state-action pairs (specifically those in K). For all other state-action pairs,

the value of taking those state-action pairs in MK (and following any policy from that

point on) is equal to the current action-value estimates Q(s, a). We intuitively view K

as a set of state-action pairs for which the agent has sufficiently accurate estimates of

their dynamics.

Definition 6 Suppose that for algorithm A there is a set of state-action pairs Kt (we

drop the subscript t if t is clear from context) defined during each timestep t and that

depends only on the history of the agent up to timestep t (before the tth action). Let AK

be the event, called the escape event, that some state-action pair (s, a) is experienced

by the agent at time t, such that (s, a) 6∈ Kt.

Our PAC-MDP proofs work by the following scheme (for whatever algorithm we

have at hand): (1) Define a set of known state-actions for each timestep t. (2) Show

that these satisfy the conditions of Theorem 1. The following is a well-known result of

the Chernoff-Hoeffding Bound and will be needed later.

Lemma 1 Suppose a weighted coin, when flipped, has probability p > 0 of landing

with heads up. Then, for any positive integer k and real number δ ∈ (0, 1), after

O((k/p) ln(1/δ)) tosses, with probability at least 1− δ, we will observe k or more heads.

Proof: Let a trial be a single act of tossing the coin. Consider performing n trials

(n tosses), and let Xi be the random variable that is 1 if the ith toss is heads and 0

otherwise. Let X =
∑n

i=1 Xi be the total number of heads observeds over all n trials.

The multiplicative form of the Hoeffding bound states (for instance, see (Kearns &

Vazirani, 1994a)) that

Pr(X < (1− ε)pn) ≤ e−npε2/2. (1.1)

We consider the case of k ≥ 4, which clearly is sufficient for the asymptotic result

stated in the lemma. Equation 1.1 says that we can upper bound the probability

13

that X ≥ pn − εpn doesn’t hold. Setting ε = 1/2 and n ≥ 2k/p, we see that it

implies that X ≥ k. Thus, we have only to show that the right hand side of Equation

1.1 is at most δ. This bound holds as long as n ≥ 2 ln(1/δ)/(pε2) = 8 ln(1/δ)/p.

Therefore, letting n ≥ (2k/p) ln(1/δ) is sufficient, since k ≥ 4. In summary, after

n = (2k/p)max{1, ln(1/δ)} tosses, we are guaranteed to observe at least k heads with

proability at least 1− δ. 2

Note that all learning algorithms we consider take ε and δ as input. We let A(ε, δ)

denote the version of algorithm A parameterized with ε and δ. The proof of Theorem 1

follows the structure of the work of Kakade (2003), but generalizes several key steps.

Theorem 1 (Strehl et al., 2006a) Let A(ε, δ) be any greedy learning algorithm such that

for every timestep t, there exists a set Kt of state-action pairs that depends only on the

agent’s history up to timestep t. We assume that Kt = Kt+1 unless, during timestep

t, an update to some state-action value occurs or the escape event AK happens. Let

MKt be the known state-action MDP and πt be the current greedy policy, that is, for all

states s, πt(s) = argmaxa Qt(s, a). Suppose that for any inputs ε and δ, with probability

at least 1 − δ, the following conditions hold for all states s, actions a, and timesteps

t: (1) Vt(s) ≥ V ∗(s) − ε (optimism), (2) Vt(s) − V πt
MKt

(s) ≤ ε (accuracy), and (3) the

total number of updates of action-value estimates plus the number of times the escape

event from Kt, AK , can occur is bounded by ζ(ε, δ) (learning complexity). Then, when

A(ε, δ) is executed on any MDP M , it will follow a 4ε-optimal policy from its current

state on all but

O

(
ζ(ε, δ)

ε(1− γ)2
ln

1
δ

ln
1

ε(1− γ)

)

timesteps, with probability at least 1− 2δ.

Proof: Suppose that the learning algorithm A(ε, δ) is executed on MDP M . Fix the

history of the agent up to the tth timestep and let st be the tth state reached. Let At

denote the current (non-stationary) policy of the agent. Let H = 1
1−γ ln 1

ε(1−γ) . From

Lemma 2 of Kearns and Singh (2002), we have that |V π
MKt

(s,H) − V π
MKt

(s)| ≤ ε, for

any state s and policy π. Let W denote the event that, after executing policy At from

14

state st in M for H timesteps, one of the two following events occur: (a) the algorithm

performs a successful update (a change to any of its action values) of some state-action

pair (s, a), or (b) some state-action pair (s, a) 6∈ Kt is experienced (escape event AK).

We have the following:

V At
M (st,H) ≥ V πt

MKt
(st, H)− Pr(W)/(1− γ)

≥ V πt
MKt

(st)− ε− Pr(W)/(1− γ)

≥ V (st)− 2ε− Pr(W)/(1− γ)

≥ V ∗(st)− 3ε− Pr(W)/(1− γ).

The first step above follows from the fact that following At in MDP M results in

behavior identical to that of following πt in MKt as long as no action-value updates are

performed and no state-action pairs (s, a) 6∈ Kt are experienced. This bound holds due

to the following key observations:

• A is a greedy algorithm, and therefore matches πt unless an action-value update

occurs.

• M and MKt are identical on state-action pairs in Kt, and

• by assumption, the set Kt doesn’t change unless event W occurs.

The bound then follows from the fact that the maximum difference between two value

functions is 1/(1−γ). The second step follows from the definition of H above. The third

and final steps follow from preconditions (2) and (1), respectively, of the proposition.

Now, suppose that Pr(W) < ε(1 − γ). Then, we have that the agent’s policy on

timestep t is 4ε-optimal:

V At
M (st) ≥ V At

M (st,H) ≥ V ∗
M (st)− 4ε.

Otherwise, we have that Pr(W) ≥ ε(1 − γ), which implies that an agent following At

will either perform a successful update in H timesteps, or encounter some (s, a) 6∈ Kt

in H timesteps, with probability at least ε(1 − γ). Call such an event a “success”.

15

Then, by Lemma 1, after O(ζ(ε,δ)H
ε(1−γ) ln 1/δ) timesteps t where Pr(W) ≥ ε(1− γ), ζ(ε, δ)

successes will occur, with probability at least 1− δ. Here, we have identified the event

that a success occurs after following the agent’s policy for H steps with the event that

a coin lands with heads facing up.2 However, by precondition (3) of the proposition,

with probability at least 1 − δ, ζ(ε, δ) is the maximum number of successes that will

occur throughout the execution of the algorithm.

To summarize, we have shown that with probability at least 1− 2δ, the agent will

execute a 4ε-optimal policy on all but O(ζ(ε,δ)H
ε(1−γ) ln 1/δ) timesteps. 2

1.5 Independence of Samples

Much of our entire analysis is grounded on the idea of using samples, in the form

of immediate rewards and next-states, to estimate the reward and transition proba-

bility distributions for each state-action pair. The main analytical tools we use are

large deviation bounds such as the Hoeffding bound (see, for instance, Kearns and

Vazirani (1994b)). The Hoeffding bound allows us to quantify a number of samples suf-

ficient to guarantee, with high probability, an accurate estimate of an unknown quantity

(for instance, the transition probability to some next-state). However, its use requires

independent samples. It may appear at first that the immediate reward and next-state

observed after taking a fixed action a from a fixed state s is independent of all past

immediate rewards and next-states observed. Indeed, due to the Markov property, the

immediate reward and next-state are guaranteed to be independent of the entire his-

tory of the agent given the current state. However, there is a subtle way in which the

samples may not be independent. We now discuss this issue in detail and show that

our use of large deviation bounds still hold.

Suppose that we wish to estimate the transition probability of reaching a fixed state

s′ after experiencing a fixed state-action pair (s, a). We require an ε-accurate estimate

2Consider two timesteps t1 and t2 with t1 < t2 − H. Technically, the event of escaping from K
within H steps on or after timestep t2 may not be independent of the same escape event on or after
timestep t1. However, the former event is conditionally independent of the later event given the history
of the agent up to timestep t2. Thus, we are able to apply Lemma 1.

16

1
(p

=1)
2

3

(p
=0.5

)

(p=0.5)

(p=1)

An example MDP.

Figure 1.2: An MDP demonstrating the problem with dependent samples.

with probability at least 1 − δ, for some predefined values ε and δ. Let D be the

distribution that produces a 1 if s′ is reached after experiencing (s, a) and 0 otherwise.

Using the Hoeffding bound we can compute a number m, polynomial in 1/ε and 1/δ, so

that m independent samples of D can be averaged and used as an estimate T̂ (s′|s, a).

To obtain these samples, we must wait until the agent reaches state s and takes action

a at least m times. Unfortunately, the dynamics of the MDP may exist so that the

event of reaching state s at least m times provides information about which m samples

were obtained from experiencing (s, a). For example, consider the MDP of Figure 1.2.

There are 3 states and a single action. Under action 1, state 1 leads to state 2; state 2

leads, with equal probability, to state 1 and state 3; and state 3 leads to itself. Thus,

once the agent is in state 3 it can not reach state 2. Suppose we would like to estimate

the probability of reaching state 1 from state 2. After our mth experience of state 2,

our estimated probability will be either 1 or (m−1)/m, both of which are very far from

the true probability of 1/2. This happens because the samples are not independent.

Fortunately, this issue is resolvable, and we can essentially assume that the sam-

ples are independent. The key observation is that in the example of Figure 1.2, the

probability of reaching state 2 at least m times is also extremely low. It turns out that

the probability that an agent (following any policy) observes any fixed m samples of

next-states after experiencing (s, a) is at most the probability of observing those same

m samples after m independent draws from the transition distribution T . We formalize

this now.

Consider a fixed state-action pair (s, a). Upon execution of a learning algorithm on

an MDP, we consider the (possibly finite) sequence Os,a = [Os,a(i)], where Os,a(i) is an

17

ordered pair containing the next-state and immediate reward that resulted from the ith

experience of (s, a). Let Q = [(s[1], r[1]), . . . , (s[m], r[m])] ∈ (|S| × R)m be any finite

sequence of m state and reward pairs. Next, we upper bound the probability that the

first m elements of Os,a match Q exactly.

Claim C1: For a fixed state-action pair (s, a), the probability that the sequence Q is

observed by the learning agent (meaning that m experiences of (s, a) do occur and each

next-state and immediate reward observed after experiencing (s, a) matches exactly the

sequence in Q) is at most the probability that Q is obtained by a process of drawing

m random next-states and rewards from distributions T (s, a) and R(s, a), respectively.

The claim is a consequence of the Markov property.

Proof: (of Claim C1) Let s(i) and r(i) denote the (random) next-state reached and

immediate reward received on the ith experience of (s, a), for i = 1, . . . , m (where s(i)

and r(i) take on special values ∅ and −1, respectively, if no such experience occurs). Let

Z(i) denote the event that s(j) = s[j] and r(j) = r[j] for j = 1, . . . , i. Let W (i) denote

the event that (s, a) is experienced at least i times. We want to bound the probability

that event Z := Z(m) occurs (that the agent observes the sequence Q). We have that

Pr[Z] = Pr[s(1) = s[1]∧ r(1) = r[1]] · · ·Pr[s(m) = s[m]∧ r(m) = r[m]|Z(m− 1)] (1.2)

For the ith factor of the right hand side of Equation 1.2, we have that

Pr[s(i) = s[i] ∧ r(i) = r[i]|Z(i− 1)]

= Pr[s(i) = s[i] ∧ r(i) = r[i] ∧W (i)|Z(i− 1)]

= Pr[s(i) = s[i] ∧ r(i) = r[i]|W (i) ∧ Z(i− 1)] Pr[W (i)|Z(i− 1)]

= Pr[s(i) = s[i] ∧ r(i) = r[i]|W (i)] Pr[W (i)|Z(i− 1)].

The first step follows from the fact that s(i) = s[i] and r(i) = r[i] can only occur

if (s, a) is experienced for the ith time (event W (i)). The last step is a consequence

of the Markov property. In words, the probability that the ith experience of (s, a)

(if it occurs) will result in next-state s[i] and immediate reward r[i] is conditionally

18

independent of the event Z(i − 1) given that (s, a) is experienced at least i times

(event W (i)). Using the fact that probabilities are at most 1, we have shown that

Pr[s(i) = s[i] ∧ r(i) = r[i]|Z(i− 1)] ≤ Pr[s(i) = s[i] ∧ r(i) = r[i]|W (i)] Hence, we have

that

Pr[Z] ≤
m∏

i=1

Pr[s(i) = s[i] ∧ r(i) = r[i]|W (i)]

The right hand-side,
∏m

i=1 Pr[s(i) = s[i] ∧ r(i) = r[i]|W (i)] is the probability that Q is

observed after drawing m random next-states and rewards (as from a generative model

for MDP M). 2

To summarize, we may assume the samples are independent if we only use this

assumption when upper bounding the probability of certain sequences of next-states

or rewards. This is valid because, although the samples may not be independent, any

upper bound that holds for independent samples also holds for samples obtained in an

online manner by the agent.

1.6 Simulation Properties For Discounted MDPs

In this section we investigate the notion of using one MDP as a model or simulator of

another MDP. Specifically, suppose that we have two MDPs, M1 and M2, with the same

state and action space and discount factor. We ask how similar must the transitions

and rewards of M1 and M2 be in order to guarantee that difference between the value of

a fixed policy π in M1 and its value in M2 is no larger than some specified threshold ε.

Although we aren’t able to answer the question completely, we do provide a sufficient

condition (Lemma 4) that uses L1 distance to measure the difference between the two

transition distributions. Finally, we end with a result (Lemma 5) that measures the

difference between a policy’s value in the two MDPs when they have equal transitions

and rewards most of the time but are otherwise allowed arbitrarily different transitions

and rewards.

The following lemma helps develop Lemma 4, a slight improvement over the “Sim-

ulation Lemma” of Kearns and Singh (2002) for the discounted case. In the next three

19

lemmas we allow for the possibility of rewards greater than 1 (but still bounded) be-

cause they may be of interest outside of the present work. However, we continue to

assume, unless otherwise specified, that all rewards fall in the interval [0, 1].

Lemma 2 (Strehl & Littman, 2007) Let M1 = 〈S, A, T1, R1, γ〉 and M2 = 〈S, A, T2, R2, γ〉
be two MDPs with non-negative rewards bounded by Rmax. If |R1(s, a)−R2(s, a)| ≤ α

and ||T1(s, a, ·) − T2(s, a, ·)||1 ≤ β for all states s and actions a, then the following

condition holds for all states s, actions a, and stationary, deterministic policies π:

|Qπ
1 (s, a)−Qπ

2 (s, a)| ≤ α + γRmaxβ

(1− γ)2
.

Proof: Let ∆ := max(s,a)∈S×A |Qπ
1 (s, a)−Qπ

2 (s, a)|. Let π be a fixed policy and (s, a)

be a fixed state-action pair. We overload notation and let Ri denote Ri(s, a), Ti(s′)

denote Ti(s′|s, a), and V π
i (s′) denote Qπ

i (s′, π(s′)) for i = 1, 2. We have that

|Qπ
1 (s, a)−Qπ

2 (s, a)|

= |R1 + γ
∑

s′∈S

T1(s′)V π
1 (s′)−R2 − γ

∑

s′∈S

T2(s′)V π
2 (s′)|

≤ |R1 −R2|+ γ|
∑

s′∈S

[T1(s′)V π
1 (s′)− T2(s′)V π

2 (s′)]|

≤ α + γ|
∑

s′∈S

[T1(s′)V π
1 (s′)− T1(s′)V π

2 (s′) + T1(s′)V π
2 (s′)− T2(s′)V π

2 (s′)]|

≤ α + γ|
∑

s′∈S

T1(s′)[V π
1 (s′)− V π

2 (s′)]|+ γ|
∑

s′∈S

[T1(s′)− T2(s′)]V π
2 (s′)|

≤ α + γ∆ +
γRmaxβ

(1− γ)
.

The first step used Bellman’s equation.3 The second and fourth steps used the triangle

inequality. In the third step, we added and subtracted the term T1(s′)V π
2 (s′). In the

fifth step we used the bound on the L1 distance between the two transition distributions

and the fact that all value functions are bounded by Rmax/(1−γ). We have shown that

∆ ≤ α + γ∆ + γRmaxβ
(1−γ) . Solving for ∆ yields the desired result. 2

3For an explanation of Bellman’s Equation please see Sutton and Barto (1998)

20

The result of Lemma 2 is not tight. The following stronger result is tight, as demon-

strated in Figure 1.3, but harder to prove.

Lemma 3 Let M1 = 〈S,A, T1, R1, γ〉 and M2 = 〈S,A, T2, R2, γ〉 be two MDPs with

non-negative rewards bounded by Rmax. If |R1(s, a) − R2(s, a)| ≤ α and ||T1(s, a, ·) −
T2(s, a, ·)||1 ≤ 2β for all states s and actions a, then the following condition holds for

all states s, actions a and stationary, deterministic policies π:

|Qπ
1 (s, a)−Qπ

2 (s, a)| ≤ (1− γ)α + γβRmax

(1− γ)(1− γ + γβ)
.

Proof: First, note that any MDP with cycles can be approximated arbitrarily well by

an MDP with no cycles. This will allow us to prove the result for MDPs with no cycles.

To see this, let M be any MDP with state space S. Consider a sequence of disjoint state

spaces S1, S2, . . . such that |Si| = S, and there is some bijective mapping fi : S → Si for

each i. We think of Si as a copy of S. Now, let M ′ be an (infinite) MDP with state space

S′ = S1 ∪ S2 ∪ · · · and with the same action space A as M . For s ∈ Si and a ∈ A, let

R(s, a) = R(fi
−1(s), a), where fi

−1 is the inverse of fi. Thus, for each i, fi is a function,

mapping the states S of M to the states Si of M ′. The image of a state s via fi is a

copy of s, and for any action has the same reward function. To define the transition

probabilities, let s, s′ ∈ S and a ∈ A. Then, set T (fi(s), a, fi+1(s′)) = T (s, a, s′) in M ′,

for all i. M ′ has no cycles, yet V π
M (s) = V π

M ′(fi(s)) for all s and i. Thus, M ′ is an MDP

with no cycles whose value function is the same as M . However, we are interested

in a finite state MDP with the same property. Our construction actually leads to a

sequence of MDPs M(1),M(2), . . ., where M(i) has state space S1 ∪ S2 ∪ · · ·Si, and

with transitions and rewards the same as in M ′. It is clear, due to the fact that γ < 1,

that for any ε, there is some positive integer i such that |V π
M (s)− V π

M(i)(f1(s))| ≤ ε for

all s (f1(s) is the “first” mapping of S into M(i)). Using this mapping the lemma can

be proved by showing that the condition holds in MDPs with no cycles. Note that we

can define this mapping for the given MDPs M1 and M2. In this case, any restriction

21

of the transition and reward functions between M1 and M2 also applies to the MDPs

M1(i) and M2(i), which have no cycles yet approximate M1 and M2 arbitrarily well.

We now prove the claim for any two MDPs M1 and M2 with no cycles. We also

assume that there is only one action. This is a reasonable assumption, as we could

remove all actions except those chosen by the policy π, which is assumed to be stationary

and deterministic.4 Due to this assumption, we omit references to the policy π in the

following derivation.

Let vmax = Rmax/(1 − γ), which is no less than the value of the optimal policy in

either M1 or M2. Let s be some state in M1 (and also in M2 which has the same state

space). Suppose the other states are s2, . . . , sn. Let pi = T1(si|s, a) and qi = T2(si|s, a).

Thus, pi is the probability of a transition to state si from state s after the action a in

the MDP M1, and qi is the corresponding transition probability in M2. Since there are

no cycles we have that

VM1(s) = RM1(s) + γ

n∑

i=2

piVM1(si)

and

VM2(s) = RM2(s) + γ

n∑

i=2

qiVM2(si)

Without loss of generality, we assume that VM2(s) > VM1(s). Since we are interested

in bounding the difference |VM1(s)− VM2(s)|, we can view the problem as one of opti-

mization. Specifically, we seek a solution to

maximize VM2(s)− VM1(s) (1.3)

subject to

~q, ~p ∈ PRn , (1.4)

0 ≤ VM1(si), VM2(si) ≤ vmax i = 1, . . . , n, (1.5)

4It is possible to generalize to stochastic policies.

22

0 ≤ RM1(s), RM2(s) ≤ Rmax, (1.6)

−∆ ≤ VM2(si)− VM1(si) ≤ ∆ i = 1, . . . , n, (1.7)

|RM2(s)−RM1(s)| ≤ α. (1.8)

and

||~p− ~q||1 ≤ 2β. (1.9)

Here, ∆ is any bound on the absolute difference between VM2(si) and VM2(si). First,

note that VM2(s) − VM1(s) under the constraint of Equation 1.8 is maximized when

RM2(s) − RM1(s) = α. Next, assume that ~q, ~p are fixed probability vectors but that

VM1(si) and VM2(si) are real variables for i = 1, . . . , n. Consider a fixed i ∈ {2, . . . , n}.
The quantity VM2(s) − VM1(s) is non-decreasing when VM2(si) is increased and when

VM1(si) is decreased. However, the constraint of Equation 1.7 prevents us from setting

VM2(si) to the highest possible value (vmax) and VM1(si) to the lowest possible value

(0). We see that when qi ≥ pi, increasing both VM1(si) and VM2(si) by the same

amount provides a net gain, until VM2(si) is maximized. At that point it’s best to

decrease VM1(si) as much as possible. By a similar argument, when qi < pi it’s better

to decrease VM1(si) as much as possible and then to increase VM2(si) so that Equation

1.7 is satisfied. This argument shows that one solution of the problem specified by

Equation 1.3 is of the form:

VM2(si) = vmax, VM1(si) = vmax −∆, when qi ≥ pi, (1.10)

and

VM2(si) = ∆, VM1(si) = 0, when qi < pi. (1.11)

Now, if we are further allowed to change ~p and ~q under the condition that ||~p−~q||1 ≤ 2β,

maximization yields

VM2(s)− VM1(s) = α + γβvmax + γ(1− β)∆ (1.12)

23

(p=1)

(p=1)

1

2

r = 0

r = 1

(p=1)

1

r = 1

r = x

(p
=y

)

(p
=1

−y
)

2

MDP 1 MDP 2

Figure 1.3: An example that illustrates that the bound of Lemma 3 is tight. Each MDP
consists of two states and a single action. Each state under each action for the first
MDP (on the left) results in a transition back to the originating state (self-loop). From
state 1 the reward is always 0 and from state 2 the reward is always 1. In the second
MDP, state 1 provides a reward of x and with probability y results in a transition to
state 2, which is the same as in the first MDP. Thus, the absolute difference between
the value of state 1 in the two MDPs is (1−γ)x+γy

(1−γ)(1−γ+γy) . This matches the bound of
Lemma 3, where Rmax = 1, α = x, and β = y.

which holds for any upper bound ∆. Thus, we can find the best such bound (according

to Equation 1.12) by replacing the left hand side of Equation 1.12 by ∆. Solving for ∆

and using vmax = Rmax/(1− γ) yields the desired result. 2

Algorithms like MBIE act according to an internal model. The following lemma

shows that two MDPs with similar transition and reward functions have similar value

functions. Thus, an agent need only ensure accuracy in the transitions and rewards of

its model to guarantee near-optimal behavior.

Lemma 4 (Strehl & Littman, 2007) Let M1 = 〈S, A, T1, R1, γ〉 and M2 = 〈S, A, T2, R2, γ〉
be two MDPs with non-negative rewards bounded by Rmax, which we assume is at least

1. Suppose that |R1(s, a)−R2(s, a)| ≤ α and ||T1(s, a, ·)−T2(s, a, ·)||1 ≤ β for all states

s and actions a. There exists a constant C, such that for any 0 < ε ≤ Rmax/(1− γ)

and stationary policy π, if α = β = C
(

ε(1−γ)2

Rmax

)
, then

|Qπ
1 (s, a)−Qπ

2 (s, a)| ≤ ε. (1.13)

Proof: By lemma 2, we have that |Qπ
1 (s, a) − Qπ

2 (s, a)| ≤ α(1+γRmax)
(1−γ)2

. Thus, it is

sufficient to guarantee that α ≤ ε(1−γ)2

1+γRmax
. We choose C = 1/2 and by our assumption

that Rmax ≥ 1 we have that α = ε(1−γ)2

2Rmax
≤ ε(1−γ)2

1+γRmax
. 2

24

The following lemma relates the difference between a policy’s value function in two

different MDPs, when the transition and reward dynamics for those MDPs are identical

on some of the state-action pairs (those in the set K), and arbitrarily different on the

other state-action pairs. When the difference between the value of the same policy in

these two different MDPs is large, the probability of reaching a state that distinguishes

the two MDPs is also large.

Lemma 5 (Generalized Induced Inequality) (Strehl & Littman, 2007) Let M be

an MDP, K a set of state-action pairs, M ′ an MDP equal to M on K (identical

transition and reward functions), π a policy, and H some positive integer. Let AM be

the event that a state-action pair not in K is encountered in a trial generated by starting

from state s1 and following π for H steps in M . Then,

V π
M (s1,H) ≥ V π

M ′(s1,H)− (1/(1− γ)) Pr(AM).

Proof: For some fixed partial path pt = s1, a1, r1 . . . , st, at, rt, let Pt,M (pt) be the

probability pt resulted from execution of policy π in M starting from state s1. Let

Kt be the set of all paths pt such that every state-action pair (si, ai) with 1 ≤ i ≤ t

appearing in pt is “known” (in K). Let rM (t) be the reward received by the agent at

time t, and rM (pt, t) the reward at time t given that pt was the partial path generated.

Now, we have the following:

E[rM ′(t)]−E[rM (t)]

=
∑

pt∈Kt

(Pt,M ′(pt)rM ′(pt, t)− Pt,M (pt)rM (pt, t))

+
∑

pt 6∈Kt

(Pt,M ′(pt)rM ′(pt, t)− Pt,M (pt)rM (pt, t))

=
∑

pt 6∈Kt

(Pt,M ′(pt)rM ′(pt, t)− Pt,M (pt)rM (pt, t))

≤
∑

pt 6∈Kt

Pt,M ′(pt)rM ′(pt, t) ≤ Pr(AM).

The first step in the above derivation involved separating the possible paths in which the

25

agent encounters an unknown state-action from those in which only known state-action

pairs are reached. We can then eliminate the first term, because M and M ′ behave

identically on known state-action pairs. The last inequality makes use of the fact that

all rewards are at most 1. The result then follows from the fact that V π
M ′(s1,H) −

V π
M (s1,H) =

∑H−1
t=0 γt (E[rM ′(t)]−E[rM (t)]). 2

The following well-known result allows us to truncate the infinite-horizon value

function for a policy to a finite-horizon one.

Lemma 6 If H ≥ 1
1−γ ln 1

ε(1−γ) then |V π(s, H)−V π(s)| ≤ ε for all policies π and states

s.

Proof: See Lemma 2 of Kearns and Singh (2002). 2

1.7 Conclusion

We have introduced finite-state MDPs and proved some of their mathematical prop-

erties. The planning problem is that of acting optimally in a known environment and

the learning problem is that of acting near-optimally in an unknown environment. A

technical challenge related to the learning problem is the issue of dependent samples.

We explained this problem and have shown how to resolve it. In addition, a general

framework for proving the efficiency of learning algorithms was provided. In particular,

Theorem 1 will be used in the analysis of almost every algorithm in this thesis.

26

Chapter 2

Model-Based Learning Algorithms

In this chapter we analyze algorithms that are “model based” in the sense that they

explicitly compute and maintain an MDP (typically order S2 ·A memory) rather than

only a value function (order S · A). Model-based algorithms tend to use experience

more efficiently but require more computational resources when compared to model-

free algorithms.

2.1 Certainty-Equivalence Model-Based Methods

There are several model-based algorithms in the literature that maintain an internal

MDP as a model for the true MDP that the agent acts in. In this section, we con-

sider using the maximum liklihood (also called Certainty-Equivalence and Empirical)

MDP that is computed using the agent’s experience. First, we describe the Certainty

Equivalence model and then discuss several algorithms that make use of it.

Suppose that the agent has acted for some number of timesteps and consider its

experience with respect to some fixed state-action pair (s, a). Let n(s, a) denote the

number of times the agent has taken action a from state s. Suppose the agent has

observed the following n(s, a) immediate rewards for taking action a from state s:

r[1], r[2], . . . , r[n(s, a)]. Then, the empirical mean reward is

R̂(s, a) :=
1

n(s, a)

n(s,a)∑

i=1

r[i]. (2.1)

Let n(s, a, s′) denote the number of times the agent has taken action a from state s and

immediately transitioned to the state s′. Then, the empirical transition distribution is

27

the distribution T̂ (s, a) satisfying

T̂ (s′|s, a) :=
n(s, a, s′)
n(s, a)

for each s′ ∈ S. (2.2)

The Certainty-Equivalence MDP is the MDP with state space S, action space A, tran-

sition distribution T̂ (s, a) for each (s, a), and deterministic reward function R̂(s, a) for

each (s, a). Assuming that the agent will continue to obtain samples for each state-

action pair, it is clear that the Certainty-Equivalence model will approach, in the limit,

the underlying MDP.

Learning algorithms that make use of the Certainty-Equivalence model generally

have the form of Algorithm 1. By choosing a way to initialize the action values (line 2),

a scheme for selecting actions (line 11), and a method for updating the action-values

(line 17), a concrete Certainty-Equivalence algorithm can be constructed. We now

discuss a couple that have been popular.

Algorithm 1 General Certainty-Equivalence Model-based Algorithm
0: Inputs: S, A, γ
1: for all (s, a) do
2: Initialize Q(s, a) // action-value estimates

3: r(s, a) ← 0
4: n(s, a) ← 0
5: for all s′ ∈ S do
6: n(s, a, s′) ← 0
7: end for
8: end for
9: for t = 1, 2, 3, · · · do

10: Let s denote the state at time t.
11: Choose some action a.
12: Execute action a from the current state.
13: Let r be the immediate reward and s′ the next state after executing action a from

state s.
14: n(s, a) ← n(s, a) + 1
15: r(s, a) ← r(s, a) + r // Record immediate reward

16: n(s, a, s′) ← n(s, a, s′) + 1 // Record immediate next-state

17: Update one or more action-values, Q(s′, a′).
18: end for

One of the most basic algorithms we can construct simply uses optimistic initial-

ization, ε-greedy action selection, and value iteration (or some other complete MDP

28

solver) to solve its internal model at each step. Specifically, during each timestep an

MDP solver solves the following set of equations to compute its action values:

Q(s, a) = R̂(s, a) + γ
∑

s′
T̂ (s′|s, a)max

a′
Q(s′, a′) for all (s, a). (2.3)

Solving the system of equations specified above is often a time-consuming task.

There are various methods for speeding it up. The Prioritized Sweeping algorithm1

solves the Equations 2.3 approximately by only performing updates that will result in

a significant change (Moore & Atkeson, 1993). Computing the state-actions for which

a action-value update should be performed requires the knowledge of, for each state,

the state-action pairs that might lead to that state (called a predecessor function).

In the Adaptive Real-time Dynamic Programming algorithm of Barto et al. (1995),

instead of solving the above equations, only the following single update is performed:

Q(s, a) ← R̂(s, a) + γ
∑

s′
T̂ (s′|s, a)max

a′
Q(s′, a′). (2.4)

Here, (s, a) is the most recent state-action pair experienced by the agent.

In Section 4.1, we show that combining optimistic initialization and ε-greedy explo-

ration with the Certainty Equivalence approach fails to produce a PAC-MDP algorithm

(Theorem 11).

2.2 E3

The Explicit Explore or Exploit algorithm or E3 was the first RL algorithm proven to

learn near-optimally in polynomial time in general MDPs (Kearns & Singh, 2002). The

main intuition behind E3 is as follows. Let the “known” states be those for which the

agent has experienced each action at least m times, for some parameter m. If m is

sufficiently large, by solving an MDP model with empirical transitions that provides

maximum return for reaching “unknown” states and provides zero reward for all other

1The Prioritized Sweeping algorithm also uses the näıve type of exploration and will be discussed
in more detail in Section 2.11.

29

states, a policy is found that is near optimal in the sense of escaping the set of “known”

states. The estimated value of this policy is an estimate of the probability of reaching

an “unknown” state in T steps (for an appropriately chosen polynomial T). If this

probability estimate is very small (less than a parameter thresh), then solving another

MDP model that uses the empirical transitions and rewards except for the unknown

states, which are forced to provide zero return, yields a near-optimal policy.

We see that E3 will solve two models, one that encourages exploration and one that

encourages exploitation. It uses the exploitation policy only when it estimates that the

exploration policy does not have a substantial probability of success.

Since E3 waits to incorporate its experience for state-action pairs until it has experi-

enced them a fixed number of times, it exhibits the näıve type of exploration. Unfortu-

nately, the general PAC-MDP theorem we have developed does not easily adapt to the

analysis of E3 because of E3’s use of two internal models. The general theorem, can,

however be applied to the R-MAX algorithm (Brafman & Tennenholtz, 2002), which is

similar to E3 in the sense that it solves an internal model and uses näıve exploration.

The main difference between R-MAX and E3 is that R-MAX solves only a single model

and therefore implicitly explores or exploits. The R-MAX and E3 algorithms were

able to achieve roughly the same level of performance in all of our experiments (see

Section 5).

2.3 R-MAX

The R-MAX algorithm is similar to the Certainty-Equivalence approaches. In fact,

Algorithm 1 is almost general enough to describe R-MAX. R-MAX requires one ad-

ditional, integer-valued parameter, m. The action selection step is always to choose

the action that maximizes the current action value. The update step is to solve the

following set of equations:

Q(s, a) = R̂(s, a) + γ
∑

s′
T̂ (s′|s, a)max

a′
Q(s′, a′), if n(s, a) ≥ m, (2.5)

Q(s, a) = 1/(1− γ), if n(s, a) < m.

30

Solving this set of equations is equivalent to computing the optimal action-value func-

tion of an MDP, which we call Model(R-MAX). This MDP uses the empirical transition

and reward distributions for those state-action pairs that have been experienced by the

agent at least m times. The transition distribution for the other state-action pairs is a

self loop and the reward for those state-action pairs is always 1, the maximum possible.

Another difference between R-MAX and the general Certainty-Equivalence approach

is that R-MAX uses only the first m samples in the empirical model. That is, the

computation of R̂(s, a) and T̂ (s, a) in equation 2.5, differs from Section 6.1.3 in that

once n(s, a) = m, additional samples from R(s, a) and T (s, a) are ignored and not used

in the empirical model. To avoid complicated notation, we redefine n(s, a) to be the

minimum of the number of times state-action pair (s, a) has been experienced and m.

This is consistent with the pseudo-code provided in Algorithm 2.

Any implementation of R-MAX must choose a technique for solving the set of Equa-

tions 2.5 and this choice will affect the computational complexity of the algorithm.

However, for concreteness2 we choose value iteration, which is a relatively simple and

fast MDP solving routine (Puterman, 1994). Actually, for value iteration to solve Equa-

tions 2.5 exactly, an infinite number of iterations would be required. One way around

this limitation is to note that a very close approximation of Equations 2.5 will yield

the same optimal greedy policy. Using this intuition we can argue that the number

of iterations needed for value iteration is at most a high-order polynomial in several

known parameters of the model, Model(R-MAX) (Littman et al., 1995). Another more

practical approach is to require a solution to Equations 2.5 that is guaranteed only to

produce a near-optimal greedy policy. The following two classic results are useful in

quantifying the number of iterations needed.

Proposition 1 (Corollary 2 from Singh and Yee (1994)) Let Q′(·, ·) and Q∗(·, ·) be two

action-value functions over the same state and action spaces. Suppose that Q∗ is the

optimal value function of some MDP M . Let π be the greedy policy with respect to Q′

and π∗ be the greedy policy with respect to Q∗, which is the optimal policy for M . For

2In Section 4.4, we discuss the use of alternative algorithms for solving MDPs.

31

any α > 0 and discount factor γ < 1, if maxs,a {|Q′(s, a)−Q∗(s, a)|} ≤ α(1 − γ)/2,

then maxs {V π∗(s)− V π(s)} ≤ α.

Proposition 2 Let β > 0 be any real number satisfying β < 1/(1 − γ) and γ < 1 be

any discount factor. Suppose that value iteration is run for
⌈

ln(1/(β(1−γ)))
(1−γ)

⌉
iterations

where each initial action-value estimate, Q(·, ·), is initialized to some value between 0

and 1/(1 − γ). Let Q′(·, ·) be the resulting action-value estimates. Then, we have that

maxs,a {|Q′(s, a)−Q∗(s, a)|} ≤ β.

Proof: Let Qi(s, a) denote the action-value estimates after the ith iteration of value

iteration. The initial values are therefore denoted by Q0(·, ·). Let ∆i := max(s,a) |Q∗(s, a)−Qi(s, a)|.
Now, we have that

∆i

= max
(s,a)

|(R(s, a) + γ
∑

s′
T (s, a, s′)V ∗(s′))− (R(s, a) + γ

∑

s′
T (s, a, s′)Vi−1(s′))|

= max
(s,a)

|γ
∑

s′
T (s, a, s′)(V ∗(s′)− Vi−1(s′))|

≤ γ∆i−1.

Using this bound along with the fact that ∆0 ≤ 1/(1− γ) shows that ∆i ≤ γi/(1− γ).

Setting this value to be at most β and solving for i yields i ≥ ln(β(1− γ))/ln(γ). We

claim that
ln(1

β(1−γ)))

(1− γ)
≥ ln(β(1− γ))

ln(γ)
. (2.6)

Note that Equation 2.6 is equivalent to the statement eγ − γe ≥ 0, which follows from

the the well-known identity ex ≥ 1 + x. 2

The previous two propositions imply that if we require value iteration to produce an

α-optimal policy it is sufficient to run it for C ln(1/(α(1−γ)))
(1−γ) iterations, for some constant

C. The resulting pseudo-code for R-MAX is given in Algorithm 2. We’ve added a real-

valued parameter, ε1, that specifies the desired closeness to optimality of the policies

produced by value iteration. In Section 2.4.2, we show that both m and ε1 can be set as

functions of the other input parameters, ε, δ, S, A, and γ, in order to make theoretical

32

guarantees about the learning efficiency of R-MAX.

Algorithm 2 R-MAX
0: Inputs: S, A, γ, m, ε1
1: for all (s, a) do
2: Q(s, a) ← 1/(1− γ) // Action-value estimates

3: r(s, a) ← 0
4: n(s, a) ← 0
5: for all s′ ∈ S do
6: n(s, a, s′) ← 0
7: end for
8: end for
9: for t = 1, 2, 3, · · · do

10: Let s denote the state at time t.
11: Choose action a := argmaxa′∈A Q(s, a′).
12: Let r be the immediate reward and s′ the next state after executing action a from

state s.
13: if n(s, a) < m then
14: n(s, a) ← n(s, a) + 1
15: r(s, a) ← r(s, a) + r // Record immediate reward

16: n(s, a, s′) ← n(s, a, s′) + 1 // Record immediate next-state

17: if n(s, a) = m then
18: for i = 1, 2, 3, · · · , C ln(1/(ε1(1−γ)))

(1−γ) do
19: for all (s̄, ā) do
20: if n(s̄, ā) ≥ m then
21: Q(s̄, ā) ← R̂(s̄, ā) + γ

∑
s′ T̂ (s′|s̄, ā)maxa′ Q(s′, a′).

22: end if
23: end for
24: end for
25: end if
26: end if
27: end for

There there are many different optimizations available to shorten the number of

backups required by value iteration, rather than using the crude upper bound described

above. For simplicity, we mention only two important ones, but note that many more

appear in the literature. The first is that instead of using a fixed number of iterations,

allow the process to stop earlier if possible by examining the maximum change (called

the Bellman residual) between two successive approximations of Q(s, a), for any (s, a).

It is known that if the maximum change to any action-value estimate in two successive

iterations of value iteration is at most α(1− γ)/(2γ), then the resulting value function

yields an α-optimal policy (Williams & Baird, 1993). Using this rule often allows value

33

iteration within the R-MAX algorithm to halt after a number of iterations much less

than the upper bound given above. The second optimization is to change the order of

the backups. That is, rather than simply loop through each state-action pair during

each iteration of value iteration, we update the state-action pairs roughly in the order of

how large of a change an update will cause. One way to do so by using the same priorities

for each (s, a) as used by the Prioritized Sweeping algorithm (Moore & Atkeson, 1993).

2.4 Analysis of R-MAX

We will analyze R-MAX using the structure from Section 1.4.

2.4.1 Computational Complexity

There is a simple way to change the R-MAX algorithm that has a minimal affect on

its behavior and saves greatly on computation. The important observation is that for a

fixed state s, the maximum action-value estimate, maxa Q(s, a) will be 1/(1− γ) until

all actions have been tried m times. Thus, there is no need to run value iteration (lines

17 to 25 in Algorithm 2) until each action has been tried exactly m times. In addition,

if there are some actions that have been tried m times and others that have not, the

algorithm should choose one of the latter. One method to accomplish this balance is to

order each action and try one after another until all are chosen m times. Kearns and

Singh (2002) called this behavior “balanced wandering”. However, it is not necessary

to use balanced wandering; for example, it would be perfectly fine to try the first action

m times, the second action m times, and so on. Any deterministic method for breaking

ties in line 11 of Algorithm 2 is valid as long as mA experiences of a state-action pair

results in all action being chosen m times.

On most timesteps, the R-MAX algorithm performs a constant amount of compu-

tation to choose its next action. Only when a state’s last action has been tried m times

does it solve its internal model. Our version of R-MAX uses value iteration to solve its

34

model. Therefore, the per-timestep computational complexity of R-MAX is

Θ
(

SA(S + ln(A))
(

1
1− γ

)
ln

1
ε1(1− γ)

)
. (2.7)

This expression is derived using the fact that value iteration performs O
(

1
1−γ ln 1

ε1(1−γ)

)

iterations, where each iteration involves SA full Bellman backups (one for each state-

action pair). A Bellman backup requires examining all possible O(S) successor states

and the update to the priority queue takes time O(ln(A)). Note that R-MAX updates

its model at most S times. From this observation we see that the total computation

time of R-MAX is O
(
B + S2A(S + ln(A))

(
1

1−γ

)
ln 1

ε1(1−γ)

)
, where B is the number

of timesteps for which R-MAX is executed.

2.4.2 Sample Complexity

The main result of this section is to prove the following theorem.

Theorem 2 (Strehl & Littman, 2006) Suppose that 0 ≤ ε < 1
1−γ and 0 ≤ δ < 1 are two

real numbers and M = 〈S, A, T,R, γ〉 is any MDP. There exists inputs m = m(1
ε ,

1
δ)

and ε1, satisfying m(1
ε ,

1
δ) = O

(
S+ln(SA/δ)

ε2(1−γ)4

)
and 1

ε1
= O(1

ε), such that if R-MAX is

executed on M with inputs m and ε1, then the following holds. Let At denote R-MAX’s

policy at time t and st denote the state at time t. With probability at least 1 − δ,

V At
M (st) ≥ V ∗

M (st)− ε is true for all but O
(

SA
ε3(1−γ)6

(
S + ln SA

δ

)
ln 1

δ ln 1
ε(1−γ)

)
timesteps

t.

Let nt(s, a) denote the value of n(s, a) at time t during execution of the algorithm.

For R-MAX, we define the “known” state-action pairs Kt, at time t, to be

Kt := {(s, a) ∈ S × A|nt(s, a) = m}, (2.8)

which is dependent on the parameter m that is provided as input to the algorithm.

In other words, Kt is the set of state-action pairs that have been experienced by the

agent at least m times. We call these the “known” state-action pairs, a term taken

35

from Kearns and Singh (2002), because for large enough m, the dynamics, transition

and reward, associated with these pairs can be accurately approximated by the agent.

The following event will be used in our proof that R-MAX is PAC-MDP. We will

provide a sufficient condition (specifically, L1-accurate transition and reward functions)

to guarantee that the event occurs, with high probability. In words, the condition says

that the value of any state s, under any policy, in the empirical known state-action

MDP (M̂Kt) is ε1-close to its value in the true known state-action MDP (MKt).

Event A1 For all stationary policies π, timesteps t and states s during execution

of the R-MAX algorithm on some MDP M , |V π
MKt

(s)− V π
M̂Kt

(s)| ≤ ε1.

Next, we quantify the number of samples needed from both the transition and

reward distributions for a state-action pair to compute accurate approximations of

both distributions.

Lemma 7 (Strehl & Littman, 2006) Suppose that r[1], r[2], . . . , r[m] are m rewards

drawn independently from the reward distribution, R(s, a), for state-action pair (s, a).

Let R̂(s, a) be the empirical estimate of R(s, a), as described in Section 6.1.3. Let δR

be any positive real number less than 1. Then, with probability at least 1− δR, we have

that |R̂(s, a)−R(s, a)| ≤ εR
n(s,a), where

εR
n(s,a) :=

√
ln(2/δR)

2m
(2.9)

Proof: This follows directly from Hoeffding’s bound (Hoeffding, 1963). 2

Lemma 8 (Strehl & Littman, 2006) Suppose that T̂ (s, a) is the empirical transition

distribution for state-action pair (s, a) using m samples of next states drawn indepen-

dently from the true transition distribution T (s, a). Let δT be any positive real number

less than 1. Then, with probability at least 1− δT , we have that ||T̃ (s, a)− T̂ (s, a)||1 ≤
εT
n(s,a) where

εT
n(s,a) =

√
2[ln(2S − 2)− ln(δT)]

m
. (2.10)

36

Proof: The result follows immediately from an application of Theorem 2.1 of Weiss-

man et al. (2003). 2

Lemma 9 (Strehl & Littman, 2006) There exists a constant C such that if R-MAX

with parameters m and ε1 is executed on any MDP M = 〈S,A, T,R, γ〉 and m satisfies

m ≥ C

(
S + ln (SA/δ)
ε12(1− γ)4

)
= Õ

(
S

ε12(1− γ)4

)
,

then event A1 will occur with probability at least 1− δ.

Proof: Event A1 occurs if R-MAX maintains a close approximation of its known

state-action MDP. By Lemma 4, it is sufficient to obtain C
(
ε1(1− γ)2

)
-approximate

transition and reward functions (where C is a constant), for those state-action pairs in

Kt. The transition and reward functions that R-MAX uses are the empirical estimates

as described in Section 6.1.3, using only the first m samples (of immediate reward and

next-state pairs) for each (s, a) ∈ K. Intuitively, as long as m is large enough, the

empirical estimates for these state-action pairs will be accurate, with high probabil-

ity.3 Consider a fixed state-action pair (s, a). From Lemma 7, we can guarantee the

empirical reward distribution is accurate enough, with probability at least 1 − δ′, as

long as
√

ln(2/δ′)
2m ≤ C

(
ε1(1− γ)2

)
. From Lemma 8, we can guarantee the empirical

transition distribution is accurate enough, with probability at least 1 − δ′, as long as√
2[ln(2S−2)−ln(δ′)]

m ≤ C
(
ε1(1− γ)2

)
. Using these two expressions, we find that it is

sufficient to choose m such that

m ∝ S + ln(1/δ′)
ε21(1− γ)4

. (2.11)

3There is a minor technicality here. The samples, in the form of immediate rewards and next-states,
experienced by an online agent in an MDP are not necessarily independent samples. The reason for
this is that the learning environment or the agent could prevent future experiences of state-action
pairs based on previously observed outcomes. Nevertheless, all the tail inequality bounds, including
the Hoeffding Bound, that hold for independent samples also hold for online samples in MDPs, a fact
that is due to the Markov property. There is an extended discussion and formal proof of this fact in
Section 1.5.

37

Thus, as long as m is large enough, we can guarantee that the empirical reward and

empirical distribution for a single state-action pair will be sufficiently accurate, with

high probability. However, to apply the simulation bounds of Lemma 4, we require

accuracy for all state-action pairs. To ensure a total failure probability of δ, we set

δ′ = δ/(2SA) in the above equations and apply the union bound over all state-action

pairs. 2

Proof: (of Theorem 2). We apply Theorem 1. Let ε1 = ε/2. Assume that Event

A1 occurs. Consider some fixed time t. First, we verify Condition 1 of the theorem.

We have that Vt(s) ≥ V ∗
M̂Kt

(s)− ε1 ≥ V ∗
MKt

(s)− 2ε1 ≥ V ∗(s)− 2ε1. The first inequality

follows from the fact that R-MAX computes its action values by computing an ε1-

approximate solution of its internal model (M̂Kt). The second inequality follows from

Event A1 and the third from the fact that MKt can be obtained from M by removing

certain states and replacing them with a maximally rewarding state whose actions are

self-loops, an operation that only increases the value of any state. Next, we note that

Condition 2 of the theorem follows from Event A1. Finally, observe that the learning

complexity, ζ(ε, δ) ≤ SAm, because each time an escape occurs, some (s, a) 6∈ K is

experienced. However, once (s, a) is experienced m times, it becomes part of and never

leaves the set K. To guarantee that Event A1 occurs with probability at least 1 − δ,

we use Lemma 9 to set m. 2

2.5 Model-Based Interval Estimation

Interval Estimation (IE) is an advanced technique for handling exploration. It was

introduced by (Kaelbling, 1993) for use in the k-armed bandit problem, which involves

learning in a special class of MDPs. In this section we examine two model-based learning

algorithms that use the Interval Estimation (IE) approach to exploration. The first is

called Model-based Interval Estimate (MBIE) and the second is called MBIE-EB.

Model-based Interval Estimation maintains the following variables for each state-

action pair (s, a) of the MDP M .

• Action-value estimates Q̃(s, a): These are used by the algorithm to select actions.

38

They are rough approximations of Q∗(s, a) and are computed by solving the

internal MDP model used by MBIE. On timestep t, we denote Q̃(s, a) by Q̃t(s, a).

They are initialized optimistically; Q̃0(s, a) = 1/(1− γ).

• Reward estimates R̂(s, a): The average reward received for taking action a from

state s. On timestep t, we denote R̂(s, a) by R̂t(s, a).

• Transition estimates T̂ (s, a): The maximum liklihood estimate of the true tran-

sition distribution T (s, a). On timestep t, we denote T̂ (s, a) by T̂t(s, a).

• Occupancy counts n(s, a): The number of times action a was taken from state s.

On timestep t, we denote n(s, a) by nt(s, a).

• Next-state counts n(s, a, s′) for each s′ ∈ S: The number of times action a

was taken from state s and resulted in next-state s′. On timestep t, we denote

n(s, a, s′) by nt(s, a, s′).

Besides these, there are several other quantities that MBIE uses.

• Inputs S, A, γ, ε, δ. These are provided as inputs to the algorithm before execu-

tion time.

• Model size limit m. The maximum number of experiences, per state-action pair

(s, a), used to calculate the model parameters R̂(s, a) and T̂ (s, a). After the first

m experiences of (s, a), the algorithm ignores the data (immediate reward and

next state) observed after any additional experiences of (s, a). The precise value of

m can be chosen (as in Section 1.3.3) to ensure formal guarantees on the behavior

of the algorithm or it can be given as input to the algorithm. In the former case,

m will depend on the inputs to the algorithm and especially on ε and δ. In the

latter case, the value can be chosen using domain knowledge.

When we discuss the behavior of the algorithm at some fixed and specified timestep

t, we will often omit the subscript t in the above quantities.

On each timestep, the agent executing MBIE chooses an action greedily with re-

spect to Q̃(s, a). That is, if st is the tth state reached by the agent, then at =

39

argmax{Q̃t(s, a)} is the tth action chosen. If there is a tie, then the algorithm may

break the tie arbitrarily.

It is important to note that for each state-action pair (s, a), MBIE uses only the

first m experiences of (s, a).4 This means that if on timestep t, action a has been taken

from state s more than m times, then the resulting immediate reward and next-state

for those experiences are ignored. They are not used to update R̂(s, a) or T̂ (s, a). In

addition, n(s, a) can be at most m (additional experiences of (s, a) after the mth one

do not increase n(s, a)). The same is true of n(s, a, s′).

We now consider two different but similar algorithms, MBIE and MBIE-EB (short

for Model Based Interval Estimation with Exploration Bonus). They differ only in

the way Q̃ is computed. MBIE builds the upper tail of a confidence interval on the

optimal value function of M by simultaneously considering a confidence interval on the

entire space of MDPs. The approach taken by MBIE is closely related to that Wiering

and Schmidhuber (1998). MBIE-EB uses a simpler form of the confidence intervals

it maintains and is closely related to the confidence intervals computed by the Action

Elimination algorithm (Even-Dar et al., 2003). It can be viewed as directly computing

the upper tail of a confidence interval on the optimal value function of the MDP M . It

is an open question which form of MBIE is better in practice. However, we suspect that

the simpler version, MBIE-EB, will learn slightly more slowly but use less computation.

2.5.1 MBIE’s Model

The action-value estimates Q̃(s, a) are computed by solving an MDP model. In this

section, we describe the model used by MBIE and a method for computing Q̃ from the

model. This completes the specification of the MBIE algorithm.

We first provide an intuition behind the model. On timestep t, the algorithm makes

4This property of the algorithm is mainly enforced for our analysis. As it is hard to track the value
of a changing, non-stationary policy, our analysis requires only a small (polynomial) number of changes
to the agent’s policy. Since any update to MBIE’s model causes a new policy to be computed, we must
place a restriction on the number of model updates. This also has the additional benefit of limiting the
computational requirements of the algorithm. However, in experiments we have found that setting m
to be very large or infinite actually improves the performance of the algorithm when computation is
ignored.

40

use of two confidence intervals for each state-action pair (s, a), one on the mean re-

ward R(s, a) and another on the transition probability distribution T (s, a). These two

confidence intervals are then combined into a single confidence interval of MDPs on

the underlying MDP M . The model used by MBIE is the MDP within this confidence

interval whose optimal policy has the highest value from the current state of the agent

(st).

Suppose on timestep t, for state-action pair (s, a), the agent has observed the follow-

ing n(s, a) immediate rewards for taking action a from state s: r[1], r[2], . . . , r[n(s, a)].

Then, the empirical mean reward is

R̂(s, a) :=
1

n(s, a)

n(s,a)∑

i=1

r[i]. (2.12)

The confidence interval for R(s, a) is CI(R) := (R̂(s, a)−εR
n(s,a), R̂(s, a)+εR

n(s,a)), where

εR
n(s,a) :=

√
ln(2/δR)
2n(s, a)

(2.13)

We refer to CI(R) as the reward confidence interval because of the following prop-

erty. Assuming that the rewards r[1], r[2], . . . , r[n(s, a)] are independently drawn sam-

ples from R(s, a), we know from the Hoeffding bound that with probability at least

1− δR, R(s, a) ∈ CI(R) will hold.

For a fixed state-action pair (s, a) and timestep t, recall that T (s, a) is the true

transition probability distribution for (s, a). It can be viewed as an |S|-dimension

vector where each component is between 0 and 1. On a fixed timestep t, the empirical

transition vector is the vector T̂ (s, a) with components

T̂ (s′|s, a) :=
n(s, a, s′)
n(s, a)

. (2.14)

The right hand side of Equation 2.14 is the proportion of the number of times, among

the first m experiences of (s, a) up to timestep t, that the resulting next-state was s′.

41

The confidence interval for T (s, a) is

CI(T) := {T̃ (s, a) ∈ PS | ||T̃ (s, a)− T̂ (s, a)||1 ≤ εT
n(s,a)} (2.15)

where PS is the set of all |S|-dimensional probability vectors (each component is between

0 and 1 and the sum of all components is 1) and

εT
n(s,a) =

√
2[ln(2|S| − 2)− ln(δT)]

m
. (2.16)

It is important to keep in mind that CI(T) is a set (and, in fact, a confidence interval)

of probability distributions over the finite state space S.

Let s[1], s[2], . . . , s[n(s, a)] be the n(s, a) next-states observed by the agent after

taking action a from state s and used to compute T̂ (s, a). We refer to CI(T) as the

transition confidence interval because of the following property. Assuming these n(s, a)

next-states are independently drawn samples from T (s, a), we have that with probability

at least 1− δT , T (s, a) ∈ CI(T) will hold (Weissman et al., 2003).

On every timestep t, the main computation of the MBIE is to solve the following

set of |S||A| equations for Q̃(·, ·).

Q̃(s, a) = max
R̃(s,a)∈CI(R)

R̃(s, a) + max
T̃ (s,a)∈CI(T)

γ
∑

s′
T̃ (s′|s, a)max

a′
Q̃(s′, a′). (2.17)

Note that this expression effectively combines the uncertainty in the rewards and

transitions to provide the MDP model used by MBIE. If a state-action pair (s, a) has

never been experienced by the agent, then it’s not clear what CI(R) and CI(T) should

be. In this case we simply define Q̃(s, a) = 1/(1−γ) for those (s, a) for which n(s, a) = 0,

a process referred to as optimistic initialization.

It’s not immediately clear how to quickly solve Equation 2.17 for each (s, a) si-

multaneously. First, note that the reward term (the first part of the right hand

side) is maximized easily. Using this we can simplify Equation 2.17 to Q̃(s, a) =

(R̂(s, a) + εR
n(s,a))+maxT̃ (s,a)∈CI(T) γ

∑
s′ T̃ (s′|s, a)maxa′ Q̃(s′, a′). The set of equations

42

now looks a lot like the Bellman equations for solving a single MDP. However, the addi-

tional maximization over transition probability distributions complicates the situation

and rules out a straight-forward reduction to MDP solving.

We now argue that Equation 2.17 can be solved using value iteration. This problem

is strongly related to the problem considered by Givan et al. (2000) that they call

finding an “optimistically optimal policy”. The main difference is that in their problem,

confidence intervals (on the transition distributions) are specified by a bound on the

L∞ rather than L1 norms. The attainment of our sample-complexity bounds require

the use of L1 norms. The problem of finding a policy that is no worse than the optimal

policy for any MDP whose transition function falls in the given confidence interval is

interesting but different than our problem and has been well studied (Givan et al., 2000;

Nilim & Ghaoui, 2004).

Suppose we start with an arbitrary value function, Q : S × A → R. Then, we can

obtain a new value function, Q′, by using Equation 2.17 as an assignment statement:

Q′(s, a) := max
R̃(s,a)∈CI(R)

R̃(s, a) + max
T̃ (s,a)∈CI(T)

γ
∑

s′
T̃ (s′|s, a)max

a′
Q(s′, a′). (2.18)

This procedure can be repeated indefinitely to produce a sequence of value functions,

which we claim converges to the unique optimal solution to Q̃ of Equation 2.17. This

follows from the fact that Equation 2.17 leads to a contraction mapping.

Proposition 3 (Strehl & Littman, 2007) Let Q(s, a) and W (s, a) be value functions

and Q′(s, a) and W ′(s, a) be the result of applying Equation 2.18 to Q and W , respec-

tively. The update results in a contraction mapping in max-norm, that is, max(s,a) |Q′(s, a)−
W ′(s, a)| ≤ γ max(s,a) |Q(s, a)−W (s, a)|.

Proof: The argument is nearly identical to the standard convergence proof of value

iteration (Puterman, 1994), noting that the maximization over the compact set of prob-

ability distributions does not interfere with the contraction property. Let (s∗, a∗) =

argmax(s,a) |Q′(s, a) −W ′(s, a)|, and let CI(T) denote the transition confidence inter-

val (see Equation 2.15) for the state-action pair (s∗, a∗). Let V (s) := maxa Q(s, a) and

43

X(s) := maxa W (s, a) for all states s. Let T1 := argmaxT̃ (s∗,a∗)∈CI(T) γ
∑

s′ T̃ (s′|s∗, a∗)V (s′)

and T2 := argmaxT̃ (s∗,a∗)∈CI(T) γ
∑

s′ T̃ (s′|s∗, a∗)X(s′). Without loss of generality, as-

sume that Q′(s∗, a∗) ≥ W ′(s∗, a∗). Then,

max
s,a

|Q′(s, a)−W ′(s, a)| = Q′(s∗, a∗)−W ′(s∗, a∗)

= max
T̃ (s∗,a∗)∈CI(T)

γ
∑

s′
T̃ (s′|s∗, a∗)V (s′)− max

T̄ (s∗,a∗)∈CI(T)
γ

∑

s′
T̄ (s′|s∗, a∗)X(s′)

= γ
∑

s′
T1(s′|s∗, a∗)V (s′)− γ

∑

s′
T2(s′|s∗, a∗)X(s′)

≤ γ
∑

s′
T1(s′|s∗, a∗)V (s′)− γ

∑

s′
T1(s′|s∗, a∗)X(s′)

≤ γ max
s
|V (s)−X(s)| ≤ γ max

(s,a)
|Q(s, a)−W (s, a)|.

The first inequality results from the definition of T2. Specifically, T2 is the probability

distribution in CI(T) that maximizes the expected value of the next state under X(·),
so it is greater than the expected value with respect to the distribution T1. The rest of

the steps follow from basic algebraic manipulation. 2

To implement value iteration based on Equation 2.17, we need to solve the following

computational problem. Maximize

MV =
∑

s′
T̃ (s′|s, a)V (s′),

over all probability distributions, T̃ (·|s, a), subject to the constraint ||T̃ (·|s, a)−T̂ (·|s, a)||1 ≤
ε, where ε = εT

n(s,a) as in Equation 2.16.

The following procedure can be used to find the maximum value. Let T̃ (·|s, a) =

T̂ (·|s, a) to start. Let s∗ = argmaxs V (s) and increment T̃ (s∗|s, a) by ε/2. At this

point, T̃ (·|s, a) is not a probability distribution, since it sums to 1 + ε/2; however, its

L1 distance to T̂ (·|s, a) is ε/2. We need to remove exactly ε/2 weight from T̃ (·|s, a).

The weight is removed iteratively, taking the maximum amount possible from the state

s− = argmins′|T̃ (s′|s,a)>0 V (s′), since this decreases MV the least.

Proposition 4 (Strehl & Littman, 2007) The procedure just described maximizes MV .

44

Proof: First, the weight on s∗ is at most T̂ (s∗|s, a) + ε/2. If it’s larger, T̃ (·|s, a)

violates the L1 constraint. Let T̃ (s′|s, a) − T̂ (s′|s, a) be called the residual of state s′.

If ||T̃ (·|s, a)− T̂ (·|s, a)||1 = ε, then the sum of the positive residuals is ε/2 and the sum

of the negative residuals is −ε/2. For two states s1 and s2, if V (s1) > V (s2), then MV

is increased by moving positive residual from s2 to s1 or negative residual from s1 to

s2. Therefore, putting all positive residual on s∗ and moving all the negative residual

toward states with smallest V (s) values maximizes MV among all distributions T̃ (·|s, a)

with the given L1 constraint. 2

2.5.2 MBIE-EB’s Model

MBIE-EB simply solves the following set of equations to compute its action-value esti-

mates, Q̃(·, ·):

Q̃(s, a) = R̂(s, a) + γ
∑

s′
T̂ (s′|s, a) max

a′
Q̃(s′, a′) +

β√
n(s, a)

, (2.19)

where R̂ and T̂ form the empirical model based on the first m experiences for each state-

action pair as described above and β is a constant provided as input to the algorithm.

Equation 2.19 can be solved efficiently using any technique for solving an MDP.

Pseudo-code is provided in Algorithm 3.

2.6 Analysis of MBIE

In this section we provide a formal analysis of both versions of the MBIE algorithm.

Throughout this section we measure complexity assuming individual numbers require

unit storage and can be manipulated arithmetically in unit time. Removing this as-

sumption increases space and computational complexities by logarithmic factors.

2.6.1 Computation Complexity of MBIE

The computational complexity of MBIE depends on the implementation. Our complex-

ity bounds reflect one possible implementation of the algorithm. In this section we first

45

Algorithm 3 MBIE-EB
0: Inputs: S, A, γ, m, β, ε1
1: for all (s, a) do
2: Q(s, a) ← 1/(1− γ) // Action-value estimates

3: r(s, a) ← 0
4: n(s, a) ← 0
5: for all s′ ∈ S do
6: n(s, a, s′) ← 0
7: end for
8: end for
9: for t = 1, 2, 3, · · · do

10: Let s denote the state at time t.
11: Choose action a := argmaxa′∈A Q(s, a′).
12: Let r be the immediate reward and s′ the next state after executing action a from

state s.
13: if n(s, a) < m then
14: n(s, a) ← n(s, a) + 1
15: r(s, a) ← r(s, a) + r // Record immediate reward

16: n(s, a, s′) ← n(s, a, s′) + 1 // Record immediate next-state

17: for i = 1, 2, 3, · · · , O
(

ln(1/ε1(1−γ))
(1−γ)

)
do

18: for all (s̄, ā) do
19: Q(s̄, ā) ← R̂(s̄, ā) + γ

∑
s′ T̂ (s′|s̄, ā) maxa′ Q(s′, a′) + β√

(n(s,a)
.

20: end for
21: end for
22: end if
23: end for

discuss the worst case per-timestep computational complexity of the algorithm. Then

we discuss the worst case total computational complexity. The per-timestep complexity

is interesting from a learning viewpoint, where the longest time between two actions

may be more important than the total time taken over all actions.

Consider some timestep t during execution of MBIE. Suppose that s is the tth state

reached, a is the tth action chosen, r is the resulting immediate reward, and s′ is the

next-state.

At this point, the first computation of the algorithm is to update its internal model.

That is, it updates the variables R̂(s, a), T̂ (s, a), n(s, a), and n(s, a, s′), which can

be done in constant time. The next computation is to recalculate Q̃(s, a) for each

(s, a) using value iteration as described in Section 2.5.1. Each iteration of value iter-

ation involves a loop through each state-action pair of the MDP. Within this loop,

46

the algorithm performs the optimization described in Section 2.5.1. This optimiza-

tion sorts the observed reachable next-states by their estimated value, which takes

Θ(|S| log2(|S|)) = Θ(|S| ln(|S|)) computation time. It also requires knowledge of the

state s∗ whose current value estimate is maximum. To obtain this quickly, our imple-

mentation of MBIE includes a global priority queue5 of size |S||A| that holds all the

action-value estimates for each state. Finally, the algorithm must choose an action. To

facilitate this choice, we also maintain a local priority queue for each state s that stores

the values, Q̃(s, a), for each action a.

To summarize, if N is the maximum number of iterations of value iteration used to

solve Equation 2.17 during execution of MBIE on any timestep, then the worst case per-

timestep computational complexity of MBIE is O(|S||A|N (|S| ln(|S|)+|S|+ln(|S||A|)+
ln(|A|))) = O(|S||A|N (|S| ln(|S|) + ln(|S||A|))). The |S||A|N factor is the number of

updates performed during value iteration. The |S| ln(|S|) term is for sorting the next-

states by value. The |S|+ ln(|S||A|) term follows from the cost of computing the new

action-value estimate for a single state-action pair and updating the global priority

queue. The ln(|A|) term follows from the fact that the new action-value estimate needs

to be stored in a local priority queue for the current state.

For simplicity in our analysis and description of the algorithm, we have assumed

that MBIE solves its model (specified by Equations 2.17) exactly. However, it is easy to

modify the analysis to show that we only need value iteration to produce a Cε-optimal

policy (rather than an optimal one), for some constant C. Thus, we can easily bound

N by a polynomial, in particular, letting N = O
(
ln

(
1

ε(1−γ)

)
/(1− γ)

)
is sufficient, by

the results of Section 2.3. In practice, we have found that it works well to stop once

successive iterations don’t result in a change to any action-value estimate Q̃(s, a) that

is greater than some small threshold. The space complexity of MBIE is O(m|S||A|),
which can be achieved by maintaining the counts n(s, a, s′) only for those s′ that have

been reached by the agent during the first m experiences of (s, a).

5In Strehl and Littman (2005) an approximation that removes the necessity of maintaining this
priority queue was introduced. The approximation is simply to use the value 1/(1− γ) as a bound on
the value of any state.

47

We have shown that the per-step computation time of our implementation of MBIE

is O(|S||A|N (|S| ln(|S|) + ln(|S||A|))), where N is an upper bound on the number of

iterations used by the version of value iteration described in Section 4.4. Note that on

each timestep, MBIE performs more than a constant amount of computation only if it

updates its internal model. If no model update is required, than MBIE simply needs to

choose an action by solving argmaxa∈A Q̃(s, a), where s is the current state. This can

be done in constant time by using a priority queue as discussed above. Since MBIE can

update its model at most |S||A|m times, the total computation complexity is

O(B + |S|2|A|2mN (|S| ln(|S|) + ln(|S||A|))) (2.20)

where B is the number of timesteps for which MBIE is executed.

2.6.2 Computational Complexity of MBIE-EB

As we have done for MBIE, we first consider the worst case per-timestep computational

complexity of the algorithm. In fact, the only difference, in terms of computation time,

between the two algorithms is that MBIE-EB does not need to perform the optimization

step of Section 2.5.1. Instead it can perform traditional value iteration on its model.

This incurs a per-step computational cost of O(|S||A|N (|S|+ ln(|A|))), where N is the

maximum number of iterations of value iteration used to solve Equation 2.19 during

execution of MBIE-EB on any timestep. After each action-value update, a cost of

ln(|A|) is incurred for storing the new action-value estimate in a local priority queue

for the current state. Like MBIE, the space complexity of MBIE is O(m|S||A|).
We have shown that the per-step computation time of our implementation of MBIE-

EB is O(|S||A|N (|S|+ ln(|A|))). This leads to a total computation complexity of

O(B + |S|2|A|2mN (|S|+ ln(|A|))) (2.21)

where B is the number of timesteps for which MBIE-EB is executed.

48

2.6.3 Sample Complexity of MBIE

In this section, we study the sample complexity of exploration of MBIE. Our main

result is summarized by the following theorem.

Theorem 3 (Strehl & Littman, 2007) Suppose that ε and δ are two real numbers be-

tween 0 and 1 and M = 〈S, A, T,R, γ〉 is any MDP. There exists inputs δR = δT =

δ/(2|S||A|m) and m = m(1
ε ,

1
δ), satisfying m(1

ε ,
1
δ) = O

(|S|
ε2(1−γ)4

+ 1
ε2(1−γ)4

ln |S||A|
ε(1−γ)δ

)
,

such that if MBIE is executed on M , then the following holds. Let At denote MBIE’s

policy at time t and st denote the state at time t. With probability at least 1 − δ,

V At
M (st) ≥ V ∗

M (st) − ε is true for all but O
(|S||A|

ε3(1−γ)6

(
|S|+ ln |S||A|

ε(1−γ)δ

)
ln 1

δ ln 1
ε(1−γ)

)

timesteps t.

At the beginning of a run, every state-action (s, a) pair is said to be unknown. At

any step of the algorithm, the set of known state-action pairs K is defined to be those

(s, a) experienced at least m times (Kearns & Singh, 2002). For large enough m, any

(s, a) ∈ K will be accurately modeled.

An overview of the sample-complexity analysis is as follows. At each timestep, MBIE

follows the optimal policy of its model M̃ . Lemmas 4, 5, and 10 show that the value

of MBIE’s policy in its model is very close to its true value as long as the probability

of reaching an unknown state-action pair is low. By Lemma 11, the estimated value of

its policy is at least as large, with high probability, as the true optimal value function.

Thus, MBIE chooses its actions based on a policy that is either nearly optimal or

one with a high probability of encountering an unknown (s, a). However, the number

of times a given (s, a) can be experienced before it becomes known is shown to be

no more than polynomial in the relevant quantities. Therefore, the agent will act

nearly optimally on all but a bounded number of timesteps—it has polynomial sample

complexity.

As the MBIE agent gathers experience, it is continuously updating and solving its

model of the world according to Equation 2.17. Let CI be any confidence interval com-

puted by MBIE. We say that CI is admissible if it contains the mean of the distribution

49

that produced the samples for which CI was computed from. For our following analy-

sis, we require that all confidence intervals—reward and transition—be admissible for

all state-action pairs over every time-step, with high probability. Note that MBIE will

compute at most |S||A|m confidence intervals (m confidence intervals per state-action

pair). Thus, to ensure admissible confidence intervals with probability at least 1− δ, it

is sufficient to set δT = δR = δ/(2|S||A|m) and apply the union bound.

The next lemma quantifies the amount of experience, for each state-action pair,

required by MBIE to accurately model the dynamics of the environment.

Lemma 10 (Strehl & Littman, 2007) Suppose that δT = δR = δ/(2|S||A|m) and that

all confidence intervals computed by MBIE are admissible. Then, for any τ > 0, there

exists an m = O
(|S|

τ2 + 1
τ2 ln |S||A|

τδ

)
such that |R̃(s, a) − R(s, a)| ≤ τ and ||T̃ (s, a, ·) −

T (s, a, ·)||1 ≤ τ holds for all state-action pairs (s, a) that have been experienced at least

m times.

Proof: Consider a fixed state-action pair (s, a) and some fixed timestep t during execu-

tion of MBIE. From Equation 2.13, the size of the reward confidence interval associated

with (s, a) is 2
√

ln(2/δR)
2n(s,a) . From Equation 2.16, the size of the corresponding transi-

tion confidence interval is 2
√

2[ln(2|S|−2)−ln(δT)]
n(s,a) . Once (s, a) has been experienced m

times by the agent, these intervals become fixed, n(s, a) = m, and the two expressions

above become 2
√

ln(2/δR)
2m and 2

√
2[ln(2|S|−2)−ln(δT)]

m . Using the assumption that both

confidence intervals are admissible, we have that

m ≥ max

{
8[ln(2|S| − 2)− ln(δT)]

τ2
,
2 ln(2/δR)

τ2

}
(2.22)

is sufficient to guarantee that |R̃(s, a) − R(s, a)| ≤ τ and ||T̃ (s, a, ·) − T (s, a, ·)||1 ≤ τ

when n(s, a) = m. By substitution of δ/(2|S||A|m) for δR and δT , the right hand side

of Equation 2.22, it can be rewritten as max
{

8[ln(2|S|−2)+ln(2|S||A|m/δ))]
τ2 , 2 ln(4|S||A|m/δ)

τ2

}
.

It is a well known fact that for any constant C > 0, n ≥ 2C ln(C) implies n ≥ C ln(n).

Using this, it is clear that m can be chosen large enough so that Equation 2.22 holds,

but small enough so that m = O
(|S|

τ2 + 1
τ2 ln |S||A|

εδ

)
. 2

50

The MBIE algorithm exhibits “optimism in the face of uncertainty”. This notion

is captured formally by the following lemma. Specifically, we show that the expected

return of acting in the MBIE agent’s model is at least as large as the expected return

of acting in the underlying environment, with high probability.

Lemma 11 (Strehl & Littman, 2007) Suppose that all confidence intervals computed

by MBIE are admissible. Then, for any state s and action a, the condition Q̃(s, a) ≥
Q∗(s, a) is satisfied during any iteration of MBIE.

Proof: At each step of the learning problem, MBIE solves the MDP M̃ . We prove

the claim by induction on the number of steps of value iteration.6 For the base case,

assume that the Q values are initialized to 1/(1 − γ) ≥ V ∗(s), for all s. Now, for the

induction, suppose that the claim holds for the current value function Q̃(s, a).

MBIE computes two confidence intervals. CI(R) is an interval of real numbers of

the form (R̂(s, a)−εR
n(s,a), R̂(s, a)+εR

n(s,a)). CI(T) is the set of probability distributions

T ′(·|s, a) of the form ||T̂ (·|s, a) − T ′(·|s, a)||1 ≤ εT
n(s,a). By assumption, we have that

R(s, a) ∈ CI(R) and T (s, a) ∈ CI(T).

The term Q̃(s′, a′) on the right-hand side of Equation 2.17 is the result of the

previous iteration and is used to compute the new Q-value Q̃(s, a) on the left-hand side

of the equation. By our confidence-interval assumption, we have R̃(s, a) ≥ R(s, a) and

max
T̃ (·|s,a)∈CI(T)

γ
∑

s′
T̃ (s′|s, a)max

a′
Q̃(s′, a′)

≥ γ
∑

s′
T (s′|s, a)max

a′
Q̃(s′, a′)

≥ γ
∑

s′
T (s′|s, a)max

a′
Q∗(s′, a′).

The first step follows from the assumption that T (·|s, a) ∈ CI(T) and the second from

the induction assumption. 2

We are now ready to prove Theorem 3.

6We assume here that value iteration is halted after a finite number of iterations.

51

Proof: (of Theorem 3). We shall assume that MBIE’s internal model is solved

completely during every timestep (an optimal policy is obtained). The generalization

to the case where the model is solved approximately is straight forward and is similar

to the corresponding result for R-MAX (see the proof of Theorem 2). We also assume

that all confidence intervals computed by MBIE are admissible, an assumption that

holds with probability at least 1 − δ/2, by the union bound and our choice of δR and

δT .

We apply Theorem 1. Consider some fixed timestep t. First, note that Condition 1

of Theorem 1 follows immediately from lemma 11.

Second, we verify Condition 2 of Theorem 1. Define K to be the set of “known”

state-action pairs, that is, the set of all state-action pairs (s, a) that have been expe-

rienced at least m times (n(s, a) ≥ m); we will provide the value of m shortly. Recall

that the MBIE agent At chooses its next action by following an optimal policy π̃ of

MBIE’s internal model M̃ at time t. Let MK be the MDP that is equal to M on K

(meaning equal reward and transition distributions for (s, a) ∈ K) and equal to M̃ on

S×A−K. Using the terminology of Theorem 1, MK is the “known state-action MDP”

with respect the MBIE’s state-action values Q̃(·, ·) and the set K. Using Lemma 4,

Lemma 10 (with τ = Cε1(1− γ)2, where C is the constant specified in Lemma 4), and

our assumption of admissible confidence intervals, it follows that we can choose m with

m = O
(|S|

ε2(1−γ)4
+ 1

ε2(1−γ)4
ln |S||A|

ε(1−γ)δ

)
so that

|V π̃
MK

(s)− V π̃
M̃

(s)| ≤ ε (2.23)

holds for all s. This equation implies that Condition 2 of Theorem 1 holds (using the

notation of Theorem 1, πt = π̃ and Vt = V π̃
M̃

).

Next, we verify Condition 3 of Theorem 1. An update to some state-action value

can occur only when some “unknown” state-action pair (s, a) is visited. A fixed state-

action pair (s, a) can be visited at most m times until it becomes “known”. Once it’s

known, it can never become unknown. Thus, we get a crude bound of S2A2m for ζ(·, ·).
However, we can do better. Note that without changing the proof of Theorem 1 we can

52

redefine ζ(·, ·) to be an upper bound on the number of timesteps that either an escape

or an update occurs. Thus, we can bound ζ(·, ·) by SAm, which yields the desired

result upon substitution into Theorem 1. 2

2.6.4 Sample Complexity of MBIE-EB

We start off by showing that MBIE-EB also exhibits “optimism in the face of uncer-

tainty”.

Lemma 12 (Strehl & Littman, 2007) Suppose MBIE-EB is executed on any MDP

M with β = (1/(1 − γ))
√

ln(2|S||A|m/δ)/2. Then, with probability at least 1 − δ/2,

Q̃(s, a) ≥ Q∗(s, a) will always hold.

Proof: First, for some state-action pair (s, a), consider the first k ≤ m experiences

of (s, a) by the agent (timesteps for which action a was taken from state s). Let

X1, X2, . . . , Xk be the k random variables defined by:

Xi := ri + γV ∗(si) (2.24)

where ri is the ith reward received and si is the ith state visited after taking action

a from state s. Note that E[Xi] = Q∗(s, a) and that 0 ≤ Xi ≤ 1/(1 − γ) for all

i = 1, . . . , k. Assuming that the Xi are independently and identically distributed (see

Appendix A), we can apply the Hoeffding bound to arrive at

Pr

[
E[X1]− (1/k)

k∑

i=1

Xi ≥ β/
√

k

]
≤ e−2β2(1−γ)2 .

The value of β specified by the lemma guarantees that the right-hand side above is

δ/(2|S||A|m). Note that (1/k)
∑k

i=1 Xi = R̂(s, a) + γ
∑

s′ T̂ (s′|s, a)V ∗(s′). Once (s, a)

has been experienced m times, R̂ and T̂ cannot change again. Therefore, by the union

bound we have that

R̂(s, a) + γ
∑

s′
T̂ (s′|s, a)V ∗(s′)−Q∗(s, a) ≥ −β/

√
k (2.25)

53

holds for all timesteps t and all state-action pairs (s, a) with probability at least 1−δ/2,

where k = nt(s, a).

Fix a timestep t. Recall that MBIE-EB uses value iteration to solve the following

set of equations:

Q̃(s, a) = R̂(s, a) + γ
∑

s′
T̂ (s′|s, a) max

a′
Q̃(s′, a′) +

β√
n(s, a)

, (2.26)

The proof is by induction on the number of steps of value iteration.7 Let Q̃(i)(s, a)

denote the ith iterate of value iteration for (s, a), and let Ṽ (i)(s) = maxa Q̃(i)(s, a). For

the base case, by optimistic initialization we have that Q̃(0) = 1/(1− γ) ≥ Q∗(s, a) for

all state-action pairs (s, a). Now, for the induction, suppose that the claim holds for

the current value function Q̃(i)(s, a). We have that

Q̃(i+1)(s, a)

= R̂(s, a) + γ
∑

s′
T̂ (s′|s, a)max

a′
Q̃(i)(s′, a′) +

β√
n(s, a)

= R̂(s, a) + γ
∑

s′
T̂ (s′|s, a)Ṽ (i)(s′) +

β√
n(s, a)

≥ R̂(s, a) + γ
∑

s′
T̂ (s′|s, a)V ∗(s′) +

β√
n(s, a)

≥ Q∗(s, a).

The first two steps follow from definitions. In the last two steps we used the inductive

hypothesis and Equation 2.25, respectively. 2

We now show that MBIE-EB is also PAC-MDP.

Theorem 4 (Strehl & Littman, 2007) Suppose that ε and δ are two real numbers be-

tween 0 and 1 and M = 〈S, A, T,R, γ〉 is any MDP. There exists an input m = m(1
ε ,

1
δ),

satisfying m(1
ε ,

1
δ) = O

(|S|
ε2(1−γ)4

+ 1
ε2(1−γ)4

ln |S||A|
ε(1−γ)δ

)
, and β = (1/(1−γ))

√
ln(2|S||A|m/δ)/2

such that if MBIE-EB is executed on MDP M , then the following holds. Let At denote

MBIE-EB’s policy at time t and st denote the state at time t. With probability at least

7We assume here that value iteration is halted after a finite number of iterations.

54

1−δ, V At
M (st) ≥ V ∗

M (st)−ε is true for all but O
(|S||A|

ε3(1−γ)6

(
|S|+ ln |S||A|

ε(1−γ)δ

)
ln 1

δ ln 1
ε(1−γ)

)

timesteps t.

Proof: We shall assume that MBIE-EB’s internal model is solved completely during

every timestep (an optimal policy is obtained). The generalization to the case where the

model is solved approximately is straight forward and is similar to the corresponding

result for R-MAX (see the proof of Theorem 2). We also assume that the reward

confidence intervals computed by MBIE-EB are admissible.

We apply Theorem 1. Consider some fixed timestep t. First, note that Condition 1

of Theorem 1 follows immediately from lemma 12.

First, we argue that after each (s, a) has been experienced a polynomial number

of times, m, the empirical model learned from those experiences, R̂(s, a) and T̂ (s, a),

will be sufficiently close to the true distributions, R(s, a) and T (s, a), so that the value

of any policy in an MDP model based on R̂ and T̂ is no more than ε away from its

value in the MDP based on R and T (but otherwise the same), with high probability.

It follows from Lemma 4 that it is sufficient to require that ||T̂ (s, a) − T (s, a)||1 ≤ τ

and |R̂(s, a) − R(s, a)| ≤ τ for τ = Cε(1 − γ)2, where C is the constant specified in

Lemma 4. Using the form of reward and confidence intervals used by MBIE-EB with

δR = δT = δ/(2|S||A|m), it follows that

m ≥ C1

(|S|
ε2(1− γ)4

+
1

ε2(1− γ)4
ln

|S||A|
ε(1− γ)δ

)
(2.27)

for some positive constant C1 is sufficient for these two conditions to hold, with prob-

ability at least 1 − δ/2. A formal proof of this is almost identical to the proof of

Lemma 10, keeping in mind that while MBIE uses the upper tail of the transition and

reward confidence intervals (see Section 2.5.1), the empirical model uses the center of

these confidence intervals.8

Second, we verify Condition 2 of Theorem 1. Let st be the current state of the

agent. Define K to be the set of all state-action pairs (s, a) that have been experienced

8This difference amounts to a factor of 2 in the analysis.

55

at least m times (n(s, a) = m); we will provide the value of m shortly. We call K the

set of known state-action pairs. Recall that the MBIE-EB agent At chooses its next

action by following an optimal policy π̃ of its internal model M̃ at time t. Let M ′ be

the MDP that is equal to M on K (meaning equal reward and transition distributions

for (s, a) ∈ K) and equal to M̃ on S ×A−K. Let M̂ ′ be the MDP that is equal to M̂

on K and equal to M̃ on S ×A−K. From our choice of m above, we have that

|V π̃
M ′(s)− V π̃

M̂ ′(s)| ≤ ε (2.28)

holds for all s, with probability at least 1− δ/2. Also, note that M̃ is identical to the

MDP M̂ ′ except that some state-action pairs (precisely, those in K) have an additional

reward bonus of β/
√

m. Thus, we have that V π̃
M̃

(s) ≤ V π̃
M̂ ′(s) + β/(

√
m(1 − γ)). For

our analysis, we require that

β/(
√

m(1− γ)) ≤ ε. (2.29)

We define

β = (1/(1− γ))
√

ln(2|S||A|m/δ)/2. (2.30)

It’s not hard to show that we can make m large enough so that Equations 2.27 and

2.29 hold, yet small enough so that m = O
(|S|

ε2(1−γ)4
+ 1

ε2(1−γ)4
ln |S||A|

ε(1−γ)δ

)
. To see this

fact, note that when substitution the value of β from Equation 2.30 into Equation 2.29

and simplifying, we arrive at

m ≥ ln(|S||A|m/δ)/2
(1− γ)4ε2

.

The rest follows from further basic algebraic manipulation. Given that Equation 2.29

holds, we have that

V π̃
M̃

(s) ≤ V π̃
M̂ ′(s) + ε. (2.31)

Combining Equation 2.28 with Equation 2.31 and using the notation of Theorem 1

we have proved that Vt(s)−VMKt
(s) ≤ 2ε for all s. Thus, dividing ε by 2 in the previous

derivation allows us to satisfy Condition 2 of Theorem 1.

56

Next, we verify Condition 3 of Theorem 1. An update to some state-action value

can occur only when some “unknown” state-action pair (s, a) is visited. A fixed state-

action pair (s, a) can be visited at most m times until it becomes “known”. Once it’s

known, it can never become unknown. Thus, we get a crude bound of S2A2m for ζ(·, ·).
However, we can do better. Note that without changing the proof of Theorem 1 we can

redefine ζ(·, ·) to be an upper bound on the number of timesteps that either an escape

or an update occurs. Thus, we can bound ζ(·, ·) by SAm, which yields the desired

result upon substitution into Theorem 1. 2

One of the main drawbacks of the R-MAX and MBIE algorithms is their high per-

step computational complexity (due to solution of an internal MDP model). An agent

that must act in real time would most likely require an algorithm that chooses ac-

tions faster. We have already noted that a complete solution of the internal model is

not necessary for an efficient algorithm. Interestingly, even a close approximation of

the solution is unnecessary. Next, we discuss the RTDP-RMAX and RTDP-IE algo-

rithms, whose analysis verifies that fast (per-step) algorithms can still take advantage of

maintaining an internal model (Strehl et al., 2006a). Both algorithms “incrementally”

solve their internal models using ideas related to the Real-time Dynamic Programming

(RTDP) algorithm of Barto et al. (1995).

2.7 RTDP-RMAX

The RTDP-RMAX algorithm uses the same internal MDP model as the R-MAX al-

gorithm. Rather than solving the model at each step, which can be computationally

costly, RTDP-RMAX only partially solves its model. Specifically, instead of running

value iteration to compute a near-optimal policy, RTDP-RMAX performs at most a

single Bellman backup on the most recent state-action pair experienced by the agent.

In fact, it performs an update only if the new state-action estimate is significantly

smaller than the previous estimate. The amount that the estimate must decrease to

warrant an update is quantified by an additional parameter, ε1.

57

In addition to the standard inputs, the RTDP-RMAX algorithm requires two addi-

tional parameters, a positive integer parameter m and a positive real number ε1. Later,

in the analysis of Section 2.8, we provide a formal procedure for choosing m and ε1, but

for now we consider them as free parameters. The value of m, in particular, controls

the exploration behavior9 of the agent (larger values of m encourage greater exploration

while smaller values encourage greedier behavior).

Suppose that a is the tth action of the agent and is taken from state s with nt(s, a) ≥
m being satisfied. Recall that Vt(s′), for any state s′, is shorthand for maxa′ Qt(s′, a′).

The following update then occurs:

Qt+1(s, a) = R̂(s, a) + γ
∑

s′∈S

T̂ (s′|s, a)Vt(s′), (2.32)

where R̂ and T̂ are the empirical reward and transition functions (the maximum like-

lihood estimates) computed using using only the first m experiences (next states and

immediate rewards) for (s, a). We allow the update, Equation 2.32, to take place only

if the new action value results in a decrease of at least ε1. In other words, the following

equation must be satisfied for an update to occur:

Qt(s, a)−
(

R̂t(s, a) + γ
∑

s′∈S

T̂ (s′|s, a)Vt(s′)

)
≥ ε1. (2.33)

Otherwise, no change is made and Qt+1(s, a) = Qt(s, a). For all other (s′, a′) 6= (s, a),

no update occurs. That is, Qt+1(s′, a′) = Qt(s′, a′). Similarly if nt(s, a) < m, then no

update occurs. Pseudo-code for the algorithm is provided in Algorithm 4.

To summarize, the RTDP-RMAX algorithm chooses, at each step, to either update

a single state-action pair or not. If the last state occupied by the agent, under the last

action chosen by the agent, has been experienced at least m times, then the action-

value estimate for that state-action pair is updated as long as it results in a significant

decrease to the action-value estimate. The update is a standard full Bellman backup,

as in value iteration, where the empirical transition probabilities and empirical reward

9The parameter ε1 can also affect the exploration behavior of the agent.

58

functions are used (in place of the true transition and reward functions, which are

unknown by the agent). This approach differs from R-MAX in that one step of value

iteration (VI) is taken from one state instead of running VI to completion over all states.

Algorithm 4 RTDP-RMAX
0: Inputs: S, A, γ, m, ε1
1: for all (s, a) do
2: Q(s, a) ← 1/(1− γ)
3: r(s, a) ← 0
4: n(s, a) ← 0
5: for all s′ ∈ S do
6: n(s, a, s′) ← 0
7: end for
8: end for
9: for t = 1, 2, 3, · · · do

10: Let s denote the state at time t.
11: Choose action a := argmaxa′∈A Q(s, a′).
12: Let r be the immediate reward and s′ the next state after executing action a from

state s.
13: if n(s, a) < m then
14: n(s, a) ← n(s, a) + 1
15: r(s, a) ← r(s, a) + r // Record immediate reward

16: n(s, a, s′) ← n(s, a, s′) + 1 // Record immediate next-state

17: if n(s, a) = m then
18: q ← R̂(s, a) + γ

∑
s′ T̂ (s′|s, a)maxa′ Q(s′, a′)

19: if Q(s, a)− q ≥ ε1 then
20: Q(s, a) ← q.
21: end if
22: end if
23: end if
24: end for

2.8 Analysis of RTDP-RMAX

2.8.1 Computational Complexity

During each timestep, RTDP-RMAX performs no more than a single Bellman backup.

Therefore, its worst case computational complexity per timestep is

θ(S + ln(A)), (2.34)

59

where the log term is due to updating the priority queue that holds the action-value

estimates for each state.

As implemented in Algorithm 4, the algorithm will perform an unbounded number

of Bellman backups leading to a total computational complexity of

O ((S + ln(A))B) , (2.35)

where B is the number of timesteps for which RTDP-RMAX is executed. However, on

some timesteps the computation of a Bellman backup is unnecessary. The reason is that

the computation is redundant (meaning that it will not result in a change to the current

action-value estimate) unless there has been a change to the model or some other action-

value estimate. The algorithm can easily check for such conditions in constant time by

using logic very similar to the LEARN flags of Delayed Q-learning (see Section 3.2).

It can be shown that this modification reduces the total computational complexity to

O

(
B +

SA ln(A)
ε1(1− γ)

+
S3A2

(1− γ)

)
. (2.36)

A rough outline of the derivation of Equation 2.36 follows. RTDP-RMAX performs

at most SA/(ε1(1 − γ)) successful updates to its action-value estimates because the

estimates begin at 1/(1 − γ), cannot fall below zero, and decrease by at least ε1 on

every successful update. The action-value estimate for a fixed state-action pair does

not change until it has been experienced at least m times. In addition, the potential

update value (q in line 18 of Algorithm 4) will not change over time unless some action-

value estimate changes. Therefore, the expression need only be computed at most

1 + SA/(ε1(1− γ)) times. To summarize, there will be at most SA/(ε1(1− γ)) updates

(line 20 of Algorithm 4), each of which takes O(ln(A)) computation time, and at most

1 + SA(SA
1−γ) Bellman backups, each of which takes O(S) computation time. Taking

the weighted sum of these terms yields the asymptotic bound of Equation 2.36. The

first term of B comes from the constant amount of computation the algorithm uses on

every timestep, even when no backup is performed.

60

2.8.2 Sample Complexity

It is possible to prove that RTDP-RMAX is an efficient PAC-MDP algorithm with a

sample complexity bound that is asymptotically identical to the one we were able to

prove for RMAX. The main insight is that Theorem 1 can be applied by defining K to

be the set of all state-action pairs (s, a) such that

1. The pair has been experienced at least m times: n(s, a) ≥ m, and

2. The Bellman residual is small:

Qt(s, a)−
(

R̂(s, a) + γ
∑

s′
T̂ (s′|s, a)Vt(s′)

)
≤ ε1. (2.37)

This novel definition extends the standard definition (as used in the analysis of E3

and RMAX), which associates K with the state-action pairs that have been tried m

times, to allow incremental updates to propagate value information more gradually.

Specifically, a state-action pair is unknown if its Bellman error is high or the rewards

and transitions are not adequately estimated. We omit the complete analysis due to

its similarity to the analysis in Section 2.10.

Theorem 5 (Strehl et al., 2006a) Suppose that ε and δ are two real numbers between 0

and 1 and M = 〈S, A, T,R, γ〉 is any MDP. There exists inputs m = m(1
ε ,

1
δ), and ε1,

satisfying m(1
ε ,

1
δ) = O

(
S+ln(SA/δ)

ε2(1−γ)4

)
and 1

ε1
= O(1

ε(1−γ)), such that if RTDP-RMAX is

executed on M with inputs m and ε1, then the following holds. Let At denote RTDP-

RMAX’s policy at time t and st denote the state at time t. With probability at least

1 − δ, V At
M (st) ≥ V ∗

M (st) − ε is true for all but O
(

SA
ε3(1−γ)6

(
S + ln SA

δ

)
ln 1

δ ln 1
ε(1−γ)

)

timesteps t.

2.9 RTDP-IE

As RTDP-RMAX uses the same model as R-MAX and solves it incrementally with one

Bellman backup during each step, RTDP-IE incrementally solves the same model as

MBIE-EB.

61

The RTDP-IE (short for “real-time dynamic programming with interval estima-

tion”) algorithm also requires two additional real-valued parameters, β (larger values

encourage greater exploration while smaller values encourage greedier behavior) and

ε1, that can be chosen to provide a formal learning-time guarantee, as we show in

Section 2.10.

Suppose that a is the tth action by the agent and is taken from state s. Consider

the following update:

Qt+1(s, a) = R̂t(s, a) + γ
∑

s′∈S

T̂t(s′|s, a)Vt(s′) +
β√

n(s, a)
, (2.38)

where R̂t and T̂t are the empirical reward and transition functions at time t computed

using only the first m experiences (next states and immediate rewards) for (s, a). The

update specified by Equation 2.38 is allowed to occur only if it would result in a decrease

of at least ε1. Note that we do not allow n(s, a) to increase beyond m even if (s, a) is

experienced more than m times.

Like RTDP-RMAX, the update is a standard full Bellman backup, where the empir-

ical transition probabilities and reward functions are used, plus an “exploration bonus”

proportional to β that decreases at a rate inversely proportional to the square root of

the number of times the state-action pair has been experienced. Thus, a higher bonus is

provided to state-action pairs that have not been tried as often. Complete pseudo-code

is provided in Algorithm 5.

2.10 Analysis of RTDP-IE

2.10.1 Computational Complexity

During each timestep, RTDP-IE performs no more computation, asymptotically, than

required for a single Bellman backup. Therefore, its worst case computational com-

plexity per timestep is

θ(S + ln(A)), (2.39)

62

Algorithm 5 RTDP-IE
0: Inputs: S, A, γ, m, ε1, β
1: for all (s, a) do
2: Q(s, a) ← 1/(1− γ) // Action-value estimates

3: r(s, a) ← 0
4: n(s, a) ← 0
5: for all s′ ∈ S do
6: n(s, a, s′) ← 0
7: end for
8: end for
9: for t = 1, 2, 3, · · · do

10: Let s denote the state at time t.
11: Choose action a := argmaxa′∈A Q(s, a′).
12: Let r be the immediate reward and s′ the next state after executing action a from

state s.
13: if n(s, a) < m then
14: n(s, a) ← n(s, a) + 1
15: r(s, a) ← r(s, a) + r // Record immediate reward

16: n(s, a, s′) ← n(s, a, s′) + 1 // Record immediate next-state

17: end if
18: q ← R̂(s, a) + γ

∑
s′ T̂ (s′|s, a)maxa′ Q(s′, a′) + β/

√
n(s, a)

19: if Q(s, a)− q ≥ ε1 then
20: Q(s, a) ← q.
21: end if
22: end for

where the log term is due to updating the priority queue that holds the action-value

estimates for each state.

As implemented in Algorithm 5, the algorithm may perform the equivalent of an

unbounded number of Bellman backups, leading to a total computational complexity

of

O ((S + ln(A))B) , (2.40)

where B is the number of timesteps for which RTDP-IE is executed. However, on some

timesteps the computation of a Bellman backup is unnecessary; it is redundant unless

there has been a change to the model or some action-value estimate. The algorithm

can easily check for such conditions in constant time by using logic very similar to

the LEARN flags of Delayed Q-learning (see Section 3.2). It can be shown that this

63

modification reduces the total computational complexity to

O

(
B + S2Am +

SA ln(A)
ε1(1− γ)

+
S3A2

(1− γ)

)
. (2.41)

The derivation of this bound is similar to the one for RTDP-RMAX from Section 2.8.

The difference is that RTDP-IE will potentially perform m additional Bellman backup

computations (in line 18 in Algorithm 5) for each state-action pair corresponding to

the first m visits to each state-action pair, and adding an additional term of S2Am to

the total complexity.

2.10.2 Sample Complexity

The analysis of RTDP-IE actually follows that of RTDP-RMAX very closely. As in

Section 2.8, we modify the algorithm slightly.

In the version of RTDP-IE that we analyze, an update is performed as specified

by Equation 2.38 only if it would result in a decrease of at least ε1. In addition,

the empirical transitions and rewards, T̂t and R̂t, respectively, are computed using

only the first m experiences (m is an additional parameter supplied to the algorithm)

for (s, a). We let T̂ (·|s, a) and R̂(s, a) denote the model for (s, a) learned after m

experiences of (s, a). Furthermore, once (s, a) has been experienced m times, the bonus

of β/
√

n(s, a, t) in Equation 2.38 is replaced by ε1.

For RTDP-IE, we use the following set of “known” state-actions: During timestep

t of execution of RTDP-IE, we define Kt to be the set of all state-action pairs (s, a),

with n(s, a, t) ≥ m such that:

Qt(s, a)−
(

R̂(s, a) + γ
∑

s′
T̂ (s′|s, a)Vt(s′)

)
≤ 2ε1 (2.42)

Proposition 5 (Strehl et al., 2006a) For any 0 < δ < 1, if m ≥ β2/ε1
2 and β ≥

(1/(1−γ))
√

ln(SAm/δ)/2, then during execution of RTDP-IE, with probability at least

1− δ/2, Qt(s, a) ≥ Q∗(s, a) holds for all state-action pairs (s, a) and timesteps t.

Proof: First, for some state-action pair (s, a), consider the first k ≤ m experiences

64

of (s, a) by the agent (timesteps for which action a was taken from state s). Let

X1, X2, . . . , Xk be the k independently and identically distributed random variables

defined by:

Xi := ri + γV ∗(si) (2.43)

where ri is the ith reward received and si is the ith state visited after taking action

a from state s. Note that E[Xi] = Q∗(s, a) and that 0 ≤ Xi ≤ 1/(1 − γ) for all

i = 1, . . . , k. By the additive form of the Hoeffding bound we have that

Pr

[
E[X1]− (1/k)

k∑

i=1

Xi ≥ β/
√

k

]
≤ e−2β2(1−γ)2 .

The value of β specified by the lemma guarantees that the right-hand side above is

most δ/(SAm). Note that (1/k)
∑k

i=1 Xi = R̂t(s, a) + γ
∑

s′ T̂t(s, a, s′)V ∗(s′). Once

(s, a) has been experienced m times, R̂t and T̂t cannot change again. Therefore, by the

union bound we have that R̂t(s, a) + γ
∑

s′ T̂t(s, a, s′)V ∗(s′)−Q∗(s, a) ≥ −β/
√

k holds

for all timesteps t and all state-action pairs (s, a) with probability at least 1− δ, where

k = min{n(s, a, t),m}.
The proof is by induction on timestep t. For the base case, note that Q1(s, a) =

1/(1 − γ) ≥ Q∗(s, a) for all (s, a). Now, suppose the claim holds for all timesteps

less than or equal to t. Thus, we have that Qt(s, a) ≥ Q∗(s, a) and Vt(s) ≥ V ∗(s)

for all (s, a). Suppose s is the (t + 1)st state reached and a the action taken at time

t. Let n denote n(s, a, t + 1). If no update occurs then we are done because the

action-values will still be optimistic. Otherwise, if n < m, we have that Qt+1(s, a) =

R̂t+1(s, a)+γ
∑

s′∈S T̂t+1(s, a, s′)Vt(s′)+ β√
n
≥ R̂t+1(s, a)+γ

∑
s′∈S T̂t+1(s, a, s′)V ∗(s′)+

β√
n
≥ Q∗(s, a), by the above argument. If n ≥ m, then Qt+1(s, a) = R̂t+1(s, a) +

γ
∑

s′∈S T̂t+1(s, a, s′)Vt(s′)+ε1 ≥ R̂t+1(s, a)+γ
∑

s′∈S T̂t+1(s, a, s′)Vt(s′)+ β
m ≥ Q∗(s, a),

by the above argument. We have used that fact that if m ≥ β2/ε1
2, then ε1 ≥

β√
m

. Finally, we note that the two preconditions of the lemma, m ≥ β2/ε1
2 and

β ≥ (1/(1 − γ))
√

ln(SAm/δ)/2, are satisfied for β = (1/(1 − γ))
√

ln(SAm/δ)/2 and

65

m = O(1
ε2(1−γ)4

ln SA
ε2(1−γ)4δ

). To see this note that m ≥ β2/ε1
2 is equivalent to

m ≥ ln(SAm/δ)
2(1− γ)2ε12

.

Using the fact that

• for any positive numbers α and β, if m ≥ 2α ln(αβ), then m ≥ α ln(βm)

yields the desired result. 2

The following condition will be needed for our proof that RTDP-IE is PAC-MDP.

We will provide a sufficient condition (specifically, L1-accurate transition and reward

functions) to guarantee that it holds. In words, the first part of the condition says that

the value of the greedy policy (with respect to the agent’s action values) in the empirical

known state-action MDP (M̂Kt) is ε1-close to its value in the true known state-action

MDP (MKt). The second part says that the optimal value function of the last and final

model learned by RTDP-RMAX is not too far from the what it would be if the correct

transitions and rewards were used for those state-actions tried at least m times.

Assumption A1 For all timesteps t and states s, we have that |V πt
MKt

(s)−V πt

M̂Kt

(s)| ≤ ε1

where πt is the greedy policy (with respect to the agent’s action-value estimates) at time

t. Also, |V ∗
MK̃

(s)− V ∗
M̂K̃

(s)| ≤ ε1 where K̃ = {(s, a) | ∃u ∈ Z+ s.t. n(s, a, u) ≥ m}.

Theorem 6 (Strehl et al., 2006a) Suppose that 0 ≤ ε < 1
1−γ and 0 ≤ δ < 1 are two real

numbers and M = 〈S, A, T,R, γ〉 is any MDP. There exists inputs m = m(1
ε ,

1
δ) and ε1

satisfying m(1
ε ,

1
δ) = O

(
S+ln(SA/εδ(1−γ))

ε2(1−γ)4

)
and 1

ε1
= O(1

ε(1−γ)), such that if RTDP-IE

is executed on M , then the following holds. Let At denote RTDP-IE’s policy at time t

and st denote the state at time t. With probability at least 1− δ, V At
M (st) ≥ V ∗

M (st)− ε

is true for all but O
(

SA
ε3(1−γ)6

(
S + ln SA

εδ(1−γ)

)
ln 1

δ ln 1
ε(1−γ)

)
timesteps t.

Proof: We apply Proposition 1. We let β := 1/(1 − γ)
√

ln(SAm/δ)/2 and m =

Õ
(

S
ε2(1−γ)4

)
so that m ≥ β2/ε1

2 and so that Assumption A1 holds, with probability

at least 1 − δ/2. During timestep t of execution of RTDP-IE, we define Kt to be the

66

set of all state-action pairs (s, a), with n(s, a, t) ≥ m such that:

Qt(s, a)−
(

R̂(s, a) + γ
∑

s′
T̂ (s′|s, a)Vt(s′)

)
≤ 2ε1 (2.44)

Every update of a state-action pair decreases its action-value by at least ε1. Since

its action-value is initialized to 1/(1 − γ), we have that each state-action pair can be

updated at most 1/(ε1(1−γ)) times. Also, once a state-action pair has been experienced

m times, an experience of that state-action pair can cause event AK to happen if and

only if an update also occurs (we have defined Kt to make this true). Thus, there will

be at most SAm+SA/(ε1(1−γ)) timesteps t such that either AK occurs or an update

is performed to any (s, a). By Proposition 5, we have that the optimism precondition

is satisfied.

Finally, we claim that, by Assumption A1, Vt(s) − V πt
MKt

(s) ≤ 2ε1/(1 − γ) always

holds. To verify this claim, note that V πt

M̂Kt

is the solution to the following set of

equations:

V πt

M̂Kt

(s) = R̂(s, πt(s)) + γ
∑

s′∈S

T̂ (s′|s, πt(s))V πt

M̂Kt

(s′),

if (s, πt(s)) ∈ Kt,

V πt

M̂Kt

(s) = Qt(s, πt(s)), if (s, πt(s)) 6∈ Kt.

The vector Vt is the solution to a similar set of equations except with some ad-

ditional positive reward terms, each bounded by 2ε1 (see Equation 2.44). It fol-

lows that Vt(s) − V πt

M̂Kt

(s) ≤ 2ε1/(1 − γ). Combining this fact with Assumption A1

yields Vt(s) − V πt
MKt

(s) ≤ 3ε1/(1 − γ). Thus, by letting ε1 = ε(1 − γ)/3, we satisfy

Vt(s)−V πt
MKt

(s) ≤ ε, as desired (to fulfill Condition (2) of Proposition ??). Ignoring log

factors, this analysis leads to a total sample complexity bound of

Õ

((
SAm1 +

SA

ε(1− γ)2

)
1

ε(1− γ)2

)
. (2.45)

2

Before moving on, we first summarize the algorithms that have been discussed so

67

far. The R-MAX and E3 algorithms successfully utilize the näıve exploration approach

to yield PAC-MDP algorithms. They work by maintaining and solving an internal

MDP model. The solution of this model is computationally costly. The RTDP-RMAX

algorithm uses the same model as the R-MAX algorithm, but avoids the costly step

of solving the model. Instead, during each step, it updates an approximate solution of

the model by focusing on the state most recently occupied and the action taken by the

agent. The algorithm is PAC-MDP and has better per-step computational complexity

when compared to R-MAX.10 The MBIE-EB algorithm makes use of the IE approach

to exploration rather than the näıve approach, which allows the algorithm to more

effectively incorporate the agent’s experience into its internal model. Like R-MAX,

the MBIE-EB algorithm involves solution of an internal model. To avoid this step,

the RTDP-IE algorithm solves the model incrementally, in the same fashion as the

RTDP-RMAX algorithm. Both RTDP-RMAX and RTDP-IE have a worst-case per-

step computational complexity of θ(S +ln(A)), which can be very large when the MDP

has many states. In Chapter 3 we review an algorithm due to Strehl et al. (2006c) that

is PAC-MDP with a per-step computational complexity of only θ(ln(A)).

2.11 Prioritized Sweeping

Traditional model-based algorithms, like R-MAX, require O(S2A), computation, per

timestep, in the worst case. To improve on this bound, RTDP-RMAX and RTDP-

IE perform at most a single full Bellman-style backup (Equations 2.32 and 2.38) per

timestep. This operation has a cost of O(S + ln(A)). A further reduction of compu-

tational complexity to O(ln(A)) per timestep is provided by the Delayed Q-learning

algorithm (see Section 3.2). Suppose we want an algorithm to run on a real-time sys-

tem, such as a robot. There is a certain amount of time between actions that can be

used for computation. It may be that there is enough time for several full Bellman

backups, but not enough to solve an entire internal model. Then, we can imagine an

10Interestingly, the total amortized computational complexity bounds for RTDP-RMAX are slightly
worse than those for R-MAX. This represents an overhead cost for delaying the solution of the model
after it has been updated.

68

algorithm that uses a model, like R-MAX, but rather than solving the model entirely at

each step, it performs as many Bellman backups as possible within the externally im-

posed time constraint. This is, in fact, the approach taken by the Prioritized Sweeping

algorithm (Moore & Atkeson, 1993).

Prioritized Sweeping performs the Bellman backups by first ordering them by pri-

ority, a number that roughly indicates how much we expect the update caused by

the backup to affect the model. The analyses of RTDP-RMAX and RTDP-IE require a

single Bellman backup per timestep, but don’t fail if other backups are executed. Specif-

ically, we can augment the RTDP-RMAX and RTDP-IE algorithms by performing any

additional updates of state-action pairs, (s, a), as long as RTDP-RMAX or RTDP-IE,

respectively, would perform those updates normally if (s, a) were experienced by the

agent. The original version of Prioritized Sweeping used the näıve strategy for explo-

ration (in exactly the same way as the R-MAX algorithm). Thus, using the analysis of

Section 2.8, we have that Prioritized Sweeping is a PAC-MDP algorithm.11 Similarly,

using the analysis of Section 2.10, we have that a version of Prioritized Sweeping that

uses the IE approach to exploration is also PAC-MDP. These results are summarized

in Section 2.11.1. We believe that this observation is an important new result, because

Prioritized Sweeping is one of the few RL algorithms that can adaptively adjust its

computation time based on external real-time constraints. As the algorithm is given

more computation, it solves more of its model, and learns faster. However, even if

the algorithm is given minimal computation, we still have formal guarantees on its

performance.

2.11.1 Analysis of Prioritized Sweeping

We considered two versions of Prioritized Sweeping, one that uses näıve-like exploration

and one that uses IE-like exploration. The fact that both algorithms are PAC-MDP

follows directly from the fact that both RTDP-RMAX and RTDP-IE are PAC-MDP.

11This result applies to a version of Prioritized Sweeping that is a slight modification of the algorithm
presented by (Moore & Atkeson, 1993). Specifically, like the RTDP-RMAX algorithm, the parameters
ε1 and m are used to restrict the total number of model and action-value updates.

69

Prioritized Sweeping may perform more Bellman backups during one timestep then

either of these algorithms but the additional backups can only help in terms of sample

complexity (although they do not improve the worst-case bounds).

2.12 Conclusion

In section we have examined several model-based RL algorithms. These algorithms

make maximal use of their experience by computing an internal model of their envi-

ronment. This model is used to reason about future actions and evaluate potential

behaviors. A common theme among the provably efficient algorithms is that the agent

must also compute its uncertainty of its own model. This allows a learning agent to

seek out knowledge about uncertain regions in its model. By doing so in a principled

manner, we were able to prove that during every step of the algorithm either a near-

optimal policy is executed or the agent behaves in a way that tends to improve its

model.

70

Chapter 3

Model-free Learning Algorithms

3.1 Q-learning

Q-learning is a very popular RL algorithm due to Watkins and Dayan (1992). In reality,

Q-learning describes a large family of algorithms. The general outline of this family is

given by the pseudo-code of Algorithm 6.

By choosing a way to initialize the action values (line 2), a scheme for selecting

actions (line 6), and a method for computing the learning rates αt (line 8), a concrete

Q-learning algorithm can be constructed. For example, we could use optimistic ini-

tialization, ε-greedy exploration, and a constant learning rate α. These choices yield

Algorithm 7.

Algorithm 6 Q-learning
0: Inputs: S, A, γ
1: for all (s, a) do
2: Initialize Q(s, a) // action-value estimates

3: end for
4: for t = 1, 2, 3, · · · do
5: Let s denote the state at time t.
6: Choose some action a.
7: Let r be the immediate reward and s′ the next state after executing action a from

state s.
8: Q(s, a) ← (1− αt)Q(s, a) + αt(rt + γV (s′))
9: end for

3.1.1 Q-learning’s Computational Complexity

During each timestep Q-learning must compute a random number, an argmax over

actions, and update a single state-action value Q(s, a). By storing the state-action

values in a max-heap priority queue and assuming constant-time access to random

71

Algorithm 7 Q-learning with optimistic initalization, ε-greedy exploration, and con-
stant learning rate
0: Inputs: S, A, γ, ε, α
1: for all (s, a) do
2: Q(s, a) ← 1/(1− γ) // action-value estimates

3: end for
4: for t = 1, 2, 3, · · · do
5: Let s denote the state at time t.
6: Choose, uniformly at random, a number Rand between 0 and 1.
7: if Rand < ε then
8: Let a be an action chosen uniformly at random from the set of all actions.
9: else

10: Let a = argmaxa′∈A Q(s, a′)
11: end if
12: Execute action a from the current state.
13: Let r be the immediate reward and s′ the next state after executing action a from

state s.
14: Q(s, a) ← (1− α)Q(s, a) + α(rt + γV (s′))
15: end for

numbers, we have that the per-step computational complexity is ln(A).

3.1.2 Q-learning’s Sample Complexity

It is difficult to analyze the sample complexity of every possible Q-learning algorithm. In

Section 4.1, we show that several common varieties (optimistic initialization, constant

or linear learning rates, and ε-greedy exploration) are provably not PAC-MDP. No

member of this Q-learning family of algorithms is known to be PAC-MDP and whether

any exists is an important open problem in the field. More discussion can be found in

Section 4.1.

3.2 Delayed Q-learning

The Delayed Q-learning algorithm was introduced by Strehl et al. (2006c) as the first

algorithm that is known to be PAC-MDP and whose per-timestep computational de-

mands are minimal (roughly equivalent to those of Q-learning). Due to its low memory

requirements it can also be viewed as a model-free algorithm and the first to be prov-

ably PAC-MDP. Its analysis is also noteworthy because the polynomial upper bound

72

on its sample complexity is a significant improvement, asymptotically, over the best

previously known upper bound for any algorithm, when only the dependence on S and

A is considered. The algorithm is called “delayed” because it waits until a state-action

pair has been experienced m times before updating that state-action pair’s associated

action value, where m is a parameter provided as input. When it does update an

action value, the update can be viewed as an average of the target values for the m

most recently missed update opportunities. Like all of the algorithms for which we

provide a PAC-MDP proof, Delayed Q-learning performs a finite number of action-

value updates. Due to the strict restrictions on the computational demands used by

Delayed Q-learning, slightly more sophisticated internal logic is needed to guarantee

this property. Pseudo-code1 for Delayed Q-learning is provided in Algorithm 8.

In addition to the standard inputs, the algorithm also relies on two free parameters,

• ε1 ∈ (0, 1): Used to provide a constant “exploration” bonus that is added to each

action-value estimate when it is updated.

• A positive integer m: Represents the number of experiences of a state-action pair

before an update is allowed.

In the analysis of Section 3.3, we provide precise values for m and ε1 in terms of the

other inputs (S, A, ε, δ, and γ) that guarantee the resulting algorithm is PAC-MDP.

In addition to its action-value estimates, Q(s, a), the algorithm also maintains the

following internal variables,

• l(s, a) for each (s, a): The number of samples (or target values) gathered for (s, a).

• U(s, a) for each (s, a): Stores the running average of target values used to update

Q(s, a) once enough samples have been gathered.

• b(s, a) for each (s, a): The timestep for which the first experience of (s, a) was

obtained for the most recent or ongoing attempted update.

1Compared to the implementation provided by Strehl et al. (2006c), we’ve modified the algorithm
to keep track of b(s, a), the “beginning” timestep for the current attempted update for (s, a). The
original pseudo-code kept track of t(s, a), the time of the last attempted update for (s, a). The original
implementation is less efficient and adds a factor of 2 to the computational bounds. The analysis of
Strehl et al. (2006c) applies to the pseudo-code presented here.

73

Algorithm 8 Delayed Q-learning
0: Inputs: γ, S, A, m, ε1
1: for all (s, a) do
2: Q(s, a) ← 1/(1− γ) // Action-value estimates

3: U(s, a) ← 0 // used for attempted updates

4: l(s, a) ← 0 // counters

5: b(s, a) ← 0 // beginning timestep of attempted update

6: LEARN(s, a) ← true // the LEARN flags

7: end for
8: t∗ ← 0 // time of most recent action value change

9: for t = 1, 2, 3, · · · do
10: Let s denote the state at time t.
11: Choose action a := argmaxa′∈A Q(s, a′).
12: Let r be the immediate reward and s′ the next state after executing action a from

state s.
13: if b(s, a) ≤ t∗ then
14: LEARN(s, a) ← true
15: end if
16: if LEARN(s, a) = true then
17: if l(s, a) = 0 then
18: b(s, a) = t
19: end if
20: l(s, a) ← l(s, a) + 1
21: U(s, a) ← U(s, a) + r + γ maxa′ Q(s′, a′)
22: if l(s, a) = m then
23: if Q(s, a)− U(s, a)/m ≥ 2ε1 then
24: Q(s, a) ← U(s, a)/m + ε1
25: t∗ ← t
26: else if b(s, a) > t∗ then
27: LEARN(s, a) ← false
28: end if
29: U(s, a) ← 0
30: l(s, a) ← 0
31: end if
32: end if
33: end for

74

• LEARN(s, a) ∈ {true, false} for each (s, a): A Boolean flag that indicates whether,

or not, samples are being gathered for (s, a).

3.2.1 The Update Rule

Suppose that at time t ≥ 1, action a is performed from state s, resulting in an attempted

update, according to the rules to be defined in Section 3.2.2. Let sk1 , sk2 , . . . , skm be the

m most recent next-states observed from executing (s, a), at times k1 < k2 < · · · < km,

respectively (km = t). For the remainder of the paper, we also let ri denote the ith

reward received during execution of Delayed Q-learning.

Thus, at time ki, action a was taken from state s, resulting in a transition to state

ski and an immediate reward rki . After the tth action, the following update occurs:

Qt+1(s, a) =
1
m

m∑

i=1

(rki + γVki(ski)) + ε1 (3.1)

as long as performing the update would result in a new action-value estimate that is

at least ε1 smaller than the previous estimate. In other words, the following equation

must be satisfied for an update to occur:

Qt(s, a)−
(

1
m

m∑

i=1

(rki
+ γVki

(ski
))

)
≥ 2ε1. (3.2)

If any of the above conditions do not hold, then no update is performed. In this case,

Qt+1(s, a) = Qt(s, a).

3.2.2 Maintenance of the LEARN Flags

We provide an intuition behind the behavior of the LEARN flags. Please see Algo-

rithm 8 for a formal description of the update rules. The main computation of the

algorithm is that every time a state-action pair (s, a) is experienced m times, an up-

date of Q(s, a) is attempted as in Section 3.2.1. For our analysis to hold, however, we

cannot allow an infinite number of attempted updates. Therefore, attempted updates

75

are only allowed for (s, a) when LEARN(s, a) is true. Besides being set to true ini-

tially, LEARN(s, a) is also set to true when any state-action pair is updated (because

our estimate Q(s, a) may need to reflect this change). LEARN(s, a) can only change

from true to false when no updates are made during a length of time for which (s, a) is

experienced m times and the next attempted update of (s, a) fails. In this case, no more

attempted updates of (s, a) are allowed until another action-value estimate is updated.

3.2.3 Delayed Q-learning’s Model

Delayed Q-learning was introduced as a model-free algorithm. This terminology was

justified by noting that the space complexity of Delayed Q-learning (O(SA)) is much less

than what is needed to explicitly represent an MDP’s transition probabilities (O(S2A)).

However, there is a sense in which Delayed Q-learning can be thought of as using

a model. This interpretation follows from the fact that Delayed Q-learning’s update

(Equation 3.1) is identical to ε1 plus the result of a full Bellman backup using the

empirical (maximum likelihood) model derived from the m most recent experiences

of the state-action pair being updated. Since m is much less than what is needed to

accurately model the true transition probability (in the L1 distance metric), we say

that Delayed Q-learning uses a sparse model (Kearns & Singh, 1999). In fact, Delayed

Q-learning uses this sparse model precisely once, throws it away, and then proceeds to

gather experience for another sparse model. When m = 1, this process may occur on

every step and the algorithm behaves very similarly to Q-learning.

3.3 Analysis of Delayed Q-learning

3.3.1 Computational Complexity

On most timesteps, Delayed Q-learning performs only a constant amount of computa-

tion. Its worst case computational complexity per timestep is

θ(ln(A)), (3.3)

76

where the log term is due to updating the priority queue that holds the action-value

estimates for each state. Since Delayed Q-learning performs at most SA
(
1 + SA

(1−γ)ε1

)

attempted updates (see Lemma 14), the total computation time of Delayed Q-learning

is

O

(
B +

S2A2 ln(A)
ε1(1− γ)

)
, (3.4)

where B is the number of timesteps for which Delayed Q-learning is executed.

3.3.2 Sample Complexity

In this section, we show that Delayed Q-learning is PAC-MDP.

Theorem 7 (Strehl et al., 2006c) Suppose that 0 ≤ ε < 1
1−γ and 0 ≤ δ < 1 are two real

numbers and M = 〈S, A, T,R, γ〉 is any MDP. There exists inputs m = m(1
ε ,

1
δ) and

ε1, satisfying m(1
ε ,

1
δ) = O

(
ln (3SA(1+SA/(ε1(1−γ)))/δ)

2ε12(1−γ)2

)
and 1

ε1
= O(1

ε(1−γ)), such that if

Delayed Q-learning is executed on M , then the following holds. Let At denote Delayed

Q-learning’s policy at time t and st denote the state at time t. With probability at

least 1− δ, V At
M (st) ≥ V ∗

M (st)− ε is true for all but O
(

SA
ε4(1−γ)8

ln 1
δ ln 1

ε(1−γ) ln SA
δε(1−γ)

)

timesteps t.

Definition 7 An update (or successful update) of state-action pair (s, a) is a

timestep t for which a change to the action-value estimate Q(s, a) occurs. An at-

tempted update of state-action pair (s, a) is a timestep t for which (s, a) is experi-

enced, LEARN(s, a) = true and l(s, a) = m.

To prove the main theorem we need some additional results. The following Lemmas

are taken from Strehl et al. (2006c).

Lemma 13 (Strehl et al., 2006c) The total number of updates during any execution of

Delayed Q-learning is at most
SA

ε1(1− γ)
. (3.5)

Proof: Consider a fixed state-action pair (s, a). Its associated action-value estimate

Q(s, a) is initialized to 1/(1−γ) before any updates occur. Each time Q(s, a) is updated

77

it decreases by at least ε1. Since all rewards encountered are non-negative, the quantities

involved in any update (see Equation 3.1) are non-negative. Thus, Q(s, a) cannot fall

below 0. From this, it follows that Q(s, a) cannot be updated more than 1/(ε(1 − γ))

times. Since there are SA state-action pairs, we have that there are at most SA/(ε(1−
γ)) total updates. 2

Lemma 14 (Strehl et al., 2006c) The total number of attempted updates during any

execution of Delayed Q-learning is at most

SA

(
1 +

SA

(1− γ)ε1

)
. (3.6)

Proof: Consider a fixed state-action pair (s, a). Once (s, a) is experienced for the mth

time, an attempted update will occur. Suppose that an attempted update of (s, a)

occurs during timestep t. After this, for another attempted update to occur during

some later timestep t′, it must be the case that a successful update of some state-action

pair (not necessarily (s, a)) has occurred on or after timestep t and before timestep

t′. From Lemma 13, there can be at most SA/(ε(1 − γ)) total successful updates.

Therefore, there are at most 1+SA/(ε(1−γ)) attempted updates of (s, a). Since there

are SA state-action pairs, there can be at most SA(1+SA/(ε(1− γ))) total attempted

updates. 2

Definition 8 During timestep t during execution of Delayed Q-learning, we define Kt

to be the set

Kt :=

{
(s, a) ∈ S × A | Qt(s, a)−

(
R(s, a) + γ

∑

s′
T (s′|s, a)Vt(s′)

)
≤ 3ε1

}
. (3.7)

Definition 9 Suppose we execute Delayed Q-learning in an MDP M . Define Event

A1 to be the event that there does not exist a timestep t such that an attempted yet

unsuccessful update of some state-action pair (s, a) occurs during timestep t and the

following holds:

(s, a) 6∈ Kk1 , (3.8)

78

where k1 < k2 < · · · < km = t are m timesteps during which (s, a) is experienced

consecutively by the agent.

Lemma 15 (Strehl et al., 2006c) Suppose we execute Delayed Q-learning with param-

eter m satisfying

m ≥ ln (3SA(1 + SA/(ε1(1− γ)))/δ)
2ε12(1− γ)2

(3.9)

in an MDP M . The probability that event A1 occurs is greater than or equal to 1−δ/3.

Proof: Fix any timestep k1 (and the complete history of the agent up to k1)

satisfying: (s, a) 6∈ Kk1 is to be experienced by the agent on timestep k1 and if (s, a) is

experienced m− 1 more times after timestep k1, then an attempted update will result.

Let Q = [(s[1], r[1]), . . . , (s[m], r[m])] ∈ (S × R)m be any sequence of m next-state

and immediate reward tuples. Due to the Markov assumption, whenever the agent

is in state s and chooses action a, the resulting next-state and immediate reward are

chosen independently of the history of the agent. Thus, the probability that (s, a) is

experienced m− 1 more times and that the resulting next-state and immediate reward

sequence equals Q is at most the probability that Q is obtained by m independent

draws from the transition and reward distributions (for (s, a)). Therefore, it suffices

to prove this lemma by showing that the probability that a random sequence Q could

cause an unsuccessful update of (s, a) is at most δ/3. We prove this statement next.

Suppose that m rewards, r[1], . . . , r[m], and m next states, s[1], . . . , s[m], are drawn

independently from the reward and transition distributions, respectively, for (s, a). By

a straightforward application of the Hoeffding bound (with random variables Xi :=

r[i] + γVk1(s[i])), it can be shown that our choice of m guarantees that

1
m

m∑

i=1

(r[i] + γVk1(s[i]))− E[X1] < ε1

holds with probability at least 1−δ/(3SA(1 + SAκ)). If it does hold and an attempted

update is performed for (s, a) using these m samples, then the resulting update will

succeed. To see the claim’s validity, suppose that (s, a) is experienced at times k1 <

k2 < · · · < km = t and at time ki the agent is transitioned to state s[i] and receives

79

reward r[i] (causing an attempted update at time t). Then, we have that

Qt(s, a)−
(

1
m

m∑

i=1

(r[i] + γVki
(s[i]))

)

> Qt(s, a)− E[X1]− ε1 > 2ε1.

We have used the fact that Vki(s
′) ≤ Vk1(s

′) for all s′ and i = 1, . . . , m. Therefore, with

high probability, Equation 3.2 will be true and the attempted update of Q(s, a) at time

km will succeed.

Finally, we extend our argument, using the union bound, to all possible timesteps

k1 satisfying the condition above. The number of such timesteps is bounded by the

same bound we showed for the number of attempted updates (SA(1 + SAκ)). 2

The next lemma states that, with high probability, Delayed Q-learning will maintain

optimistic action values.

Lemma 16 (Strehl et al., 2006c) During execution of Delayed Q-learning, if m satisfies

Equation 3.9, then Qt(s, a) ≥ Q∗(s, a) holds for all timesteps t and state-action pairs

(s, a), with probability at least 1− δ/3.

Proof: It can be shown, by a similar argument as in the proof of Lemma 15,

that (1/m)
∑m

i=1 (rki + γV ∗(ski)) > Q∗(s, a)− ε1 holds, for all attempted updates, with

probability at least 1−δ/3. Assuming this equation does hold, the proof is by induction

on the timestep t. For the base case, note that Q1(s, a) = 1/(1 − γ) ≥ Q∗(s, a) for

all (s, a). Now, suppose the claim holds for all timesteps less than or equal to t.

Thus, we have that Qt(s, a) ≥ Q∗(s, a), and Vt(s) ≥ V ∗(s) for all (s, a). Suppose s

is the tth state reached and a is the action taken at time t. If it doesn’t result in an

attempted update or it results in an unsuccessful update, then no Action-value estimates

change, and we are done. Otherwise, by Equation 3.1, we have that Qt+1(s, a) =

(1/m)
∑m

i=1 (rki + γVki(ski)) + ε1 ≥ (1/m)
∑m

i=1 (rki + γV ∗(ski)) + ε1 ≥ Q∗(s, a), by

the induction hypothesis and an application of the equation from above. 2

Lemma 17 (Strehl et al., 2006c) If Event A1 occurs, then the following statement

80

holds: If an unsuccessful update occurs at time t and LEARN t+1(s, a) = false, then

(s, a) ∈ Kt+1.

Proof: Suppose an attempted update of (s, a) occurs at time t. Let sk1 , sk2 , . . . , skm

be the m most recent next-states resulting from executing action a from state s at

times k1 < k2 < · · · < km = t, respectively. By A1, if (s, a) 6∈ Kk1 , then the update

will be successful. Now, suppose that (s, a) ∈ Kk1 but that (s, a) 6∈ Kki for some

i ∈ {2, . . . , m}. However, some Action-value estimate was successfully updated between

time k1 and time km (otherwise Kk1 would equal Kk1). Thus, by the rules of Section

3.2.2, LEARN(s, a) will be set to true after this unsuccessful update (LEARN t+1(s, a)

will be true). 2

The following lemma bounds the number of timesteps t in which a state-action pair

(s, a) 6∈ Kt is experienced.

Lemma 18 (Strehl et al., 2006c) If Event A1 occurs, then the number of timesteps t

such that a state-action pair (st, at) 6∈ Kt is at most 2mSA/(ε1(1− γ)).

Proof: Suppose (s, a) 6∈ Kt is experienced at time t and LEARNt(s, a) = false

(implying the last attempted update was unsuccessful). By Lemma 17, we have that

(s, a) ∈ Kt′+1 where t′ was the time of the last attempted update of (s, a). Thus, some

successful update has occurred since time t′ + 1. By the rules of Section 3.2.2, we have

that LEARN(s, a) will be set to true and by A1, the next attempted update will succeed.

Now, suppose that (s, a) 6∈ Kt is experienced at time t and LEARNt(s, a) = true.

Within at most m more experiences of (s, a), an attempted update of (s, a) will occur.

Suppose this attempted update takes place at time q and that the m most recent

experiences of (s, a) happened at times k1 < k2 < · · · < km = q. By A1, if (s, a) 6∈ Kk1 ,

the update will be successful. Otherwise, if (s, a) ∈ Kk1 , then some successful update

must have occurred between times k1 and t (since Kk1 6= Kt). Hence, even if the update

is unsuccessful, LEARN(s, a) will remain true, (s, a) 6∈ Kq+1 will hold, and the next

attempted update of (s, a) will be successful.

81

In either case, if (s, a) 6∈ Kt, then within at most 2m more experiences of (s, a), a

successful update of Q(s, a) will occur. Thus, reaching a state-action pair not in Kt at

time t will happen at most 2mSAκ times. 2

Using these Lemmas we can prove the main result.

Proof: (of Theorem 7) We apply Theorem 1. Let m = ln (3SA(1+SA/(ε1(1−γ)))/δ)
2ε12(1−γ)2

and

ε1 = ε(1− γ)/3. First, note that Kt is defined with respect to the agent’s action-value

estimates Q(·, ·) and other quantities that don’t change during learning. Thus, we have

that Kt = Kt+1 unless an update to some action-value estimate takes place. We now

assume that Event A1 occurs, an assumption that holds with probability at least 1−δ/3,

by Lemma 15. By Lemma 16, we have that Condition 1 of Theorem 1 holds, namely that

Vt(s) ≥ V ∗(s)−ε for all timesteps t. Next, we claim that Condition 2, Vt(s)−V πt
MKt

(s) ≤
3ε1
1−γ = ε also holds. For convenience let M ′ denote MKt . Recall that for all (s, a), either

Qt(s, a) = Qπt
M ′(s, a) when (s, a) 6∈ Kt, or Qt(s, a)− (R(s, a) + γ

∑
s′ T (s′|s, a)Vt(s′)) ≤

3ε1 when (s, a) ∈ Kt (see Equation 3.7). Note that V πt
M ′ is the solution to the following

set of equations:

V πt
M ′(s) = R(s, πt(s)) + γ

∑

s′∈S

T (s′|s, πt(s))V πt
M ′(s′) if (s, πt(s)) ∈ K,

V πt
M ′(s) = Qt(s, πt(s)), if (s, πt(s)) 6∈ K.

The vector Vt is the solution to a similar set of equations except with some additional

positive reward terms, each bounded by 3ε1, implying that Vt(s) − V πt
MKt

(s) ≤ 3ε1
1−γ , as

desired. Finally, for condition (3) of Theorem 1, we note that by Lemmas 13 and 18,

ζ(ε, δ) = O
(

2mSA
ε1(1−γ)

)
= O

(
SA

ε3(1−γ)6
ln SA

εδ(1−γ)

)
, where ζ(ε, δ) is the number of updates

and escape events that occur during execution of Delayed Q-learning with inputs ε and

δ (equivalently with inputs ε1 and m, which are derived from ε and δ). 2

In summary, the development and analysis of Delayed Q-learning demonstrates that

the näıve approach to exploration is powerful enough to yield a PAC-MDP model-free

algorithm with minimal computational and space complexity. We say that Delayed

Q-learning uses the näıve type of exploration because it waits for at least m samples

82

before performing an update. Based on the results of our experiments (see Section 5),

it is clear that Delayed Q-learning is not extremely practical. Next, we present a new

algorithm that preserves the attractive theoretical properties of Delayed Q-learning but

often achieves better performance.

3.4 Delayed Q-learning with IE

The Delayed Q-learning can be modified to use the IE approach rather than the näıve

approach, improving its performance in some domains. This modification yields a new

algorithm, Delayed Q-learning with IE. Pseudo-code is provided in Algorithm 9. The

main difference between Delayed Q-learning and Delayed Q-learning with IE is that

while Delayed Q-learning waits for m experiences to attempt a single update, Delayed

Q-learning with IE is allowed to attempt an update during each of these m experiences.

The exploration bonus that is added to the update decreases proportional to the square

root of m. Besides the inputs provided to the Delayed Q-learning algorithm, Delayed

Q-learning with IE has one addition parameter,

• A positive real number β: This quantity is used to determine the “exploration

bonus” added to each action-value estimate when it is updated.

3.4.1 The Update Rule

Consider a single state-action pair during execution of Delayed Q-learning with IE.

At the beginning of execution LEARN(s, a) is set to true. It will remain this way

until (s, a) is experienced m times and no successful update of any state-action pair

occurs. Furthermore, each time (s, a) is experienced before the mth time, its associated

counter, l(s, a) is increased by one. Once (s, a) is successfully updated or l(s, a) reaches

m, the counter is reset to 0. We call each sequence of experiences of (s, a) at times

t1 < t2 < . . . < tj a set of attempted updates for (s, a), if (1) LEARN ti(s, a) = true

for i = 1, . . . , j, (2) there are no other experiences of (s, a) between times t1 and tj ,

(3) lti(s, a) = i − 1, for i = 1, . . . , j, and (4) ltj+1(s, a) = 0. If none of the attempted

83

Algorithm 9 Delayed Q-learning with IE
0: Inputs: γ, S, A, m, ε1, β
1: for all (s, a) do
2: Q(s, a) ← 1/(1− γ) // Action-value estimates

3: U(s, a) ← 0 // used for attempted updates

4: l(s, a) ← 0 // counters

5: b(s, a) ← 0 // beginning timestep of attempted update

6: LEARN(s, a) ← true // the LEARN flags

7: end for
8: t∗ ← 0 // time of most recent Action-value change

9: for t = 1, 2, 3, · · · do
10: Let s denote the state at time t.
11: Choose action a := argmaxa′∈A Q(s, a′).
12: Let r be the immediate reward and s′ the next state after executing action a from

state s.
13: if b(s, a) ≤ t∗ then
14: LEARN(s, a) ← true
15: end if
16: if LEARN(s, a) = true then
17: if l(s, a) = 0 then
18: b(s, a) ← t
19: U(s, a) ← 0
20: end if
21: l(s, a) ← l(s, a) + 1
22: U(s, a) ← U(s, a) + r + γ maxa′ Q(s′, a′)
23: if Q(s, a)−

(
U(s, a)/l(s, a) + β/

√
l(s, a)

)
≥ ε1 then

24: Q(s, a) ← U(s, a)/l(s, a) + β/
√

l(s, a)
25: t∗ ← t
26: l(s, a) ← 0
27: else if l(s, a) = m then
28: l(s, a) ← 0
29: if b(s, a) > t∗ then
30: LEARN(s, a) ← false
31: end if
32: end if
33: end if
34: end for

84

updates at times t1, . . . , tj for (s, a) succeed, then we say that the set of attempted

updates was unsuccessful. Next, we discuss the form of the attempted update.

Suppose that at time t ≥ 1, action a is performed from state s, resulting in an

attempted update (meaning that LEARN(s, a) is true). This attempted update is part

of a set of attempted updates, which so far includes the l experiences of (s, a) at times

k1 < k2 < . . . < kl = t, where lki(s, a) = i − 1. The attempted updates at times

k1, . . . , kl−1 were necessarily unsuccessful (otherwise the attempted update at time t

would exist as part of a different set of attempted updates). Let sk1 , sk2 , . . . , skl
be the

l most recent next-states observed from executing (s, a), at times k1 < k2 < · · · < kl,

respectively (kl = t).

Thus, at time ki, action a was taken from state s, resulting in a transition to state

ski and an immediate reward rki . Note that the counter lt(s, a) maintained by the

algorithm has value l − 1 (it is incremented to l in line 21 of Algorithm 9). After the

tth action, the following update occurs:

Qt+1(s, a) =
1
l

l∑

i=1

(rki + γVki(ski)) + β/
√

l, (3.10)

as long as performing the update would result in a new action-value estimate that is

at least ε1 smaller than the previous estimate. In other words, the following equation

must be satisfied for an update to occur:

Qt(s, a)−
(

1
l

l∑

i=1

(rki
+ γVki

(ski
)) + β/

√
l

)
≥ ε1. (3.11)

If any of the above conditions do not hold, then no update is performed. In this case,

Qt+1(s, a) = Qt(s, a).

3.4.2 Maintenance of the LEARN Flags

We provide an intuition behind the behavior of the LEARN flags. Please see Algo-

rithm 9 for a formal description of the update rules. Attempted updates are only allowed

for (s, a) when LEARN(s, a) is true. Besides being set to true initially, LEARN(s, a)

85

is also set to true when any state-action pair is updated (because our estimate Q(s, a)

may need to reflect this change). LEARN(s, a) can only change from true to false

when no updates are made during a length of time for which (s, a) is experienced m

times and none of the attempted updates during this period of experiences of (s, a)

succeed. In this case, no more attempted updates of (s, a) are allowed until another

action-value estimate is updated.

3.5 Analysis of Delayed Q-learning with IE

3.5.1 Computational Complexity

On most timesteps, Delayed Q-learning with IE performs only a constant amount of

computation. Its worst case computational complexity per timestep is

θ(ln(A)), (3.12)

where the log term is due to updating the priority queue that holds the action-value esti-

mates for each state. Since Delayed Q-learning with IE performs at most SAm
(
1 + SA

ε1(1−γ)

)

attempted updates (see Lemma 20), the total computation time of Delayed Q-learning

with IE is

O

(
B +

S2A2m ln(A)
ε1(1− γ)

)
, (3.13)

where B is the number of timesteps for which Delayed Q-learning with IE is executed.

3.5.2 Sample Complexity

The main result of this section is to prove the following theorem, which states that

Delayed Q-learning with IE is PAC-MDP. For convenience we introduce the following

notation:

ξ := SA

(
1 +

SA

ε1(1− γ)

)

Theorem 8 (Strehl & Littman, 2006) Suppose that 0 ≤ ε < 1
1−γ and 0 ≤ δ < 1

are two real numbers and M = 〈S, A, T,R, γ〉 is any MDP. There exists inputs β,

86

m = m(1
ε ,

1
δ), and ε1, satisfying m(1

ε ,
1
δ) = O

(
ln (3ξ/(2ε21(1−γ)2δ))

2ε12(1−γ)2

)
and 1

ε1
= O(1

ε(1−γ))

such that if Delayed Q-learning with IE is executed on M , then the following holds.

Let At denote Delayed Q-learning with IE’s policy at time t and st denote the state

at time t. With probability at least 1 − δ, V At
M (st) ≥ V ∗

M (st) − ε is true for all but

O
(

SA
ε4(1−γ)8

ln 1
δ ln 1

ε(1−γ) ln SA
δε(1−γ)

)
timesteps t.

To prove this theorem we need some lemmas. The following is a helpful definition.

Definition 10 An update (or successful attempted update) of state-action pair

(s, a) is a timestep t for which a change to the action-value estimate Q(s, a) occurs.

An attempted update of state-action pair (s, a) is a timestep t for which (s, a) is

experienced and LEARN(s, a) = true. A set of l attempted updates is a non-

extendable sequence of consecutive attempted updates at times k1 < k2 < . . . < kl such

that the counters lki(s, a) = i− 1 for i = 1, 2, . . . , l. This definition is equivalent to the

one given in Section 3.4.1. An unsuccessful set of attempted updates is a set of

m attempted updates, none of which are successful.

The next two Lemmas show that the number of successful and unsuccessful at-

tempted updates during any execution of Delayed Q-learning with IE is finite. This

fact is crucial to our argument that Delayed Q-learning with IE is PAC-MDP.

Lemma 19 (Strehl & Littman, 2006) The total number of updates during any execution

of Delayed Q-learning with IE is at most

SA

ε1(1− γ)
. (3.14)

Proof: Consider a fixed state-action pair (s, a). Its associated action-value estimate

Q(s, a) is initialized to 1/(1−γ) before any updates occur. Each time Q(s, a) is updated

it decreases by at least ε1. Since all rewards encountered are non-negative, the quantities

involved in any update are non-negative. Thus, Q(s, a) cannot fall below 0. It follows

that Q(s, a) cannot be updated more than 1/(ε(1 − γ)) times. Since there are SA

state-action pairs, there will be at most SA/(ε(1− γ)) total updates. 2

87

Lemma 20 (Strehl & Littman, 2006) The total number of attempted updates during

any execution of Delayed Q-learning with IE is at most mξ.

Proof: Consider a single state-action pair (s, a). An attempted update for (s, a) occurs

on those timesteps that (s, a) is experienced and LEARN(s, a) is set to true. Every m

experiences of (s, a) will cause LEARN(s, a) to be set to false until a successful update

of some state-action pair occurs. From Lemma 19, we know that there are at most

SA/(ε1(1− γ)) successful updates. Hence, there will be at most m + mSA/(ε1(1− γ))

attempted updates of (s, a). Multiplying this expression by the number of state-action

pairs, SA, yields the desired result. 2

We can extend the previous bounds to a bound on the number of sets of attempted

updates.

Corollary 1 (Strehl & Littman, 2006) The total number of sets of m attempted updates

is at most ξ.

Now, we define the set K that will be used to apply Theorem 1 to the analysis of

Delayed Q-learning with IE.

Definition 11 On timestep t during execution of Delayed Q-learning with IE we define

Kt to be the set

Kt :=

{
(s, a) ∈ S × A

 Qt(s, a)−
(

R(s, a) + γ
∑

s′
T (s′|s, a)Vt(s′)

)
≤ 3ε1

}
. (3.15)

The set K (Kt at time t during execution of the algorithm) consists of the state-

action pairs with low Bellman residual. The state-action pairs not in K are the ones

whose action-value estimates are overly optimistic in the sense that they would decrease

significantly if subjected to a Bellman backup (as in value iteration). The attempted

updates of a state-action pair approximate a Bellman backup in two ways: random

samples are used instead of the expected value and a bonus of β/
√

l(s, a) is added

to the action-value estimate. However, if β is chosen to be small enough, we would

intuitively expect a set of attempted updates for a state-action pair not in K to result

88

in a successful update. This idea is formalized below by showing that the event A1 (no

successful update will take place for a state-action pair (s, a) 6∈ K) will occur.

Definition 12 Suppose we execute Delayed Q-learning with IE in an MDP M . Define

Event A1 to be the event that there does not exist a timestep t such that an attempted

yet unsuccessful update of some state-action pair (s, a) occurs during timestep t and the

following conditions hold:

lt(s, a) = m and (s, a) 6∈ Kk1 , (3.16)

where k1 < k2 < · · · < km = t are m timesteps during which (s, a) is experienced

consecutively by the agent.

Lemma 21 (Strehl & Littman, 2006) Suppose we execute Delayed Q-learning with IE

with parameters m and β satisfying

m ≥ ln (3ξ/δ)
2ε12(1− γ)2

(3.17)

and

β ≤ ε1
√

m (3.18)

in an MDP M . The probability that Event A1 occurs is greater than or equal to 1−δ/3.

Proof: Fix any timestep k1 (and the complete history of the agent up to k1)

satisfying all of the following three conditions: (1) (s, a) 6∈ Kk1 , (2) l(s, a) = 0, and (3)

LEARN(s, a) = true or b(s, a) < t∗. Intuitively, conditions (2) and (3) mean that this

timestep is the first of a set of attempted updates for (s, a). We want to show that it is

very unlikely for (s, a) to be experienced at m− 1 future timesteps, k1 < k2 < · · · < km

and for no successful update of (s, a) to occur.

Let Q = [(s[1], r[1]), . . . , (s[m], r[m])] ∈ (S × R)m be any sequence of m next-state

and immediate reward tuples. Due to the Markov assumption, whenever the agent

is in state s and chooses action a, the resulting next-state and immediate reward are

chosen independently of the history of the agent. Thus, the probability that (s, a) is

89

experienced m− 1 more times and that the resulting next-state and immediate reward

sequence equals Q is at most the probability that Q is obtained by m independent

draws from the transition and reward distributions (for (s, a)). Therefore, it suffices

to prove this lemma by showing that the probability that a random sequence Q could

cause unsuccessful updates of (s, a) at any times k1, . . . , km is at most δ/3. We prove

this statement next.

Suppose that m rewards, r[1], . . . , r[m], and m next states, s[1], . . . , s[m], are drawn

independently from the reward and transition distributions, respectively, for (s, a). By

a straightforward application of the Hoeffding bound (with random variables Xi :=

r[i] + γVk1(s[i])), it can be shown that our choice of m guarantees that

1
m

m∑

i=1

(r[i] + γVk1(s[i]))− E[X1] < ε1 (3.19)

holds with probability at least 1 − δ/(3SA(1 + SA/(ε1(1− γ)))) = 1 − δ/(3ξ). If it

does hold and an attempted update is performed for (s, a) using these m samples, then

the resulting update will succeed. To see the claim’s validity, suppose that (s, a) is

experienced at times k1 < k2 < · · · < km = t and at time ki the agent is transitioned

to state s[i] and receives reward r[i] (causing an attempted update at time t). Then,

we have that

Qk1(s, a)−
(

1
m

m∑

i=1

(r[i] + γVki(s[i])) + β/
√

m

)

≥ Qk1(s, a)−
(

1
m

m∑

i=1

(r[i] + γVk1(s[i])) + β/
√

m

)

> Qk1(s, a)− E[X1]− ε1 − β/
√

m

> 2ε1 − β/
√

m > ε1.

The first step follows from the fact that Vki(s
′) ≤ Vk1(s

′) for all s′ and i = 1, . . . ,m.

The second step results from an application of Equation 3.19. The third step uses the

fact that (s, a) 6∈ Kk1 . The last step makes use of the bound β ≤ ε1
√

m. Thus, with

90

high probability, we have that

Qk1(s, a)−
(

1
m

m∑

i=1

(r[i] + γVki
(s[i])) + β/

√
m

)
≥ ε1. (3.20)

From the condition of Equation 3.11, this argument implies that, with high probability,

at least one of the attempted updates on timesteps k1, . . . , km will succeed. To verify

this claim, note that if all of the first m−1 attempted updates are unsuccessful, then the

mth attempted update is successful precisely when Equation 3.20 holds. We also note

that it is possible that (s, a) will not be experienced m − 1 more times after timestep

k1. This outcome is also fine because then event A1 will not be violated.

Finally, we extend our argument, using the union bound, to all possible timesteps

k1 satisfying the condition above. Each such timestep is the first of a set of attempted

updates. Thus, by Corollary 1, the number of such timesteps is bounded by ξ. 2

The next lemma states that, with high probability, Delayed Q-learning with IE will

maintain optimistic action values.

Lemma 22 (Strehl & Littman, 2006) During execution of Delayed Q-learning with IE

with parameters satisfying

β ≥
(

1
1− γ

)√
ln(3mξ

δ)
2

, (3.21)

Qt(s, a) ≥ Q∗(s, a) holds for all timesteps t and state-action pairs (s, a) with probability

at least 1− δ/3.

Proof:

For a fixed state-action pair (s, a), suppose we draw l random rewards r[i] ∼ R(s, a)

and next states s[i] ∼ T (s, a). Define the random variables Xi := r[i] + γV ∗(s[i]), so

that E[Xi] = Q∗(s, a), for i = 1, . . . , l. By Hoeffding’s bound, we have that

Pr

[
1
l

l∑

i=1

Xi < E[X1]− α

]
≤ e

−2α2l
(1−γ)2 , (3.22)

for any non-negative α. Consider any fixed attempted update of the state-action pair

(s, a) at any time t. Recall from Equation 3.10 that if the update is successful, then

91

the new action value estimate will be of the form

Qt+1(s, a) =
1
l

l∑

i=1

(rki
+ γVki

(ski
)) + β/

√
l, (3.23)

where rki ∼ R(s, a) and ski ∼ T (s, a) were observed by the agent at some times ki after

experiencing (s, a), for i = 1, . . . , l. Thus, by our choice of β and from Equation 3.22

(substituting β/
√

l for α), we have that

Pr

[
1
l

l∑

i=1

(rki
+ γV ∗(ski

)) < Q∗(s, a)− β/
√

l

]
≤ δ

3mξ
. (3.24)

Since there are at most mξ attempted updates, by Lemma 20, we conclude that

1
l

l∑

i=1

(rki + γV ∗(ski)) ≥ Q∗(s, a)− β/
√

l (3.25)

holds, with probability at least 1− δ/3, for all attempted updates executed by Delayed

Q-learning with IE. From now on, assume that Equation 3.25 is not violated.

Now, the proof is by induction on the timestep t. For the base case, note that

Q1(s, a) = 1/(1− γ) ≥ Q∗(s, a) for all (s, a). Suppose the claim holds for all timesteps

less than or equal to t. Thus, we have that Qt(s, a) ≥ Q∗(s, a), and Vt(s) ≥ V ∗(s)

for all (s, a). Suppose s is the tth state reached and a is the action taken at time

t. If it doesn’t result in an attempted update or the resulting attempted udpate is

unsuccessful, then no action-value estimates change, and we are done. Otherwise,

by Equation 3.10, we have that Qt+1(s, a) = (1/l)
∑l

i=1 (rki
+ γVki

(ski
)) + β/

√
l ≥

(1/l)
∑l

i=1 (rki + γV ∗(ski)) + β/
√

l ≥ Q∗(s, a), by the induction hypothesis and an

application of Equation 3.25. 2

Lemma 23 (Strehl & Littman, 2006) If Event A1 occurs, then the following statement

holds: If a set of m unsuccessful attempted updates ends at time t and LEARN t+1(s, a) =

false, then (s, a) ∈ Kt+1.

Proof: Suppose an attempted but unsuccessful update of (s, a) occurs at time t and

lt(s, a) = m− 1, so that this step is the final attempted update of a set of m attempted

92

updates. We want to show that if (s, a) 6∈ Kt+1 then LEARN t+1(s, a) = false. Let

sk1 , sk2 , . . . , skm be the m most recent next-states resulting from executing action a from

state s at times k1 < k2 < · · · < km = t, respectively. By Event A1, if (s, a) 6∈ Kk1 , then

the update will necessarily be successful, which is a contradiction. Thus, (s, a) ∈ Kk1 .

Suppose that (s, a) 6∈ Kki for some i ∈ {2, . . . ,m}. This condition implies that (s, a) 6∈
Km due to the fact that the action-value estimates are non-increasing and by the fact

that no successful updates of (s, a) have occurred between times k1 and km. Then, some

action-value estimate was successfully updated between time k1 and time km (otherwise

Kk1 would equal Kkm). Thus, by the rules of Section 3.4.2, LEARN(s, a) will be set

to true after this unsuccessful update (equivalently, LEARN t+1(s, a) = true). 2

The following lemma bounds the number of timesteps t in which a state-action pair

(s, a) 6∈ Kt is experienced.

Lemma 24 (Strehl & Littman, 2006) If Event A1 occurs, then the number of timesteps

t such that a state-action pair (st, at) 6∈ Kt is at most 2mSA/(ε1(1− γ)).

Proof: Suppose (s, a) 6∈ Kt is experienced at time t and LEARN t(s, a) = false

(implying the last set of attempted updates was unsuccessful). By Lemma 23, we have

that (s, a) ∈ Kt′+1 where t′ was the time of the last attempted update of (s, a). Thus,

some successful update has occurred since time t′ + 1. By the rules of Section 3.4.2,

we have that LEARN(s, a) will be set to true and by Event A1, the next attempted

update will succeed.

Now, suppose that (s, a) 6∈ Kt is experienced at time t and LEARN t(s, a) = true.

Within at most m more experiences of (s, a), a set of attempted updates for (s, a) will

take place. Suppose this set of attempted updates ends at time q and that the l ≤ m

most recent experiences of (s, a) happened at times k1 < k2 < · · · < kl = q. By A1,

if (s, a) 6∈ Kk1 , the set of attempted updates will be successful (one of the attempted

updates will succeed). Otherwise, if (s, a) ∈ Kk1 , then some successful update must

have occurred between times k1 and t (since Kk1 6= Kt). Hence, even if the update is

unsuccessful, LEARN(s, a) will remain true, (s, a) 6∈ Kq+1 will hold, and the next set

of attempted updates of (s, a) will be successful.

93

In either case, if (s, a) 6∈ Kt, then within at most 2m more experiences of (s, a), a

successful update of Q(s, a) will occur. Thus, reaching a state-action pair not in Kt at

time t will happen at most 2mSA/(ε1(1− γ) times. 2

Next, we present the proof of the main result.

Proof: (of Theorem 8) We apply Theorem 1. Let β = ε1
√

m, m =
ln (3ξ/(2ε21(1−γ)2δ))

2ε12(1−γ)2
,

and ε1 = ε(1 − γ)/9. First, note that Kt is defined with respect to the agent’s action-

value estimates Q(·, ·) and other quantities that don’t change during learning. Thus,

we have that Kt = Kt+1 unless an update to some action-value estimate takes place.

We now assume that Event A1 occurs, an assumption that holds with probability at

least 1 − δ/3, by Lemma 21. By Lemma 22, we have that Condition 1 of Theorem 1

holds, namely that Vt(s) ≥ V ∗(s)− ε for all timesteps t. Next, we claim that Condition

2, Vt(s) − V πt
MKt

(s) ≤ 3ε1
1−γ = ε also holds. Recall that for all (s, a), either Qt(s, a) =

Qπt
M ′(s, a) (when (s, a) 6∈ Kt), or Qt(s, a)−(R(s, a) + γ

∑
s′ T (s′|s, a)Vt(s′)) ≤ 3ε1 (when

(s, a) ∈ Kt). Note that V πt
M ′ is the solution to the following set of equations:

V πt
M ′(s) = R(s, πt(s)) + γ

∑

s′∈S

T (s′|s, πt(s))V πt
M ′(s′), if (s, πt(s)) ∈ K,

V πt
M ′(s) = Qt(s, πt(s)), if (s, πt(s)) 6∈ K.

The vector Vt is the solution to a similar set of equations except with some additional

positive reward terms, each bounded by 3ε1, implying that Vt(s) − V πt
MKt

(s) ≤ 3ε1
1−γ , as

desired. Finally, for Condition 3 of Theorem 1, we note that by Lemma 24, ζ(ε, δ) ≤
2mSA

ε1(1−γ) = O
(

SA
ε3(1−γ)6

ln SA
εδ(1−γ)

)
. 2

In summary, we have shown that the Delayed Q-learning with IE algorithm preserves

the attractive theoretical complexity bounds as the Delayed Q-learning algorithm. How-

ever, since it allows for quicker updates in some cases, we expect it to learn much faster.

In our experiments in Section 5, Delayed Q-learning with IE outperformed Delayed Q-

learning every time. In two out of three domains it outperformed Q-learning. In one

domain it outperformed the model-based approaches R-MAX and E3.

94

3.6 Conclusion

In this chapter we analyzed two model-free RL algorithms that are provably PAC-MDP.

The result that Delayed Q-learning is PAC-MDP is the first one to show that model-free

PAC-MDP algorithms are possible. Another interesting aspect about the analysis of

Delayed Q-learning is that the sample complexity bounds depend only linearly on S.

The Delayed Q-learning with IE algorithm and its analysis are new. Our experiments

show that Delayed Q-learning with IE significantly outperforms Delayed Q-learning in

terms of maximizing reward.

95

Chapter 4

Further Discussion

In this chapter we address various important issues related to be both model-based and

model-free algorithms.

4.1 Lower Bounds

Although we have mostly considered only PAC-MDP algorithms, many algorithms are

not PAC-MDP. In this section, we demonstrate that several common RL algorithms are

not PAC-MDP. All proofs are deferred to the Appendix. First, we show that ε-greedy

exploration combined with two different Q-learning style algorithms is not PAC-MDP.

Then, we show that a model-based Certainty Equivalence approach is also not PAC-

MDP, even when combined with optimistic initialization and ε-greedy exploration.

Consider the Q-learning algorithm with a constant learning rate, α, and ε-greedy

exploration (see Algorithm 7). The next Lemma shows that ε cannot be too large.

Intuitively, even if Q-learning discovers the optimal value function, as ε is increased,

the value of a ε-greedy exploration policy degrades.

Lemma 25 (Strehl & Littman, 2006) Let A be the Q-learning algorithm with ε-greedy

exploration and constant learning rate α > 0. If it is PAC-MDP, then ε ≤ ε(1− γ).

Proof: Consider the following MDP M (see Figure 4.1). It has 3 states and 2 actions,

a1, and a2. Action a1 from state 1 results in a transition to state 2 and a reward of

0. Action a2 from state 1 results in a transition to state 3 and a reward of 1. Both

actions from states 2 and 3 are self-loops that return the agent to the state it started

from. Both actions from state 2 result in a reward of 0 while both actions from state 3

result in a reward of 1. We have that the optimal policy is to take action a2 from state

96

1 and that V ∗(1) = 1/(1 − γ) = V ∗(3) but that V ∗(2) = 0. Now, suppose that once

the agent reaches either state 2 or 3, learning halts and the agent is put back in state

1. Also, assume that the action values of the agent satisfy Q(2, ·) = Q∗(2, ·) = 0 and

Q(3, ·) = Q∗(3, ·) = 1/(1− γ). Such a situation could be simulated to desired accuracy

by a more complex MDP1 and allowing enough time for Q(2, ·) and Q(3, ·) to converge,

but such a construction is omitted for simplicity.

Whenever in state 1, the agent executes some non-stationary policy. However,

because of the nature of M , the first action choice of the agent is the only one that

has any effect on the value of the agent’s policy. Thus, the value of the agent’s policy

is essentially the value of π(ε) or π(1− ε), where π(x) denotes the policy that chooses

action a1 from state 1 with probability x and action a2 from state 1 with probability

1− x. We now characterize the possible values of x for which π(x) is ε-optimal:

V ∗(1)− V π(x)(1) ≤ ε

⇔ 1
1− γ

− (1− x)
1

1− γ
≤ ε

⇔ 1− x ≥ 1− ε(1− γ)

⇔ x ≤ ε(1− γ).

Consider running Q-learning on the MDP M with ε-greedy exploration. We have

assumed that V (s2) < V (s3). Since it will visit s1 infinitely often it will eventually

learn to favor action a2. Thus, from that point on it will execute policy π(ε). Since it

is PAC-MDP, it must be ε-optimal and therefore ε ≤ ε(1− γ), as desired. 2

We note that the proof of Lemma 25 holds for any learning algorithm that uses

ε-greedy exploration and whose action value estimates Q(s, a) converge to Q∗(s, a) in

deterministic domains assuming that each state-action pair is tried infinitely often.

Theorem 9 (Strehl & Littman, 2006) The Q-learning algorithm with a constant learn-

ing rate, α > 0, and ε-greedy exploration is not a PAC-MDP algorithm.

1We could, for instance, allow a tiny probability of transition from states 2 and 3 back to state 1.

97

1 3

2

1
0

0

0

1

1

Figure 4.1: The MDP used in the proof of Lemma 25, showing that Q-learning must
have a small random exploration probability. The states are represented as nodes and
the actions as edges (a1 is a solid edge and a2 is a dashed edge). The reward for taking
an action is written above the corresponding edge.

Proof:(of Theorem 9) Consider the following MDP M (see Figure 4.2). It has 4 states

and 2 actions, r and l. The reward for both actions from states 1 and 3 is 0, from state

2 is 1, and from state 4 is (1− γ). From state 1, action r is stochastic and results in a

transition to state 2 with probability 1/2 and to state 3 with probability 1/2. From state

1, action l is deterministic and results in a transition to state 4. Both actions from states

2, 3, and 4 are self-loops, leaving the agent in the same state that it started in. Thus,

we see that the value of state 2 is 1/(1−γ), while the values of states 3 and 4 are 0 and

1, respectively. We also have that Q∗(1, l) = γ and Q∗(1, r) = γ/(2(1− γ)). Assuming

γ > 1/2, the optimal policy is to take action r from state 1. We will assume that once the

agent reaches either state 2, 3, or 4, learning halts and the agent is put back in state 1.

We also assume that the action values of the agent satisfy Q(2, ·) = Q∗(2, ·) = 1/(1−γ),

Q(3, ·) = Q∗(3, ·) = 0, and Q(4, ·) = Q∗(4, ·) = 1. Such a situation could be simulated

to desired accuracy by a more complex MDP (and allowing enough time for Q(2, ·),
Q(3, ·), and Q(4, ·) to converge) but such an argument is omitted here for simplicity.

Let γ > 4/5, 0 < ε < 1/2, and δ > 0. Let α and ε be the learning rate and

exploration parameters, respectively, used by Q-learning. They can be chosen as any

function of S,A,γ,ε, and δ. First, consider the case of ε > 0. The action values are

initialized arbitrarily. We know that both actions from state 1 will be tried infinitely

98

often, due to the fact that ε > 0 and that state 1 is visited infinitely often. From

Lemma 25, we can assume that ε ≤ ε(1− γ)/γ, because otherwise the algorithm would

definitely not be PAC-MDP and we’d be done. On any timestep on which the agent is

in state 1, the agent has some non-stationary policy. However, because of the nature of

M , the first action choice of the agent is the only one that has any effect on the value

of the agent’s policy. Thus, the value of the agent’s policy is essentially the value of

π(ε) or π(1− ε), where π(x) denotes the policy that chooses action r from state 1 with

probability x and action l from state 1 with probability 1 − x. We claim that π(ε) is

not an ε-optimal policy. First, observe that

V ∗(1)− V π(ε)(1)

=
γ

2(1− γ)
−

(
ε

γ

2(1− γ)
+ (1− ε)(γ)

)

= (1− ε)
(

γ

2(1− γ)
− γ

)
.

Therefore, the policy π(ε) is ε-optimal only if

1− ε ≤ ε

γ(1/(2(1− γ))− 1)
. (4.1)

From our assumption that ε < ε(1− γ)/γ, we have that

1− ε > 1− ε(1− γ)/γ. (4.2)

From our choices of γ > 4/5 and ε < 1/2 it follows that Equations 4.1 and 4.2 cannot

both hold simultaneously. Therefore, we conclude that π(ε) is not ε-optimal. Thus, on

every timestep t that the agent is in state 1 and Q(s, l) > Q(s, r), we have that its policy

is not ε-optimal. We have only to show that with probability at least δ the number of

such timesteps is greater than some exponential function of the input parameters. In

fact, we claim that with probability 1 the number of such timesteps is infinite.

Due to the fact that the action l will be taken infinitely often from state 1, the

quantity Q(1, l) will converge to Q∗(1, l) = γ. Let t be a timestep such that on every

99

timestep after t, Q(1, l) > ε′ for ε′ = γ/2. Recall that we’ve assumed that Q(2, l) =

Q(2, r) = V ∗(2) = 1/(1 − γ) and Q(3, l) = Q(3, r) = V ∗(3) = 0. Now, we have that

0 ≤ Q(1, r) ≤ 1/(1−γ). Consider the act of taking action r from state 1. If a transition

to state 2 occurs, then Q(1, r) will be incremented or decremented towards γ/(1−γ). If

a transition to state 3 occurs, Q(1, r) will be decremented towards 0. Let T be a number

of timesteps such that if Q(1, r) = 1/(1 − γ) and the agent experiences T consecutive

transitions from state 1 to state 3 after taking action r, then Q(1, r) < ε′. Such a T

exists because the learning rate is constant. Since state 1 is visited infinitely often, we

have that such a sequence of T consecutive transitions from state 1 to state 3 will occur

infinitely often after timestep t. However, after each one of these, on the next visit

to state 1, we have that Q(1, r) < ε′ < Q(1, l), which implies that the agent’s policy

is π(ε). Since we’ve shown that the value of π(ε) is not ε-optimal, we are done. In

summary, if ε > 0, then the sample complexity of Q-learning with a constant learning

rate is infinite.

Suppose that ε = 0. Note that for any 0 < x < 1, we can modify the transition

probabilities to yield a new MDP M ′ that has the same parameters (S, A, γ) as M ,

such that if we run Q-learning with ε = 0 in M ′, it is identical to running Q-learning

with ε = x in M . Since we’ve shown that the latter has infinite sample complexity, this

statement implies that the former also has infinite sample complexity. 2

When Q-learning is used in practice, the learning rate α is often not kept as a

constant. It is usually decreased over time. One common way to decrease it is to

allow the learning rate on the tth timestep to be αt = (1/t). This setting is called

a linear learning rate. It can be shown that when running Q-learning with ε-greedy

exploration and a linear learning rate, the agent’s action-value estimates will converge

to the optimal action values with probability 1 (Watkins & Dayan, 1992). We show

next that when this procedure of decreasing α is used along with ε-greedy, it results in

an algorithm that is not PAC-MDP.

Theorem 10 (Strehl & Littman, 2006) The Q-learning algorithm with a linear learning

rate, optimistic initialization, and ε-greedy exploration is not a PAC-MDP algorithm.

100

3

0

0

1−g

1−g 0

0

1

11 2

4

Figure 4.2: The MDP used in the proof of Theorem 9, which proves that Q-learning
with random exploration is not PAC-MDP.. The states are represented as nodes and
the actions as edges (r is a solid edge and l is a dashed edge). The edge for each action
is labeled with its corresponding reward (“g” stands for γ in the figure). The transition
probabilities are not shown but are all deterministic except for the split edge r coming
from state 1, which leads to state 2 with probability 1/2 and to state 3 with probability
1/2.

Proof Sketch: Consider an MDP M with a single state 1 and action l (see Figure 4.3).

The reward for taking the action is 0. In the paper by (Even-Dar & Mansour, 2003), it

is shown that when Q-learning with a linear learning rate is used to learn the optimal

value function for M , an exponential (in 1/(1−γ)) number of experiences are needed to

reduce the value function estimate from its initial value of 1/(1− γ) to any ε satisfying

1 > ε > 0. By adding an additional action, r, from the state that has small but

non-zero reward 1− γ, we obtain an MDP for which Q-learning with a linear learning

rate and ε-greedy exploration is not PAC-MDP. To verify this claim, first note that

the argument of Lemma 25 holds for Q-learning with a linear learning rate (because

with such a learning rate, the action-value estimates will converge to the optimal action

values). Thus, we need only consider the case of ε ≤ ε(1− γ). Next, we choose ε small

enough so that the agent’s policy is ε-optimal only if Q(r) > Q(l). Since the agent will

eventually try every action, we know that Q(l) and Q(r) will converge to the optimal

value functions Q∗(l) and Q∗(r), respectively (Watkins & Dayan, 1992). Therefore, the

agent will continue to experience timesteps for which it follows a non-ε-optimal policy

until Q(l) < Q∗(r) = 1. Of all possible action sequences, taking action a1 repeatedly

101

is the one that minimizes the number of these timesteps. However, even in this case,

we know from the argument in Lemma 39 of (Even-Dar & Mansour, 2003) that an

exponential number of such timesteps will occur. 2

0

1−g1

Figure 4.3: The MDP used in the proof of Theorem 10. The states are represented as
nodes and the actions as edges (l is a solid edge and r is a dashed edge). The edge for
each action is labeled with its corresponding reward (“g” stands for γ in the figure).

In Theorem 9, we argued that the Q-learning algorithm with a constant learning rate

and ε-greedy exploration is not PAC-MDP. This argument made use of the well-known

fact that Q-learning with a constant learning rate will not converge to the optimal

value function. In Theorem 10, we argued that Q-learning with a linear learning rate

and ε-greedy exploration is also not PAC-MDP. Here, we made use of the well-known

fact that Q-learning with a linear learning rate converges at an exponential rate. In

Even-Dar and Mansour (2003), it is shown that Q-learning with a polynomial learning

rate of the form

αt = 1/(t + 1)w (4.3)

where w ∈ (1/2, 1) and t is the number of timesteps for which the most recent state-

action pair has been experienced, converges at a polynomial rate to the optimal value

function (assuming that each state-action pair is taken infinitely often). Thus, it is an

interesting open problem whether such a learning rate can be used with Q-learning to

provide a PAC-MDP algorithm.

Next, we show that the Certainty Equivalence model-based approach to reinforce-

ment learning is not PAC-MDP when combined with ε-greedy exploration.

102

Theorem 11 (Strehl & Littman, 2006) The Certainty Equivalence Model-based RL

algorithm with optimistic initialization and ε-greedy exploration is not a PAC-MDP

algorithm.

Proof: First, we note that the proof of Lemma 25 applies to the Certainty Equivalence

approach and thus we consider only the case of ε ≤ ε(1− γ).

Consider the following MDP M . M has n + 1 states s0, s1,. . . ,sn. There are two

actions, a1 and a2. From si, for i = 1, . . . , n− 1, action a1 is deterministic, produces 0

reward, and transitions the agent to state si+1. From si, for i = 1, . . . , n− 1, action a2

is deterministic, produces reward of y, and transitions the agent to state s0. From sn

both actions are stochastic, producing a reward of 1 with probability z and a reward

of 0 with probability 1 − z. They both lead the agent to state s0. Once in state s0,

learning ends and the agent is placed in state 1. We assume the agent is provided with

action-value estimates Q(s0, ·) = 0. Such a situation could be simulated to desired

accuracy by a more complex MDP (and allowing enough time for Q(s0, ·) to converge),

but such an argument is omitted here for simplicity.

Let π(p) be the stationary policy in M that takes action a1 with probability p

and takes action a2 with probability 1 − p from every state. By solving the Bellman

equations, we have that

V π(p)(si) = (pγ)n−iz +
1− (pγ)n−i

1− pγ
(1− p)y for x = 1, . . . , n. (4.4)

Intuitively, if we choose z and y to be constants with z > y and a discount factor

close to 1, we can guarantee that near-optimal policies must try to reach the last state

sn. Formally, let γ = (1/2)1/(n−1), z = 3/4, y = 1/4, ε = 1/11, δ = 1/256 and n ≥ 10.

Observe that 1/(1 − γ) = O(n), which can be checked by taking the limit of the ratio

of n and 1/(1−γ) as n goes to infinity. Using Equation 4.4 and noting that y < γn−1z,

we have that the optimal policy is to always take action a2. Now, we claim that for

any value of p ≤ ε(1− γ), the policy π(p) is not ε-optimal from state s1. To prove this

103

claim, first note that

V π(p)(s1) ≤ pγn−1z + (1− p)y. (4.5)

Consider an agent following policy π(p) from state s1. Its first action will be a1 with

probability p and a2 with probability 1− p. If it chooses a1, it will receive zero reward

and transition to state s2. Since the optimal policy is to always take a1, the most

this event can contribute to the value π(p), is γn−1z, which is the value of the optimal

policy. Otherwise, if it chooses a2, it receives exactly y reward. Now, we prove that

V ∗(s1)− pγn−1z + (1− p)y > ε. (4.6)

To verify, note that

V ∗(s1)− pγn−1z + (1− p)y

= γn−1z(1− p) + (1− p)y

= (γn−1z − y)(1− p)

= (3/8− 1/4)(1− p)

≥ (1/8)(1− ε(1− γ))

= (1/8)(109/110) > ε.

In the fourth step, we used the fact that p < ε(1 − γ). Now, combining Equation 4.5

and Equation 4.6, we have that V ∗(s1)− V π(p) > ε when p < ε(1− γ).

Suppose we run the Certainty Equivalence RL algorithm with ε-greedy exploration

and optimistic initialization in the MDP M . Since the MDP is deterministic in all

states except sn, and we’ve used optimistic initialization, the agent will first explore

every action from every state at least once. It will thus learn the entire MDP except

for the reward function for state sn. It will try both actions from state sn at least once.

Suppose that it observes reward 0 from state sn for both these actions. This event will

happen with probability (1 − z)2 = 1/16 =
√

δ. At this point, the agent’s model says

that the reward for either action from state sn is 0. Thus, the optimal policy for the

104

model will be to take action a2 from every state. Since it is using ε-exploration, it will

follow policy π(ε) until it reaches state sn and learns more about the reward function.

From our above argument and the fact that ε ≤ ε(1 − γ), we have that the agent’s

policy is not ε-optimal from state s1. Next, we show that with high probability it will

visit state s1 an exponential number of times before updating its model.

Let a trial consist of the agent starting in state s1 and following policy π(ε) until it

reaches state s0. We say that the trial is successful if it reaches state sn. The probability

of a single trial being a success is at most εn−1 ≤ (ε(1 − γ))n−1 ≤ (1/11)n−1. Hence,

the expected number of trials is exponential. Using standard arguments, we can also

show that with probability at least
√

δ, the agent will require an exponential (in n)

number of trials to obtain a single success. To summarize, we’ve shown that with

probability at least δ the agent will have exponential sample complexity. Therefore, it

is not PAC-MDP. 2

4.2 PAC-MDP Algorithms and Convergent Algorithms

There has been a great deal of theoretical work analyzing RL algorithms. Most of

the early results include proving that under certain conditions various algorithms will,

in the limit of infinite experience, compute the optimal value function from which the

optimal policy can be extracted (Watkins & Dayan, 1992; Bertsekas & Tsitsiklis, 1996).

These convergence results make no performance guarantee after only a finite amount of

experience. They also ignore the problem of exploration by assuming that every state

and action is taken infinitely often.

An interesting avenue of research is to study the convergence rates of various RL

algorithms. Even-Dar and Mansour (2003) studied, for example, the convergence rate

of Q-learning. They showed that, under certain conditions, Q-learning converges to a

near-optimal value function in a polynomial number of timesteps.

A PAC-MDP algorithm does not, by definition, need to be a convergent algorithm.

105

In fact, all of the algorithms proven to be PAC-MDP to date are not convergent algo-

rithms. It may be possible to modify any PAC-MDP algorithm to construct a conver-

gent PAC-MDP algorithm, for example by adding ε-greedy exploration. However, doing

so would require new ideas, as the current PAC-MDP proofs all rely on the fact that

the agent’s policy changes only finitely many times, while most provably convergent

algorithms don’t exhibit this property.

4.3 Reducing the Total Computational Complexity

In each of the algorithms, we’ve assumed that the action values are stored in a priority

queue. The use of this data structure results in a cost of Θ(ln(A)) each time an action

value is updated. If there are Z total updates during the entire run of an algorithm,

then the associated cost may be as high as Θ(Z ln(A)). Several of the algorithms we’ve

discussed (RTDP-RMAX, RTDP-IE, Delayed Q-learning, Delayed Q-learning with IE),

have the special property that for a fixed state, the action-value estimates are non-

increasing over time. In this section, we show that for these algorithms, the total cost

can be made to be Θ(1
(1−γ)2ε

). This observation likely results in an improvement on the

computational complexity bounds (but a corresponding increase in space complexity)

for these algorithms, since our bounds for Z are not smaller than Θ(1
(1−γ)2ε2

).

The idea is very simple. First, note that the action value estimates are bounded

between 0 and 1/(1− γ), and are non-increasing. We modify each of the algorithms as

follows. For some timestep t, let a∗ denote the greedy action, a∗ = argmaxa Q(st, a).

Instead of requiring the algorithms to choose this greedy action, we allow them to

choose any action a′ such that Q(st, a
′) ≥ Q(st, a

∗)− Cε(1− γ), for some constant C.

We call an algorithm “nearly greedy” if it uses such a strategy. Using Proposition 1, it is

easy to see that Theorem 1 can be modified to allow for algorithms that choose actions

that are nearly greedy. Given this modification, our implementation is as follows. At

the beginning of the algorithm, 1/(Cε(1 − γ)2) buckets (for each state) are created

that can hold pointers to the A action values. The first bucket represents the interval

[0, Cε(1− γ)], the second (Cε(1− γ), 2Cε(1− γ)], and so on. The ith bucket contains

106

a pointer to the action-value estimate Q(s, a) if and only if Q(s, a) lies in the interval

((i − 1)Cε(1 − γ), iCε(1 − γ)]. If more than one action value lie in the same interval,

then a list of the pointers is maintained. It is easy to see that this data structure can

support inserts and removals in constant time. In addition, we maintain a pointer to

the bucket that contains the maximum valued estimate. Since the action values are

non-increasing, the number of operations, during the entire execution of the algorithm,

required to maintain this pointer is equivalent to the number of buckets (O(1/(ε(1 −
γ)2))). This bound is amortized and will negatively impact both the space and per-

timestep computational time complexities.

4.4 On the Use of Value Iteration

All of our algorithms involved learning action-value estimates. Many of them do so

by solving an internal model. The others can be viewed as incrementally solving an

internal model. In all cases, we have used value iteration or partial value iteration (for

the incremental algorithms) to solve this internal model. For the complete model-based

methods (MBIE-EB, E3 and R-MAX), any technique for solving MDPs can be used.

For instance, policy iteration may be used. Also, in particular, if the discount factor is

very close to 1, it may be beneficial to use a fast linear programming algorithm rather

than value iteration or policy iteration. For the other algorithms, the value-iteration

techniques are fundamental and there is no obvious way to modify them to use other

MDP solution techniques.

107

Chapter 5

Empirical Evaluation

To better quantify the relationship between them, we performed three sets of experi-

ments with each of the algorithms. For each experiment, we recorded the cumulative

reward obtained (to measure sample complexity) and Bellman backup computations

required1 (to measure computational complexity) by the agent over a fixed number of

timesteps.

Our main working hypotheses are

• Compared to the näıve approach, the Interval Estimation approach to exploration

results in a better use of experience. This statement is verified by the fact that

when two algorithms are compared that only differ in their exploration strategy

(for instance, RTDP-IE and RTDP-RMAX), the one using IE obtains higher

cumulative reward. The Bandit MDP domain was specifically chosen to highlight

the benefits of the IE approach.

• The incremental model-based approaches (RTDP-RMAX and RTDP-IE) benefit

from maintaining a model while using much less computation than algorithms

that solve the model (R-MAX and MBIE-EB). Our experiments show that this

hypothesis is not universally true but is true most of the time. For instance, there

is only one domain (Bandit MDP) where a model-free algorithm obtained greater

cumulative reward than RTDP-RMAX. Also, RTDP-IE was never outperformed,

in terms of reward, by a model-free algorithm. The total computational cost of

the incremental algorithms were lower than their non-incremental counterparts

1Formally, we counted the number of multiplication operations used in the Bellman backup.

108

except in the Bandit MDP domain.2

The Q-learning algorithm we experimented with uses optimistic initialization and

ε-greedy exploration (see Section 3.1). The learning rate was chosen according to the

paper by Even-Dar and Mansour (2003) with parameters 1/2 ≤ w ≤ 1. Specifically,

the learning rate for a state-action pair experienced n times is

α = 1/(n + 1)w. (5.1)

Surprisingly, the optimal setting of w within this range for our experiments was either

1/2 or 1. We also tried other constant (less than or equal to 1) multiples of this learning

rate and found no improvement. It is worth noting that, consistent with the analysis,

we also found that the algorithm always performed best with ε = 0.

All algorithms except Q-learning have a parameter (usually called ε1) that deter-

mines the minimum allowable difference in two successive action-value estimates. For

consistency, we have set this parameter to be fixed at the value of 10−6. The algorithms

that use IE as their method for exploration have the property that as their parameter

m is increased,3 the performance (in terms of cumulative reward obtained) of the al-

gorithm typically increases as well. Thus, we set this parameter to m = 100, 000 for

the incremental algorithms RTDP-IE and DQL-IE. It was computationally infeasible

to use this large of a value of m for MBIE-EB so m = 10, 000 was used. Each algorithm

used a discount factor of γ = 0.95.

5.1 Bandit MDP

The first set of experiments consisted of an MDP similar to the k-armed bandit prob-

lem(Berry & Fristedt, 1985) with k = 6, except that the noise of the arms was modeled

2This does not contradict our claims that the incremental versions have lower computational com-
plexity, because those claims apply to the worst-case per-step complexity rather than the total amortized
complexity, which is what was measured in the experiments.

3For MBIE-EB and RTDP-IE, m is the maximum number of samples per state-action pair that is
used for estimating the model. For Delayed Q-learning with IE, m is the maximum number of successive
attempted updates for a single state-action pair the algorithm will attempt until it gives up.

109

in the transition function rather than the reward function. Specifically, there were

7 states (S = {0, . . . , 6}), with 0 as the start state and 6 actions. Taking action

j ∈ {1, . . . , 6} from state 0 results in a transition to state j with probability 1/j and

a transition back to state 0 with probability 1 − 1/j. From state i > 0, under each

action, the agent is transitioned to state 0. Choosing action 1 from any state i > 0

results in a reward of (3/2)i (all other rewards are 0). These dynamics were created so

that it is better to choose the action with the lowest payoff probability (leaving state

0). To recap, from state 0, each action behaves like pulling an arm. The arm “pays

off” if the agent is transitioned away from state 0. Once in another state, the agent

is free to choose action 1 and obtain non-zero reward. A single experiment consisted

of running a given algorithm in the MDP for 100, 000 timesteps. Each experiment was

repeated 1000 times and the results averaged. For each algorithm, the parameters were

chosen by running the algorithm multiple times beforehand with different parameter

settings (chosen by a uniform grid) and choosing the parameter values that maximized

the average cumulative reward (over 100 experiments per parameter setting).4

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

RandDQLRtdp-RmaxE-3R-MaxQ-LearnDql-IERtdp-IEMBIE-EBOpt

C
um

ul
at

iv
e

R
ew

ar
d

Algorithm

6-armed Bandit MDP

Figure 5.1: Results on the 6-armed Bandit MDP

Figure 5.1 displays the average cumulative reward of each algorithm. In Table 5.1,

we provide the parameter settings of each algorithm along with the average cumulative

4This method of evaluation may favor algorithms that perform very well for a small range of pa-
rameters over more robust algorithms that perform well over a larger range.

110

Algorithm Param Reward Backups
Optimal — 163 · 103 0
MBIE-EB β = 7.69 161 · 103 397 · 105

RTDP-IE β = 0.34 160 · 103 543 · 101

DQL-IE β = 0.9 156 · 103 100 · 102

Q-learning w = 0.5 145 · 103 100 · 102

RMAX m = 34 142 · 103 160 · 101

E-Cubed (m, thresh) = (25, 0.167) 141 · 103 220 · 101

RTDP-RMAX m = 34 141 · 103 387 · 101

DQL m = 5 141 · 103 108 · 101

Random — 17 · 103 0

Table 5.1: Results in the Bandit MDP. The algorithms are listed in decreasing order by
average cumulative reward (third column). Only three significant digits are displayed.
Within this range, all differences were statistically significant.

reward and number of Bellman backup computations used by the algorithm.

First, consider the average cumulative reward achieved by the algorithms. This

domain illustrates the advantage of using the Interval Estimation approach over the

näıve approach to exploration, even when the uncertainty of the domain appears in the

transition distribution rather than the reward distribution (as it does in the simpler K-

armed bandit problem). Since the sequential nature of this problem is close to minimal,

the advantage of the model-based approaches over the incremental approach is small

in this problem. When we consider the computation time (measured by the Bellman

Backups in the table above) we see that MBIE-EB, in particular, is very slow compared

to the other algorithms. In general, the IE approach required more computation than

the näıve approach and the algorithms that solved their internal models took more

computation than the incremental algorithms. However, we note that the parameters

for each algorithm were optimized to yield maximum reward ignoring computation time.

We could, for example, reduce the computation time of RTDP-IE and DQL-IE (short

for Delayed Q-learning with IE)5 to almost any value by using a smaller value for m.

Finally, we note that each of the algorithms (except the algorithm that chose actions

uniformly at random) found the optimal arm and pulled that one most often.

5Since m was set to be as large as the number of timesteps, DQL-IE necessarily performs a single
Bellman backup computation per timestep.

111

H1 H2 H3 H4

0 1

10 0 1

Figure 5.2: Hallways MDP diagram

5.2 Hallways MDP

The Hallways domain consists of four hallways, each of length ten, and two actions, 0

and 1. There is an initial start state s0. From that state the first two action choices

determine the hallway that the agent chooses to go down (00 for hallway H1, 01 for

hallway H2, 10 for hallway H3, and 11 for hallway H4). Figure 5.2 shows a rough dia-

gram of this domain where states are represented as nodes and actions are represented

as edges labeled by action ID. Once in a hallway, action 0 moves the agent forward and

action 1 leaves the agent in the same state. When at the end of the hallway, the agent

may return to the state s0 by performing action 0. All rewards are zero except on those

transitions that take an agent from the end of hallway Hi to state s0 under action 0, for

i ∈ {1, 2, 3, 4}. The reward for this transition is stochastic: with probability (i − 1)/i

the reward is 0 and with probability 1/i the reward is (3/2)i+5. This reward was chosen

so that the optimal policy is always to go down hallway 4 but this is also the least likely

to result in non-zero reward (so that exploration is necessary). In total there are 47

states. This domain was chosen because it combines the stochastic reward element of

the K-armed bandit problem with the necessity of relating the value each state to the

value of its successor.

112

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

RandDQLQ-LearnDql-IERtdp-RmaxRtdp-IER-MaxE-3MBIE-EBOpt

C
um

ul
at

iv
e

R
ew

ar
d

Algorithm

Hallways MDP

Figure 5.3: Results on the Hallways MDP

Figure 5.3 displays the average cumulative reward of each algorithm. In the follow-

ing table, we provide the parameter settings of each algorithm along with the average

cumulative reward and number of Bellman backup computations used by the algorithm.

Algorithm Param Reward Backups
Optimal — 33 · 102 0
MBIE-EB β = 0.6 27 · 102 79 · 106

E-Cubed (m, thresh) = (8, 0.82) 26 · 102 64 · 103

RMAX m = 7 25 · 102 53 · 103

RTDP-IE β = 0.35 19 · 102 10 · 103

RTDP-RMAX m = 13 17 · 102 88 · 102

DQL-IE β = 0.17 17 · 102 10 · 103

Q-learning w = 1 15 · 102 10 · 103

DQL m = 1 14 · 102 10 · 103

Random — 12 · 102 0

Table 5.2: Results in the Hallways MDP. The algorithms are listed in decreasing order
by average cumulative reward (third column). Only two significant digits are displayed.
Within this range, all differences were statistically significant except the reward values
for the E-Cubed and RMAX rows.

Due to the highly sequential nature of the MDP, the full model-based algorithms

(MBIE-EB, E3, and R-MAX) performed better than the incremental algorithms. Given

this, the IE approach to exploration generally performed better than the näıve approach.

113

 0

 200

 400

 600

 800

 1000

 1200

 1400

RandDQLCEDql-IEQ-LearnRtdp-RmaxR-MaxMBIE-EBRtdp-IEOpt

C
um

ul
at

iv
e

R
ew

ar
d

Algorithm

Long Chain MDP

Figure 5.4: Results on the Long Chain MDP

5.3 LongChain MDP

The final MDP we tested is an approximation of the MDP used in the proof of The-

orem 11, with 20 states. Instead of using an episodic MDP as described in the proof

we add a transition from the terminal state s0 to the start state with probability 0.025

(under both actions, with probability 1− 0.025, the agent stays in the terminal state).

Since this MDP was used to prove that the Certainty Equivalence approach was not

PAC-MDP, we also tested this algorithm along with the others.

Figure 5.4 displays the average cumulative reward of each algorithm (the results

for E3 were eliminated to make room for the results of the Certainty Equivalence (CE)

method, but they appear in the table). In the following table, we provide the parameter

settings of each algorithm along with the average cumulative reward and number of

Bellman backup com putations used by the algorithm.

As expected, the Certainty-Equivalence approach performed poorly in this domain,

even though it computes an extremely accurate model of the transitions for the region

of the MDP it visits.

114

Algorithm Param Reward Backups
Optimal — 127 · 101 0
RTDP-IE β = 0.068 123 · 101 549 · 102

MBIE-EB β = 0.16 123 · 101 403 · 105

RMAX m = 2 120 · 101 767 · 101

E-Cubed (m, thresh) = (2, 0.4) 119 · 101 758 · 101

RTDP-RMAX m = 2 119 · 101 250 · 101

Q-learning w = 1 119 · 101 100 · 102

DQL-IE β = 2.33 117 · 101 100 · 102

Certainty-Equivalence (CE) — 103 · 101 140 · 105

DQL m = 10 970 · 100 272 · 101

Random — 596 · 100 0

Table 5.3: Results in the LongChain MDP. The algorithms are listed in decreasing
order by average cumulative reward (third column). Only three significant digits are
displayed. Within this range, all differences were statistically significant except the
number of backups (column 4) for the E-Cubed and RMAX rows.

5.4 Summary of Empirical Results

Reinforcement-learning algorithms are extremely difficult to test experimentally. The

sample complexity, as we’ve defined it, is impossible to compute and difficult (com-

putationally) to estimate. We chose to measure cumulative reward instead since it is

the ultimate goal of an RL agent to maximize reward. Unfortunately, this measure

is extremely noisy and therefore each experiment had to be repeated many times to

yield accurate measures. Also, several of the algorithms (MBIE-EB, in particular) were

very slow. Thus, we were limited to domains with very small state and action spaces.

Given these issues, the experimental results do not provide the complete story behind

the performance of the algorithms (in fact, no set of experiments could). However,

several observations are clear. The first is that the algorithms that use the Interval

Estimation approach to exploration consistently outperform those that use the näıve

approach when we ignore computation time. In particular, MBIE-EB is superior to

all other algorithms by this measure.6 In two out of three domains, the incremental

model-based approaches (RTDP-IE and RTDP-RMAX) used much less computation

6We have not displayed the results, but we also tested the original MBIE algorithm from Section 2.5.
This algorithm consistently provided a minor increase in performance against MBIE-EB in terms of
cumulative reward, but used even more computation time.

115

than their non-incremental versions but often achieved almost as much cumulative re-

ward. In fact, all the algorithms did fairly well on most domains in terms of obtaining

reward. Many of the new algorithms achieved results better than that of Q-learning.

This suggests that the theoretical results have some practical implications. One notable

exception appears to be the Delayed Q-learning algorithm. We see here that waiting

for m visits to a state-action pair before any update appears detrimental even though

it is sufficient for the asymptotic PAC-MDP sample complexity bounds. This certainly

suggests that Delayed Q-learning is not an extremely practical algorithms, which is

not entirely surprising. However, the Delayed Q-learning with IE algorithm is more

practical and also comes with the same theoretical guarantees.

116

Chapter 6

Extensions

The main drawback of the algorithms presented in this thesis is that their sample

complexities scale polynomially with the size of the state and action spaces, respectively.

This quality is clearly necessary because an agent cannot learn about states it has

never visited. However, many RL algorithms make implicit or explicit assumptions

about their domains that allow an agent to generalize across various dimensions. The

most well-studied type of generalization is where a function approximator is trained

to approximate the value of each state (Sutton & Barto, 1998; Bertsekas & Tsitsiklis,

1996). In the following two sections we discuss a different type of generalization, namely

where we try to learn the transition and reward distributions and generalize across states

and actions.

6.1 Factored-State Spaces

Definition 13 A factored-state MDP (or f-MDP) is an MDP where the states are

represented as vectors of n components X = {X1, X2, . . . , Xn}. Each component Xi

(called a state variable or state factor) may be one of finitely many values from

the set D(Xi). In other words, each state can be written in the form x = 〈x1, . . . , xn〉,
where xi ∈ D(Xi).

The definition of factored-state MDPs is motivated by the desire to achieve learning in

very large state spaces. The number of states of a factored-state MDP M is exponential

in the number n of state variables.

117

6.1.1 Restrictions on the Transition Model

Factored-state MDPs are most useful when there are restrictions on the allowable tran-

sition functions. Traditionally, researchers have studied transition models that can be

represented by dynamic Bayesian networks (DBNs) for each action of the MDP. Such a

representation has been shown to be powerful enough to support fast learning (Kearns

& Koller, 1999). However, this representation is unable to model some important condi-

tional independencies. Therefore, we develop a more general and more powerful model.

For any factored state x, let xi denote the ith component of x for i = 1, . . . , n. Next,

we introduce a model that yields a compact transition representation by allowing the

transition probabilities for the factors of the next state x′, P (x′i|x, a), to depend on only

a subset of the state factors of the current state x.

Assumption 1 Let x, x′ be two states of a factored-state MDP M , and let a be an

action. The transition distribution function satisfies the following conditional indepen-

dence condition:

T (x′|x, a) =
∏

i

P (x′i|x, a). (6.1)

This assumption ensures that the values of each state variable after a transition are

determined independently of each other, conditioned on the previous state. We consider

transition functions that are structured as follows.

Definition 14 Let I be a set of dependency identifiers.

Definition 15 Let D : S ×A×X → I be a dependency function.

Assumption 2 Let s, s′ ∈ S be two states and a ∈ A be an action. We assume that

P (s′i|s, a) = P (s′i|D(s, a, Xi)). Thus, the transition probability from (s, a) to s′ can be

written as

T (s′|s, a) =
n∏

i=1

P (s′i|D(s, a, Xi)) (6.2)

The dependency function approach yields a compact representation of the underly-

ing transition function by allowing commonalities among component distributions with

118

shared dependency function behavior. It also generalizes other approaches, such as

those using dynamic Bayes networks (Kearns & Koller, 1999), and those incorporat-

ing decision trees (Boutilier et al., 1996) to represent abstraction. Several important

definitions follow.

Definition 16 For each (s, a) ∈ S ×A, let

Ds,a := {(Xi, j) ∈ X × I | j = D(s, a, Xi)} (6.3)

be the relevant dependency pairs for state-action pair (s, a).

Definition 17 Let Q = ∪(s,a)∈S×ADs,a be the set of all transition components. Let

N denote |Q|, the number of transition components.

Note that each transition component, (Xi, j), corresponds to an independent proba-

bility distribution over the set D(Xi) that potentially needs to be estimated by the

agent. We will provide algorithms whose sample complexity depends only linearly on
∑

(Xi,j)∈Q |D(Xi)|, the number of parameters of the compact representation.

6.1.2 Factored Rmax

Rmax is a reinforcement-learning algorithm introduced by (Brafman & Tennenholtz,

2002) and shown to have PAC-MDP sample complexity by (Kakade, 2003; Brafman &

Tennenholtz, 2002) showed it was PAC-MDP in a slightly different setting). Factored

Rmax (or f-Rmax) is the direct generalization to factored-state MDPs (Guestrin et al.,

2002). Factored Rmax is model-based, in that it maintains a model M ′ of the underlying

f-MDP, and at each step, acts according to an optimal policy of its model.

To motivate the model used by Factored Rmax, we first describe at a high level

the main intuition of the algorithm. Consider a fixed state factor Xi and dependency

identifier j ∈ I such that D(s, a,Xi) = j for some state s and action a. Let xi ∈ D(Xi)

be any value in the domain of Xi. There exists an associated probability P (xi|j). We

call the corresponding distribution, P (·|j) for (Xi, j), a transition component, which is

defined formally in Section 6.1.1. The agent doesn’t have access to this distribution

119

however, and it must be learned. The main idea behind model-based approaches for

f-MDPs is to use the agent’s experience to compute an approximation to the unknown

distribution P (·|j). However, when the agent’s experience is limited, the empirical

distribution often produces a very poor approximation. The trick behind f-Rmax is to

use the agent’s experience only when there is enough of it to ensure decent accuracy,

with high probability.

Let m = (m1, . . . , mn) be some user-defined vector of positive integers that is pro-

vided to f-Rmax as input at the beginning of a run. For each transition component

(Xi, j), f-Rmax maintains a count n(Xi, j) of the number of times it has taken an action

a from a state s for which D(s, a,Xi) = j. For a given state-action pair (s, a) ∈ S ×A,

Ds,a is the set of relevant dependency identifies j ∈ I such that j = D(s, a, Xi) for

some factor Xi. If the associated counts, n(Xi, j), are each at least mi, respectively,

then we say that (s, a) is a known state-action pair and use the reward distribution

and the empirical transition distribution estimate for (s, a). Otherwise, the f-Rmax

agent assumes that the value of taking action a from state s is 1/(1−γ), the maximum

possible value.

Intuitively, the model used by f-Rmax provides a large exploration bonus for reaching

a state-action pair that is unknown (meaning it has some relevant transition component

Xi that has not been experienced mi times). This will encourage the agent to increase

the counts n(Xi, j), causing effective exploration of the state space until many transition

components are known. After much experience, the empirical distribution is used, and

the agent acts according to a near-optimal policy. We will show that if the mi are

set large enough, but still polynomial in the relevant quantities (with the number of

states being replaced by the number of transition components), then factored Rmax is

PAC-fMDP in the sample complexity framework.

Formally, Factored Rmax solves the following set of equations to compute its state-

action value estimates:

120

Q(s, a) = 1/(1− γ), if ∃Xi, n(D(s, a, Xi)) < mi

Q(s, a) = R(s, a) + γ
∑

s′
T̂ (s′|s, a)max

a′
Q(s′, a′),

otherwise.

6.1.3 Analysis of Factored Rmax

The main result of this section is the following theorem, which implies that f-Rmax is

PAC-fMDP.

Theorem 12 Suppose that 0 ≤ ε < 1
1−γ and 0 ≤ δ < 1 are two real numbers and M =

〈S, A, T,R, γ〉 is any factored-state MDP with dependency function D and dependency

identifiers I. Let n be the number of state factors and Q be the set of transition

components with N = |Q|. There exists inputs m = (m1, . . . ,mn) satisfying mi =

mi(1
ε ,

1
δ) = O

(
n2(|D(Xi)|+ln(N/δ))

ε2(1−γ)4

)
, such that if f-Rmax is executed on M with inputs

m, then the following holds. Let At denote f-Rmax’s policy at time t and st denote the

state at time t. With probability at least 1− δ, V At
M (st) ≥ V ∗

M (st)− ε is true for all but

O

(
n2(Ψ + N ln(N/δ))

ε3(1− γ)6
ln

1
δ

ln
1

ε(1− γ)

)
, (6.4)

timesteps t, where Ψ =
∑

(Xi,j)∈Q |D(Xi)|.

Factored Rmax models the unknown environment using the certainty-equivalence

method.

Certainty-Equivalence Model

Let (Xi, j) ∈ Q be a fixed transition component that assigns probabilities, P (xk|j),
for all xk ∈ D(Xi). The maximum likelihood estimate of these probabilities from mi

samples has the following formula:

P̂ (xk|j) =
of samples equal to xk

of samples = mi
. (6.5)

121

We note that a learning algorithm obtains samples for (Xi, j) whenever it takes an

action a from a state s for which (Xi, j) ∈ Ds,a. The empirical model (also called

the certainty-equivalence model) is the transition model defined by using the maximum

likelihood estimates for each transition component:

T̂ (s′|s, a) =
n∏

i=1

P̂ (s′i|D(s, a, Xi)). (6.6)

Analysis Details

We utilize Theorem 1 to prove that f-Rmax is PAC-MDP. The key insight is that after

an adequate number of samples have been gathered for a given transition component,

the resulting empirical transition probability distribution is close to the true one, with

high probability. However, transitions in a factored-state MDP involve n transition

components since there are n state factors, all of whose transitions are independently

computed (see Equation 6.1). Next, we relate accuracy in the transition model with

accuracy in the transition components.

We seek to bound the L1 distance between an approximate transition distribution

of the factored-state MDP to the true transition model.

Lemma 26 Let X = 〈x(i, j)〉 and Y = 〈y(i, j)〉 be any two stochastic matrices of

size m × n. Let x(·, j) denote the jth column of the matrix X, which is a discrete

probability distribution over m elements. For stochastic matrix X, let PX denote the

product distribution of size mn defined as PX(i1, . . . , in) = x(i1, 1) · · ·x(im,m). If

||x(·, j)− y(·, j)||1 ≤ 2ε for all j = 1, . . . , n,

for 0 ≤ ε ≤ 1, then

m∑

i1=1

· · ·
m∑

in=1

|PX(i1, . . . , in)− PY (i1, . . . , in)| ≤ 2− 2(1− ε)n

Proof: Using the transformation y(i, j) = x(i, j)+α(i, j), we seek to maximize the func-

tion f(X,α(·, ·)) :=
∑m

i1=1 · · ·
∑m

in=1 |x(i1, 1) · · ·x(in, n)−(x(i1, 1)+α(i1, 1)) · · · (x(in, n)+

122

α(in, n))|, under the lemma’s constraints. Fix any column index j and consider the par-

tial derivative with respect to the ith component, ∂f/∂x(i, j). It is clear that this deriva-

tive does not depend1 on x(·, j). Suppose there is an element in the jth column, x(i, j),

such that ε < x(i, j) < 1− ε. Then there must be another distinct element x(i′, j) such

that x(i′, j) > 0. Without loss of generality, suppose that ∂f/∂x(i, j) ≥ ∂f/∂x(i′, j).

The value of f will not decrease if we simultaneously increase x(i, j) and decrease x(i′, j)

by as much as possible (until x(i, j) + α(i, j) = 1 or x(i′, j) + α(i′, j) = 0). By a similar

argument if there are two or more nonzero elements in the jth column that add up to

ε, then we can increase the one with largest partial derivative to ε and decrease the

others to zero. In conclusion, we can restrict ourselves to matrices X whose columns

are one of the two following forms: (1) there is one element with value 1 − ε and an-

other one with value ε, or (2) there is a single element with value one and the rest are

zero-valued.2 By symmetry, if column j of matrix X is of form (1) with indices i1, i2

such that x(i1, j) = 1 − ε, x(i2, j) = ε, then column j of matrix Y is of form (2) with

α(i1, j) = ε and α(i2, j) = −ε, and vice versa.

We have shown that we can restrict the maximization of f over stochastic matrices

X and Y of the following form:

X =




1− ε . . . 1− ε 1 . . . 1

ε . . . ε 0 . . . 0

0 . . . 0 0 . . . 0
...

.
...




Y =




1 . . . 1 1− ε . . . 1− ε

0 . . . 0 ε . . . ε

0 . . . 0 0 . . . 0
...

.
...




1The absolute value signs can be removed by noting that there is some setting of α(·, ·) that maxi-
mizes f .

2Technically, we have left open the possibility that one element has value 1 − ε′ and another has
value ε′, where 0 < ε′ < ε. However, it is easy to show that we can increase f in such a case.

123

Suppose there are t1 columns of type (1) and t2 = n− t1 columns of type (2) in X.

Then, we have that

f(X, Y) = |(1− ε)t1 − (1− ε)t2 |+ (1− (1− ε)t1) + (1− (1− ε)t2). (6.7)

The first term in Equation 6.7 follows from choosing elements only in the first row

(i1 = · · · = in = 1). The second term results from choosing non-zero terms in X

that are zero in Y and the third term from choosing non-zero terms in Y that are

zero in X. Without loss of generality, if t1 > t2, then from Equation 6.7 we have that

f(X, Y) = 2− 2(1− ε)t1 ≤ 2− 2(1− ε)n, as desired. 2

Corollary 2 Let M be any factored-state MDP. Suppose that for each transition com-

ponent P (·|j) we have an estimate P̂ (·|j) such that ||P (·|j)− P̂ (·|j)||1 ≤ ε/n. Then for

all state-action pairs (s, a) we have that

||T (s, a)− T̂ (s, a)||1 ≤ ε. (6.8)

Proof: Follows directly from the fact that 1− (1− ε)n ≤ εn. 2

Corollary 2 shows that L1 accuracy of the transition components of the model implies

L1 accuracy of the resulting empirical transition distributions. Lemma 4 shows that

L1 accuracy in the transition distributions of a model combined with the true reward

distributions can be used to compute accurate value functions for any policy. Thus, we

are left with answering the question: how many samples are needed to estimate a given

transition component (discrete probability distribution) to a desired L1 accuracy. The

following theorem is helpful in this matter.

Theorem 13 (from (Weissman et al., 2003)) Let P a probability distribution on the

set A = {1, 2, . . . , a}. Let X1, X2, . . . , Xm be independent identically distributed random

variables according to P. Let P̂ denote the empirical distribution computed by using the

Xi’s. Then for all ε > 0,

Pr(||P − P̂ ||1 ≥ ε) ≤ 2ae−mε2/2. (6.9)

124

Definition 18 For f-Rmax we define the “known” state-action pairs Kt, at time t, to

be

Kt := {(s, a) ∈ S × A|n(Xi, j) ≥ mi for all (j, Xi) ∈ Ds,a}. (6.10)

If t is contextually defined, we use the simpler notation K.

The following event will be used in our proof that f-Rmax is PAC-fMDP. We will

provide a sufficient value of the parameter vector m to guarantee that the event occurs,

with high probability. In words, the condition says that the value of any state s, under

any policy, in the empirical known state-action MDP M̂Kt (see Definition 5) is ε-close

to its value in the true known state-action MDP MKt .

Event A1 For all stationary policies π, timesteps t and states s during execution

of the f-Rmax algorithm on some f-MDP M , |V π
MKt

(s)− V π
M̂Kt

(s)| ≤ ε.

Lemma 27 There exists a constant C such that if f-Rmax with parameters m = 〈mi〉
is executed on any MDP M = 〈S,A, T,R, γ〉 and mi, for i = 1, . . . , n, satisfies

mi ≥ C

(
n2(|D(Xi)|+ ln (N/δ))

ε12(1− γ)4

)
,

then event A1 will occur with probability at least 1− δ.

Proof: Event A1 occurs if f-Rmax maintains a close approximation of its known

state-action MDP. On any fixed timestep t, the transition distributions that f-Rmax

uses are the empirical estimates as described in Section 6.1.3, using only the first mi

samples (of immediate reward and next state pairs) for each (Xi, j) ∈ ∪(s,a)∈K{Ds,a}.
Intuitively, as long as each mi is large enough, the empirical estimates for these state-

action pairs will be accurate, with high probability.3 Combining Corollary 2 with

3There is a minor technicality here. The samples, in the form of next state factors, experienced by
an online agent in an f-MDP are not necessarily independent samples. The reason for this is that the
learning environment or the agent could prevent future experiences of state factors based on previously
observed outcomes. Nevertheless, all the tail inequality bounds that hold for independent samples also
hold for online samples in f-MDPs, a fact that is due to the Markov property. There is an extended
discussion and formal proof of this in the context of general MDPs in our forthcoming paper (Strehl &
Littman, 2007) that extends to the factored case.

125

Lemma 4 reveals that it is sufficient to obtain C
(
ε(1− γ)2/n

)
-accurate (in L1 dis-

tance) transition components. From Theorem 13 we can guarantee the empirical

transition distribution is accurate enough, with probability at least 1 − δ′, as long

as 2|D(Xi)|e−miε
2(1−γ)4/(2n2) ≤ δ′. Using this expression, we find that it is sufficient to

choose m such that

mi ∝ n2(|D(Xi)|+ ln(1/δ′))
ε2(1− γ)4

. (6.11)

Thus, as long as mi is large enough, we can guarantee that the empirical distribution

for a single transition component will be sufficiently accurate, with high probability.

However, to apply the simulation bounds of Lemma 4, we require accuracy for all

transition components. To ensure a total failure probability of δ, we set δ′ = δ/N in

the above equations and apply the union bound over all transition components. 2

Proof of Main Theorem

Proof: (of Theorem 12). We apply Theorem 1. Assume that Event A1 occurs. Con-

sider some fixed time t. First, we verify condition (1) of the theorem. We have that

Vt(s) = V ∗
M̂Kt

(s) ≥ V ∗
MKt

(s) − ε ≥ V ∗(s) − ε. The first equality follows from the fact

that action-values used by f-Rmax are the result of a solution of its internal model.

The first inequality follows from Event A1 and the second from the fact that MKt can

be obtained from M by removing certain states and replacing them with a maximally

rewarding state whose actions are self-loops, an operation that only increases the value

of any state. Next, we note that condition (2) of the theorem follows from Event A1.

Observe that the learning complexity, ζ(ε, δ), satisfies ζ(ε, δ) ≤ ∑
(Xi,j)∈Qmi. This is

true because each time an escape occurs, some (s, a) 6∈ K is experienced. However, once

all the transition components (Xi, j) for (s, a) are experienced mi times, respectively,

(s, a) becomes part of and never leaves the set K. To guarantee that Event A1 occurs

with probability at least 1− δ, we use Lemma 28 to set m. 2

126

6.1.4 Factored IE

The Factored IE (or f-IE) algorithm is similar to f-Rmax in that it maintains empirical

estimates for the transition components as described in Section 6.1.3. The main differ-

ence is that f-IE uses the empirical estimates for each transition component even if the

agent has little experience (in the form of samples) with respect to that component.

Like f-Rmax, f-IE has a parameter mi for each factor Xi and it uses only the first mi

samples for each transition component (Xi, j) ∈ Q to compute its empirical estimate

(all additional observed samples are discarded).4 However, when mi samples are yet

to be obtained, f-IE still computes an empirical estimate P̂ r(·|j) using all the observed

samples. This is in contrast to the f-Rmax algorithm, which ignores such estimates.

Thus, f-IE makes better use of the agent’s limited experience.

For a specified state-action pair (s, a), let ci denote the count n(D(s, a, Xi)) that

is maintained by both the f-Rmax and f-IE algorithms. Recall that f-Rmax solves the

following set of equations to compute the policy it follows:

Q(s, a) = 1/(1− γ), if ∃Xi, ci < mi

Q(s, a) = R(s, a) + γ
∑

s′
T̂ (s′|s, a)max

a′
Q(s′, a′),

otherwise.

The algorithm f-IE solves a similar set of equations:

Q(s, a) = 1/(1− γ), if ∃Xi, ci = 0

Q(s, a) = R(s, a) + γ
∑

s′
T̂ (s′|s, a) max

a′
Q(s′, a′)

+ eb(c1, c2, . . . , cn) otherwise.

4This condition was needed for our analysis to go through. Experimentally, we have found that
the algorithm has reduced sample complexity but increased computational complexity without this
restriction.

127

where eb : Zn → R is a function of the form

eb(c1, c2, . . . , cn) := max
(Xi,j)∈D(s,a)

βi√
ci

, (6.12)

for some constants βi, i = 1, . . . , n. We think of this function as an exploration bonus

that provides incentive for obtaining samples from transition components that are

poorly modeled and therefore have a low count, ci.

6.1.5 Analysis of Factored IE

The main result of this section is the following theorem.

Theorem 14 Suppose that 0 ≤ ε < 1
1−γ and 0 ≤ δ < 1 are two real numbers and

M = 〈S, A, T,R, γ〉 is any factored-state MDP with dependency function D and de-

pendency identifiers I. Let n be the number of state factors and Q be the set of

transition components with N = |Q|. There exists inputs m = (m1, . . . , mn) and

β = (β1, . . . , βn), satisfying mi = mi(1
ε ,

1
δ) = O

(
n2(|D(Xi)|+ln(Nn/(ε(1−γ)δ)))

ε2(1−γ)4

)
and βi =

n
1−γ

√
2 ln (Nmi/δ) + 2 ln(2)|D(Xi)|, such that if f-IE is executed on M with inputs m

and β, then the following holds. Let At denote f-IE’s policy at time t and st denote the

state at time t. With probability at least 1− δ, V At
M (st) ≥ V ∗

M (st)− ε is true for all but

O

(
n2(Ψ + N ln(Nn

ε(1−γ)δ))

ε3(1− γ)6
ln

1
δ

ln
1

ε(1− γ)

)
, (6.13)

timesteps t, where Ψ =
∑

(Xi,j)∈Q |D(Xi)|.

Analysis Details

Recall that for a fixed transition component (Xi, j), the f-IE algorithm maintains a

count n(Xi, j) that is equal to the number of samples obtained by the agent for esti-

mation of the corresponding distribution. Since the algorithm will only use the first mi

samples, n(Xi, j) ≤ mi.

128

Event A2 For all transition components (Xi, j) ∈ Q, the following holds during

execution of the f-IE algorithm on MDP M ,

||P̂ (·|j)− P (·|j)||1 ≤
√

2 ln (Nmi/δ) + 2 ln(2)|D(Xi)|√
n(Xi, j)

, (6.14)

Lemma 28 The event A2 will occur with probability at least 1− δ.

Proof: Fix a transition component (Xi, j) ∈ Q. Fix a moment during execution of

f-IE in an f-MDP M . By Theorem 13, we have that P (||P (·|j) − P̂ (·|j)||1 ≥ α) ≤
2|D(Xi)|e−n(Xi,j)α

2/2. Setting the right-hand side to be at most δ/(Nmi) and solving for

α proves that with probability at least 1− δ/(Nmi), we will have that

||P̂ (·|j)− P (·|j)||1 ≤
√

2 ln (Nmi/δ) + 2 ln(2)|D(Xi)|√
n(Xi, j)

, (6.15)

To guarantee that this holds for all transition components we proceed with two applica-

tions of the union bound: first for a fixed transition component over all possible values

of n(Xi, j) and then for a fixed factor over all transition components. Let F (Xi, j, k)

denote the probability that Equation 6.15 does not hold for some timestep such that

n(Xi, j) = k holds. We have that

∑

(Xi,j)∈Q

mi∑

k=1

F (Xi, j, k) ≤
∑

(Xi,j)∈Q

mi∑

k=1

δ/(Nmi) = δ

2

Lemma 29 If Event A2 occurs, then the following always holds during execution of

f-IE: ||T (s, a)− T̂ (s, a)||1 ≤

max
(Xi,j)∈D(s,a)

n
√

2 ln (Nmi/δ) + 2 ln(2)|D(Xi)|√
n(Xi, j)

, (6.16)

for all (s, a) ∈ S ×A.

Proof: The claim follows directly from Corollary 2. 2

129

Lemma 30 If Event A2 occurs and

βi ≥ n

1− γ

√
2 ln (Nmi/δ) + 2 ln(2)|D(Xi)|, (6.17)

then the following always holds during execution of f-IE:

Q(s, a) ≥ Q∗(s, a) (6.18)

Proof: Recall that f-IE computes it action-value estimates, Q(s, a), by solving its

internal model. We prove the claim by induction on the number of steps of value

iteration. Let Q(i)(s, a) denote the result of running value iteration of f-IE’s model for

i iterations. We let Q(0) = 1/(1−γ). Assume that the claim holds for some value t−1.

We have that

Q∗(s, a)−Q(t)(s, a)

≤ Q∗(s, a)−R(s, a)− γ
∑

s′
T̂ (s′|s, a)V ∗(s′)

−eb(c1, c2, . . . , cn)

≤ 1
1− γ

∑

s′
(T (s′|s, a)− T̂ (s′|s, a))

− max
(Xi,j)∈D(s,a)

βi√
n(Xi, j)

≤ 0.

The first inequality results from the induction hypothesis and the fact that Q(t)(s, a) =

R(s, a) + γ
∑

s′ T̂ (s′|s, a)maxa′ Q
(t−1)(s′, a′). The second inequality follows from the

fact that V ∗(s) ≤ 1/(1− γ) holds for all states s. The final inequality used Lemma 29

and Equation 6.17. 2

130

Proof of Main Theorem

Proof: (of Theorem 14). We apply Theorem 1. Assume that Event A2 occurs. Define

the set of “known” state-action pairs Kt, at time t, to be the same as for f-Rmax:

Kt := {(s, a) ∈ S × A|n(Xi, j) ≥ mi for all (j, Xi) ∈ Ds,a}. (6.19)

Consider some fixed time t. Condition (1) of the theorem holds by Lemma 30.

Next, we sketch a proof that condition (2) of the theorem holds. f-IE computes

its action-value estimates by solving the empirical model with exploration bonuses

added to the reward function. We need to show that it is close to the MDP MKt ,

which is identical to f-IE’s model except that the true transition distribution is used

instead of the empirical estimate for those state-action pairs in Kt and the exploration

bonuses are discarded for those state-action pairs. If each exploration bonus is less than

ε(1− γ)/2 then the value function of the model is ε/2-close to the value function of the

model without the exploration bonuses (because any one-step reward gets multiplied

by 1/(1− γ) if accrued over an infinite horizon). Thus we need to choose m so that

βi/mi ≤ ε(1− γ)/2 for each i. (6.20)

Also, by Lemma 4, we can guarantee the the value functions for the two models are

ε-accurate as long as the transition function is Cε(1− γ)2-accurate for some constant.

From Lemma 29, it is sufficient to ensure that

n
√

2 ln (Nmi/δ) + 2 ln(2)|D(Xi)|√
mi

≤ Cε(1− γ)2 for each i, (6.21)

holds. Ignoring constants, the conditions specified by Equations 6.20 and 6.21 are

equivalent and are satisfied by

mi ∝ n2(|D(Xi)|+ ln (Nn/(ε(1− γ)δ)))
ε2(1− γ)4

. (6.22)

131

Finally, note that the learning complexity, ζ(ε, δ) ≤ ∑
(Xi,j)∈Qmi. This is true

because each time an escape occurs, some (s, a) 6∈ K is experienced. However, once

all the transition components (Xi, j) for (s, a) are experienced mi times, respectively,

(s, a) becomes part of and never leaves the set K. 2

6.2 Infinite State Spaces

In many real-world domains for which we’d like to apply reinforcement-learning tech-

niques, the most straight-forward way to model the environment is with infinitely many

states and actions. Solving this problem is currently open, although some progress has

been made (Antos et al., 2006). We don’t present any results for large state space

in this thesis, but we note that Theorem 1 doesn’t require a flat state space and can

conceivably be applied to infinite state spaces.

132

Conclustion

In this thesis we have examined the problem of exploration verses exploitation in finite-

state Markov Decision Processes. We show that both model-based and model-free

algorithms can be designed so that they satisfy a theoretical condition we’ve termed

PAC-MDP. The important aspect of these algorithms is that they act near optimally

on all but a few timesteps. The analysis of all the algorithms in this thesis made use of

a common framework, which can potentially help with the analysis of future algorithms

in the field. Important open problems include closing the gap between the upper and

lower sample complexity bounds and extending the results to MDPs with an infinite

number of states and actions.

133

Bibliography

Antos, A., Szepesvàri, C., & Munos, R. (2006). Learning near-optimal policies with

bellman-residual minimization based fitted policy iteration and a single sample path.

The Nineteenth Annual Conference on Learning Theory (pp. 574–588).

Barto, A. G., Bradtke, S. J., & Singh, S. P. (1995). Learning to act using real-time

dynamic programming. Artificial Intelligence, 72, 81–138.

Berry, D. A., & Fristedt, B. (1985). Bandit problems: Sequential allocation of experi-

ments. London, UK: Chapman and Hall.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-dynamic programming. Belmont,

MA: Athena Scientific.

Boutilier, C., Friedman, N., Goldszmidt, M., & Koller, D. (1996). Context-specific

independence in Bayesian networks. Proceedings of the Twelfth Annual Conference

on Uncertainty in Artificial Intelligence (UAI 96) (pp. 115–123). Portland, OR.

Brafman, R. I., & Tennenholtz, M. (2002). R-MAX—a general polynomial time algo-

rithm for near-optimal reinforcement learning. Journal of Machine Learning Research,

3, 213–231.

Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (1990). Introduction to algorithms.

Cambridge, MA: The MIT Press.

Even-Dar, E., Mannor, S., & Mansour, Y. (2003). Action elimination and stopping

conditions for reinforcement learning. The Twentieth International Conference on

Machine Learning (ICML 2003) (pp. 162–169).

Even-Dar, E., & Mansour, Y. (2003). Learning rates for Q-learning. Journal of Machine

Learning Research, 5, 1–25.

134

Fiechter, C.-N. (1997). Expected mistake bound model for on-line reinforcement learn-

ing. Proceedings of the Fourteenth International Conference on Machine Learning

(pp. 116–124).

Givan, R., Leach, S., & Dean, T. (2000). Bounded-parameter Markov decision processes.

Artificial Intelligence, 122, 71–109.

Guestrin, C., Patrascu, R., & Schuurmans, D. (2002). Algorithm-directed exploration

for model-based reinforcement learning in factored MDPs. Proceedings of the Inter-

national Conference on Machine Learning (pp. 235–242).

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables.

Journal of the American Statistical Association, 58, 13–30.

Kaelbling, L. P. (1993). Learning in embedded systems. Cambridge, MA: The MIT

Press.

Kakade, S. M. (2003). On the sample complexity of reinforcement learning. Doctoral

dissertation, Gatsby Computational Neuroscience Unit, University College London.

Kearns, M., & Singh, S. (1999). Finite-sample convergence rates for Q-learning and

indirect algorithms. Advances in Neural Information Processing Systems 11 (pp.

996–1002). The MIT Press.

Kearns, M. J., & Koller, D. (1999). Efficient reinforcement learning in factored MDPs.

Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJ-

CAI) (pp. 740–747).

Kearns, M. J., & Singh, S. P. (2002). Near-optimal reinforcement learning in polynomial

time. Machine Learning, 49, 209–232.

Kearns, M. J., & Vazirani, U. V. (1994a). An introduction to computational learning

theory. Cambridge, Massachusetts: The MIT Press.

Kearns, M. J., & Vazirani, U. V. (1994b). An introduction to computational learning

theory. Cambridge, Massachusetts: The MIT Press.

135

Littman, M. L., Dean, T. L., & Kaelbling, L. P. (1995). On the complexity of solv-

ing Markov decision problems. Proceedings of the Eleventh Annual Conference on

Uncertainty in Artificial Intelligence (UAI–95) (pp. 394–402). Montreal, Québec,

Canada.

Moore, A. W., & Atkeson, C. G. (1993). Prioritized sweeping: Reinforcement learning

with less data and less real time. Machine Learning, 13, 103–130.

Nilim, A., & Ghaoui, L. E. (2004). Robustness in Markov decision problems with

uncertain transition matrices. Advances in Neural Information Processing Systems

16 (NIPS-03).

Puterman, M. L. (1994). Markov decision processes—discrete stochastic dynamic pro-

gramming. New York, NY: John Wiley & Sons, Inc.

Singh, S. P., & Yee, R. C. (1994). An upper bound on the loss from approximate

optimal-value functions. Machine Learning, 16, 227.

Strehl, A. L., Li, L., & Littman, M. L. (2006a). Incremental model-based learners

with formal learning-time guarantees. UAI-06: Proceedings of the 22nd conference

on Uncertainty in Artificial Intelligence (pp. 485–493). Cambridge, Massachusetts.

Strehl, A. L., Li, L., & Littman, M. L. (2006b). Pac reinforcement learning bounds for

rtdp and rand-rtdp. AAAI-06 Workshop on Learning for Search.

Strehl, A. L., Li, L., Wiewiora, E., Langford, J., & Littman, M. L. (2006c). PAC

model-free reinforcement learning. ICML-06: Proceedings of the 23rd international

conference on Machine learning (pp. 881–888).

Strehl, A. L., & Littman, M. L. (2004). An empirical evaluation of interval estimation

for Markov decision processes. The 16th IEEE International Conference on Tools

with Artificial Intelligence (ICTAI-2004) (pp. 128–135).

Strehl, A. L., & Littman, M. L. (2005). A theoretical analysis of model-based interval

estimation. Proceedings of the Twenty-second International Conference on Machine

Learning (ICML-05) (pp. 857–864).

136

Strehl, A. L., & Littman, M. L. (2006). Reinforcement learning in general MDPs: PAC

analysis. Working paper.

Strehl, A. L., & Littman, M. L. (2007). An analysis of model-based interval estimation

for Markov decision processes. Journal of Computer and System Sciences. in press.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. The

MIT Press.

Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27,

1134–1142.

Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning, 8, 279–292.

Weissman, T., Ordentlich, E., Seroussi, G., Verdu, S., & Weinberger, M. J. (2003).

Inequalities for the L1 deviation of the empirical distribution (Technical Report HPL-

2003-97R1). Hewlett-Packard Labs.

Wiering, M., & Schmidhuber, J. (1998). Efficient model-based exploration. Proceedings

of the Fifth International Conference on Simulation of Adaptive Behavior (SAB’98)

(pp. 223–228).

Williams, R. J., & Baird, III, L. C. (1993). Tight performance bounds on greedy policies

based on imperfect value functions (Technical Report NU-CCS-93-14). Northeastern

University, College of Computer Science, Boston, MA.

137

Vita

Alexander L. Strehl

1980 Born March 24 in York, Pennsylvania.

1998-2002 Attended College of Charleston, South Carolina;

majored in Computer Information Systems and Mathematics.

2002 B.S., College of Charleston.

2002-2007 Attend Rutgers University, New Jersey; majored in Computer Science.

2002 Teaching Assistantship, Department of Computer Science.

2003-2006 Research Assistantship, Department of Computer Science.

2006-2007 Bevier fellowship, Rutgers University.

2007 PH.D. in Computer Science.

Publications

1. Alexander L. Strehl, Lihong Li, and Michael L. Littman. Incremental Model-based
Learners With Formal Learning-Time Guarantees. Proceedings of the 22nd Con-
ference on Uncertainty in Artificial Intelligence (UAI 2006), 2006, 485-493.

2. Alexander L. Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L. Littman.
PAC Model-Free Reinforcement Learning. Proceedings of the 23rd International
Conference on Machine Learning (ICML 2006), 2006, 881-888.

3. Alexander L. Strehl, Christopher Mesterharm, Michael L. Littman, and Haym Hirsh.
(2006). Experience-Efficient Learning in Associative Bandit Problems. Pro-
ceedings of the 23rd International Conference on Machine Learning (ICML 2006), 2006,
889-896.

4. Alexander L. Strehl and Michael L. Littman. A Theoretical Analysis of Model-
Based Interval Estimation. Proceedings of the 22nd International Conference on
Machine Learning (ICML 2005), 2005, 857-864.

5. Alexander L. Strehl and Michael L. Littman. An Empirical Evaluation of Interval
Estimation for Markov Decision Processes. Proceedings of the 16th International
Conference on Tools with Artificial Intelligence (ICTAI), 2004, 128-135.

