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How do strategic agents make decisions? For the first time, a confluence

of advances in agent design, formation of massive online data sets of social

behavior, and computational techniques have allowed for researchers to con-

struct and learn much richer models than before. My central thesis is that,

when agents engaged in repeated strategic interaction undertake a reasoning

or learning process, the behavior resulting from this process can be charac-

terized by two factors: depth of reasoning over base rules and time-horizon

of planning. Values for these factors can be learned effectively from interac-

tion and are transferable to new games, producing highly effective strategic

responses. The dissertation formally presents a framework for addressing the

problem of predicting a population’s behavior using a meta-reasoning model

containing these strategic components. To evaluate this model, I explore sev-

eral experimental case studies that show how to use the framework to predict

ii



and respond to behavior using observed data, covering settings ranging from

a small number of computer agents to a larger number of human participants.
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Preface

Captain Amazing: I knew you couldn’t change.

Casanova Frankenstein: I knew you’d know that.

Captain Amazing: Oh, I know that. AND I knew you’d know I’d know you

knew.

Casanova Frankenstein: But I didn’t. I only knew that you’d know that I knew.

Did you know THAT?

Captain Amazing: Of course.

-Mystery Men

Portions of this dissertation are based on work previously published by the

author [Wunder et al., 2010, 2011, 2012, 2013].
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Chapter 1

Introduction

The incredible growth of the Internet continues to change our lives, whether

we look at our careers, social networks, or the way we read news. A recent

survey by the Interactive Advertising Bureau points out that between 2007 and

2011 the number of jobs relying on web advertising doubled to over 5 million,

accounting for over $500 billion in the economy, at a time when job growth

was anemic at best. 1 Part of this growth results from the emergence of online

social networking and web personalization, which has created an avalanche

of new data about the diverse behaviors of individual users. This same pe-

riod witnessed the tremendous destructive effects of the financial crisis, which

was for the most part unpredicted by mainstream economists, creating a si-

multaneous intellectual crisis within that discipline [Krugman, 2009]. A major

connecting thread between these phenomena is that they deal with the interac-

tion of strategic individuals who implement the ability to reason about others

as well as some capacity to learn and respond to their world. A deeper un-

derstanding of the dynamics at work in complex social systems could lead to

fantastic advancements.

This dissertation confronts the challenge of building predictive models of

self-interested agents who interact in strategic environments over time. On

the surface, this type of problem falls under the domain of economics. I will

1 http://www.iab.net/insights research/industry data and landscape/economicvalue
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argue that, based on new evidence from experiments with people, traditional

models are not up to the task of either describing behavior or prescribing ef-

fective behavior. Fortunately, the ever-increasing access to both large amounts

of computational power and relevant social data has opened the door to a new

empirical program for looking at these questions. The richness and diversity

of the data at hand has also brought to light the need for better models, which

my research has attempted to address.

1.1 The Multiagent Cycle

The advances described above have led to a novel scientific methodology that

I will henceforth term the Multiagent Cycle. It is meant to describe the decision-

making process of participants in strategic environments who employ some

combination of reasoning, learning, and planning. The players, or agents, in

these environments constitute a population, and can be either human or com-

puter. The population of human players or software agents behave according

to some internal and emergent dynamics and are also affected by the rules and

payoffs of their game environment.

The Multiagent Cycle has four main stages:

• Hypothesis generation and theory

• Experimentation and observation

• Data mining and modeling

• Computational simulation and parameterized space search.



3

Some of these paradigms, defined as the set of practices that define a sci-

entific discipline [Kuhn, 1970], have existed separately for a long time. How-

ever, in order to study complex social systems, scientists need to incorporate

all of them together. Game theorists have long proposed models of strategic

behavior, and have worked out a vast mathematical theory around the idea

that social systems tend toward equilibrium. Behavioral game theorists put

these theories to the test in lab experiments with real people who play these

games for rewards [Ho et al., 1998; Costa-Gomes et al., 2001]. While this line of

research is still relatively new, these experimenters have discovered that peo-

ple play in ways that do not entirely conform to the theoretical predictions. In

turn, they have proposed new models that incorporate heuristics and cognitive

shortcuts, suggesting that thinking hard to “solve” a game entails an extra cost

that is not accounted for in the original equations.

Since the earliest days of computers, data analysts have constructed

exquisite statistical approaches to make sense of the large and growing mass

of information that results when lots of people interact with each other or the

entity collecting that information. Much of the time, however, the patterns and

features used in data mining is stripped of its strategic or cognitive meaning,

and reduces to the same basic approach as could be used with any natural or

physical phenomena.

The fourth thread, computer simulation, is growing in importance for mod-

eling social behavior through the fields of agent-based modeling and social simu-

lation [Axelrod, 1997; Macy and Willer, 2002]. Although this new type of mod-

eling allows for greater complexity and richness that is not present in a set of

linear equations, the agent models are often built from preexisting assump-

tions or in a way that satisfies the model-builder’s goals [Lazer and Friedman,
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2007; Fang et al., 2010; Mason and Watts, 2012]. As a result, these models are

sometimes detached from reality. What is required, therefore, is a coherent

meta-theory for explaining and predicting social behavior that also can be sup-

ported and refined by empirical evidence.

Now, a more seamless linkage between these schools of thought is possible

due to recent advances in computational power and online data collection. For

the first time, it is possible for social scientists to gather data for their theo-

ries on previously unattainable scales, learn complex models of behavior, and

compute a dynamic system of social interaction informed by the observations.

The explosion of computational power makes it feasible to search a parameter

space for anomalous properties of these heterogenous agent models, which re-

searchers can then use to build new theories and hypotheses to test. One might

say that people perform a miniature version of this cycle every time they enter

a game of poker, but our goal is a formal and systematic analysis. The aim

of this work is to add an additional layer to social data analysis which incor-

porates some degree of self-reflection or theory of mind. Without this layer, a

model can lack structure that results from awareness of other decision-makers,

which can result in inaccurate predictions.

A major application of this work is to model actors in financial markets.

Leading theories claim that market prices incorporate all available informa-

tion, so that they reflect value perfectly, in an intellectual framework known as

the Efficient Markets Hypothesis [Fama, 1970]. In practice, this theory cannot

explain the periodic cycle of bubbles and busts that have occurred frequently

throughout history. The presence of “irrationality” seems to be universal when

people deal strategically with one another, even as the degree of sophistication
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among individuals varies widely. These observations have been made exper-

imentally [Ho et al., 1998] as well as in real markets, and therefore need to be

addressed. Modeling the amount of irrationality in a population, as well as

simulating its effects, is a precursor for regulators to implement effective poli-

cies to prevent or manage financial turmoil. Otherwise, they will be forever

left to react to these crises in an ad hoc and ultimately self-defeating manner.

Some economists have begun moving in this direction to establish a founda-

tion for agent-based economics [Fagiolo et al., 2007b], but their lack of rigorous

training in programming or machine learning algorithms in most economics

programs is an obstacle in this endeavor.

Because of the nature of social interaction, agent-designing researchers face

great algorithmic challenges arising from the complexity of many independent

actors interacting in a dynamic domain. As such, the work presented here

is not primarily concerned with social questions, but with the algorithms re-

quired to bridge from the raw data to the other phases of the cycle, especially

between the data gathering, modeling, and simulation steps. The complexity

of social interaction and human behavior in general requires that sufficient so-

phistication be encoded in the models used to explain that behavior. In fact, it

is possible that a major reason that social science has not yet proceeded down

this path is that model-fitting has not advanced much beyond basic regres-

sion. Therefore, it is up to computer scientists and others working at the inter-

section of social science and machine learning (also known as computational

social science) to bring these tools to fruition by showing how data mining

can guide the development of empirically based reasoning agents. In effect,

my proposed framework presents a structured way for constructing behav-

ioral features which can then be input into the supervised learning method of
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choice. This technique is just a form of feature selection, analogous to those

commonplace in supervised learning, that uses a reasoning process rooted in

the relevant context to identify and define these helpful features. A success-

fully abstracted model will then create the space for novel theories incorporat-

ing heterogeneous agent populations. This document, therefore, aims to ad-

dress the following central question: how can we predict how strategic agents

make decisions?

1.2 Thesis Statement and Dissertation Overview

Thesis: Assuming that agents engaged in repeated strategic interaction under-

take a reasoning or learning process, the behavior resulting from this process

can be characterized by two primary factors: time-horizon of planning and

depth of reasoning over base rules, in particular the primitive strategies of re-

peating, imitating, and randomizing. Values for these two factors, along with

the relative prominence of the base components, can be learned effectively

from interaction or observation and the resulting predictive model is transfer-

able to new payoff functions, producing highly effective strategic responses.

The problem considered below is how to predict the future behavior of in-

dividuals and populations given historical observations of their behavior. At

first glance, this task appears monumental. After all, there are an infinite num-

ber of potential strategies a player can use. In a repeated game, this fact takes

on even greater import because it is true even if limited to equilibrium strate-

gies [Aumann and Maschler, 1995]. To address this issue, I will abstract the

decision-making problem into a reasoning structure with a small number of

parameters, which I will argue can adequately represent agents in these lim-

ited domains and therefore generalize to a variety of related but different game
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scenarios. Some qualities of the strategic decisions faced vary from game to

game, such as available actions, number of opponents, payoff functions, and

even whether the payoff is known to a player. However, there are enough sig-

nificant common features that we can propose a starting point for designing

solutions. For instance, one of the most powerful ways to achieve an abstracted

model is to focus on reasoning capacity. The case studies explored throughout

this dissertation show how to apply this mindset to reach specific solutions

to prediction-focused problems, formalized through a unified approach. The

other important feature, time horizon, captures the tension between short-run

and long-run performance, and behavior can significantly depend on how an

agent balances these considerations.

To illustrate what is meant by an abstracted model, consider an agent at-

tempting to select a decision in a single turn of poker: either to call a bet, raise

the bet, or fold the hand. Regardless of the inner workings of the agent, we can

characterize its behavior over many hands as a distribution over these three

actions, ignoring the actual cards held by the player. The implicit assumption

of this very simple model is that two agents who happen to behave according

to an identical distribution are functionally equivalent.

One obvious weakness in such a naive learning mechanism is that it ignores

the case-specific factors that went into each decision. Notice that if we take the

particular situation into account, it is possible to analyze an agent’s behavior

from a social-reasoning standpoint—a computer scientist’s way of saying you

should play the player, not the hand. A player who understands the game but

has no reasoning model of an opponent might simply wait for the best hand

possible to maximize chances of winning, a tight risk-averse strategy known

as the rock or nit. Obviously, this type of strategy is easy to predict and exploit,
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because the bet itself reveals the cards in hand. To profit from a nit (or constant

bluffer, or other simple type), one requires the ability to identify these types

and respond appropriately. That is, each bet or fold can be projected on some

scale of aggressiveness or caution, as well as degree of bluffing.

Over many hands, an observer would witness some distribution over these

axes, leading to an observation inconsistent with the action-distribution model:

agents who reason the same amount will behave identically, all else being

equal. However, in the first case, a learned distribution (over actions) cannot

be reasonably transferred to new hands or games, whereas the second model

(distribution over reasoning) can. More details about this model will be for-

mally introduced in Chapter 2. It should be noted that while there have been

some major advances in building poker bots who can do very well in one-on-

one games, progress has been slow in games with multiple opponents [Littman

and Zinkevich, 2007]. A meta-reasoning model could be required to make sub-

stantial improvements in this space moving forward.

Another important factor for making decisions is their time scale for reward

collection. Certainly, there are many situations where having a high value for

future rewards would cause an agent to take one course, whereas a low value

of the future would lead to a different choice, focused on short-term effects.

In psychology, a series of experimental studies have noted that children who

can delay eating one marshmallow in order to receive two after waiting half

an hour are more successful later in life [Mischel et al., 1972]. Looking at this

question through our poker example, we could say that a strong bluff that

would work for the current weak hand causes harm in the long run, as it may

increase the likelihood of bluffs being recognized and called in the future. In

a game setting, we will find that the time horizon or discount factor is a key



9

component in strategic behavior, especially in standoffs or social dilemmas.

A concept related to behavioral modeling is multiagent learning, when an

opponent has the ability to adapt its strategy with experience. Agents who

adapt their decisions are sometimes not predictable solely by previous behav-

ior, and so the model has to be extended to dynamically incorporate a rela-

tionship between reward and behavior. At a more fundamental level, the op-

timal strategy against a learning opponent can include an element of teaching.

Teaching is itself a form of reasoning, as it requires the teacher to respond to an

agent that is also responding, albeit in a dynamic way over time. A teaching

strategy can be designed to manipulate a learning opponent into outcomes bet-

ter for the teaching agent, and therefore this concept is an important building

block for multiagent modeling.

Before discussing the concrete experiments, I will first address the method-

ology for supporting my thesis. The meta-learning/meta-reasoning popula-

tion model I introduce in Chapter 2 can be thought of as machine learning

over best response features for the purpose of predicting behavior. Setting up

the problem this way distinguishes this model from an agent that responds

from statistical knowledge assuming a fixed world without these behavioral

features. That is, we can make a distinction between a population with some

internal reasoning process, and a natural or mechanistic system that simply

outputs signals. Starting from base heuristics (random, repeat, imitate, etc.),

the reasoning agent can be expected to follow a procedure for doing well in

response to others, but varying the amount of reasoning and time scale will

produce different actions.

Once these features have been extracted, a modeler can then use a super-

vised learning algorithm of choice to fit the relevant parameters. In order to
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show how including new features allows for considerable transfer between

similar but non-identical games, we need to compare the predictions of a meta-

learner with those of a naive learner in these types of situations. A helpful

analogy is that evaluating the transferability of an agent model to a new game

is like testing a trained statistical model on an out-of-sample data set. In both

cases, the new data has not been used to build the model, so we are talking

about mitigating the risks of over-fitting.

This question of what constitutes an opportunity for knowledge transfer is

not a simple one. For example, it is clear that our confidence in the applicability

of a model trained on a certain agent will be diminished when the rules of the

game change substantially, even other game properties remain the same, like

the number of actions. What about simply changing the payoffs? The transfer-

ability of models over games depends on more subtle concepts like structure

and complexity. That is, if there is only one action that gives a positive reward

and the rest are always zero, an agent faces an easier decision than when there

exists a dilemma or conflict between long-run and short-run rewards. Because

I am making claims in this thesis about the decision-making capacity of agents,

in terms of their depth of reasoning or time horizon, it is important to remem-

ber that issues that alter the computational costs of the decision will affect a

model of an agent. This observation would call for some way to measure the

relationship between complexity and the resulting model, but the field has not

yet reached that point.

While the purposes of prediction may differ in the experimental studies

shown in this work, the value and goal of accurate prediction remains. Per-

formance in many games strongly depends on how well a player can predict

an opponent’s behavior. Indeed, the perspective of an individual agent in one
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of these games and an analyzer of a social data set is the same with respect to

prediction.

This document will explore a diverse range of domains where individuals

benefit from acting strategically, and can make decisions by building implicit

or explicit models of their neighbors or opponents. I will focus on the repeated

setting, where players have the opportunity to adapt to others’ behavior over

time. Games with a small action space can lead to greater confidence that the

strategic reasoning space has been sufficiently covered and the reasoning pro-

cess can be shown in detail. Even so, these games exist at the cusp of a com-

plexity explosion, which demonstrates that computational problems arise even

in small games whenever multiple agents are present.

The following case studies include games with two players, three players,

and a population of N players, but common features, such as bounded rea-

soning, are present in all of these multiagent settings. A diversity of evalu-

ation methods strengthens the central claim by showing how such limits to

reasoning and adaptation are universal in an empirical sense. The first two

experimental domains focus on predicting the behavior of artificially intelli-

gent computer agents and algorithms, while the final one investigates human

behavior. In the software agent setting, we can ask how agents based on a

model informed by meta-reasoning perform when placed in the given setting.

The agent-construction process may be less of a concern in the human cases be-

cause we are not as interested in outperforming as much as explaining through

prediction. However, we would like to show how population models can be

applied in each of these diverse settings (human versus computer, two players

versus many) to demonstrate their generality. The experiments are designed to
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apply the meta-learning and meta-reasoning processes generally across a vari-

ety of situations, but in some cases the settings require some custom changes

resulting from structural differences.

1.3 Experimental Case Studies

Throughout the work, I seek to answer the following questions:

• How do the abstract parameters of learning algorithms employed by

agents alter their behavioral signatures?

• Can we apply a meta-reasoning model built from knowledge about op-

ponents to predict behavior in new, unseen games?

• Does a meta-reasoning model replicate population behavior?

These questions are meant to investigate how to build behavioral models

that can transfer to new situations. We can evaluate these models by how well

they predict individuals, or if that information is unfeasible or inaccessible,

how well they predict populations. To answer these questions, I will explore

three experimental setups.

The first considers how to build models of learning algorithms in simple

games, which can be classified as a machine vs. machine competition. The

goal for this experiment, detailed in Chapters 3 and 4, is to construct an agent

that outcompetes the other participants in a tournament by building predictive

models. The second case study involves the Lemonade Stand Game tourna-

ment, where computer agents are designed by researchers to play against each

other in a competitive scenario. One significant twist in this game, as we will

see in Chapter 5, is that the game payoffs are shifted from match to match, so
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that model generalizability yields a major advantage. In Chapter 6, the third

set of experiments focuses on human experiments in the public goods game,

where models are trained on people vs. people interactions with the aim of

reproducing the behavior of the entire population. This type of goal is a rela-

tively unexplored one in these settings, but is important if we would like our

model to capture group dynamics.

1.3.1 Learning Algorithms in Two-player Normal-form Games

Question 1. How do the abstract parameters of learning algorithms employed by

agents alter their behavioral signatures?

A single opponent can be modeled given a historical sequence and the right

hypothesis space of algorithms. Chapter 2 introduces definitions, background,

and related work in game theory, multiagent learning, and prior opponent

modeling algorithms as well as formally presenting the proposed framework.

The various dynamical systems created by learning/reasoning algorithms

in a game have a small number of parameters in a handful of possible adaptive

rules. Chapter 3 presents several multiagent learning algorithms and investi-

gates in depth the unique properties of one called ε-greedy Q-learning. Chap-

ter 4 explores how a meta-reasoner can best model the algorithm used by an

agent in a simple two-action game. Along the way, we discover how differ-

ently structured learners show radically divergent behavior in certain famous

games like prisoner’s dilemma.

To be consistent with the overall thesis, I frame the problem as one of how to

use observed data to predict future behaviors, given that the player is learning

new strategies. This component can be a critical one in repeated games because

intelligent agents are usually not stationary. Since non-stationarity breaks the
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assumptions of traditional learning algorithms, the challenge is therefore to

construct a model of the learning itself and then to fit that model to data, in a

process defined as meta-learning. Although this document focuses on the sim-

plest games, the techniques used can inform an approach for richer domains.

Features for Modeling Learning Algorithms

Consistent with the central thesis, Chapter 4 will show how a meta-reasoner

can correctly model the actions output by a learning algorithm with a com-

bination of a set of base strategies and the optimal discounted responses to

its opponent. The process is based on the idea that learners will converge to

an optimal strategy given enough state representation, in this case knowing

the actions of each player in the previous round. The problem at hand is to

identify opponents who are responsive to cooperation, and by extension the

optimal amount of cooperation to offer. Answering this question requires a

modeler to identify the amount and type of learning displayed by the other

player, regardless of the particular algorithm employed.

In some cases where convergence is not assured but a payoff higher than

minimax is possible, the learner exhibits ongoing dynamic behavior and so

the model requires a way to capture the relationship between the opponent

reward and strategy. This extra step can be accomplished by extending the

features of the default meta-reasoning model to be weighted by the average

reward received. In each of these cases, the modeler’s optimal strategy can be

best described as having the aim of entraining or teaching its adaptive oppo-

nent. There exist special cases where the behavior output by a learner will sub-

stantially differ given a new set of input observations. Fortunately, the meta-

reasoning model can be extended to adapt itself in the face of different levels
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of rewards, so that the change in model is a linear function of the deviation of

reward.

1.3.2 Reasoning Models in the Lemonade Stand Game Tour-

naments

Question 2. Can we apply a meta-reasoning model built from knowledge about oppo-

nents to predict behavior in new, unseen games?

In Chapter 5, I focus on evaluating the proposed meta-reasoning model

in an agent-tournament setting where the payoff rules are never exactly the

same and is based on original work that has been published [Wunder et al.,

2011, 2012]. The central claim remains: that a strategic hierarchy exists, can be

learned automatically, and applied effectively to predict behavior in a general

way. Furthermore, to abstract the decision-making process, we can use the

same parameters identified by researchers in simple human experiments. To

validate this approach, I undertake a dual-pronged attack.

The first method of evaluation depends on successful classification of indi-

vidual agents, and measuring how well they do against a specific population

of strategies. Essentially, this line of inquiry is concerned with proving the

soundness of the resulting strategic hierarchy. If an agent identified as using

a certain depth of reasoning does well against others that it should be opti-

mized against (because they were identified as such), then this result would

provide evidence that the reasoning model is well-formed. If it does not, then

either some of those agents were mis-classified or something is wrong with

the hypothesized reasoning model. An even stronger piece of evidence would

show that more sophisticated agents (again, as defined by the model learner)
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perform better on average, although there are exceptions to this rule in some

circumstances. The second, and more important, mode of evaluation involves

strategy design, in which a computer agent is built after or during the learning

of the model. Evidence for the claim therefore rests on performance of the re-

sulting strategy in a competition of players, because if it does poorly (or worse

than a competing algorithm) we cannot say the model adds any value.

Many researchers have focused on the problem of building models of single

opponents. Chapter 5 explores four separate tournaments of a novel multia-

gent environment called the Lemonade Stand Game (LSG), in which computer

agents competed to maximize payoffs in a three-player game. When a game

has three players, the challenge deepens as the number of pairwise interac-

tions grows quadratically with N, the number of agents. In addition, when

game payoffs shift from game to game, high-level knowledge encoded in the

reasoning strategy must be transferred to new situations. The tournaments in

the succeeding years gradually grew more complex, moving from a completely

symmetric setting to one that changed every new match, where players could

remember history over time. The formal model presented in Chapter 2 han-

dles these types of challenges very well and an agent applying the lessons of

the model won the last two tournaments.

In Chapter 5 of the dissertation I characterize unknown, real-life agents ac-

cording to the two factors and three base heuristics. The LSG provides a sim-

ple and yet rich environment to test the predictions made by a meta-reasoning

population model, as well as the sophisticated strategies created by the model.

Prior approaches tend to ignore or downplay the strategic decision-making ca-

pacities of rival agents, and yet the field simply lacks a better algorithm to com-

pare against. In games with different payoffs, they are not appropriate because
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the old knowledge is obsolete unless projected into a reasoning space like the

one described earlier. We show that a meta-reasoning model has a significant

advantage when predicting the behavior of groups of reasoners.

Features for Learning a Level-based Discounted Model

This section explores how to use meta-reasoning as described formally in the

next chapter to solve this concrete learning problem. In a game where play-

ers aim to stake out good actions in early rounds, successful strategies need to

both send a teaching signal and tailor this signal to have maximum effect by

inferring who will be receiving it. Reasoning plays a critical role when there

is a limited observation window, and a complex action space forces agents to

do some limited computation, but agent sophistication is necessarily unequal.

A simulated environment allows for estimation of the distribution over the

depth of reasoning that individual agents, or the whole population of agents,

perform. The relationship between discount rates and regret are also a central

focus as location games create exactly the type of standoffs where the play-

ers’ relative future action values become an important consideration. Meta-

reasoning therefore prescribes doing long-term planning with the parameters

learned from prior interactions. This planning amounts to a simulation of the

coming game before it takes place, so that the agent can compute long-term

values of the first action in the game.

Experimental Results

Keeping with the overall evaluation procedure, the experiments emphasize

tournament performance. While inter-game learning was only allowed in one

of the competitions, this limitation gives a unique opportunity to see how well
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the meta-reasoning framework performs with regard to reasoning without the

threat of agents changing between games. It turns out that even in the com-

petition where learning was allowed, only our Rutgers agent was successful

in building a complete model and using it to plan. This outcome further sim-

plifies our task because it means that the strategies are mostly stationary over

many games. To evaluate the proposed method, an agent generated from the

meta-reasoning algorithm will be tested against all the agents from each of the

tournaments. A meta-reasoner should do well against each constituent popu-

lation.

1.3.3 Populations of Heterogeneous Strategies in Public

Goods Games

Question 3. Does a meta-reasoning model replicate population behavior?

Prior sections deal with small populations of two or three opponents, which

can be modeled individually with a small number of relations between partic-

ipants. Chapter 6 poses the question of how to build models when the pop-

ulation has larger number of agents, where an exploding number of pairwise

interactions creates large computational challenges as well as data sparsity. As

such, we will represent the information each player uses to build a strategy in

a compressed form, where only average or total actions are available, thereby

making the assumption that the joint opponents act as one big opponent. We

note that this assumption is not always valid but depends on the nature of the

payoff function and whether it incorporates group actions as a whole.

Specifically, for this chapter I provide an analysis of a series of experiments
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conducted on Amazon Mechanical Turk where a medium-sized group of par-

ticipants interact via a social network topology to play the public goods game,

a ten-round repeated game that has been documented in a recent paper [Wun-

der et al., 2013]. Each player has five neighbors. The overarching goal of be-

havior prediction is still present, although here the behavior of populations in

the aggregate becomes more salient in contrast to small numbers of opponents.

As such, the emphasis will be on predicting population-wide distributions of

behavior, in terms of the target output. In some cases, heterogeneous models

will help achieve this goal. The available data contains records from some indi-

viduals over many matches and in several different experimental treatments.

This data allows for analysis of short-term reasoning (within the ten rounds)

and long-run learning as a result of experience.

The strategies employed by people in medium-sized groups (5-30) can re-

semble reactive rules when an individual’s action does not have a major impact

on the utility of others (and vice versa). Reasoning about others can be difficult

in medium-sized groups due to the large number of interactions, which can

cause a reliance on heuristics to decide behavior. People often stay tied to their

own prior behavior as a predictive variable, but also respond weakly to group

behavior, although the effects strengthen if others are acting in an exploitative

way. In other words, we might ask how players are characterized among the

base strategy set and how strategy selection changes over many trials. There is

some evidence that players do some forward planning under the expectation

that their behavior has some effect on neighbors. In addition, the social nature

of the public goods payoffs leads to reciprocation reducing to reciprocation, so

that higher-level strategies closely resemble the base strategy class. Therefore,
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I claim that within the reasoning structure I am exploring, players exhibit be-

havior consistent with the base strategy set with some forward-thinking. The

support for this claim is found by using the model to replicate the behavior of

groups. Forward-looking reasoning, where it exists, is expressed by checking

how sensitive players are to future payoffs, that is, how much does behavior

correspond to maximization of a future discounted investment function.

A common observation is that people adopt strategies across a range of

types, showing a great deal of diversity. Given an experimental data set, we

can use the techniques discussed here to learn the distribution over the vari-

ous types and reconstruct an artificial population that behaves very closely to

the original. This chapter will investigate how the multiagent cycle informs

a predictive model of group behavior in a large set of public goods games in

online experiments. For training data, I use either all players in all games (mi-

nus one for testing) to build a homogeneous model or a fraction of a single

player’s games in the heterogeneous model. In many cases, the simplest mod-

els are superior to more complex ones, and are therefore good candidates for a

population model for an attempt at replication.

Features for Predictive Models

There are two main approaches of using models to predict behavior. One is

to evaluate predictors of individual behavior, and another is to test these pre-

dictors in aggregate to evaluate predictions of group behavior. Within these

goals we can subdivide the models further into a single homogeneous model

that attempts to explain all individuals, and a heterogeneous model that fits

each individual specifically. I propose and test a diverse variety of predictors

and report how they perform. These predictors represent strategies across the
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reasoning hierarchy, previous models proposed by researchers in the field, and

other non-behavioral methods from the supervised learning space that offer

a comparison without much explanatory value. Other researchers have pro-

posed that players behave according to a set of types, such as free-rider, al-

truist, or conditional cooperator [Fischbacher et al., 2001]. My investigation

extends this concept to a spectrum of strategies that assign some amount of

each type to agent behavior. In particular, I used a regression model with var-

ious simple features as the base strategy, such as previous round action and

previous average neighbor action. For a forward-looking reasoner, I add in

the discount factor for estimating future returns on current contribution. The

shape of this decision function turns out to be player-specific.

Building an Empirically-based Computational Social Model

Once we have a distribution over the parameters of a simple predictive model,

we can truly test it by assembling artificial agents who execute the model. Eval-

uation consists of measuring the difference between the population’s simu-

lated behaviors compared to the actual ones seen in reality. Because the simu-

lation process outputs a distribution over actions over many games, a method

for comparing marginal distributions is necessary, and in this case Kullback-

Leibler divergence suffices.

Empirically Informed Simulations in Networks

With a substantiated model, we can turn to questions that cannot be answered

with human data due to time, cost, and feasibility constraints. For example, we

can test how our human-agent models behave in various network topologies,

with arbitrary numbers of nodes, through simulating a network populated by
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the agent models fitted from the data. This type of experimentation, known

in the literature as agent-based modeling, has gradually become more appeal-

ing to researchers in a variety of fields, especially in social sciences but also

natural ones like ecology. However, in many cases these modeling approaches

lack empirical support, and the results amount to little more than thought ex-

periments that depend heavily on implementation details. On the other hand,

when the model is built from actual human data, it assumes a more meaning-

ful and powerful form. Because the model has been shown to replicate these

behaviors, the conclusions drawn from further simulations are more likely to

have real-world validity.

1.4 Why Multiagent Learning?

Before examining these domains and their corresponding algorithms, it makes

sense to ask why we should study them and where this work is situated in the

literature. After all, the game theorists would have us believe that the equi-

librium framework is the end of the story, with no need for learning because

all participants will either have ”solved” the game, or will lose to players who

have.

Shoham et al. 2007 addressed this issue by noting that there are many real-

life examples where an equilibrium analysis is invalid. The authors go on to

identify five main agendas in the field of multiagent learning, which are often

conflated or left implicit. They are:

• Computational

• Normative

• Prescriptive, cooperative
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• Prescriptive, non-cooperative

• Descriptive (Predictive)

These goals are listed in descending order of theoretical value, and ascend-

ing order of practical application. The computational agenda views learning

algorithms as a way to compute some property of a game, such as an equilib-

rium or its corresponding strategy. They are used as a substitute for a search

algorithm to arrive at the same goal through a series of interactions.

A normative analysis would seek to find properties of learning algorithms,

such as which types of learners are in equilibrium with each other. Perhaps a

contrasting question would be which algorithms are not in equilibrium with

themselves, when this outcome might otherwise be expected. Chapter 3 on

learning algorithms will provide some analysis from this viewpoint.

The two prescriptive approaches come from the standpoint of designing

agents to interact in a multiagent environment. In the first one, cooperation

or coordination of a population of decentralized agents is required to achieve

some high-level goal, like a team of robotic soccer players in the Robocup

tournament. As computerized agents have proliferated in virtual and phys-

ical space, adequate mechanisms for designing local protocols have become a

tantalizing prospect. The likely advent of self-driving cars in the near future

is one large-scale application of this agenda. A good or best equilibrium is

certainly desired by traffic engineers, but finding it is not the central problem.

In non-cooperative settings, the agent-design goal acquires a different fo-

cus, namely high performance when interests of competing agents are non-

aligned or in direct opposition. Equilibria are not a primary consideration for

problems of this nature. This context is perhaps the closest to traditional AI

questions of how to build an effective strategy for a given environment. The
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main difference, of course, is that additional agents add instability, complexity,

and an external source of intentionality. It is perhaps this reason that serious

progress in the field has remained elusive. That is, building agents with social

components is inherently difficult because the number and complexity of the

required models are potentially unbounded.

Finally, the descriptive/predictive agenda aims to construct learning mod-

els that represent natural agents, such as people, as they interact in social en-

vironments. As a slight change to the original list, I have added prediction as

a supplementary goal for two reasons. First, we may want to describe a set

of interacting agents because we wish to predict their behavior, say as the re-

sult of some change to the game rules or state. Second, a full descriptor of an

intelligent agent should be able to replicate its behavior under a set of circum-

stances, and should therefore be able to predict the actions of that agent under

those same circumstances. If a model of a learning agent is not successful in

predicting the actual behavior better than a random or other baseline predictor,

we cannot conclude that it has captured that behavior.

This dissertation focuses primarily on the fourth and fifth agendas of this

list, with some attention paid to the second. Another way of explaining

this dissertation’s contribution is that the framework works through predic-

tion/description (Agenda 5) of software or human agents, where the goal is to

create a competitive agent by using the model (Agenda 4). Therefore, the pro-

posed framework acts as a bridge between several of these agendas, as well as

between radically different domains.

The next chapter lays out the formal framework and definitions used

throughout the rest of the dissertation.
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Chapter 2

A Framework for Transferable Strategic
Meta-reasoning

Here, I describe the major components of a model of strategic intelligence.

First, however, let us review game-theory background as well as the founda-

tional assumptions generally accepted in the fields of economics and tradi-

tional game theory where decision makers are concerned. The study of multi-

ple self-interested agents was formally introduced by Von Neumann and Mor-

ganstern 1944 and is the basis for the models investigated in this thesis. In any

interaction between two or more individuals, we define the population P as the

set consisting of all participants playing the game. The nature of this popu-

lation will be of particular interest later on. Many of the following definitions

and concepts are common knowledge in the field of game theory, but the forms

used here are from the book Multiagent Systems [Leyton-Brown and Shoham,

2009] unless otherwise stated.

Definition 1. Define a game of strategy Γ as Γ = 〈P, A, S, U〉 consisting of:

• P: Population of N players indexed by i

• Ai: Set of M actions available to the player i

• S: Set of states of the world

• Ui(S, A): Utility function for i, S ×A → R.
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For shorthand, we may speak of joint actions to capture the population

behavior: a = (a1, a2, ...aN) where agent j’s action is aj∀j ∈ P is an instance of

a joint action while A = A1 × A2 × ...× AN is the joint action space. Faced

with joint action a, player i sees opponent joint action a−i. For the time being,

let’s assume complete information: each player knows this space as well as all

utility functions of the population. Players also choose actions at the same

time. Another useful concept is that of a strategy, which essentially means a

distribution over actions, where πi(s, ai) is the probability that agent i chooses

action ai in state s. If there exists an action ai for which 0 < πi(s, ai) < 1, then

we define πi as a mixed strategy, and otherwise it is pure. Analogously, there is

an opponent strategy, π−i, which may also be mixed.

2.1 Equilibrium

The bedrock concept of game theory is that of equilibrium [Nash, 1951]. In the

world of individual game players, this concept, called the Nash equilibrium

after its inventor, John Nash, has been inseparable from game theory ever since

it was first developed. A population in a game will be in equilibrium if each

player is playing a stable strategy, where there is no incentive to unilaterally

change to a new strategy. To help expand the notion of a stable strategy, it is

necessary to introduce the idea of a best response B, which is a strategy that

produces the highest utility given an opponent strategy.

Definition 2. (Best response) A best response of player i to joint strategy π−i is a

strategy B(π−i) = argmaxπ̂i
ui(π̂i, π−i).

Note that a best response may consist of a mixed strategy. If that occurs, it

means that the actions with positive probability have equal payoffs under the
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current joint strategy.

The difference in utility between any strategy and the best response is

known as its regret.

Definition 3. (Regret) The regret of player i for playing strategy πi against joint

strategy π−i is the value ρi = maxπ̂i u(π̂i, π−i)− u(πi, π−i).

Finally, combining the definitions from above, we reach the definition of

Nash equilibrium, discovered by Nash as a solution for a given game.

Definition 4. (Nash equilibrium) A Nash equilibrium is a joint strategy π∗

at which no player has the incentive to change its strategy (unilaterally), so that

∀i maxâi ui(âi, π∗−i) ≤ u(π∗i , π∗−i).

In other words, the regret for all players in a Nash equilibium is zero.

One more definition regards an action that always (or never) produces a

payoff that is greater than some other action, keeping opponents fixed.

Definition 5. (Dominant action) Action a∗ dominates action a′ if

∀a−i, ui(a∗, a−i) ≥ ui(a′, a−i), and ∃a−i where ui(a∗, a−i) > ui(a′, a−i). We

call action a∗ dominant and a′ dominated.

In a Nash equilibrium, no player plays a dominated action. Conversely,

a rational player should always play a dominant action if it is the only one

among all other actions. Connecting these two concepts more deeply, a

bedrock assumption of game theory is that perfectly rational players should

only play a Nash strategy, resulting in a Nash equilibrium. If players do not

reach an equilibrium, than at least one player is not rational.

For a population of two or more players to be guaranteed to exist in equi-

librium, two assumptions must hold. One is that all players are fully rational in
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the sense that they want to maximize their profit and have the knowledge and

capacity to do so. The second is that they know all other players have the same

degree and powers of rationality, the so-called common knowledge assumption.

Implied in this arrangement is that if at any point in time the players had less

than perfect knowledge, they will learn completely and instantaneously ev-

erything they did not know, due to the underlying profit motive. The result

of these assumptions is that players essentially perform an infinite amount

of reasoning in constant or zero time, and are able to solve any problem or

completely optimize their strategies. Furthermore, the players do not incur

any additional cost for this optimization. The result of this process is that the

profit maximization objective is attained for all, by which point the population

achieves a Nash equilibrium.

As a theoretical tool, the advances of this framework certainly have the ben-

efit of focusing researchers on relevant properties and possible stable outcomes

of strategies and games. However, as a tool for explaining and investigating

large social systems, the assumptions as stated fail to uphold many long-held

practices of the scientific traditions and practices economists have sought to

emulate. Specifically, the theoretical models do not match empirical reality. In-

deed, social groups tend to exhibit as much chaos as stability. In addition, from

a computational standpoint, the problem of finding a Nash equilibrium has

been proven to be intractable for large action spaces or as N grows [Daskalakis

et al., 2006]. This problem is multiplied if we are interested in repeated situ-

ations, which in practice are much more common than one-off contests. As

detailed by many economists [Aumann and Maschler, 1995], there can be in-

finitely many equilibria between two players in an infinitely repeated general-

sum game, even when the one-shot version has only one. This situation raises
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the issue of how to craft a strategy so that the final equilibrium point is bene-

ficial in terms of average reward, creating a meta-game in the learning/teaching

space.

Definition 6. (Average reward) Given an infinite sequence of payoffs ui,1, ui,2, ... for

player i, the average reward of i is

ūi = lim
T→∞

∑T
t=1 ui,t

T
.

Another important concept is that of future discounted reward, which incor-

porates the idea that players place a higher priority on rewards received in the

near term than in the long term.

Definition 7. (Future discounted reward) Given an infinite sequence of payoffs

ui,1, ui,2, ... for player i and a discount factor γ where 0 ≤ γ ≤ 1, the future dis-

counted reward of i is

Ui =
∞

∑
t=1

γtui,t.

In repeated games, players must take into account the future effects of their

actions. Because of this central fact, some strategies can be enforced even if

they lead to short term payoffs that are suboptimal.

Definition 8. (Enforceable reward) An average reward ūi is enforceable if

ūi ≥ vi, where vi is player i’s minimax value, the least amount the player

can guarantee if other players adopt minimax strategies against i so that vi =

mina−i∈A−i maxai∈Ai ui(a−i, ai).

Definition 9. (Feasible reward) An average reward ūi is feasible if there exist ratio-

nal, nonnegative values βa such that we can express ūi as ∑a βaui(a), with ∑a βa = 1.

These definitions allow us to state a powerful theorem called the Folk The-

orem, which captures the range of possible values that can be achieved in the

presence of rational opponents.
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Definition 10. (Folk Theorem) Given a normal-form game G and any average reward

ū:

1. If ū is the expected reward for any Nash equilibrium of G, then ū is enforceable.

2. If ū is both feasible and enforceable, then ū is the average reward for some Nash

equilibrium of the infinitely repeated G.

The Folk Theorem allows for a wide variety of repeated strategies that can

result in average rewards that are higher than any single-shot Nash equilib-

rium of a particular game. A simple enforcement mechanism is as follows.

The players of the game take actions consistent with the enforceable payoff. If

at any point some player deviates from the prescribed action, then all players

of the game resort to their minimax strategies against that player. For suffi-

ciently high values of γ in the future discounting case, it will be optimal to

accept the enforced strategy rather than attempting a different one.

The famous game of Chicken (see Table 2.1, explored in detail later) illus-

trates the conflict between a rational desire to minimize our own regret on

one hand, and expecting the opponent to be rational in response to our teach-

ing stance on the other. This direction of inquiry has led to work in several

fields [Littman and Stone, 2003; Press and Dyson, 2012], but it remains a chal-

lenging question to decide whether to hold fast or give in. Often it is noted that

a ”theory of mind” can be a necessary component to constructing a rational re-

sponse to learning opponents, and I will be addressing this issue shortly. As

such, I will use the term meta-learner or meta-reasoner to refer to agents that

do some opponent modeling of the reasoning process and also use observation

data to inform their model.

Definition 11. A meta-reasoner or meta-learner is an agent implementing a learn-

ing process in which it explicitly models another agent or agents according to their
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reasoning or learning mechanism, provided experience of their behavior.

A more nuanced way of understanding rationality is to define it as a dimen-

sion of agent behavior that can be high or low depending on the agent taking

the action, instead of viewing it as an absolute feature fixed at an extreme point.

To incorporate bounded rational strategies, empirically speaking, researchers

in the field should ask how rational a population of players is, which deci-

sion rules they use, and so on, instead of taking these qualities as given. This

agenda is more in line with the goals of artificial intelligence, going back to the

writings of Nobel-prize winning economist Herb Simon 1982.

A supporting concept in economic theory is the widespread use of a repre-

sentative agent, which goes back to the earliest days of mathematical economic

modeling [Marshall, 1890]. Essentially, to simplify analysis, the behavior of

all agents in the world is assumed to be represented by a single agent with

a standardized set of beliefs, preferences, payoffs, etc. Even many laboratory

experimenters in this space fall back to the temptation of defining the popula-

tion according to the representative agent, thereby ignoring the heterogeneity

of human behavior. To address this shortcoming, theorists and behavioral re-

searchers alike need richer models of reasoning to make significant progress in

long-term, sequential environments, and advanced algorithms are required to

implement them.

Ironically, economists of all stripes have persisted in a strong, narrow defi-

nition of rationality without developing such methods, which advanced rea-

soners would presumably have access to in reality. In addition, models of

phenomena should have an empirical basis, even as they attempt to gener-

alize strategies across a population. Recent years have witnessed the rise of

the fields of algorithmic and behavioral game theory, and computer scientists
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have been at the forefront of efforts to build predictive models of people. On

the software side, there has been an emergence of practical approaches like em-

pirical game models [Jordan et al., 2010], which explicitly include simulations

as a necessary step in the problem-solving process. Empirical games typi-

cally represent population behavior as an aggregated strategy profile, and the

model-construction process may even use game-reduction methods for greater

speedup. These simulations aim to discover equilibria among the provided

strategy set by repeatedly selecting the best agent strategies from games among

subsets.

This document aims to take such approaches one step further, towards the

aim of building profiles at the level of strategic sophistication. At a high-

level, this approach is focused on the problem of constructing and learning

such models of collective reasoning, and evaluating them for the purpose of

simulating and predicting group behaviors. The empirical view of multiagent

learning parallels the discipline of machine learning: projecting a set of sam-

ples into a low-dimensional space for the purpose of predicting new samples.

In our case, however, the space consists of the result of applying reasoning or

learning algorithms.

2.2 Level-k Reasoning and Non-reasoning Strategies in Re-

peated Domains

The main alternative to the unlimited rationality approach is a finite reasoner,

and the most common version is one that iteratively applies steps of reasoning,

in the form of best responses, to some belief over strategies, starting at a base

set of strategies. The idea of iterated reasoning rests upon two tenets: that a
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step of reasoning is well-defined and that a non-reasoning strategy exists. For

our purposes, strategic reasoning is the act of making decisions in the context of

the actions that another agent is believed to take. A step of reasoning is the direct

payoff-maximizing response to some set of these beliefs—formally, a single ap-

plication of optimization rule B(π−i) . Recursive application of best response,

also known as iterative best response (IBR), will output a cognitive hierarchy of

strategies. The first step, or level, up the hierarchy would in essence be a direct

response to a belief that the population is composed of non-reasoning agents,

known as the base strategies.

Definition 12. (Base strategies) A set of base strategies Σ consists of the probabilis-

tic strategies that can be derived without knowledge of utility function.

The second step requires the formation of a new set of beliefs composed

of the strategy derived from a step of reasoning over the first set. This choice

of non-reasoners is therefore a crucial determinant of the ultimate hierarchy.

Without these beliefs, there exists no ground for reasoning to stand upon, and

it is impossible for optimization to take place.

A non-reasoning strategy is broadly defined as one that does not use pay-

offs to make a decision, potentially covering a wide range of behaviors. It is

important to note that a non-reasoning strategy, usually consisting of a fixed

mapping over actions, can depend on the type of game it exists within. Reason-

ing requires a belief about opponents, and the first step starts by considering

simple strategies that represent basic reactions and do not optimize perfor-

mance. It should be mentioned that most of the literature in this space consid-

ers single-round games, where it is not necessary for base strategies to include

multi-round play. However, it is impossible to rule out defining non-reasoning

play that somehow depends on prior action, since we could always define the
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strategy as one that selects a single action for the whole game. We will pri-

marily consider three action primitives to form a base strategy, which can be

combined together in various ways to form a mixed type: uniform, previous self,

and previous other.

A typical choice in one-round games is uniform randomness: ∀aj π(aj) =

1
|Aj|

. In one-shot games, where a single action is played and then the game

ends, uniform random action is a simple and unbiased way to cover the range

of actions, guaranteeing that any strategy responding to it must outperform

this unsophisticated base case. Uniform randomness neatly represents a com-

pletely uninformed player, who might not understand or care about the rules

and payoffs, and is therefore equally likely to choose any action. Some other

choice of base strategy, such as only choosing action a1 so that π(a1) = 1, could

lead to flawed conclusions in some cases, like if all actions have equal utility

against it. This situation might have the undesirable result that a dominated

action is played in response by a reasoner, which could be the worst possible

choice. A uniform opponent will at the very least rule out that outcome, be-

cause there will be another action that performs better than the dominated one

against a uniform distribution over opponent actions (by definition of dom-

inated action). Uniform randomness has another advantage in that a player

who optimizes against it in a symmetric game will do at least as well as a ran-

dom player would, which is important because otherwise she should choose

an action at random.

However, if a game is repeated multiple times, past action can be a determi-

nant of future action, even without allowing for payoff maximization or agent

reasoning. The well-known psychological effect of anchoring or priming cre-

ates a tendency to make decisions in the context of what came before [Tversky
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and Kahneman, 1974]. In practice, this phenomenon leads to repeated actions,

so that a fixed, unchanged action is an important part of the base strategy set.

From the perspective of our hypothetical reasoner, a fixed opponent mimics

an environment with a stable state, allowing for a less strategic but still potent

response. In fact, these two basic strategic components, fixed and uniform,

combine with reasoning elements to cover a wide range of conceivable base

strategy sets seen in populations because together they represent the forces of

stability and change in a strategic environment.

A final reactive type is to vary play in direct relation to opponent action.

This strategy can still be considered non-reasoning because it ignores out-

comes, and it represents a mirroring function. Imitation is the most basic of

adaptive strategies, as it carries a recognition that a player defers to another’s

judgment. Conveniently, copying another player’s action fits with the idea of

reciprocity, which is a core concept in dilemma games. A similar kind of re-

action would be to play the opposite of another player or players, which taps

into the tendency of people to differentiate from others.

Upon closer examination, we can propose the following theorem:

Theorem 1. If an agent has the memory of the current round, the only choices for

non-reasoning strategies are combinations of randomness, repetition, and imitation,

and their complements.

Proof: The non-reasoning strategy set has no knowledge of utilities (or

more precisely is blind to them), so we cannot include a dominant action in

the mix. Other possibilities, like arbitrary distributions, are equally likely and

therefore amount to uniform randomness. That leaves actions that depend on

the known current actions: the non-reasoning agent, or its opponents. The first
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case leads to either repetition or anti-repetition, and the second leads to imi-

tation or anti-imitation. We have thus exhausted the possible candidates for

non-reasoning strategies given one round of memory. �

We will explore various multiagent settings where the three pillars of con-

stancy, mirroring, and randomness arise again and again, if for no other reason

than that there is no simpler strategy that is also symmetric or unbiased over

actions. Going further, the above theorem states that if payoffs are not taken

into account, these three choices (or their complements) are the only options

available to a non-reasoning player. Fortunately, they provide a robust and

computationally efficient basis for reasoning to begin in many of these envi-

ronments. An additional justification for this base reasoner definition is that

it contains several behavioral qualities that people use in their everyday lives:

keeping things steady, imitation, and exploration. In general, we refer to the

probability that a non-reasoning strategy repeats its previous action as φ, the

probability of copying another’s strategy µ, and the probability of random ac-

tion as ε. A probabilistic base strategy therefore consists of a stochastic mixture

of these baseline actions, which we just proved to be complete for next-step

blinded response. Representing a base type as a stochastic mix of other types

lends a great degree of flexibility when we would like to classify observed be-

haviors and it is impossible to fit a player into a single box. It also strictly adds

generality in the sense that we could represent a pure base strategy as only one

of the action primitives simply by setting the relevant probabilities to 0 or 1.

A set of base strategies combined with a reasoning rule leads to a strategic

hierarchy.

Definition 13. (Strategic Hierarchy) A strategic hierarchy H for utility function U is

a set of base strategies Σ, a sequence of strategies indexed by k corresponding to ordered
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levels, and a rule of assigning beliefs to strategies in level k− 1 down to the base level

0. A rule is response based but the response can be output with some noise.

We call an agent that performs reasoning within this hierarchy a strategic

reasoner.

Definition 14. (Strategic Reasoner) A strategic reasoner is a high-level function over

a strategic hierarchy H, utility function U, and distribution over levels σ, which

chooses a level-based strategy πk ∈ H with probability σk.

There are several design decisions for learning or reasoning agents besides

the selection of the base set. One variant of this iterated best response model

is the level-k reasoner, which believes that all members of the population do

exactly k − 1 steps of reasoning/optimization. Another option, the cognitive

hierarchy model, rests on the assumption that the population consists of some

distribution over levels 1...k− 1 and as such is somewhat more robust, for the

same informal reason given earlier in regards to the uniform base strategy. Us-

ing a distribution over levels, as with actions, helps to optimize higher-order

strategies against each of the possible strategies present at lower levels as well

as to eliminate blind spots. There is also a great deal of laboratory evidence

that these models are a better representation of human decision-making. Ul-

timately, the success or failure of a given hypothesis class is determined by

its ability to generalize empirically to the true population. Whichever form of

level computation process is used, the resulting level-types are universal, in the

informal sense that any strategy can be classified as one of them, with some

residual error. The only question is how accurate the resulting classification

will be in terms of behavior prediction, an outcome that depends partly on the

hypothesis class itself.
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When we speak of individuals, it is possible that agents may draw actions

from several of these levels, so that we may say they have a certain strategic

“center of gravity” but are not limited to a specific level. In this view, player

i’s depth of reasoning is best represented as a distribution ~σi where σi,k is the

probability that agent i demonstrates behavior derived from k steps of rea-

soning. Finally, in repeated games, we may need to distinguish between the

reasoning done initially, in the so-called stateless game, and the decisions made

once the game begins and there is some historical state. Even within a single

agent, there may be differences of behavior in the two situations, owing to the

fact that some of the base strategies require a previous action for initialization.

Therefore, let us propose two separate distributions ~σI for initial actions and

~σS for the remaining actions. The distinction between these two kinds of deci-

sion is analogous to a prior belief versus a belief informed by evidence in the

Bayesian sense. A decision made solely based on priors may diverge quali-

tatively from one made using an inference process because there is no reason

why they would be innately linked in heterogenous individuals. In a simpler

sense,~σS represents a probability conditioned on the game state or joint action.

The mechanism behind constructing these reasoning models is intertwined

with fitting the model to data, which can present new problems on the com-

putational front as there is often a tradeoff between precision and complex-

ity. In this context, an estimated value va is simply the weighted sum of util-

ities from that action, where the weights are the probabilities of the strate-

gies of the opponent j: va = ∑aj
πj(aj)ui(a, aj). In both the cognitive hier-

archy and level-k, some action value va estimate is attained for all actions,

which then must be converted into a strategy, meaning that some decision
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rule is necessary. One possibility is the maximum action value or best re-

sponse, πi(ai) = arg maxai vi(ai), or some mixture of the max action and uni-

form noise (the ε-greedy rule). Another popular choice is the quantal response

function [McKelvey and Palfrey, 1995], also known as softmax or Boltzmann,

which exponentially weights the action probabilities by their estimated values.

Definition 15. (Quantal response) A quantal response of player i to joint strat-

egy π−i is an exponentially weighted strategy tuned by precision parameter λ:

QRE(π−i, ai) =
exp[λ·vi(ai)]

∑a′i
exp[λ·vi(a′i)]

.

This function over precision parameter λ yields a range of cost-proportional

strategies between playing only the best action when λ = ∞, and all actions

uniformly equally when λ = 0.

2.3 Learning in Multiagent Environments

While reasoning can take place before an opponent is ever encountered, the

mechanism of learning allows for adaptive behavior after an interaction starts.

There are many learning algorithms that have been applied to game environ-

ments, with varying degrees of success. Some methods are designed to reach

an equilibrium after a certain time period, while others find cooperative out-

comes that are unstable. All of these algorithms share the property that they

use experience in the game to generate new behavior, towards an objective of

higher rewards.

Definition 16. (Strategic learner) A strategic learning agent i implements an up-

date rule L(πi,T−1, π−i,T−1) which outputs a new strategy πi,T so that if πi,T(aij) >

πi,T−1(aij) and πi,T(aik) < πi,T−1(aik) , then u(aij, π−i,T−1) > u(aik, π−i,T−1).
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We assume that T refers to trial T, which may consist of several rounds of a match,

depending on whether each match has a single round or many.

Some learning algorithms operate using a prescribed learning rate α, which

may change over time. Most algorithms also undertake some exploratory ac-

tions to evaluate the various courses of action open to it, if action is necessary

to gain further experience. This exploration is sometimes described as noise

or precision. We can broadly distinguish between two types of learners: value-

based and policy search, which differ in their decision-making and exploration

selections. Value-based learning tracks the values of actions taken, measured

by the payoffs received. Policy search directly alters the probability that certain

actions are taken along a positive payoff gradient.

Instead of attempting to fit the actual dynamical system that can take any

of countless forms, this dissertation will focus on using the meta-reasoning

framework as a general algorithm for modeling the externally-observed be-

haviors. In some cases, the basic model will have to be adapted to account

for different learning outcomes resulting from changes in the strategy used by

the modeling agent. The variation in outcomes has two sources. One is that

the policy optimized over discounted future rewards (see next section) changes

when the modeler’s strategy changes. The second stems from the mix of strate-

gies that occurs as a result of the learning process itself, which we might call a

dynamic equilibrium. These topics will be covered in more detail in Chapter 4.

2.4 Planning over Discounted Time Horizons

While learning can be applied in situations where there is repeated feedback,

there may be choices to be made based on the limited information available.
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We will refer to a process of planning to describe action in cases where immedi-

ate experiential knowledge is scarce but a sequence decisions needs to be made

nonetheless. The task of planning has been explored a great deal throughout

the history of artificial intelligence [Sutton, 1990]. Here, we focus on one aspect

of the planning process that is encapsulated in the time horizon used to make

decisions.

The time dimension of decision makers can have a big impact on the deci-

sions taken, especially when learning or reasoning is involved. It is important

to know whether a set of agents is making decisions to maximize short-term

or long-term payoffs, as sequential decisions are meant to lead to some goal.

Behind the forward-thinking decision is the discount factor γ. This parameter

can be viewed as a proxy for patience or valuing the future, as it is used to

downweight future rewards and is typically used in descriptions of sequen-

tial decision making and in many economic settings. The valuation method

known as the time value of money uses this method of exponentially declining

future values, and so has a strong basis in financial operations [Williams, 1938],

whether or not it is an accurate picture of human behavior. A discounted fu-

ture reflects the universal conflict between smaller rewards now and delayed

higher rewards some time later. It is especially required when the future states

or rewards are uncertain, such that some evidence about the distribution of

the current world must be acquired through learning. In sequential domains,

these tradeoffs must be made all the time. We will explore settings where the

amount of discount applied to future utility changes the strategies employed,

with a new finding that ties regret to future expected gains.

Given its potential impact, it is surprising that this factor has not been in-

corporated in any opponent models in the literature. To address these issues
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Table 2.1: The game of Chicken. The two Nash equilibria are defined by the
(Hawk, Dove) and (Dove, Hawk) joint actions.

R/C Dove Hawk
Dove 3, 3 1, 4
Hawk 4, 1 0, 0

we now define a γ-model as one where discount rates play a prominent role

in the decision-making of strategic agents. Because γ measures how much an

agent values the future, a value ut received at time t is worth γtut at time 0.

This form is mathematically convenient because of the so-called memoryless

property of geometric discounting— we can always convert the value at step t

to the value at step t + 1 by simply multiplying by another factor of γ. Further,

this additional parameter allows us to minimize the considerations of induc-

tive depth by looking at the future as a whole and focus instead on strategic

depth.

To see the difference between these two forms of reasoning, consider the

game of Chicken (Table 2.1), which introduces the idea of a social standoff,

where one can either Swerve or Dare. (Alternately, the daring player is a Hawk

and the swerver a Dove.) A player does better if the other Swerves, but self-

interest dictates they should play the opposite of the other. Since two Hawks

are the worst possible outcome, the Nash equilibrium is for one player to be a

Hawk and the other to play the Dove. In a repeated context, it is possible for

players to enforce the social optimal outcome, although it may be unstable if

this efficient payoff is much less than deviating to Hawk. It also may be stable

for two players to alternate these roles, but there can be coordination difficul-

ties. Imagine a finitely repeated Chicken scenario where two players start in

the Hawk role, producing suboptimal utilities. As soon as one plays Dove,
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the actions are fixed for the rest of the game. It is clear that one player should

deviate from this arrangement, but when? If a player believes the opposing

player is going to be the Hawk for all time, he will end up as the Dove in the

last round. Due to inductive reasoning, this strategy unfolds to the present

moment. A player operating under this set of conditions applies a reasoning

rule to arrive at the belief that the other is a Hawk. From a strategic standpoint,

it is therefore more advanced and profitable for an agent to convince, or teach,

the other that she is in fact a Hawk.

At the same time, a player in a repeated game is faced with a learning, or

perhaps meta-learning, problem, against an unknown opponent from a distri-

bution of strategies. It may be the case that there is a distribution over possible

strategies and a decision rule is required to react to whichever members of that

population happen to be present in the current sequence of trials. For exam-

ple, imagine there is an unknown probability that a player will permanently

change from Hawk to Dove for the remainder of the interaction. Then, the

longer that the learner sees the opponent playing Hawk, the higher it must re-

vise the estimated probability that Hawk is played again. A Bayesian learner

might now expect to see the same number of Hawk moves it has already seen,

say for τ periods.

Here, we use this observation to further define the γ-model for use in re-

peated games. The discount factor γi is used to balance the desire to minimize

regret with the expectation that the opponent will back down, changing the

state of the game to a more rewarding outcome for the learner playing Hawk.

Two learners playing Chicken comprises a meta-game over the learning pa-

rameter space in which the player with the higher γi becomes the Hawk and

the lower γ player the Dove. As in the single-shot game, two opposing players
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with high γ have worse long-term utilities than two players with low values

of γ.

The problem of inferring a player’s γi given a set of observations amounts

to some simple algebra using the expected time for higher rewards along with

the current utility values. That means that the player will experience regret,

ρ, from the missed opportunity of playing Hawk instead of Dove, but antic-

ipates a future gain, G, from the other player eventually becoming the Dove.

Therefore, upon witnessing a player starting to play Dove in repeated Chicken,

we solve the following inequality for a bound on γ where the expected regret

exceeds the expected gains:

τ−1

∑
t=0

γtρ ≥
T

∑
t=τ

γtG

1− γτ−1

1− γ
ρ ≥ γτ − γT

1− γ
G

(1− γτ−1)ρ ≥ (γτ − γT)G

(1− γτ)ρ ≥ γτG

γ ≤
(

ρ

ρ + G

)1/τ

.

Assuming T >> τ, we therefore arrive at an upper bound for γ, given a switch

to Dove at time t = τ. Given γi, this equation can be used to yield an estimate

for the wait time:

τ ≤ logγi

(
ρ

ρ + G

)
.

This principle can be employed in any game situation with a standoff payoff

structure, such as location games as explored in later chapters. In location set-

tings, aggressive posturing often arises when two or more players find them-

selves fighting over the same territory. In this context, standing one’s ground
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is similar to being Hawkish, while moving to a less desirable location amounts

to a Dovish choice.

An alternative method for estimating γ, given an observed history, is to

view an action as an investment in a future flow of payoffs. In this context,

an action may be suboptimal in the current round, but it results in long-term

benefits because of the way that others will respond. As before, the calcula-

tion rests on the ability to project an agent’s expected future payoffs given its

beliefs. In other words, the amount of projected future reward as the result of

some action with a short-term cost will decrease over time, and at some point it

will make sense to switch to the better short-term option. The selected time for

this change will reveal the value of γ that would best fit the set of observations.

For example, if a player must pay 1 to get 1.5 in all future rounds (up to time

T), then she will stop paying at time τ when 1 ≥ ∑T−τ
t=1 0.5γt.

2.5 A Formal Model of a Population of Strategies

Definition 17. (Population Model) A population modelM of strategic agents is de-

fined as consisting of the following components:

• P: Population of N agents indexed by i

• S: Set of states

• A: Set of actions

• U(S, A): Utility functions S× A→ R

• M: Hypothesis set of learners or reasoners

• H: Set of hierarchies resulting from a reasoning rule
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• Mi(γ, ~σI , ~σS, (ε, φ, µ), U, si,t): Strategic learner-reasoner (corresponding to a

player i) over payoff function U, game state si,t, and model parameters:

– γ: the discount factor or time horizon

– ~σI : distribution over initial levels indexed by k, the depth of reasoning

parameter

– ~σS: distributions over state-based levels indexed by k, the depth of reason-

ing parameter

– ε: randomness probability

– φ: repeat probability

– µ: imitation probability

returns πi, the strategy function, a distribution over actions, at time t.

The meta-learning/meta-reasoning problem is to use training data D con-

sisting of input set X and output set Y. We shall assume that each input x

represents a sequence of states, composing a trajectory. Each output y refers

to a single action or joint action made by our sample population in the trajec-

tory denoted by x. A single trajectory xi = {s0, s1, ..., sT} consists of a finite

sequence of games, within a larger loop of repeated learning trials. Model hy-

pothesis Mi is a reasoning process that takes as input xi and returns a strategy

function πi, which in turn outputs an action yi. The strategy returned depends

on how hierarchy Hi constructs a πi from its parameters as well as the values

of these parameters for a particular instance of an agent. With enough obser-

vations of a real-world agent, we can then test this hypothesis to see if the

behavior matches sufficiently. Given the above model definition, the problem

analyzed in this document can be posed in two parts. First, how do we predict
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the actions of actual players in a particular game? Second, how can we build

agent strategies to respond well against an unknown population?

The goals of prediction and performance are often related, in the sense that

successful opponent prediction can lead to a stronger performance, and we

might evaluate the prediction in terms of eventual performance. However,

there may be situations where a researcher is not interested in building agents

but merely needs to makes sense of data, as in social network analysis. Agent

designers might not necessarily require accurate predictions as long as the re-

sulting strategy does well. Therefore, we split the problem in this way. We

should further note that game theorists rarely aim to predict behavior, even in

experimental contexts [Camerer, 2003; Costa-Gomes et al., 2001]. Instead, the

preference is for a post-hoc analysis as is the standard in econometric mod-

els, where the aim is typically to explain existing data, not predict future data.

Often the entire data set is employed when building models, opening these

analytic methods to criticisms of over-fitting.

Often, the resulting trajectories are themselves drawn from distributions

of behaviors, and so cannot be predicted exactly; high-performing results will

exist only in expectation. In effect, we are ultimately looking to infer the distri-

bution of strategic level-types across the entire population and may not be too

concerned about particular individuals unless we are able to identify them on

an ongoing basis for the purpose of prediction. This model definition provides

a hypothesis class C of learning/reasoning/planning algorithms that are can-

didates for explaining agent behavior even as the above parameters (or per-

haps utility functions or preferences) are unknown. Each hypothesized rea-

soner Mi operates on a trajectory and outputs a strategy function πt taking
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inputs (st, ui) and returning new action at+1. It is important to note that in or-

der to limit complexity of the meta-learner representation, we will assume that

the computation Mi carries out over trajectory x to output πt is constrained

to some simple mapping from current state and utility to action. For exam-

ple, a meta-reasoner might update a small number of variables to update this

strategy, but there will not be an exponential number of strategy function map-

pings from entire trajectories. Some examples of this type of behavior would be

particular iterated best response methods or learning algorithms. These have

been explored extensively in the literature under the description of Q-learning

or gradient adaptation and will be detailed in later chapters.

We can evaluate a hypothesis or the resulting meta-learned model instance

in a number of ways, depending on the desired goal. In one case, we might

want to test the performance of an agent designed to respond to the predic-

tions, while in others it might suffice to use the action–prediction error itself,

and ask whether we can predict within ε of the actual target behavior.

As a naive first attempt, we might consider fictitious play [Brown, 1951],

which assumes that a player will continue to demonstrate the same fixed strat-

egy that has been observed previously: π̂j. This basic model is equivalent

to assuming at each decision point that the other player is stationary and not

looking to change strategy over time or adapt it to a new situation to achieve

a higher score. Assume for the moment all players are fixed in their strategic

ability and play the same strategy in a given game G0. However, consider the

problem that occurs if a new game, G1, is played. The historical distribution

over actions π̂j is meaningless if we want to predict the next action. It is in this

scenario where a reasoning model can assist us by transferring the knowledge

gained from experience in G0.
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The model construction process investigated here proceeds over three

steps, corresponding to the strategy-function calculation, inference of the

model hypothesis, and application of the meta-learned model to new inputs.

The representation of the strategy function depends largely on the hypothesis

choice, but also on how we would prefer to measure an agent’s action preci-

sion. While purely rational agents achieve perfect precision, we might wish

to allow for some noise, whether we take this noise to be exploration, a trem-

bling hand, or some other source of error. One example of a strategy function

was discussed above, and it depends on action-value estimates as well as the

precision to convert the values into a strategy for reasoning level K:

vi,K(ai) =
K−1

∑
k

∑
a′−i

σ̂i,−i,kπ−i(a′−i)ui(ai, a′−i)

πi,K(ai) =
exp[λ · vi,K(ai)]

∑a′i
exp[λ · vi,K(ai)]

.

This estimate is made with the probability that each level is expected to play an

action assuming a strategy profile π−i(a−i) of the other players, and popula-

tion belief vector over level-types σ̂i,−i. To identify an instance of a hypothesis,

a meta-reasoning algorithm needs to compare the output of a strategy func-

tion with the data. Using Bayes’ Rule, we find the probability that an agent is

operating at that level-type, given its behavior:

P(Li = K|ai) = σ̂i,i,k =
πi,K(ai)

∑K
k=0 πi,k(ai)

.

Using simple inference we can either apply max-likelihood to focus on a single

level-type, or keep the belief vector over the set of all level-types. It may also

be necessary to perform this task for both initial-action levels and state-based

action levels. That is, a player may act differently from the starting point than

he or she does once other players have made their moves and the game is afoot.
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Another option, if the level-based strategies can be represented as a binary

decision or only a single best response candidate is necessary (per discount

rate), is to simply use regression on features extracted from the behavioral his-

tory. That is, the meta-reasoner can identify which actions would have been

taken if the agent was acting according to each of the model components, and

then use these features to compute the relative frequencies of each strategy.

This method will be especially useful when there are several base strategies

that appear to explain much of the behavior, as will be the case in later chap-

ters.

To estimate the long-run values of actions, we can simulate the likely course

of the game for each possible action choice (see Algorithm 1). Using the esti-

mated frequencies, the planning algorithm will then project how the popula-

tion is likely to initiate and react. Assume for the moment that the course of a

game can be divided into two time periods: initial and state reaction. Follow-

ing the initial choices of the players, the ensuing standoff keeps everyone in the

original configuration. At some point, someone shifts from this state to a new

action, and the game enters its next phase. To apply the model using the long-

run value-estimation algorithm, first consider the possible outcomes allowed

by the model. The model contains probabilities that allow us to weight each

outcome by the observed likelihood in the population, thus leading to an esti-

mate of the values of each initial action. This process may continue to repeat

for a number of iterations, but in general zero-sum games do not create these

social standoffs and so the initial action does not matter as much. Consider

Rock-Paper-Scissors.

Example 1. Rock-Paper-Scissors.
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Imagine we would like to construct an agent to perform well in a Rock-

Paper-Scissors (RPS) tournament in the following form. An agent observes a

history of play of agents in a population. One of these agents is drawn from

the population to be our opponent and we are not told which one. Both play-

ers are given the previous action by their opponent and remember their own

last action. A meta-reasoning algorithm is given the historical sequence of the

population in this form (xi = [at−1
B , at−1

C ], yt = [at
B, at

C]) and asked to play an

action. For the moment, let us assume that all or most members of the popu-

lation employ fixed strategies, which do not significantly change over time. In

this game, prediction and performance go hand in hand, so we would like to

compute an expected distribution over actions, requiring an accurate opponent

model.

A naive learner might do something like fictitious play [Brown, 1951], and

respond to the overall population frequency of the actions we have seen. This

type of action is similar to an initial strategy level, as it would use only a sum-

mary of the small amount of historical knowledge it has available. As a re-

sult, in the typical case of RPS, we would expect the action distribution to be

roughly uniform. A better approach would involve building a frequency table

of the nine previous joint action combinations, which may lead to more infor-

mation about the response structure. An even more efficient model, from the

standpoint of maximum generalizability, would use knowledge of reasoning

to meta-learn the expected depth of thinking about each response. In essence,

this model would harness the symmetry from each joint action to estimate how

players respond to the opponent’s previous action, the response to one’s own

action, and so on. This meta-reasoning method would provide considerable
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transfer and speed up the model-building process on the order of the num-

ber of actions, as long as we assume symmetry among the actions. With this

model of the population’s reasoning behavior, our meta-reasoner can apply

this knowledge to new games with a similar structure without seeing opponent

behavior in them. The winners of previous runs of RPS tournaments applied

a version of this strategy to out-think their opponents [Egnor, 2000], although

they relied on an individually customized model to do so because it is possible

to relearn an opponent model in a lengthy sequence of RPS rounds.

{Inputs: U, σI , σS, γ̂, φ̂}
{Outputs: v(ai), value of a given action}
m: Number of actions
n− 1: number of agents besides i
T: time horizon
for j = 1 to j = n− 1 do

for k = 0 to k = 3 do
πt0

j (aj) = πt0
j (aj) + σI

k π I
k(aj)

end for
end for
for ai ∈ Ai do

for a−i ∈ A do
for j = 1 to n− 1 do

Calculate ρj, Gj
τj = dlogγ̂(ρj/(ρj + Gj))e

end for
Find jmin where τjmin = minj′(τj′)
for k = 0 to K do

πt
jmin

(ajmin) = πt
jmin

(ajmin) + σS
k πk(ajmin , a−jmin)

end for
v(ai) = ∑

τjmin−1
t=0 γt

i u(ai, a−i) + ∑T
t=τjmin

γt
i π

t
j(aj)u(ai, ajmin , a−i,−j)

end for
end for

Algorithm 1: Long-run Value Estimation in Populations
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2.6 Related Work

From a theoretical standpoint, people have used the concept of best response

to discover and analyze equilibria since the beginnings of game theory. The

iterated best response technique (IBR) consists of an initialization of opponent

strategies πj and then a recursive application of best response until the oppos-

ing strategies are in equilibrium:

• ∀j Initialize πj

• repeat until π are in equilibrium

– ∀i player i finds the best response πi = BR(πj)

Given proper beliefs over initial strategies, IBR provably arrives at the Nash

equilibrium for a normal form game [Stahl and Wilson, 1995]. The repeated

setting, which is our main focus, makes analysis more complicated because

there may be an infinite number of equilibria, considering the endless number

of possible strategies [Aumann and Maschler, 1995]. The hierarchy output by

IBR in this case will have a high dependence on the initial non-intentional or

non-reasoning strategies, because higher levels derive from earlier levels. The

lack of unique equilibria makes it clear that modelers must be cautious in the

choice of initial assumptions.

The concept of IBR has also been explored in the field computer science un-

der the guise of designing agents to act in an environment with others. The

focus is usually on building algorithms to model others as experience accu-

mulates in a repeated interaction, as in the RPS tournaments [Egnor, 2000].

Another approach is to construct an optimal model given prior beliefs about
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the other agent combined with some computational cutoff. However, this fo-

cus is either used in an online learning setting [Koller and Milch, 2003; Gal and

Pfeffer, 2008] or where the priors are known [Gmytrasiewicz and Doshi, 2005],

and not where there is some established history of multiple interactions. See

the sections below for further details.

2.6.1 Network of Influence Diagrams

One related development is the Network of Influence Diagrams, or NIDs [Gal

and Pfeffer, 2008]. This construct incorporates the Multi-Agent Influence Dia-

gram (MAID) [Koller and Milch, 2003] as a building block to model the behav-

ior of other players. MAIDs were introduced to formalize a multiagent system

as a kind of Bayesian network consisting of chance nodes, decision nodes, and

utility functions. The chance nodes are simple random variables. Decision

nodes are the actions of the agent, and utilities are the reward. A decision

node is not pre-specified, but must be provided with some strategy inferred

by the algorithm, at which point it becomes a chance node. Given conditional

probabilities of the chance nodes, these diagrams can be solved for the optimal

strategy profiles. Each MAID has at least one Nash equilibrium, and there are

proposed exact and approximate algorithms for finding solutions [Koller and

Milch, 2003]. An NID is basically a collection of these MAIDs that represent

the models the players have of each other, so that each node is a MAID. The

modularity provided by this higher-order model makes construction of the un-

derlying decision process less difficult. In practice, the parameters of the NID

(the conditional probability distributions at each nested MAID section) need to

be estimated from data so that the whole MAID equilibrium can be found. One

way to use this tool is with random initialization and then a variation of the EM
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algorithm. The accuracy of this model depends on the level of detail of the net-

work, and finding the right probabilities may require a large amount of data.

Furthermore, this model is best applied in situations where there is a single

opponent. With multiple opponents (two or more), the complexity of infer-

ring the conditional probabilities in the model increases dramatically, as each

player requires a model of the interactions between the others. The population-

based meta-reasoning framework introduced above can also be considered as

a graphical model of sorts, but in many cases it is not necessary to represent

other agents in this way. A probability vector over types, encoded as a linear

model, is often sufficient to capture the distribution over strategies, as we will

see in later chapters.

2.6.2 Cognitive Hierarchies/Level-K Reasoning

This work also borrows both ideas and terminology from the emerging field of

behavioral economics. Such work provides significant empirical grounding for

the work done here. Using experiments on humans playing games, researchers

have found a great deal of evidence that people use strategic reasoning to make

decisions, but only up to a point. Indeed, this reasoning conforms to a well-

defined cognitive hierarchy, or a related level-k model, composed of levels of

thinking [Stahl and Wilson, 1995; Costa-Gomes et al., 2001; Camerer, 2003].

This model can apply to games with two agents or larger population games.

The components and structure of these models was introduced above, and they

have been applied in a growing number of behavioral experiments.

Lately, this line of investigation has been finding its way into computer sci-

ence and neuroscience research. Recent work [Wright and Leyton-Brown, 2010,
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2012] provides a comprehensive review on which existing models are the like-

liest explanations of a series of previous experiments with human participants,

from the standpoint of prediction. The conclusion of this survey is that a quan-

tal response cognitive hierarchy model appears to be the most likely model of

a population of players. The parameters for the population were trained using

either max-likelihood or Bayesian model-fitting, and assume a homogeneous

hierarchy for all players, who nonetheless play according to a different degree

of sophistication.

2.6.3 I-POMDPs as Level-based Reasoners

From the computer-science or machine-learning perspective, the most rele-

vant work when it comes to optimizations on a known opponent model the

as an Interactive Partially Observable Markov Decision Process model, or I-

POMDP [Gmytrasiewicz and Doshi, 2005]. This development synthesizes the

considerable work done on single agent POMDPs [Kaelbling et al., 1998] with

multiagent approaches such as the Recursive Modeling Method (RMM) [Gmy-

trasiewicz and Durfee, 1995]. By partially observable, we mean that the agent

does not directly observe its state of the environment, but can only adjust its

beliefs over the set of states. RMM is a tree-based framework that starts with a

Zero Knowledge strategy at the leaf nodes to represent the lack of knowledge

about other players. The method propagates strategies up the tree if reasoning

can be performed on the lower nodes. This combined formulation is ideal for

sequential or repeated games where the opponents’ strategies are unknown—

hence the partial observability—and have limited reasoning capabilities so that

recursive modeling makes sense. The I-POMDP formalism allows for a par-

tially observable environment as well, but we will consider games that limit
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the state uncertainty to the other agents only, for the sake of simplicity. There

is some literature that examines human behavior in a sequential game (the In-

vestor/Trustee game) using I-POMDPs and fits parameters of the underlying

models to the data [Ray et al., 2008]. Below is a version of the I-POMDP for-

malism that could be applied to games.

Let us assume two agents, i and j and associate I-POMDPi with agent i. An

I-POMDPi = 〈ISi, A, Ti, Ωi, Oi, Ri〉 has the following features:

• ISi is the set of interactive states ISi = S× πj where S is the set of states

from the environment and πj is the set of policies for agent j.

• A is the set of joint actions Ai × Aj

• Ti is the transition function Ti : S × A × S → [0, 1]. The transition also

combines with the internal decisions for the model πj to lead to a new

interactive state, but we assume that agent i does not directly control this

part of its environment.

• Ωi is the set of observations

• Oi is the observation function Oi : S× A×Ω→ [0, 1]

• Ri is the reward function Ri : ISi × A→ R

Define for agent i rule-based policy H : IS → Ai to be a basic rule that maps

states to actions. One example of a rule would be At
i = At−1

i , signifying

constant action. Then, a parameterized policy π : R → H maps real vector

X ∈ [0, 1] to some rule. X could be used to represent any adjustable feature of

an agent, but we will assume that Xr is the probability of playing rule Hr. Note

the rule is not fixed for the whole game, but rechosen every time step. Knowing
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that our opponent is tied to a single value of X, we can utilize POMDP solv-

ing methods to estimate this value and respond to it to build the next level. In

certain games, the computed policy will be constructed of a new set of rules,

which composes a parameterized policy.

Policies at each level k are derived from the beliefs bj,k−1 over the policies

and states of the previous level k− 1. Define the following spaces:

• IS0
i = S, π0

j = IS0
i → Aj ∈ H0

• IS1
i = IS0

i × π0
j , π1

j = bj,1(IS1
i )→ Aj ∈ H1

.

.

.

• ISL
i = ISL−1

i × πL−1
j , πL

j = bj,L(ISL
i )→ Aj ∈ HL.

With this definition, we have a way of constructing a strategic hierarchy given

limited knowledge about other agents.

While the I-POMDP formalization introduces a complete encapsulation of

the state space of other reasoning agents, it suffers from several drawbacks.

First, it makes no attempt to exploit problem structure or reduce the size of the

state space, which is likely to grow large given the presence of outside agents—

a considerable source of new uncertainty for each new joint action. Second,

while a two-player scenario invites an intuitive back-and-forth reasoning pro-

cess, with three or more players even describing how reasoning might work

becomes difficult. There is nothing to stop the interactive state space itself

from growing exponentially in terms of both agents and levels, as a planner

attempts to model each player as it tries to model each player, etc.
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A bigger problem arrives when we must decide upon the distribution

(henceforth population) of models to include in each subsequent level. A de-

fault assumption for I-POMDPs or RMMs is to assume uniform random behav-

ior over actions at the lowest level of sophistication. However, a sole focus on

this particular policy eliminates other potentially relevant and also justifiable

choices. For example, for the repeated case we might consider other strate-

gies, such as repeating the same action (constant) or unchanging probabilistic

transitions between actions (static). See Section 2.2 for more details about non-

reasoning strategies. The less restrictive assumption is to set the bottom layer

to a distribution of these types of policies. Some of these policies would pro-

vide orthogonal directions of reasoning to discover unique properties about

the game in question. As a result, the rest of this work examines a simplified

framework where the base non-reasoning level is a mixture of a specified set

of components, and the optimization proceeds without attempting to classify

a strategy but instead responds to the known state of the game.

2.7 Summary

This chapter has introduced some basic game theory concepts and definitions,

along with some related work in the field of iterated best response models. The

literature about iterated reasoning models is rooted in the fields of behavioral

economics and multiagent learning (within computer science) but suffers from

several shortcomings. First, previous models are only practical in multiagent

environments with a single opponent, so that the system consists of two agents.

The computation becomes much less tractable once the setting has more than

one opponent. Second, the settings are not optimized for planning in repeated

domains. In the Rock-Paper-Scissors tournaments, for example, the models
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try to predict the next action, without regard to how future time periods are

affected by actions. This type of reasoning is sufficient for zero-sum games,

but general-sum games require a more nuanced approach.

To address these issues, this document proposes a systematic meta-

reasoning modeling algorithm for populations playing repeated games. It is

meant to be robust to noise by introducing flexibility in classification of agent

strategies. This chapter introduced a broader definition of base strategy, to

include repetition and imitation to the typical assumption of randomness. Fi-

nally, the meta-reasoning model allows for opponents to take planning steps

by estimating a parameter for the discount rate. Combined with a level-based

identification process over the expanded set of base strategies, the discount

rate can capture the capacity for future lookahead that has not been a part of

previous models.
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Chapter 3

Learning Algorithms in Simple Games

This chapter investigates the dynamical behavior of agents that are learning

over time in response to their perceived environment. Ultimately, we will see

how the modeling framework introduced in Chapter 2 can be applied to this

problem. First, we will review some learning algorithms that have been ex-

plored in game settings. Some of these will be covered briefly, but Q-learning

deserves greater detail due to its remarkable properties in the game space.

In the single-agent context, a number of algorithms have been devel-

oped [Sutton and Barto, 1998] that are guaranteed to converge to the expected

values of actions in the reachable states, and therefore achieve an optimal pol-

icy, when the environment and rewards are stationary. An environment with

multiple agents does not meet this requirement, because the agents themselves

have the capacity to generate non-stationarity. As a result, the same algorithms

can arrive at inaccurate estimations of the values of strategies, because the ob-

servations become obsolete when the other players change their policies. This

notion of optimal policy is therefore less well-defined because it does not apply

in non-stationary environments. Even so, in some cases, we can expect that the

learning algorithms that are present will behave consistently at a higher level.

This assumption allows for a modeling agent to capture these dynamics, and

by applying an adequate model, approximate this situation as a stationary en-

vironment at a higher level. Knowing the properties and possible outcomes of
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learning algorithms will aid in the modeling process.

It is important to note the distinction between a repeated game and re-

peated learning trials. A repeated game is when a single-shot game is repeated

more than once, and often many times. Players may hold the outcome of the

previous round of the game in memory for future use. Unless otherwise stated,

this chapter will operate under the assumption that repeated games are in-

finitely repeated. If a game is simply repeated because a learner is attempting

to gain experience, then the game can be viewed as the non-repeated case.

Most of these algorithms are used with the latter in mind, while this chapter

(and the thesis itself) is primarily concerned with the former. Nevertheless, the

behavior of these algorithms in the truly repeated setting reveals some inter-

esting phenomena, and in any case the convergence result is often the same.

If our goal is to model a learning algorithm for the purpose of predicting

and responding to it, then learning takes place in the space of repeated trials

of multiple rounds in each trial. The next chapter will focus on how to build

a model from an observed history using the base strategy with discounting

framework.

Below is a detailed account of how learners behave will demonstrate how

non-equilibrium play can emerge naturally from the resulting dynamics. The

first few sections (3.1-3.3) are background that define different variants of

learning algorithms that have been used in a multiagent context. The remain-

der of the chapter is then devoted to ε-greedy Q-learning, which is a challenge

for modelers because it can be induced to play out-of-equilibrium, but is unsta-

ble and so its behavior is a function of its opponent’s strategy. The rest of this
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chapter is an original contribution [Wunder et al., 2010]. Section 3.4 derives lo-

cal learning dynamics for the ε-greedy Q-learning algorithm. Using a dynam-

ical systems approach, Section 3.5 explores the types of asymptotic behavior

corresponding to different classes of games. Section 3.6 goes into greater detail

about the conditions for convergence to a cooperative equilibrium, as well as

conditions for non-convergent behavior, of ε-greedy Q-learning in a specific

subclass of games. Section 3.7 compares two learning algorithms, ε-greedy

Q-learning and Infinitesimal Gradient Ascent, to demonstrate this divergent

behavior.

3.1 Fictitious Play

Fictitious play was one of the earliest multiagent learning algorithms developed

and it is based on the premise that our opponent is playing a stationary strategy

at each decision point [Brown, 1951]. In essence, the algorithm directly models

the other player according to the observed distribution over actions and takes

it as a fixed model of its world, giving no intentionality or learning ability to

its opponent. Then, an agent using fictitious play simply calculates the values

of its actions based on this stationary model, and responds using the best one.

While it can work well in a variety of environments, this model will be flawed if

the underlying assumptions do not hold. In terms of our reasoning framework,

this algorithm corresponds to a strict level-one player that actually builds a

simplified representation of its opponent and adapts its base beliefs over time.
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3.2 Gradient-based Algorithms

Gradient-based methods have become one of the most important approaches

to optimization problems of all kinds, where searching a parameter space ex-

haustively is computationally intractable. The principle is to slowly change

the values of the parameters in the direction of steepest gradient change of

the target objective. In some fields, such as machine learning, this objective is

typically to minimize some cost, such as training error, and so the adaptation

proceeds according to gradient descent. Most neural network update methods

work by moving along the error gradient, for example [Rumelhart and McClel-

land, 1986]. The goal in a game setting is to maximize utility, and so the proper

term is gradient ascent.

The biggest shortcoming of gradient-based methods is their tendency to

converge to a local optimum when a better globally optimal point exists in

the space. Some functions are not differentiable or well-defined, and therefore

require more sophisticated search methods. If the convex problem is poorly

conditioned, the gradient can zig-zag, leading to substantial time to conver-

gence. For the simple games considered in this chapter, the surface is always

smooth. However, it is possible that more than one equilibrium exists, partic-

ularly for repeated games, and so special care must be taken to consider the

initial conditions that will result in one maximum or another.

3.2.1 Infinitesimal Gradient Ascent (IGA)

Infinitesimal Gradient Ascent (IGA) [Singh et al., 2000] defines the joint strategy

of the players i and j by a pair (p, q), the probabilities of the first action for both

players. Strategies are updated in the direction of the gradient of the reward V
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at time t:

pt+1 = pt + α
∂Vi(p, q)

∂p

qt+1 = qt + α
∂Vj(p, q)

∂q
.

It was shown that IGA either leads the strategy pair to a Nash equilibrium or

an orbit yielding an average reward equal to the Nash equilibrium.

3.2.2 Win-or-Learn-Fast Infinitesimal Gradient Ascent (WoLF-

IGA)

A modified version of IGA, called WoLF-IGA, always converges to the Nash in

these games [Bowling and Veloso, 2001]. The central idea behind Win-or-Learn-

Fast Infinitesimal Gradient Ascent is to make a distinction between winning and

losing, and therefore to define separate learning rates for each situation, say, αW

when winning and αL when losing, so that αW < αL. So, if player i is scoring

above the win threshold θi and j is below θj, the update formula becomes:

pt+1 = pt + αW
∂Vi(p, q)

∂p

qt+1 = qt + αL
∂Vj(p, q)

∂q
.

The learning rates will be set to their appropriate values. There is some

room to set θ, but it is important that it is greater than the Nash value. This

asymmetry causes losing players to learn faster while winners are slower to

adapt, and the net effect is for the dynamical system to spiral into the equilib-

rium point, when there are two actions and two players in the game.
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3.2.3 Cross Learning

Cross Learning is a type of gradient-based algorithm that directly uses rewards

to update its policies [Borgers and Sarin, 1997]. The rule for updating action a

is

pa,t+1 = pa,t + Ra pa,t + Ra I(a),

where I(a) is an indicator function that takes a value of 1 when action a is

played and 0 when it is not. In general, actions that are selected with higher

probability are reinforced more often. The idea behind this algorithm is that

actions with higher rewards will gradually become preferred, all else being

equal. In self-play, it has been found that pure Nash equilibria are stable while

mixed equilibria are not.

3.3 Q-Learning

Q-learning [Watkins and Dayan, 1992] was developed as a reinforcement-

learning (RL) algorithm to maximize long-term expected reward in multistate

environments. It is known to converge to optimal values in environments that

can be formulated as Markov decision processes [Tsitsiklis, 1994]. Its elegance

and simplicity make Q-learning a natural candidate for application to multi-

player general-sum games, leading to questions about its asymptotic behavior

in this context. While the study of simultaneous learning agents has generated

much interest, characterization of their behavior is still incomplete. Algorithms

such as Q-learning that use accumulated data about the values of actions are of

interest beyond RL, as similar mechanisms are hypothesized to exist in mam-

malian brains [Dayan and Niv, 2008].
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The Q-learning algorithm is defined by the elegant update equation:

Qt(s, a) = Qt−1(s, a) + α(Rt + γ max
a′

Qt−1(s′, a′)−Qt−1(a)).

Rt is the reward received at time t, Qt−1(s, a) is the estimated value of action

a from state s at time t− 1, s′ is the new state at time t, α is the learning rate,

and γ is the algorithm’s discount rate of future rewards.

In the following sections, we examine the behavior of two players execut-

ing ε-greedy Q-learning in a repeated general-sum game. Although some ap-

plications of Q-learning have used state representations that include recent his-

tory [Littman and Stone, 2001], we focus on a simpler representation consisting

of just a single state. The idealized algorithm is one that consists of infinitely

small learning steps making it possible to apply ideas from dynamical systems

theory directly to the algorithm [Tuyls et al., 2003]. Later sections map the

varied behavior of this algorithm, using much of the same terminology and

methods as has been applied to other multiagent dynamical approaches.

As opposed to a purely value-based approach like Q-learning, past work us-

ing dynamical systems to analyze multiagent learners has centered on policy-

search algorithms [Singh et al., 2000] or a mix of the two [Bowling and Veloso,

2001]. In cases where learning is equivalent to or resembles policy-gradient

algorithms, researchers have found that adaptive methods tend to converge to

a Nash equilibrium [Tuyls et al., 2003] or “orbit” a Nash equilibrium [Singh

et al., 2000]. In the mold of this earlier work, the rest of this chapter fully

describes the long-run convergence behavior of ε-greedy Q-learning—a com-

monly used algorithm that had not yet been analyzed in this way. A surpris-

ing finding [Wunder et al., 2010] is that when Q-learning is applied to games,

a pure greedy value-based approach causes Q-learning to endlessly “flail” in
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some games instead of converging. For the first time, we have a detailed pic-

ture of the behavior of Q-learning with ε-greedy exploration across the full

spectrum of 2-player 2-action games. While many games finally converge to

a Nash equilibrium, some significant games induce behavior that averages

higher reward than any Nash equilibrium of the game. Since some of these

games have a dominant action, this outcome is somewhat counterintuitive.

Nonetheless, this behavior is not merely an empirical quirk but a fundamental

property of this algorithm, which holds potentially profound implications.

3.3.1 Reinforcement Learning/Opponent Model Hybrids

Because general-sum games require sophisticated learners to adapt their strate-

gies to their opponents, it makes sense to directly apply lessons from the liter-

ature on zero-sum games to this space. Some algorithms have been proposed

that supplement the Q-learning update with a shaping term, so that it can bet-

ter anticipate or determine opponent response.

The first algorithm is called Minimax-Q and the idea behind it is to con-

struct a strategy that maximizes the security value, that is, the highest payoff

that can be attained assuming the opposing player maximizes his own inter-

ests [Littman, 1994]. With this algorithm, the Q-values are set according to the

usual update equation in an extended table Q(a, b) for both players’ actions,

but the strategy for player i is selected by assuming that opponent j chooses

the worst payoff for i:

πi = arg max
πi

(min
b

∑
a
(πi(a), Q(a, b))).

The strategy is constructed by using linear programming. This approach was

generalized to all stochastic games under a similar algorithm, Nash-Q [Hu and
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Wellman, 2003], where the minimax function is replaced by a function that

computes the Nash equilibrium. However, there are convergence problems

that arise due to the fact that the output equilibrium can change as the Q-values

change, as well as the proven intractability of finding a Nash equilibrium in the

first place. As such, Nash-Q would only be expected to work in coordination or

zero-sum games. A related algorithm, Friend-or-Foe-Q, works by using either

the assumption that our opponent is our friend (by maximizing our own score)

or our foe (by minimizing our score) [Littman, 2001].

3.3.2 Q-Learning with Boltzmann Exploration

Q-learning with ε-greedy decisions represents a fixed exploration rate, with

a value of ε. Another widely used exploration method is known as Boltz-

mann exploration, or in the economics literature as quantal response. With

this method, actions are chosen according to an exponential weighting of the

perceived values of the actions. Taking Qai as the value for action ai, strategy

pai is chosen with the following formula:

pai =
exp(λQ(ai))

∑a exp(λQ(a))
.

Parameter λ is a precision value which determines how much actions with

high values are favored. If λ = 0, actions are chosen uniformly random. If λ =

∞, the best action is always selected. Although the values for the actions are

updated exactly as in the Q-learning update, this algorithm shares properties

with gradient-based methods because the strategies gradually change towards

the better actions.

It has been shown that with certain modifications, the behavior resulting

from these rules converges to replicator dynamics [Tuyls et al., 2003], which is
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a mathematical representation of evolutionary game theory [Borgers and Sarin,

1997]. That is, the strategies adopted by two Boltzmann-type learners change

in a way similar to that of two large populations of atomic (infinitesimal) agents

who play each action in the game with a proportion equal to the corresponding

probabilities in each learner’s strategy. Then, the agents are selected to remain

in the game in proportion to their success in the game. If A is the payoff matrix

of the row player, the rate of change of its strategy pa is:

ṗa = paα(λ[ea Aq− pAq]− log pa + ∑
a′

pa′ log pa′).

3.3.3 Frequency-Adjusted Q-Learning

Although, formally speaking, the dynamical equations of Boltzmann-Q and

replicator dynamics are the same, in practice, the dynamics do not match

due to the fact that the update rates vary based on the strategy. To ad-

dress this issue, a modification called Frequency-Adjusted Q-Learning was pro-

posed [Kaisers and Tuyls, 2011] that normalizes the update rates:

Q(a) = Q(a) + α min(
β

pa
, 1)(R + γ max

a′
Q(a′)−Q(a)).

The β term is meant to allow for a maximum update of 1 if the strategy

pa is below a minimum value β. This change allows the learning dynamics to

conform to the evolutionary model and as a result, the values, will converge to

the equilibrium prescribed by the evolutionary stable point.

While this property provides some guarantee of convergence [Kaisers and

Tuyls, 2011] to the single-shot Nash equilibrium, we turn our attention back

to look at ε-greedy Q-learning, which demonstrates behavior that can lead to

globally efficient outcomes without explicit memory or representation of state.
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3.4 Infinitesimal Q-Learning

This section investigates Q-learning dynamics more thoroughly, through the

behavior of the continuous dynamical system resulting from the underlying

update rules.

3.4.1 ε-Greedy Infinitesimal Q-learning (IQL-ε)

The ε-greedy Q-learning algorithm selects its highest valued (greedy) action

with some fixed probability (1− ε(k−1)
k ) and randomly selects among all other

k − 1 actions with probability ε
k . Earlier papers have demonstrated superior

performance of this algorithm in games [Sandholm and Crites, 1995; Zawadzki

et al., November 2008] relative to similar learners and carried out dynamical

systems analysis [Gomes and Kowalczyk, 2009] as a model for ordinary Q-

learning. However, these have not systematically documented the resulting

range of outcomes of the dynamical model itself, mostly because convergence

to an equilibrium is not assured. More recent work [Wunder et al., 2010] has

fully described the behavior of a deterministic model of the algorithm for all

possible games within the 2-person 2-action space, which is detailed below.

The (one-state) Q-learning update rule when an agent takes action a and

receives reward R

Q(a) = Q(a) + α(R + γ max
a′

Q(a′)−Q(a))

becomes ∂Q(a)
∂t = R+ γ maxa′ Q(a′)−Q(a) when α→ 0. We call this determin-

istic algorithm IQL-ε for Infinitesimal Q-learning with ε-greedy exploration.

The discount rate is γ and when set to 0 the update equation becomes simply

Q(a) = Q(a) + α(R−Q(a)). We write
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• Qai and Qbj for the Q-values of action ai for row player RP, and action bj

for column player CP,

• Q̇ai for ∂Q(ai)
∂t , the update of action ai for RP and Q̇bj for the update of

action bj for CP,

• (rai,bj , cai,bj) for the respective payoffs, or rewards, for RP and CP when

RP plays ai and CP bj.

Due to the fact that there can be only one greedy action at a time, IQL-

ε’s updates lead to semi-continuous dynamics best classified as a piecewise-

smooth, or hybrid, dynamical system [Di Bernardo et al., 2008]. A general hybrid

dynamical system (GHDS) is a system H = [P, F, J] with the following parts:

• P is the set of index states or discrete dynamical system states;

• F =
⋃

p∈P Fp is the set of ordinary differential equations (or flows) for

index state p;

• J = Jp∈P is the set of jump transition maps.

The simple IQL-ε GHDS can be represented as an automaton whose nodes are

four complete and separate dynamical system flows and where transitions be-

tween the nodes, or index states, must be taken when certain conditions along

them are met. When the values for one of the players’ actions change ordering,

the system jumps to the index state containing the dynamics corresponding to

the new greedy policies. For the following analysis, only one state exists in the

agents’ environment—all state transitions are jump transitions in this model.

In this case, a transition to a new flow occurs when the values cross a boundary

B(Q) = 0, so that different flows operate when B(Q) < 0 and B(Q) > 0.
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Using this notation, we examine the following equations for a combination

of possible greedy actions for the two players. Consider what happens when

a∗1 and b∗1 are greedy. RP chooses a∗1 1 − ε
2 of the time and â2

ε
2 of the time,

making its expected reward R11 = r11(1− ε
2) + r12

ε
2 where ε is the exploration

rate. In this case, RP will update Qa1 according to:

Q̇a1 = r11(1−
ε

2
) + r12

ε

2
+ (γ− 1)Qa1

= R11 + γ max
a′

Qa′ −Qa1 .

However, this equation only describes the rate of update when the value

of a1 is updated. To capture the exact rate, consider that the greedy action is

taken a fraction (1− ε
2) of the time. In contrast, the non-greedy action is taken

ε
2 often. Weighting the updates appropriately, when Action a1 is greedy for

both players, the four Q-values obey the following system of differential equa-

tions [Gomes and Kowalczyk, 2009], Fa∗1b∗1
:

Q̇a1 = (R11 + Qa1(γ− 1))(1− ε

2
),

Q̇a2 = (R21 + Qa1γ−Qa2)
ε

2
,

Q̇b1 = (C11 + Qb1(γ− 1))(1− ε

2
),

Q̇b2 = (C12 + Qb1γ−Qb2)
ε

2
.

We can find the solutions for the above equations using linear dynamical sys-

tems theory [Di Bernardo et al., 2008]. While the solutions define a single dy-

namical flow Fa∗1b∗1
where a∗1 and b∗1 are the greedy actions for RP and CP, sim-

ilar equations can be defined for the other three joint greedy policies. Note

that because the system can switch flows, the values may not converge to the

end point dictated by this flow alone. We say that the learning algorithm has

converged if the ratio of strategies in an extended period of time stays within
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Figure 3.1: Probabilities for Action 1 (Cooperate) for RP in two self-play scenar-
ios both in the Prisoner’s Dilemma game. WoLF-IGA is seen to converge to the
defection action (Nash), while IQL-ε oscillates around a mix of both actions,
mostly cooperation. See Figure 3.2 and Section 3.7 for more details.

an infinitesimally small range. See Figure 3.1 for examples of converging and

non-converging policies. Also, note that the equations are deterministic, in

spite of the random exploration, because of the infinitesimal learning rate.

3.4.2 One-player Sliding Greedy Update

In cases in which the convergence points of the flows lie within the index state

of a single flow, the above IQL-ε analysis is sufficient to disclose the final des-

tination of the algorithm’s values. If there is disagreement, the IQL-ε GHDS

can end up with dynamics that slide along the boundary between two or more

index states. An investigation of the resulting dynamics, known as a Filip-

pov sliding system [Di Bernardo et al., 2008], is crucial for analyzing these more
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complex situations.

When one player has two equal Q-values and both sums of discounted re-

wards are lower than the current value, this player has a sliding greedy action.

The values may change in lockstep, although the two actions are selected at

different rates. Consider what happens when CP has one clear greedy action.

Figure 3.2(inset) shows an illustrated example of this update dynamics. Here,

the two actions for RP have the same value and the Q-values for both players

drop until CP’s greedy action switches. The term “greedy” does not fully cap-

ture this type of dynamics for RP because, essentially, its greedy action alter-

nates infinitely often over a given interval so it has no particular greedy action.

Instead, define the current favored action to be the action f with the higher ex-

pected reward during a sliding update (let f̄ be the other action). It turns out

that f also has a higher probability of play than f̄ when both values are drop-

ping. Therefore, f is played by RP more often. Define φ f to be the fraction of

time where RP plays f . The updates Q̇ f̄ and Q̇ f , taken from the definition of

Q-learning, capture the change of respective Q-values over continuous time,

observed separately. The formula for φ f b∗ is the ratio of the non-favored ac-

tion’s update rate to the total update rate while CP’s greedy action is b∗ and its

non-greedy action is b̂:

φ f b∗ =
Q̇ f̄

Q̇ f̄ + Q̇ f
=

r f̄ b∗(1− ε
2) + r f̄ b̂

ε
2 + Q f̄ (γ− 1)

(r f̄ b∗ + r f b∗)(1− ε
2) + (r f̄ b̂ + r f b̂)

ε
2 + (Q f̄ + Q f )(γ− 1)

.

There is a natural intuition behind the ratio φ f b∗ . Ignoring exploration, if

each update is different and negative, the algorithm more often selects the one

that decreases more slowly because it is more often the greedy action. In fact,

the ratio selected is identical to the ratio of the other value’s standalone rate

of decrease to the combined rates for both actions. If RP plays f with this

proportion, then both values actually decrease at the same overall rate as the
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faster one is selected less frequently. As a result, the update rates for CP depend

on this fraction φ f b∗ :

Q̇b∗ = ((1− φ f b∗)c f̄ b∗ + φ f b∗c f b∗)(1−
ε

2
),

Q̇b̂ = ((1− φ f b∗)c f̄ b̂ + φ f b∗c f b̂)
ε

2
.

This reasoning only applies to falling values. If values rise, the arbitrarily cho-

sen greedy one will be updated more rapidly resulting in a positive feedback

loop.

3.4.3 Two-player Sliding Greedy Update

At times, if both players have Q-values at parity, the GHDS may comprise a

dual sliding system. In the language of hybrid dynamical systems, this situation

is equivalent to very low thresholds of switching between index states, mean-

ing that no single flow describes the behavior in this regime. While some defin-

able patterns show up during these periods, researchers in this field acknowl-

edge the potential for unpredictable or chaotic behavior as α→ 0 [Di Bernardo

et al., 2008].

In some instances, the close distance between values can mean that deci-

sions regarding how to implement continuous estimation can also affect long-

run convergence, even for α→ 0. There are several ways to define the idealized

continuous version of Q-learning in this situation. For the rest of the analysis,

we follow the convention of assuming discrete updates, but keep α → 0. This

definition is consistent with the original setup and does not require new as-

sumptions. It also recognizes that the two updates are always separate, even

if values are equal. As a result of multiple sliding updates, a solution is no

longer provided by solving a single hybrid system of differential equations,
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Table 3.1: Payoffs for representative games in each subclass. RP’s rewards are
listed first in each pair.

Subclass 1a Subclass 1b
Matching Pennies Spoiled Child

MP H T
H 1, 0 0, 1
T 0, 1 1, 0

SC B M
S 1, 2 0, 3
P 0, 1 2, 0

Subclass 2a Subclass 2b
Bach/Stravinsky Chicken
B/S B S
B 1, 2 0, 0
S 0, 0 2, 1

CH D H
D 15, 15 1, 20
H 20, 1 0, 0

Subclass 3a Subclass 3b
Deadlock Prisoner’s Dilemma

DL b1 b2
a1 1, 1 0, 3
a2 3, 0 2, 2

PD C D
C 3, 3 0, 4
D 4, 0 1, 1

thereby complicating exact prediction of behavior. Fortunately, we are still

able to clearly predict whether the system moves into a steady attractor for

this particular GHDS (Sections 3.5 and 3.6).

3.5 Classes of 2-player 2-action games

The space of games can be divided according to characterizations of their equi-

libria and this section shows how IQL-ε behaves in each of these classes. For

simplicity, we assume all reward values are distinct. (Ties can make games be-

long to multiple subclasses, complicating exposition.) Table 3.1 gives payoff

matrices for some of the games we mention. The main results of this section

are summed up by Table 3.2.

Subclass 1 covers games that only have a single mixed Nash equilibrium,

meaning that the players play their actions with probabilities p and q such
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that 0 < p, q < 1. The space includes games that meet all of the follow-

ing conditions: (R11 − R21)(R12 − R22) < 0, (C11 − C12)(C21 − C22) < 0, and

(R11 − R21)(C11 − C12) < 0. Zero-sum games like Matching Pennies (MP) are

in this category, as is the new Spoiled Child (SC) game. Subclass 2 contains

games that have two pure Nashes and one mixed Nash. These games satisfy

the following conditions: (R11−R21)(R12−R22) < 0, (C11−C12)(C21−C22) <

0, and (R11− R21)(C11− C12) > 0. Examples of games in this category include

Bach/Stravinsky (B/S), Chicken (CH), and some Coordination games. Sub-

class 3 is the set of games in which at least one of the players has a pure dom-

inant strategy, if (R11 − R21)(R12 − R22) > 0 or (C11 − C12)(C21 − C22) > 0.

Examples in this class include all variants of Prisoner’s Dilemma (PD) and

Deadlock (DL).

The following results explicate the behavior of IQL-ε in these various

classes, taking exploration into account. Some games that appear to be in one

subclass can actually be changed into other classes once opponent exploration

is considered, so we use those adjusted values for the analysis. For clarity, the

analyses generally assume that the initial Q-values are their maximum possible

values given the payoff matrix. It is common practice [Sutton and Barto, 1998]

to initialize learning algorithms this way and it ensures that the algorithms

play all actions greedily for some amount of time before settling down. IGA

has its own classes based on the level of payoff sensitivity to the other player’s

strategy [Singh et al., 2000].

In each of these subclasses, IQL-ε further divides the space according to

a simple rule so that on one side the algorithm always converges while on

the other it is not guaranteed. Define Subclasses 1b, 2b, and 3b such that ∃i, j

Rij > RN and Cij > CN, where RN and CN are either the unique expected Nash
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Table 3.2: A summary of the behavior of IQL-ε and a taxonomy of games.
Subclass 1a 1b 2a 2b 3a 3b
# Pure Nashes 0 0 2 2 1 1
# Mixed Nashes 1 1 1 1 0 0
RP Action 2
is dominant? No No No No Yes Yes
∃i, j Rij > RN
& Cij > CN? No Yes No Yes No Yes
Example game MP SC B/S CH DL PD
IQL-ε converges? Yes No Yes Y/N Yes Y/N

payoffs for RP and CP, or the lower security Nash payoffs in Subclass 2. Thus,

there is some pure non-Nash strategy combination that is a higher payoff than

the Nash equilibrium value for both players, much like the cooperative payoff

in PD. While IGA gradually alters its strategy toward a best response, IQL-ε,

in contrast, switches its greedy action suddenly, starving one value of updates.

As a result, sometimes an action retains a relatively high value even when not

a best response.

Theorem 2. IQL-ε converges to the mixed Nash equilibrium when playing any game

in Subclass 1a.

Proof It is clear that no pure strategies will ultimately be successful because

the other player can exploit any non-Nash strategy. IQL’s Q-values converge to

tied values where the ratio of actions selected matches that of the Nash equi-

librium. In Q-learning, however, the agents can only approximate a mixed

strategy by continually shifting their greedy actions. We can consider this be-

havior as a converged strategy because over short time spans the strategy is

identical to the predicted Nash strategy, and the probability of each action is

the same that the Nash strategy would play.

During learning, the values and strategies seem to cycle repeatedly at

points removed from the mixed Nash, only to slowly approach it in the long
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term. As the greedy strategy combination loops around the payoff table, explo-

ration causes a slight convergence between the greedy and non-greedy value.

On the next iteration, the values are closer to the Nash by some factor that de-

pends on ε. In the limit, therefore, the policies close in on this equilibrium.

�

Theorem 3. In all Subclass 1b games, IQL-ε never converges to a single strategy,

pure or mixed.

Proof This result arises because the “cooperative” joint strategy that has

higher values than the Nash equilibrium acts temporarily as a better attrac-

tor than the Nash whenever both of those actions are greedy. The Q-values

periodically reset to the cooperative payoff, and the values for at least one of

the players are always diverging from each other. The metaphor of a Spoiled

Child (SC) illustrates the dynamics of this subclass, where the parent is RP and

the child is CP. There is no pure Nash equilibrium in this class of games, so

the IQL-ε players first drift towards playing the actions with a ratio resem-

bling the mixed Nash strategy. As the values drop toward the value of this

equilibrium, parent and child eventually greedily play the cooperative actions

(Spoil and Behave, respectively). These values rise above the lower Nash val-

ues toward the cooperative payoff. However, this new attractor is not stable

either, because the child would rather Misbehave, at which point the parent

prefers the harmful Punish action. Thus, the system switches to a new set of

dynamics and the cycle repeats. Unlike Subclass 1a, both greedy actions move

away from the Nash during cooperation and therefore prevent convergence to

a mixed strategy. �

Theorem 4. IQL-ε converges to one of the two pure Nash equilibria in all games of

Subclass 2a.
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Proof Consider the behavior of the dynamics once all Q-values have

dropped below or are at the level of one of the Nash equilibria. At any point,

the values move toward the payoffs resulting from the current greedy actions.

This payoff either represents one of the pure Nashes or it does not. If it does,

the greedy actions remain greedy, as neither player gets a higher value by ex-

ploring. If the greedy actions do not correspond to a pure Nash, then at some

point one player switches greedy actions. The new combination is necessar-

ily a Nash equilibrium by the payoff structure of this class. In addition, the

mixed Nash is unstable because the dynamics of the payoff structure deviate

from any mixed strategy to one of the pure strategies, returning to the earlier

argument for convergence. �

Theorem 5. IQL-ε may or may not converge to one of the two pure Nash equilibria

in Subclass 2b.

Proof While IQL-ε does not converge to the mixed Nash for reasons de-

scribed above, some values lead the dynamics to one of the stable pure Nashes,

while others cycle much like Subclass 1b. The key parameter for this class is

ε, which can alter the payoff matrix and in essence put the game in a different

class. �

3.6 Analysis of Convergence in Dominant Action Games

This section delves into the convergence behavior for Subclass 3 games, which

have a dominant action for at least one player. Intuitively, this class seems the

simplest—no matter what actions its opponent plays, a player always has an

unchanging preferred response. In fact, IGA behaves this way by increasing its
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dominant action probability until it reaches a Nash strategy. The gradient al-

ways points in the direction of the dominant action, and so no other behaviors

are possible in the long run.

In the IQL-ε system, the effect of dominant actions depends on the method

used to implement the learning algorithm. Under one regime where updates

are applied with constant and discrete steps (however small), the dynamics can

be unstable and lead to sudden shifts of fortune, or even chaotic behavior. The

PD time series in Figures 3.1 and 3.2 show the strange, non-repeating pattern

of updates possible in Subclass 3b, which persists at all learning rates and is an

intriguing property of ε-greedy Q-learning.

However, in the infinitesimal, continuous case, we can show convergence

to a cooperative, non-Nash equilibrium that stands as a counterpoint to the

broad theoretical work that has been established showing convergence to the

single-shot Nash equilibrium under a number of reinforcement learning algo-

rithms [Bowling and Veloso, 2001].

3.6.1 Dominant Action Games: Subclass 3a

Call RP’s action a2 dominant when R11 < R21 and R12 < R22. If ¬(∃i, j Rij > RN

and Cij > CN), the game is a member of Subclass 3a.

Theorem 6. In Subclass 3a games, IQL-ε converges to the pure Nash equilibrium

identified by one player’s dominant action and the other player’s best response.

Proof If there is no payoff preferable to the Nash for both players involving

RP’s non-dominant action a1, it simply plays a2. Once RP’s Q-values drop

below R21
1−γ or R22

1−γ , no other payoff can attract the algorithm to play a1.At that

point, CP is faced with a static optimization problem and its values inevitably
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converge to C21
1−γ and C22

1−γ . Therefore, IQL-ε converges to the Nash equilibrium

by definition. �

3.6.2 Cooperative Equilibrium Analysis

Define Subclass 3b as the remaining dominant action games, those for which

∃i, j Rij > RN and Cij > CN). Prisoner’s Dilemma resides in this subclass,

which as we will see demonstrates special behavior owing to the unique prop-

erties at work in this game.

To investigate the convergence behavior of the infinitesimal Q-learning al-

gorithm, we will make use of the concept of Lyapunov stability, which is the

standard framework for working with dynamical systems [Lyapunov, 1992].

Definition 18. Lyapunov stability. An equilibrium x∗ is Lyapunov stable if, for

some function x(t), the derivative at this point with respect to time is zero: x′(t) =

ẋ = 0. Furthermore, there is a neighborhood around x∗ where for every ε, there is

a δ = δ(ε) > 0 so that if ||x′(0) − x∗|| < δ, then limt→∞ ||x′(t) − x∗|| < ε.

Conceptually, solutions that start close to the equilibrium, within any distance δ, will

remain within ε of the equilibrium forever.

First, let us establish that such an equilibrium Q∗ exists in the IQL in IPD

case, in which the probability of cooperation is over half. Then we will see that

it is a Lyapunov stable equilibrium, when the Q-values for both players A and

B are equal (QA
C = QA

D = QB
C = QB

D). Furthermore, when QA
C = QA

D 6= QB
C =

QB
D at time t, there exists a time T > t where QA

C = QA
D = QB

C = QB
D. Finally,

for all points in the four-dimensional space of Q-values, either the updates

converge to this cooperative equilibrium or the mutual defection equilibrium.
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Before proving the first conjecture, some useful observations and defini-

tions should be made regarding identical algorithms in self-play.

Definition 19. Joint value update. A joint value update is a change that is made

to the component values of a joint action as a result of some reward per unit time the

players take the joint action.

If Q(t) is the Q-value vector at time t, then Q′(t) = Q̇(t) is the differential

equation that describes the joint update of the entire Q-value vector. Because

the update equation depends on the entire vector, we need to use the joint

value update.

According to the IQL setup, the players are taking actions and updating si-

multaneously and continuously. In this scenario, it is clear that their strategies

depend on each other to the extent that the updates occur in the joint action

space rather than independent of opponent actions, even as the values are sep-

arate for the two players.

Fact 1. Identical algorithms behave identically under identical conditions. If

two identical learning algorithms using the same update method have the same param-

eters (such as learning rate and exploration) as well as the same current state (in this

case, Q-values) and receive the same inputs (rewards or payoffs for Q-learners), then

they will behave identically as measured by strategy and update rate. That is, if A

and B are identical learners and their payoffs are identical, and ∀aiQA
ai
= QB

ai
, then

∀aiQ̇A
ai
= Q̇B

ai
.

This fact derives from the definition of update rate, which in this case is

a set of differential equations. The implications of this fact is that when the

values of two players with an identical payoff structure are equal to each other,

the strategies and corresponding update rates are identical. For our purposes,
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in this special case it means we can analyze how a single player behaves and

conclude the same holds true for both players.

Before beginning to investigate convergence to stable points in this space,

let us explore some additional properties about the updates that hold when

QC = QD for both players. In the context of hybrid dynamical systems, we

need to be careful about our description of the dynamics at the boundary be-

tween two or more separate flows, especially when they point into this bound-

ary (which we will consider a stable boundary). If one of the flows takes the

values away from the boundary, then it serves only to change the direction of

the flow. However, if along the boundary all updates flow into the boundary,

then the values will remain at the boundary and we need a different way of

thinking about the dynamics. One consistent way of thinking about the stable

boundary case is that the flow updates are all simultaneously present, albeit

with different relative frequencies.

Definition 20. Flow. A flow F(x) is the component of the differential equation

governing the behavior of the dynamical system such that limdt→0 x(t + dt) =

x(t) + F(x(t))dt. As such, it is a vector at point x.

Definition 21. Stable boundary. Let a hybrid dynamical system have a function B

where the system operates according to flow F1 when B(x) < 0 and F2 when B(x) > 0.

A stable boundary B(x) = 0 between two separate flows F1 and F2 exists when for

every dt there exists some t such that B(x(t)) < 0 and B(x(t) + F1(x(t))dt) > 0,

and B(x(t)) > 0 and B(x(t) + F2(x(t))dt) < 0. That is, a boundary is stable when

the dynamical equations from each side of the boundary can lead, at the next point in

time, to values on the other side.

We know that B is a line and all flows F are vectors in this case, and so

we can use standard vector math to understand the relative forces at a stable



86

boundary. To do so, we define the dynamics at a boundary that is a weighted

combination of the flows of the adjacent regions.

Definition 22. Flow weight at a stable boundary. When a system state is located

at stable boundary B, then the flow weight ωi is the relative contribution of flow Fi

to the net vector F. Because F = 0 at a stable boundary, ωi is inversely proportional

to the magnitude of the flow component that is perpendicular to the boundary, Gi. If

θ is the angle between Fi(x) and B(x) at x, and Gi(x) = Fi(x)− |Fi(x)| cos θ is the

orthogonal projection of Fi(x) onto B(x), then ∑i ωi|Gi(x)| = 0 because the flows

cancel in the direction orthogonal to B by definition of a stable boundary.

In practice, this formula for ω is constructed by forming a column for each

flow and a row for each dimension, as well as a final row to enforce the con-

straint that the weights sum to one. This formulation leads to the possibility

that we get an undefined result. Intuitively, this can happen when there are

multiple cases of flows canceling each other, and there is no way to assign the

amount of cancelation to each opposing set.

In the single dimension case, consider a situation where ẋ = 1 when x < 2,

and ẋ = −2 when x > 2. Then, x = 2 is a stable boundary (here, B(x) = x− 2).

Because the system takes both updates simultaneously, they must balance in

order for ẋ = 0 at x = 2. Therefore, the positive update is taken with frequency

2
3 and the negative one is taken with frequency 1

3 . Under this definition, a

boundary could be a line or hyperplane. It is also possible for the updates to

slide along this boundary B, which is stable as long as the system does not

enter one side or the other.

We can go further by extending this notion of stable boundary to a single

point in an n-dimensional space.

Definition 23. Stable boundary equilibrium. A stable boundary equilibrium x∗
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between two or more regions with separate flows exists when the boundaries between

all adjacent regions are stable boundaries, and along each boundary where B(x) = 0,

limt→∞ |x(t)− x∗| → 0.

Imagine a two-dimensional hybrid dynamical system where F1(x) = ẋ1 =

0, ẋ2 = 1 when x2 < 0; F2(x) = ẋ1 = −1, ẋ2 = −1 when x1 > 0, x2 > 0; and

F3(x) = ẋ1 = 1, ẋ2 = −1 when x1 < 0, x2 > 0. Under these conditions, there

are several stable boundaries but only one stable point at the origin. Intuitively,

the flow points up below the x axis, down and to the left in quadrant I, and

down and to the right in quadrant II. The system will move, possibly changing

quadrants, until the origin is reached. Here, all the flows keep the system stuck

here. In this case we have the following system of equations, corresponding to

the two boundaries and the constraint that ∑i ωi:

Xδ
i =


0 −1 1

1 −1 −1

1 1 1




ω1

ω2

ω3

 =


0

0

1

 .

By solving for ω, we find that the weights on the flows at this stable point are

ω1 = 1
2 , ω2 = 1

4 , ω3 = 1
4 .

When the state of a system is located at a boundary, then the fraction of time

it operates according to each flow is inversely proportional to the magnitude

of the flow component into its respective region. If this requirement did not

hold, then there would be an imbalance that shifts the state away from the

stable point. This result would be inconsistent with the constraints that arise

as required to operate with region-specific flows.

Notice that if there is no combination of flows into a particular region, then

the weighting for the flow corresponding to that region will be 0. Therefore,

we can have situations where only two flows F1, F2 carry all the weight, even
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when there are many more flows adjacent to x∗ and F1, F2 are only adjacent at

x∗.

The flows in our IPD/IQL setting correspond to the different joint updates

that occur as a result of each possible payoff. Because of this correspondence,

we can investigate how these dynamics work in this setting according to the

general hybrid dynamical systems framework. Likewise, there is some dis-

tribution over the possible joint greedy updates that occurs as a result of the

Q-learning algorithm in self-play. Let us call this update-frequency vector

X = [X0, X1, X2, X3] and allow for these values to be in the range [0, 1] and

sum to 1 such that X is a probability distribution.

Let us define the following values for the dynamics of IQL-ε in the Pris-

oner’s Dilemma game.

• ε: the amount of exploration, taken here as the fraction of time spent

playing the non-greedy action

• A, B: two players in this space

• R: the Reward payoff for mutual cooperation

• S: the Sucker payoff for cooperating against defection

• T: the Temptation payoff for defecting against cooperation

• P: the Punishment payoff for mutual defection

• QC: the Q-value for cooperation

• QD: the Q-value for defection

• Q: the single Q-value when QC = QD
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• Q̇C = Q̇CC + Q̇CD: the Q-value update rate for cooperation

• Q̇D = Q̇DC + Q̇DD: the Q-value update rate for defection

• Q̇CC = ((1− ε)2 + w
c ε2)(R−Q)

• Q̇CD = (ε(1− ε) + w
c ε(1− ε))(S−Q)

• Q̇DC = (ε(1− ε) + w
c ε(1− ε))(T −Q)

• Q̇DD = (ε2 + w
c (1− ε)2)(P−Q)

• c: percent of updates occurring under mutual cooperation

• w = 1− c: percent of updates occurring under mutual defection

Although the dynamics technically take place in a four-dimensional space,

it is perhaps more helpful to think of them in a reduced space of the differences

in each player’s values, so that QA
C −QA

D is one dimension and QB
C −QB

D is an-

other. Then, the flows will change along each axis. At the origin, the differences

are zero and we have dual value parity.

Definition 24. Dual value parity. The situation that arises in Q-learners in self-play

when QA
C = QA

D and QB
C = QB

D is a boundary equilibrium.

Theorem 7. Existence of stable parity. There exists some value Q such that the

origin of this reduced space (where QA
C = QA

D and QB
C = QB

D) is a stable boundary

point, such as where Q ≥ (1− ε)2R− ε(1− ε)T − ε2P.

Proof: There are clearly values of Q = QC = QD where Q̇C − Q̇D = (1−

ε)((R − Q)(1 − ε) + (S − Q)ε) − ε((T − Q)(1 − ε) + (P − Q)ε) ≤ 0 in the

region where QC > QD for both players. This inequality yields Q ≥ (1 −
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ε)2R− ε(1− ε)T− ε2P. If this first inequality holds, then the reverse also does:

Q̇C − Q̇D ≥ 0 in the region where QC < QD .

Finally, when QA
C < QA

D but QB
C > QB

D, then Q̇B
C − Q̇B

D < 0 and Q̇A
C −

Q̇A
D < 0. In all three cases, the update vector points either towards the origin

or towards a stable boundary that points towards the origin (such as when

QA
C < QA

D and QB
C = QB

D). �

There exists a stable equilibrium in terms of the four-dimensional Q-value

space that is somewhat trivial if we do not allow for any updates of the non-

greedy (or non-played) action. That is, there are two equilibrium points where

the updates of all actions are zero: one where Q = R and c = 1, and the other

where Q = P and c = 0. If we force updates due to exploration, then we

need to recognize that there are two forms of greedy updating that can occur:

mutual cooperation (say at rate 1) and mutual defection (at rate w
c ), along with

the necessary exploration. The reason we can use just these two weights for

the four vectors is that all four of the updates push the dynamics either into

the mutual cooperation space (Q̇CC and Q̇DD) or the mutual defection space

(Q̇CD and Q̇DC), as described above.

As a result of these vectors and the definition of stable boundary point, we

know that there will be no proportion of updates in the asymmetric joint action

when QA
C = QA

D = QB
C = QB

D because any linear combination of the updates

lies along the QA
C − QA

D = QB
C − QB

D line. Formally, the net update vector is

balanced by using just these two update components, and there is no combina-

tion of these other vectors that creates a net vector into the asymmetric regions,

which according to the definition of a stable boundary equilibrium eliminates

the possibility that time is spent in this region due solely to the dynamics. On

the other hand, exploration allows this update to occur by artificially adding
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this update with weight ε.

Theorem 8. With exploration, there are two equilibrium points, such that ε << c <

1− ε and c = 0.

Proof: First, we know that if the Q-values are different, then c = 0 is a

stable point because QC < QD when Q̇C = Q̇D = 0.

To investigate the claim for c > 0, we use the update rates for every payoff

and action, taking into account that some proportion of the updates will come

from the mutual cooperation state, and some from mutual defection, with ex-

ploration updates coming from both.

The QC value will be stable when Q̇C = 0. Set S = 0 without loss of gener-

ality.

Q̇C = 0 = ((1− ε)2 +
w
c

ε2)(R−Q)− (ε(1− ε) +
w
c

ε(1− ε))Q

Q∗C =
((1− ε)2 + w

c ε2)R
w
c ε + 1− ε

Because these are the updates for the Q-values given received payoffs, the

Q-value for C will remain constant at the level Q∗C.

Now let us turn to the QD value.

Q̇D = 0 = (ε(1− ε) +
w
c

ε(1− ε))(T −Q) + ((1− ε)2 +
w
c
(1− ε)2)(P−Q)

Q∗D =
ε(1− ε)(1 + w

c )T + (ε2 + (1− ε)2 w
c )P

(1− ε)w
c + ε2

Setting these two values Q∗C = Q∗D = Q∗, we arrive at a quadratic equation

for w
c :

0 = (ε(1− ε)2P + ε2(1− ε)(T − R))(
w
c
)2 +

((ε3 + (1− ε)3)(P− R) + ε(1− ε)T)
w
c
+

ε(1− ε)2(T − R) + ε2(1− ε)P
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And solving for w
c we arrive at two solutions, but only the one where w

c < 1

is stable. The resulting strategy is mostly cooperation. �

This theorem tells us that there are two equilibria with c > 0. The higher

one with cH > w gives us Q∗H, and the lower cL gives Q∗L. However, we can

now show that Q∗H is stable while Q∗L is not, under the definitions of Lya-

punov stability. Because Q∗L < 1
1−2ε [(1− ε)((1− ε)P+ εT)− ε((1− ε)S+ εR)],

greedy defection is a viable strategy and the cooperation values can decrease

due solely to exploration, as explained above.

To complete the validation that there is a zone of initial Q-values that will

end up in the cooperation equilibrium, we need to examine several cases. The

first is when both players’ values are the same, but not at the equilibrium. The

second case considers what happens when each player’s values are different,

and not at the stable point. The final possible starting point is where all four

values are different. If convergence is inevitable within some range of values,

then the updates in each of these cases must, over time, move the Q-values

towards the equilibrium.

For the first part of the analysis, we will use the observation that for Q >

Q∗L, if the Q-values for a player are equal, then either the players will cooperate

greedily (Q̇C > 0) or the values will remain equal due to Theorem 7 regarding

update dynamics. That means that for each value Q, either c = 1 or there is a

specific joint strategy c < 1 that keeps Q̇C = Q̇D. When QC < 1
1−2ε ((1− ε)2R−

ε(1− ε)T− ε2P), we expect that the values will not remain equal because of the

greedy update. Therefore, we only need to look at the complementary cases,

when QC ≥ 1
1−2ε ((1− ε)2R− ε(1− ε)T − ε2P).

Lemma 1. When all four Q-values are equal to Q and Q ≥ 1
1−2ε ((1− ε)2R− ε(1−

ε)T − ε2P) and Q < Q∗H, the updates Q̇C and Q̇D are positive.
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Proof: The values of the updates are set by the ratio of the outcome fre-

quencies c and w = 1− c and the value Q.

Recalling the updates for each outcome:

• Q̇CC = (c(1− ε)2 + (1− c)ε2)(R−Q)

• Q̇CD = −(cε(1− ε) + (1− c)ε(1− ε))Q

• Q̇DC = (cε(1− ε) + (1− c)ε(1− ε))(T −Q)

• Q̇DD = (cε2 + (1− c)(1− ε)2)(P−Q).

We set Q̇C = Q̇D to get c:

(c(1− ε)2 + (1− c)ε2)(R−Q) = ε(1− ε)T + (cε2 + (1− c)(1− ε)2)(P−Q)

c =
−ε2R + ε(1− ε)T + (1− ε)2P− (1− 2ε)Q

(1− 2ε)(R + P)− 2(1− 2ε)Q
.

The numerator and denominator are negative when Q ≈ R. When Q <

Q∗H, then c > c∗H which implies c
ε(1−ε)

>
c∗H

ε(1−ε)
> 1. Therefore, c

ε(1−ε)
(R −

Q) + S−Q >
c∗H

ε(1−ε)
(R−Q∗H) + S−Q∗H = 0, and so Q̇D = Q̇C > 0. �

Lemma 2. When all four Q-values are equal to Q and Q > Q∗H, the updates Q̇C and

Q̇D are negative.

Proof: For the same reason as in the above lemma, c < c∗H when Q >

Q∗H. As a result, 1 < c
ε(1−ε)

<
c∗H

ε(1−ε)
. Therefore, c

ε(1−ε)
(R − Q) + S − Q <

c∗H
ε(1−ε)

(R−Q∗H) + S−Q∗H = 0, and so Q̇D = Q̇C < 0. �

A more in-depth analysis is required when the players’ values are not the

same as each other, because they will have different updates and possibly dif-

ferent strategies as a result.

Theorem 9. When QA
C = QA

D = QA for player A and QB
C = QB

D = QB for player B

and QA > Q∗H and QB < QA, limt→∞ |QA(t)−QB(t)| = 0.
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Proof: There are two cases here. One where QB > Q∗H and one where

QB ≤ Q∗H. Let us start with the first case. For reasons similar to those described

above in Lemma 2, the updates of both players will be different but negative.

This situation persists until QB ≤ Q∗H, to which we now turn.

While the amount of update coming from mutual cooperation and mutual

defect will be the same for both players, we must now allow for a divergence

in strategy between the asymmetric outcomes. The reason is that a linear com-

bination of the joint update vectors can possibly add to a vector located in the

value space where the asymmetric joint action is greedy. To account for this

possibility, we will add a defection/cooperation factor µ to each set of updates.

Recalling the updates for each outcome:

• Q̇A
CC = (c(1− ε)2 + (1− c)ε2)(R−QA)

• Q̇A
CD = −(cε(1− ε) + (1− c)ε(1− ε) + µ)QA

• Q̇A
DC = (cε(1− ε) + (1− c)ε(1− ε))(T −QA)

• Q̇A
DD = (cε2 + (1− c)(1− ε)2)(P−QA).

• Q̇B
CC = (c(1− ε)2 + (1− c)ε2)(R−QB)

• Q̇B
CD = −(cε(1− ε) + (1− c)ε(1− ε))QB

• Q̇B
DC = (cε(1− ε) + (1− c)ε(1− ε) + µ)(T −QB)

• Q̇B
DD = (cε2 + (1− c)(1− ε)2)(P−QB).

We have

cA =
−ε2R + ε(1− ε)T + (1− ε)2P− (1− 2ε)QA − µ)QA

(1− 2ε)(R + P)− 2(1− 2ε)QA
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and

cB =
−ε2R + ε(1− ε)T + (1− ε)2P− (1− 2ε)QB + µ(T −QB)

(1− 2ε)(R + P)− 2(1− 2ε)QB

Setting cA = cB:

NA = −ε2R + ε(1− ε)T + (1− ε)2P− (1− 2ε)QA

NB = −ε2R + ε(1− ε)T + (1− ε)2P− (1− 2ε)QB

DA = (1− 2ε)(R + P)− 2(1− 2ε)QA

DB = (1− 2ε)(R + P)− 2(1− 2ε)QB

NA − µQA

DA =
NB + µ(T −QB)

DB

DB(NA − µQA) = DA(NB + µ(T −QB))

µ =
DBNA − DANB

DA(T −QB) + DBQA

Notice that this last equation is true in general, so that when QA = QB, µ =

0. When QB ≈ R, DA < NA < 0 and DB < NB < 0. We know that DBNA −

DANB < 0 because:

0 > DBNA − DANB

0 > ((NA + (1− 2ε)QA)− (NB + (1− 2ε)QB))(1− 2ε)(R + P) +

(2(1− 2ε)2 − 2(1− 2ε)2)QAQB + (1− 2ε)2(R + P)(QB −QA) +

2(1− 2ε)(NA + (1− 2ε)QA)(QA −QB)

0 > (2(1− 2ε)(NA + (1− 2ε)QA)− (1− 2ε)2(R + P))(QA −QB)

For P << R, the factor in front of (QA − QB) is negative, and QA − QB is

positive. Since the denominator DA(T − QB) + DBQA is also negative, then

µ > 0, suggesting that the player who has the lower Q-values (in this case, B)
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will be the one who defects more in order to keep parity. As a result, Q̇B > Q̇A

and convergence will occur because ∀t, |QA(t − 1) − QB(t − 1)| > |QA(t) −

QB(t)|. �

Theorem 10. When QA
C 6= QA

D or QB
C 6= QB

D at time t, then at some time t + τ

QA
C < QA

D and QB
C < QB

D or QA
C = QA

D and QB
C = QB

D, the dual parity condition.

Proof: The inequalities will be true in the case when the Q-values converge

to the greedy mutual defection outcome.

Otherwise, to show how the dual parity happens, we must examine each

starting configuration of the Q-values. The possible cases are when QA
C < QA

D

and QB
C < QB

D, QA
C < QA

D and QB
C > QB

D, or QA
C > QA

D and QB
C > QB

D. In the

first case, either QA
D, QB

D < P or Q̇A
D < 0 or Q̇B

D < 0. If QA
D < P and QB

D < P

then convergence to mutual defection is assured. If Q̇A
D < 0 or Q̇B

D < 0, one of

two outcomes is possible. Either QA
D < P and QB

D < P will hold at some point,

or the updating enters a second phase when QA
C = QA

D. At this point either

Q̇B
D > Q̇B

C or Q̇B
D < Q̇B

C due to the onset of the sliding update. As long as the

first inequality holds, then Q̇B
D 6= Q̇B

C and mutual defection is again assured.

If the second inequality occurs, then at some point the updating enters a third

phase such that QB
C = QB

D, reaching dual parity.

The second starting configuration represents the defection vs. cooperation

arrangement, and will lead to QB
C = QB

D because Q̇B
D > Q̇B

C. Then, this situa-

tion will be the same as the second phase in the situation above, and the same

analysis holds.

In the third starting configuration, mutual cooperation is the current update

regime. Eventually, Q̇A
D > Q̇A

C which causes QA
C < QA

D. The dynamics then

transition into a phase that is the same as the second starting configuration,

and the analysis is identical as before. �
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Theorem 11. Given an initial value setting of QA
C , QA

D, QB
C, QB

D, the update dynamics

eventually converge to either QA
C = QB

C < QA
D = QB

D = (1 − ε)P + εT or to

QA
C = QB

C = QA
D = QB

D = Q∗H where Q∗H is the value at the mutual cooperation

equilibrium described above.

Proof: We have seen that every starting configuration either reaches the

mutual defection equilibrium at QA
C = QB

C < QA
D = QB

D = (1− ε)P + εT or it

ends at the dual parity condition such that QA
C = QA

D and QB
C = QB

D.

When dual parity is achieved, the updates eventually result in mutual de-

fection or QA
C = QA

D = QB
C = QB

D. From there, the dynamics converge to Q∗H

due to Lyapunov stability. �

The final theorem encapsulates the prior theorems to show how conver-

gence to a cooperative equilibrium is not only possible, but guaranteed in

a large fraction of the total space of initial Q-value settings. This surpris-

ing and unconventional result demonstrates that there is still much to be ex-

plored when it comes to understanding the behavior of multiagent learning

algorithms, even in a game as well-known as the Prisoner’s Dilemma. The

nonlinear dynamics of algorithms like IQL allow for multiagent researchers to

break new ground both in theory and in empirical studies. The next section

expands on how the algorithm behaves in practice under a typical set of con-

ditions and implementation choices. This behavior can be radically different

from the convergence demonstrated by the idealized algorithm.

3.6.3 Prisoner’s Dilemma Phases

In this Prisoner’s Dilemma subclass, simulations may not converge for nu-

merical reasons owing to discrete updates occurring within a computational
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system. We will explore the reasons why this phenomenon arises next. Un-

der these conditions, the convergence result shown above does not hold, due

to the nonlinear updating that occurs that leads to a greedy action no matter

what the difference between QC and QD. As a result, we do not see the dual

parity conditions described in the previous section.

Instead, the nonlinear operator causes unexpected dynamics to proceed ac-

cording to a predictable sequence of update phases (Figure 3.2 and Table 3.3).

Each phase represents a temporarily stable combination of index states and

flows that persist until conditions change. The phases arise from a conflict be-

tween the selfish incentive of the dominant action and the mutual benefit of

cooperative action. In a pattern similar to human conflict, the flows transition

from I, peaceful cooperation, to II, aggression, to III, domination, to IV, rebellion,

then either back to I or to DD, total war. One player’s act of aggression breaks

the peace so that one player’s defection values gain advantage, while the re-

bellion results from the reaction of the long-dominated player who will not be

exploited any longer. These repeated phases form a chaotic attractor due to the

dual sliding update (Figure 3.3).

1. Peaceful Cooperation: Qa1 > Qa2 and Qb1 > Qb2 . Starting from low values,

both players may happen to find themselves playing C greedily. When this

condition arises, C’s Q-value updates (Q̇a1 , Q̇b1) will be higher than those for

defections (Q̇a2 , Q̇b2). Over time as Qa1 rises, Q̇a1 will fall until it is under Q̇a2 ,

even when D is non-greedy. This phase ends when Qa1 < Qa2 .

Consider that RP is the aggressor who initiates defecting so that Qa2 > Qb2 .

2. Aggression: Qa1 < Qa2 and Qb1 ≥ Qb2 . Although this phase says little

about which player’s actual values are higher, we use RP to refer to the player

who is more apt to defect and CP to describe the player closer to its Nash
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values. The algorithm’s behavior as a dynamical system ensures that the two

players will be different within this class of games. When RP’s dominant action

becomes greedy, for a time it will face CP’s greedy C until one player’s values

become equal again. Usually Qa2 will rise until Qb1 = Qb2 , and then start to

fall. This phase ends when Qa1 ≤ Qa2 again.

3. Domination: Qa1 = Qa2 and Qb1 = Qb2 , and Q̇a2 ≥ Q̇a1 . During this

period, RP will gain nothing from cooperating further, allowing it to exploit

with its dominant action to some degree. As a result, CP’s values enter a slow

decline. While the dynamics during the other observed phases can be easily

described, the behavior here does not appear to fit a fixed set of equations.

Instead, a complex set of forces keeps each player’s values together. The unit of

update “step” during this phase is actually a sequence of several other greedy

phases resulting in a return to parity for both players. If either player’s D

action becomes greedy, the Q-value for D will drop against the other player’s

D, or cause the other player’s C to drop until it plays D. The more complicated

step arises when both players play C. The values of both players rise, but CP

rises faster. Because Q̇a2 ≥ Q̇a1 , Qa2 will catch up and become greedy. When

that happens, Q̇b1 becomes negative and Qb1 drops to equal Qb2 . Next, Q̇a2

becomes negative and RP’s values will be equal again. This period ends when

CP drops far enough that it is able to play its dominant action greedily against

RP.

There are two important things to notice about this chain of events. One

is that RP’s values may end either higher or lower at the end of each minia-

ture sequence of updates, but CP’s values will definitely be lower. The second

observation is that any difference between separate starting points for CP’s

value will be magnified upon rejoining the values. A lower starting value for
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CP gives RP more time to defect, and therefore will accelerate the drop in the

value.

4. Rebellion: Qa1 = Qa2 and Qb1 < Qb2 and Q̇b1 < Q̇b2 . Figure 3.2(b) shows

the dynamics of this phase. At a certain point, CP’s greedy defection update

Q̇b2 will be higher than its non-greedy cooperation update Q̇b2 against RP’s

mixed strategy φ22. During this phase, RP’s values drop rapidly, and accord-

ingly φ22 will slowly rise. In some cases, Qb1 will become greedy along with

Qa1 , thus returning the dynamics to phase I before Qa1 drops far enough to

cause the victim to switch. In other cases, this phase resumes with the players

switching roles. The payoffs and exploration parameter determine the behav-

ior of this phase, deciding whether the dynamics end in convergence or endless

repetition of these phases. The conditions for convergence are explored further

in the next section.

3.6.4 Conditions for Convergence in Subclass 3b

For the dynamics to converge to the Nash equilibrium, one of the players (CP,

for instance) must sustain the dominant action greedily against both actions of

RP so RP’s values can fall. Figure 3.3(inset) shows an example of this condition

in phase IV. To keep the values decreasing to the Nash point, the players must

switch roles before both cooperative actions become greedy again, thereby per-

petuating phase IV. Once one of the players can defect greedily against the

other’s greedy defection, convergence to Nash is assured. The value below

which mutual defection (DD) is inevitable is the following threshold QDD,

found when (non-greedy update) Q̇b̂1
is less than (greedy update) Q̇b∗2 :

ε

2
(C21 + (γ− 1)QDD) < (1− ε

2
)(C22 + (γ− 1)QDD)
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Figure 3.2: The sequence of phases I-IV during PD with IQL-ε agents. The
value ordering is documented in Table 3.3. Some of these phases exist en-
tirely within a single index state of the GHDS (I), while others rotate between
all four index states (III). In the peaceful cooperation phase I, both agents co-
operate greedily. Eventually, via exploration, the defection value appeals to
one of the players, RP, leading to aggression (II). In II, RP forces both of CP’s
values to drop until neither player has a clear greedy action. Phase III, dom-
ination, is the dual sliding update, so that the algorithm alternates between
mutual cooperation and one player defecting. When CP’s values drop below
the QDT threshold, it becomes profitable to defect against both actions of the
other player, initiating rebellion (IV). After this final phase, both players re-
enter peaceful phase I, thereby renewing the cycle. (inset) Close-up of phase
IV of the cycle.
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in this region.
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Table 3.3: Properties of phase dynamics during repeated Prisoner’s Dilemma
by phase. These phases repeat in the order identified in Figure 3.2. (Arrows
denote transitions.)

Comparison I II III IV
RP Value Qa1 ? Qa2 > < = =
CP Value Qb1 ? Qb2 >→< <→= = <

RP Update Q̇a1 ? Q̇a2 >→< <→> ≤ =
CP Update Q̇b1 ? Q̇b2 > <→= = <→>

QDD <
− ε

2C21 + (1− ε
2)C22

(1− γ)(1− ε)
.

As CP’s values decrease during phase III, they drop below a defection thresh-

old (DT) where exploring Qb̂1
drops faster than greedy Qb∗2 . In this case b∗2 , D,

is greedy in response to mixed actions of RP. Say Cφ22 is the D reward against

RP’s sliding update. Like above, QDT is defined by the inequality Q̇b̂1
< Q̇b∗2 :

QDT <
− ε

2Cφ21 + (1− ε
2)Cφ22

(1− γ)(1− ε)
.

These dynamics from Section 3.4.2 imply φ22 is equivalent to the percentage

of time that RP spends playing a2 when its dropping values are equal and CP

is playing b2 greedily. In general, φ22 rises as values decrease. An important

cooperation threshold (CT), QCT, relates to the level where Q̇â2 > Q̇a∗1 . Es-

sentially, if both of a player’s values are very close and above QCT, it cannot

cooperate for long before Qâ2 overtakes Qa∗1 :

ε

2
((γ− 1)QCT + R21) ≥ (1− ε

2
)((γ− 1)QCT + R11)

QCT ≥
(1− ε

2)R11 − ε
2 R21

(1− ε)(1− γ)
.

As long as QCT ≤ QDT for some player, then convergence to the Nash equilib-

rium is assured because it has nothing to lose by defecting. If this condition is

true for long enough, the other player may be in a position to trigger a chain of

defections leading to the Nash.
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Phase IV, observed in the closeup Figure 3.2(inset), either leads to conver-

gence or back to I, depending on its length and its values when it commences.

IV begins when CP plays D greedily against greedy C below the threshold

QDT, thereby dropping RP’s values. If phase IV begins with Qb2 just below

QDT, then it will be too short and convergence cannot happen, as the flow re-

turns to peaceful cooperation and the cycle restarts. However, IV might not

begin as soon as it crosses the threshold if the possibility of transitioning to

the crucial index state is zero, regardless of the continuity of the updates. De-

laying phase IV makes CP eventually defect for longer periods, increasing the

likelihood of convergence to Nash. In the case of PD, this question is settled

during phase III, the dual sliding update. To illustrate this process, consider

what happens for discrete updates, shown in Figure 3.4. Essentially, CP must

first erase RP’s gains made when RP defected against its C with two Ds. Af-

ter two defections, RP cooperates, but now so does CP, so phase III continues.

This canceling still occurs at an arbitrarily small scale, but the updating is not

continuous in the sense that the flow in each region does not operate until the

boundary. Instead discrete updates are made.

In single-agent Q-learning, varying the learning rate α has no effect on con-

vergence, but it can make a big difference in the multiagent case of Prisoner’s

Dilemma. A uniform (unchanging) learning rate might delay phase IV from

its onset if the index state essential to causing a transition to the next phase

(here, a CP greedy defection and RP greedy cooperation) is skipped again and

again. This effect occurs for uniform continuous updating as well, as mutual

defection makes both defection values non-greedy, delaying phase IV. From

an empirical perspective, this effect also appears while estimating the contin-

uous trajectories of IQL-ε, where one typically computes small updates in the
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Q-values. One way to alter this outcome is to vary the size of α stochastically

to approximate noisy continuous updating, thus ensuring every index state a

chance to be visited. However, given that uniform (unchanging) learning rate

IQL is the standard way to implement Q-learning, its behavior should be fully

documented.

Some games prevent the onset of IV below defection threshold QDT until

φ22 rises above its own threshold. Specifically, the condition just described

implies that phase IV can begin when

φ22 ≥
− R22

1−γ + Qa2

− R22
1−γ + Qa2 +

R21
1−γ −Qa2

=
−R22 + (1− γ)Qa2

R21 − R22

Once it is known where phase IV must begin as α→ 0, one iteration is enough

to show whether the system converges. In Figure 3.5, we have mapped the

region of symmetric games where uniform IQL-ε does or does not converge to

Nash.

Theorem 12. In Subclass 3b games, certain starting values guarantee the IQL-ε dy-

namics converge to the pure Nash. For other values, the dynamics do not permanently

converge to any particular strategy, but average rewards of both players are higher

than the Nash.

Proof There exists a defection threshold QDD below which two-player

greedy defection (Fa∗2b∗2 ) is a sink and does not jump to another index state.

Starting values that meet this condition, or lead later to values that do, con-

verge to the Nash. In addition, a high R21 value that delays phase IV while

QDT ≥ QCT encourages convergence as RP can defect freely.

Other starting values enter a series of phases. If phase IV always occurs

immediately after the Q-values drop below QDT, mutual cooperation (Fa∗1b∗1
)

temporarily attracts the cooperation Q-values away from dominant action a2
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Figure 3.4: This plot demonstrates how greedy defections cancel each other out
to prevent CP (bottom) from defecting against RP’s cooperation (top), even
as α → 0. Imagine that CP’s values are below the threshold QDT and RP’s
values are close together. CP first erases the gains made when RP defected
against its cooperation (the first update pictured), with two defections. After
two defections, shown in the next two updates, RP cooperates. However, if
φ22 < 2

3 as it is here, CP always cooperates because it cannot defect more than 2
times in a row. Therefore, phase IV does not begin until φ22 ≥ 2

3 . This sequence
of events still takes place at infinitesimal scale.
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Figure 3.6: Action probabilities for RP in two self-playing algorithms in rep-
resentative games (Table 3.1). The policies of WoLF-IGA converge, while the
IQL-ε dynamics do not for some starting values in the PD or SC games. Both
agents converge to one of the pure Nashes in B/S, and the mixed Nash in MP.
In SC, the IQL-ε players oscillate periodically while WoLF-IGA reaches the
fixed point defined by the mixed Nash of the game. See Section 3.7 for more
details.

and convergence does not result. Delayed onset of phase IV, meanwhile, can

lead to sustained greedy defection and convergence. If neither players’ val-

ues ever drop below the threshold QDD, by the construction of Q-learning the

players must be receiving higher average values than the Nash values. �

These experimental findings were initiated with different Q-values for the

two players. If we were to initialize the values of the actions of one player to be

equal to the other player, we would in fact see the convergence results shown

in the theoretical setting explored in Section 3.6.2 above.

3.7 Empirical Comparison

The experiments show the result of running IGA and IQL-ε in a representative

game from each class, using the payoffs in Table 3.1, for 100 simulated units of

continuous time. We approximated the solutions numerically (α = 0.0001) and

used parameters of γ = 0 and ε = 0.1. To allow the algorithms to demonstrate

their full behavior, it is necessary to choose starting Q-values distinct from the

Nash values. Figure 3.6 provides a time-series plot of the Q-values for repre-

sentative games. Larger values of α show the same patterns, but with more
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noise [Gomes and Kowalczyk, 2009].

In Matching Pennies, the two algorithms essentially behave the same way,

ultimately converging to Nash. Deadlock (not shown) converges simply and

similarly for both algorithms due to the cooperative dominant action equilib-

rium.

Both algorithms converge in B/S but identical starting points may lead IQL-

ε and IGA to find different equilibria (coordinating on B vs. S). IGA converges

to a pure Nash in Chicken (not shown), and IQL-ε sometimes converges. In

the case of cyclic activity, it manages a minimum average reward of 5.7, higher

than either the mixed Nash (3.3) or lower pure Nash (1).

IQL-ε never converges in Spoiled Child, but IGA will converge to the

mixed Nash. Once again, we see IQL-ε attaining higher reward than IGA;

around 2 and 1.2 for the two players instead of 1.5 and 1. These observa-

tions provide clues about the diverse and sometimes beneficial nature of non-

convergence as well as important similarities within classes. In contrast to Pris-

oner’s Dilemma, games in this subclass reach a periodic attractor.

Finally, the PD series (Figure 3.1) compares the policies of IQL-ε with IGA.

IGA converges to the Nash (DD). While low initial values will lead IQL-ε to

DD, here IQL-ε does not converge for the chosen starting values. When simu-

lated with discrete, fixed-α updates, IQL-ε meets both conditions that describe

a chaotic pattern. Specifically, it never returns to the same point, and small

initial differences lead exponentially to arbitrarily large gaps later on. The av-

erage reward obtained by the IQL-εs is around 2.75 and 2.45, exceeding IGA’s

value of 1.0.
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3.8 Conclusion

Motivated by the important and unique role of Q-learning in multiagent RL,

it is a valuable exercise to catalog the dynamics of a continuous-time variant.

This chapter documented a wide range of outcomes where two agents learn to

play two-action games, varying from rapid convergence to Nash to unceasing

oscillations above the Nash. Of particular interest is the complex behavior of

Q-learning with ε-greedy exploration in Prisoner-Dilemma-like games, since

the algorithm is able to achieve higher-than-Nash outcomes in this previously

uncharted chaotic system. The increasing prevalence of mutually cooperative

non-Nash strategies as exploration is decreased to zero is itself worthy of inves-

tigation. There is no reason to eliminate the possibility that this result would

arise in games with more players or actions.

What is the purpose of this detailed description? A modeler should be

prepared to execute its strategy with the aim of pursuing the highest possible

reward. It is a non-trivial task to model and train these types of non-convergent

learners. If a cooperative outcome is possible against a learning algorithm, then

the goal of a modeler should be to induce the learner to behave this way. It may

be possible to extract some extra reward while keeping the learner in a mostly

cooperative state, but a modeler should be careful not to cause this frequency

of cooperation to decrease in response, thereby negating the extra advantage

sought after. The following chapter will describe how to build a model from

the strategic components in Chapter 2, without explicitly reconstructing the

dynamical system of updates.
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Chapter 4

Modeling Learning Algorithms

In repeated games, adaptation is possible whenever prior experience can be

applied to future play. As a result, the ability to model learners is an essential

part of any comprehensive multiagent theory. The preceding chapter inves-

tigated in detail the dynamical behavior resulting from interacting Q-learners

with ε-greedy exploration. This particular algorithm demonstrates unstable

behavior as a result of the learning process. The discretized IQL-ε algorithm in

self-play will not converge in certain types of games, as one might expect. In-

stead, it shifts its greedy actions repeatedly, going through a number of stages

of varying length and never retracing the same values, the revealing signs of a

chaotic system. This type of learner presents a unique challenge when trying

to predict opponent behavior because of its natural instability.

This chapter proposes and evaluates a modeling algorithm that uses his-

torical data to build and fit a predictive structure of learners or fixed history

strategies. The modeler described below consists of the components from the

meta-reasoning model, with an addition that incorporates learning from devi-

ations of reward.

For the Prisoner’s Dilemma game, the central message we can take from

the previous chapter is that learners with certain properties can unexpectedly

deviate from the single-round Nash equilibrium. The goal of a modeling agent

is to identify opponents with this capacity, as well as the strategy that keeps
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them from the Nash equilibrium while still taking maximum advantage. Later

in the chapter, a special strategy will be introduced that is meant to exploit

learning agents in this way, as long as the learning is constrained. The modeler

will relax those constraints to compute an exploitative response against any

evolutionary opponent, if it is possible.

The next section outlines the inextricable relationship between learning and

teaching, and how teaching can be considered as a level of thinking beyond

pure learning. Section 4.2 goes into more detail about how different learn-

ers need to be taught differently, centering on the issue of discounted future

payoffs. In Section 4.3, I adapt the meta-reasoning framework for adaptive

strategies by adding a separate model that changes the weights on each type

according to a linear function. I present the results of experiments using the

adapted meta-reasoning modeler in Section 4.4, and use a pre-existing model-

free teacher to evaluate its performance.

4.1 Learning and Teaching

Since the earliest research into learning in games, the concepts of teaching and

learning have been linked [Leyton-Brown and Shoham, 2009]. Indeed, in a

multiagent context one can not easily separate learning from teaching, because

just as an agent will necessarily learn from others’ behavior, others are also

influenced by the agent. Clearly, if an opponent has the ability to adapt its

behavior over time, and some mutually beneficial arrangement exists, then it

pays off to guide the learner to this arrangement. In many cases, it is neces-

sary to communicate a credible threat of punishment to enforce good behavior.

Likewise, if an opponent adopts a reasonable teaching posture, it is beneficial

to attempt to learn the correct behavior that will lead to the highest reward.
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Because the concept of teaching can mean several different things, let us define

it for this context.

Definition 25. A teaching agent or teacher in a game is an agent that adopts a

strategy with the view that its opponent will behave with a (discounted) best response

to that strategy. The teaching strategy is designed to select that learner’s discounted

best response with some goal in mind, such as whether it is optimal for the teacher.

In cases of learning opponents, an optimal teaching agent will attempt to

shape the environment the learner perceives in order to guide it into decisions

the teacher prefers. Theoretically, a teacher is able to enforce any opponent

strategy that results in a higher average payoff for the opponent than the min-

imax value for the game, due to the Folk Theorem, defined in Chapter 2.

In the discrete form of this problem, a teaching agent wishes to construct

a deterministic state-machine strategy that aims to punish opponent behavior

deviating from the enforceable strategy. It is possible for an algorithm, given a

set of enforceable strategies, to compute the strategy machine that will enforce

those behaviors, based on techniques dubbed the Computational Folk Theo-

rem, or CFT [Littman and Stone, 2003]. The algorithm works by calculating

the number of punishment rounds required to counteract the deviation from

the desired opponent strategy, and therefore making it suboptimal to do so.

An agent operating according to the CFT assumes that its opponent has the

capacity to notice this pattern and adopt the desired strategy.

Another advance came in the form of MetaStrategy [Powers and Shoham,

2005], which combined a teaching stance to force acquiesence along with a

background learning process to provide a best response if the teaching strategy

does not work after a certain number of rounds. This approach can work well

against a wide variety of opponents, although there is still no explicit formation
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of an opponent model.

Researchers have investigated other combinations of learning and teaching,

such as Q-learning with shaping [Babes et al., 2008], whereby a learner’s policy

is nudged towards some predefined policy by additional shaping rewards in

the hopes of reaching an equilibrium. The logic behind this algorithm is similar

to that of a correlated equilibrium, except that only one player is starting with

the equilibrium behavior. The shaped strategy is not fixed because learning is

still possible, so the learning agent may still learn a different strategy despite

the shaping.

4.2 Teaching a Learner with Unknown Discount

The discounted sum of rewards for some discount rate γ is

Ui =
∞

∑
t=1

γtui,t.

The regret of player i with respect to the current strategy πi is

ρi = max
π̂i

u(π̂i, π−i)−−u(πi, π−i).

However, in a repeated game, the actions of one round may affect the re-

wards of future rounds. Therefore, let us define the future expected regret.

The future expected regret of a strategy is the difference of discounted future

rewards between one course of action as opposed to another:

ϕi = max
π̂i

∞

∑
t=1

γt(ut(π̂i, π−i)−−ut(πi, π−i)).

In a repeated game context with participants who look ahead some amount,

it makes more sense for players to attempt to minimize future regret to the best
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of their ability. This goal requires the player to be able to anticipate, to some

degree, the effect of the current round’s action.

Let us consider the Iterated Prisoner’s Dilemma game, which, as we saw

in the last chapter, leads certain types of learners to spontaneously arrive at

mutually beneficial arrangements. Press and Dyson 2012 describe a method for

computing teaching strategies that simultaneously keep a learning opponent j

in a cooperative state and extract an arbitrarily large extra advantage for i when

measured by ūi−P
ūj−P (where P is the security value, or the Nash equilibrium value

for a single round). This type of strategy will be discussed in more detail below,

but we will hold onto this observation that evolutionary agents can be trained

to produce good behavior for the teacher.

One-round memory strategies, in two-action, two-player games, consist of a

four-valued vector π = [π1, π2, π3, π4] corresponding to the probability of

cooperation after each of the four joint action outcomes of Prisoner’s Dilemma:

both i and j cooperate, i cooperates/j defects, i defects/j cooperates, or both i

and j defect. The strategy is selected to be the vector with the lowest amount

of cooperation required to induce the opponent to cooperate at all times. That

is, what is the minimum amount of required conditional cooperation?

For the all-cooperation enforcement to be successful, it is possible to use

nonzero values for just π1 and π3, because the resulting transition efficiently

communicates the future reward for cooperating and the strictest punishment

for defecting. Furthermore, these values can be set equal to each other by find-

ing the eigenvector of the transition matrix yielded by π. In this way, we can

find a mixed Tit-for-Tat variant, expressed as single probability value π that fits

into the vector where π1 = π and π3 = π, that is designed to induce coopera-

tion from a learner with almost arbitrarily long lookahead. Tit-for-Tat is just a
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strategy where π = 1, but it is possible that a learner will still find cooperation

to be the best strategy even when 0 < π < 1.

This strategy simplification from four-dimensional vector to single dimen-

sional value now yields a much more accessible decision process for the teach-

ing agent, when faced with a learner of known γ. We can use the expected dis-

counted regret to frame the problem. Over a two round window, the learner

is faced with the choice of receiving (1 + γ)(πR + (1− π)S) from cooperating

twice, or πT + (1− π)P + γS by defecting once and then cooperating to get

back to the max reward state of mixed mutual cooperation. The following in-

equality represents the decision process where cooperating is beneficial, giving

a break-even value for π:

(1 + γ)(πR + (1− π)S) > πT + (1− π)P + γS

(1 + γ)(πR−−πS)− πT + πP > P + (γ− 1− γ)S

π >
P + S

(1 + γ)(R− S)−−T
.

The natural intuition behind this formula is that as γ increases, the lower

bound for π decreases, allowing for more exploitation of the learner. The val-

ues for π are lower bounded by P+S
2(R−S)−−T for γ = 1 and P+S

R−−S−−T when

γ = 0. Using the payoffs of [3, 0, 4, 1] gives a bound of π > 1
3 for γ = 1 and

π > ∞ for γ = 0, which means that when the learner does no lookahead, it is

impossible to induce cooperation.

This formula also provides a way to distinguish between learners with dif-

ferent values of γ. If cooperation is observed for one value of π but not another,

that information is evidence that the learner has a γ that would be consistent

with the observation. To find this γ, observe that
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(1 + γ)(πR + (1− π)S) > πT + (1− π)P + γS

γ >
−πR + (π − 1)S + pT + (1− π)P

πR + πS
.

So, if γ is greater than the RHS of the inequality for mixed TFT ratio π, then

the agent learns to cooperate, and otherwise the learner will defect. This infor-

mation is useful to the model builder because it provides a way to distinguish

between learners with different discount values. If a player cooperates with

one value of π and not another, then γ is between the values output by the

above formula by nature of the discounted rewards received by the learner.

4.3 Modeling a Learning Process with a Dynamic Meta-

reasoning Model

If we wish to successfully build a model of a learning agent, we should first

identify what we mean by learning and how we expect experience to alter

behavior. In the field of reinforcement learning, agents use some method for

identifying good behavior through reward feedback over many rounds of ex-

perience in various states of the world.

If the agent has access to the available state information, then a learning

algorithm like Q-learning is guaranteed to eventually converge to the opti-

mal policy for the given MDP, at least for the discount rate built into its up-

date method. A learner with the four states mentioned in the previous section

would update its values for each state it visits, and this separation creates room

for the rewards to be different in each state. However, it is not obvious that any

given learner automatically has the correct state representation to learn the opti-

mal policy in response. For example, in the IQL-ε learner described in the last
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chapter, there is only one state, and the action values will be updated for all

states simultaneously. Nevertheless, this learner is still able to cooperate and

so an opponent should attempt to achieve this outcome. Clearly, this learning

structure creates an obstacle for a modeler that knows the best response for

the state-based learner, and it cannot be ruled out that an agent would operate

in this way. After all, simpler, more compact learning mechanisms might be

preferred by agents, due to a large number of states or other domain-specific

reason.

To make the setting more concrete, imagine a scenario where a single agent

receives an income of 1 over an infinite number of time periods. It is repeat-

edly faced with a choice about whether to spend or invest its income. The

agent derives utility of 1 from spending the income. The twist is that if the

agent decides to invest, then it receives additional income equal to I > 0 of

the invested amount X in the next T turns, at which point it has to spend and

collect the higher utility. If I and T are large enough, it will be in the long-run

interest of the agent to invest every time. For the moment, let us assume that

the invested return is received in the very next round, and the amount is sig-

nificantly larger than the spending lost by investing. However, in any given

time period the reward is higher for spending. If investment was chosen last

turn, the agent would receive that return plus the spending of the income for

this turn.

A learning algorithm with just one round of memory, so that the state is

the action from last turn, will quickly learn that the reward in the time period

after investing is better than the one after spending. As a result it will gravitate

towards a investing strategy, as long as the future rewards have a sufficient

discount rate. The surprising thing is that the no-memory learner can learn to
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invest also, as long as the rewards for doing so are high enough. That detail

is the important one—the learned behavior can depend on the relative rate of

reward between spending and investing, and not the single-turn absolute com-

parison (whether spending or investing generates a higher short-term reward).

Because the values for all states are aggregated in the no-memory scenario,

the learner’s policy will not converge to any particular solution. Instead, there

will be instability, as investing becomes the greedy policy for a time until

spending catches up as the short-term winner. At that point both values will

suffer from the lower overall reward, followed by a switch back into investing

as the value for the invest action is able to temporarily outpace the spending

value once it invests several rounds in a row. (See previous chapter for more

details in the context of IPD.) As a result, the learner’s behavior appears as

a mixture between several γ-optimal policies, and this ratio is by and large

determined by the recent reward received. This reward is determined by the

investment return. The mechanism by which this process works is somewhat

complex, but it is related to how much of the lower spending reward (minus

the investment income) is required to keep the value designated to spending

in check. Lower investment rewards force the amount of spending to be rela-

tively higher because the regret due to lost investment is also lower.

This discussion relates to repeated games because in games like IPD, a TFT-

like strategy can emulate this exact same decision surface, albeit probabilisti-

cally. The defection payoff is analogous to the immediate higher payoff of

spending, while cooperating takes the role of investing. In turn, an opponent

facing a learner can select the return for cooperating by tuning the ratio π that

determines how conditional the teacher is.

The link between average reward for the desired action and frequency that
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a memoryless learner plays that action suggests a method for adapting the

framework presented in Chapter 2. Along with fitting the default parameters

of the model over all history, we can add more features to test the sensitivity of

the model to rewards received by the modeled agent. If the agent appears to

use a different strategic component more often as a result of higher (or lower)

reward, we can incorporate this observation as additional features.

4.3.1 Applying the Meta-reasoning Framework to Model

Learners

We want the model to capture how often the opponent’s behavior is explained

by each strategic component. That is, each time the opposing agent makes

a choice, the model imagines that the decision is attributed to one of these

factors, with an associated probability for each one. We would like the model to

estimate these probabilities. If the behavior is in fact represented by a mixture

of these factors, then the result should be a good predictive model. Formally,

we can represent the default strategy vector as

β = [ε, φ, µ, ωγ0 , ωγ1 , ..., ωγn ]
T

to capture the base strategies (ε, φ, µ) representing the weights on random-

ness, repeating, and imitation respectively, and ω parameters for the optimal

response against the teaching distribution for various values for γ. In many in-

teresting games, all of these components are necessary for an accurate model.

The features corresponding to each of these weights are defined by the the



121

input matrix

Xi =



1
|A| xφ,1 xµ,1 xωγ0 ,1 ... xωγn ,1

1
|A| xφ,2 xµ,2 xωγ0 ,2 ... xωγn ,2

...

1
|A| xφ,T xµ,T xωγ0 ,T ... xωγn ,T


.

The values at row t corresponds to the feature values at time t. The values

of each column are encoded as bits that are positive when the action at time t is

equivalent to the action predicted by the relevant feature, and zero otherwise.

These binary values in fact represent the probability that each feature is the

same as the relevant action. For the actions that are completely determined, the

values are always either 100% or 0%. An exception is the random action which

is set xε,t = 1
|A| to best fit a random variable with probabilities 0 < xε,t < 1.

Intuitively, this feature value is meant to capture the probabilistic nature of

the predicted action, because a random choice has 1
|A| chance of choosing any

action, whereas the other features are determined to be 0 or 1. This component

will gain weight in cases where the probability of the others are less than this

uniform value.

The target output b is always set to one. Once the modeler has gathered

sufficient historical data, the features for each time step become columns for

fitting the weights by regression so that:

Xiβ = b.

This setup works to discover the probabilities of each strategic component be-

cause the regression will attempt to make the weights add to one and the idea

is that these strategies are sufficient to cover the space. Of course, in this case,

the weights need to be bounded between zero and one, so the problem is one
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of constrained optimization minimizing the squared error. Practically speak-

ing, if the learner uses a discount rate that is not included in the set of policies,

we would expect a mixture of two adjacent strategies to be part of the output

model.

While there are features that can respond directly to actions (imitation) or

even the long-run best response (the γ-optimal policies), the astute reader will

notice that the model fit by this procedure is not designed to change with ex-

perience. To allow for adaptation of the model itself we are forced to make the

alteration described earlier in this section, namely to come up with additional

weights that depend on rewards. To achieve this outcome, we define the delta

features as a scaled version of the previous matrix:

Xδ
i =



1
|A|

¯uδ
i,1 0 0 ... 0

1
|A| 0 ¯uδ

i,2 0 ... 0

...

1
|A| 0 0 0 ... ¯uδ

i,T





1
|A| xφ,1 xµ,1 xωγ0 ,1 ... xωγn ,1

1
|A| xφ,2 xµ,2 xωγ0 ,2 ... xωγn ,2

...

1
|A| xφ,T xµ,T xωγ0 ,T ... xωγn ,T


.

Here, we have the original features weighted by the deviation ¯uδ
i,t, which is

the difference between the average reward up to time t, ¯ui,t, and some anchor

reward û taken to be some midpoint reward that separates winning from los-

ing. This anchor has a similar function to the threshold of WoLF-IGA [Bowling

and Veloso, 2001] and can be chosen by one of several methods, such as the av-

erage available payoff, average between best and worst payoffs, or half the best

payoff. In the normalized games we will consider, all of these values are set to

0.5. The original feature matrix Xi is scaled by diagonal matrix Ūδ
i to form delta

features Xδ
i . These delta features, combined with the default features, form a

dynamic model that adapts with changes in the average reward received by

the agent. To come up with the likely model given a teaching strategy, all that
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is required is to determine the reward and deviation, scale the delta model by

this amount, and form a new regression:

[Xi Ūδ
i Xi]

 β

βδ
i

 =

b

b

 .

This operation may change the reward received by the resulting model, so it

would then be necessary to iterate the process until convergence is achieved.

Let us return to the simple investment example to examine how the delta

model captures a learning agent’s behavior. We know that a stateless learner is

inherently unstable in these cases. It will not converge to any particular pure

strategy, and so its strategy will be mixed from the different strategic com-

ponents. According to the analysis in Section 4.2, the probabilistic strategy

will vary in proportion to the teaching strategy employed. Another way of

looking at this phenomenon is to say that the model of the learner changes

along with the reward it receives. For instance, imagine that when the next-

round return is 1.9 for every 1 invested in the current round, the learner in-

vests with probability 0.9 and spends the rest of the time. If the probability

drops to 0.5 when the return is 1.5, and to 0.1 when the return is 1.1, there is

evidence of a linear relationship between reward and strategy. Take the de-

fault model to be ω0 = 0.5, ω0.9 = 0.5. One possible model would give a

delta weight ω0,∆ = −0.05 for the no-lookahead policy. Conversely, a long-

term lookahead policy, like when γ = 0.9, would have a positive delta weight

ω0.9,∆ = 0.05. If the midpoint reward is taken to be 1.5 for this learner, then

the model would give the correct strategy for the three return payoffs. To get

accurate estimates of these parameters, the modeler needs to test the response

of the learner against a variety of possible payoffs.

It is valid to ask what would occur if this part of the learning model is
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missing. Because the strategies vary dramatically as a function of the payoffs,

a standalone default model would not be able to capture this variation. It is

likely that the model would be very different given a different set of testing

transitions, which is not an ideal property of a modeling process. Potentially,

each strategic component would provide less predictive power than the ran-

dom action, and so most or all of the weight could end up on ε, the probability

of the randomness feature. Figure 4.1 demonstrates what happens to the de-

fault model as more experience is added. We observe rapid shifting among the

factors, where some coefficients have all the weight and others have none, and

this allocation is unstable as trials are added. This outcome contrasts with Fig-

ure 4.2, which employs the delta features. The resulting delta model is stable.

Only the highest weighted features are shown.

Once the model is constructed, all that remains is to find the best strat-

egy against it, whether it is designed to teach a learner, or the optimal pol-

icy learned from a fixed player. For fixed distributions that do not attempt to

maximize reward against their opponent (level 0), the first four base strategies

are sufficient to represent nearly any appropriate distribution, at least for 2-

action games. These strategies are the base components of playing random,

repeat, imitate, or one-round best response against a random opponent and

the weights are contained in [ε, φ, µ, ωγ0 ]. To be precise, since the modeler only

really cares about the ways it can influence the modeled agent, the important

weights are µ (which may be positive for a fixed player) and the optimized

policy weights (which will be zero for a non-learner). Furthermore, these fixed

strategies will not adapt to the reward they receive, so the delta model should

be expected to have only zeroes or have no effect on the distribution. Against

these strategies, there is only a single MDP that will be faced, and the modeler
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can easily find the best policy against it.

For the learners where the delta-model is relevant, the modeler needs to

perform an extra step to determine the how the model reacts to the rewards

resulting from the strategies it is considering, and find the best reward coming

from them. That is, the modeler recognizes that the opponent strategy may

change as a result of the strategy applied to the opponent. Therefore, the mod-

eler needs to iteratively decide how the modeler strategy affects the opponent

payoff, which in turn determines the reactive strategy. In the IPD scenario, this

step amounts to using different TFT ratios of π and discovering where coop-

eration drops off. The end result of this model will be to find a best policy

that reacts to a fixed opponent, and generates a payoff structure that leads a

learning opponent to the desired behavior. See Algorithm 2 for more details.

ūi = 0: average reward initialized to 0
ûi: Win/loss threshold initialized to some midpoint payoff value
ωi: Delta-model for agent i fit from data
for ūi not converged do

πi = ωi + ωi,δ(ūi − ûi)
πM = arg maxπ ∑t Ut(π, πi)
ūi =

1
T ∑t Ut(πi, πM)

end for
Algorithm 2: Iterative Delta-model response

4.4 Experiments

This section will show how the above model-building algorithm performs

against a selection of simple learning algorithms along with assorted teach-

ing strategies. The evaluated setting will be Iterated Prisoner’s Dilemma, a

well-studied game that continues to fascinate theorists in this space.
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Figure 4.1: Effect of additional experience on the default model, without the
support of the delta features. Model does not converge.

4.4.1 Hypothesis

Recent work has taken the teaching question further by taking into account

the observation that a probabilistic strategy can exploit a learner through en-

suring that the optimal response is still the one desired by the teacher. To be

specific, Press and Dyson 2012 have identified a class of strategies called zero-

determinant (ZD) that have the property that the learning opponent’s score is

set at the discretion of the agent executing a ZD strategy. The central idea be-

hind this type of strategy is that the stationary state of the ZD strategy’s tran-

sition matrix is such that the payoffs take on a linear relationship, becoming

in essence a constant-sum game. The opponent has the option of accepting

some portion of the available reward, or rejecting it and taking the minimax
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Figure 4.2: Effect of additional experience on the basic model, with the support
of the delta features. Note the convergence over time.

reward. In effect, a ZD strategy allows a player to exploit an adaptive oppo-

nent in games like Iterated Prisoner’s Dilemma, creating an asymmetric payoff

structure from a symmetric game with a dominant action.

According the ZD formula, the result is four different values that, when

combined, are guaranteed to lead an opponent who maximizes average reward

to a policy that benefits the ZD-teacher. Strangely, while π4 (mutual defection)

is zero, the formula is usually a positive number for π2, which would not ap-

pear to be useful given that the learner will always be cooperating anyway, as

long as it is choosing the best policy.

This finding is valuable because it presents a way for a teaching agent to

select an optimal teaching strategy. However, there are several weaknesses
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in the analysis. First, as the authors themselves mention, the teacher, agent i,

can be thwarted by a player j who decides to take the same teaching stance,

or alternately who has a ”theory of mind.” In other words, if j reasons that

i will eventually adapt to j, then it is in j’s interest not to conform to the ex-

ploitation proposed by i. A second, more subtle issue is that the evolution-

ary player is assumed to want to maximize the average score over the infinite

horizon. Therefore, if the player is acting with respect to future discounted re-

wards, then rejecting the extortionate proposal could actually appear to be the

more rational response. A related problem is that the learner may not have the

proper state representation that it would need to learn the optimal response.

The simple meta-reasoning model introduced above is meant to address

this second issue, which centers on recognizing that the opponent operates

under some discount rate and thus cannot be fully exploited in the way that

Press and Dyson assume. Therefore, the hypothesis for these experiments is

that a modeling agent that can correctly predict the amount of lookahead in

these learners will outperform a teaching strategy that assumes a learner that

achieves an optimal average reward, as opposed to future discounted reward.

The model proposed here is a direct instantiation of the claims in the thesis in

terms of the features it extracts and the behaviors it captures.

4.4.2 Evaluation

An important characteristic of multiagent environments is that the population

selected as the opponent pool has a major effect on the performance of the

evaluated algorithms. In recognition of the teaching/learning dynamic, half of

the experimental set of agents will be learning players, and the other half will

consist of fixed strategies. For the pool to make distinctions between stronger
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and weaker strategies, the agents in these experiments should be diverse and

cover the space of behaviors.

Some basic opponents can be used to identify whether players choose the

best one-round action if there are no bad consequences for doing so. Two ob-

vious contenders are players who play just one of the actions in a repeated se-

quence. Another is a random player, exhibiting the type of behavior typically

assumed as base play in the cognitive hierarchy literature.

Conditional strategies add a new layer of sophistication, because they at-

tempt to modulate short-term and long-term action choices. The simplest of

these in IPD is the Tit-for-Tat strategy which achieved surprising success in

early tournaments [Axelrod, 1984]. In addition, we can add some variety to

this basic imitation strategy by allowing for some probability of dominant ac-

tion play, to test whether players still learn a policy of cooperating despite the

noise.

Finally, we have a Zero-Determinant (ZD) strategy to use as a baseline. This

strategy has been shown to extract a great deal of extra value from evolutionary

opponents, and so should be included in the list of contenders. Because a ZD

strategy is constructed with this goal of teaching in mind, we should expect it

to have a big advantage when learners are present. While these fixed strategies

are by no means exhaustive, they cover a wide range of behaviors from pure

actions to random actions to conditional reactions.

The learning population contains a diversity of methods as well as param-

eter values. Some learners (specifically IQL-ε) use a strict maximum threshold

to choose the action, and add some extra exploration to make sure that the

best action remains so. In contrast, the Boltzmann learning agents take a pro-

portional approach to exploration, by exponentially weighting the estimated
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values. Because a Boltzmann learner shares properties with gradient-based

algorithms like gradually tuning its strategy, it will be considered a represen-

tative for the class of gradient-ascent learners. Within these algorithms, the

learning can be subdivided into agents with zero or one round of memory. For

the agents with state representation, the discounting factor γ can be varied.

These experiments will use two values of γ, 0.75 and 0.9.

The meta-reasoning modeler is the only entrant that has the capacity to

gain knowledge from putting other agents through a test suite of strategies and

then using the model to customize a response. Therefore, the experiment will

allow the modeler this opportunity to extract the relevant data by playing a

number of games against each player before the actual tournament begins. For

Prisoner’s Dilemma, the testing takes the form of a number of stochastic zero-

and one-round transitions. The zero-round transitions are a simple probability

for playing one action or the other, pC = [0.0, 0.1, 0.2, ..., 1.0]. The one-round

transitions hold a spectrum of values of π = [0.0, 0.1, 0.2, ..., 1.0], which means

that there is some probability of the modeler imitates the opponent when the

opponent cooperates, and the rest of the time it defects. This preliminary play

will therefore consist of observing opponents against 22 strategies, which will

be played over a period of time sufficient to see convergence to a particular

policy.

4.4.3 Results

First, it is instructive to demonstrate how the modeler is able to represent each

of the opponent strategies. Tables 4.1 and 4.2 introduce the opponent pool
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and the derived model for each agent. These values represent probabilities re-

sponding to each of the strategic components that were output from the regres-

sion described above. That is, if a history can be best described by imitation,

then it should have a high value for µ. If it always defects, then the ωγ0 should

be high.

The fixed strategies are fairly straightforward to interpret. All of the proba-

bility mass is concentrated in the first four columns, corresponding to the three

base strategies and the single-round best response (Defection). The agent who

only cooperates is classified as a pure repeating strategy, which makes sense

given that the classification strategy is initialized for both players to cooperate.

An all-defecting agent is correctly identified as such, with all the probability

in column four. The random strategy is found to have ε = 1.0, and the pure

Tit-for-Tat is seen as 100% imitating. The mixed TFT agents also have nearly

exactly correct ratios.

The learning agent models tell a richer story. These agents demonstrate a

broader range of behavior, with large weights in the optimal discounted poli-

cies. Here, the delta-model component, shown in the second row for each

agent in Table 4.2, is key. The stateless IQL-ε agent, for example, has posi-

tive delta-values for ωγ=0.9 and ωγ=0.75, and negative delta-values for ωγ=0

and ωγ=0.5. What that means is that this type of learner acts like it has a far

lookahead when it is receiving high reward, and does more defection as the

reward is decreased. Concretely, if it were receiving 0.5 average reward, it

would defect 0.22 of the time and cooperate 0.43 of the time, with the rest

split between repeating and imitation. If it receives 0.4, its best response vec-

tor would become [ωγ=0, ωγ=0.5, ωγ=0.75, ωγ=0.9] = [0.22, 0, 0.16, 0.27] + (0.4−

0.5) ∗ [−1.00,−0.35, 0.78, 1.00] = [0.32, 0.03, 0.08, 0.17] which demonstrates a
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Table 4.1: Output default models for each of the fixed strategies in the oppo-
nent pool. A value of 0.00 is denoted by −.

Random Repeat Imitate
Strategy ε φ µ ωγ=0.0 ωγ=0.5 ωγ=0.75 ωγ=0.9
All-cooperate – 1.00 – – – – –
All-defect – – – 1.00 – – –
Random 1.00 – – – – – –
Tit-for-Tat (100%) – – 1.00 – – – –
Tit-for-Tat (70%) – – 0.70 0.29 0.01 – –
Tit-for-Tat (50%) – – 0.50 0.50 – – –
ZD exploiter – 0.49 0.30 0.21 – – –
[0.8, 0.5, 0.3, 0.0]

large shift towards defection (the first and second entries represent defect in

this case and the third and fourth are cooperation). On the other hand, if it

receives 0.6 instead, then this vector becomes [0.22, 0, 0.16, 0.27] + (0.6− 0.5) ∗

[−1.00,−0.35, 0.78, 1.00] = [0.12, 0.0, 0.24, 0.37], so that it cooperates relatively

more than the baseline.

The other learners with at least one round of memory demonstrate similar

patterns, although a somewhat less pronounced relationship between model

and reward. To emphasize the importance of the delta weights, consider that

without them the zero-memory learner will be classified as a random agent.

With another set of testing strategies, the default model alone will arrive at

other settings but with the delta-model the same estimates are found.

The other learners are fairly consistent with the expected behavior. If the

rewards are such that cooperation is optimal given the agent’s γ, then it co-

operates so that the high-discount features are more predictive. The obvious

exception is the memoryless Boltzmann learner, which converges to the defec-

tion action regardless of what the opponent does, and while it converges there

is a lot of randomness in its action choice.

The overall results of the pairwise tournament between the agents are
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Table 4.2: Output default (first row, sum to 1) and the associated delta models
(second row, bounded by−1 and 1) for each of the adaptive learning strategies
in the opponent pool. A value of 0.00 is denoted by −.

Random Repeat Imitate
Strategy ε φ µ ωγ=0.0 ωγ=0.5 ωγ=0.75 ωγ=0.9
IQL-ε 0.02 0.23 0.10 0.22 – 0.16 0.27
δ-model – -0.24 -0.13 -1.00 -0.35 0.78 1.00
No memory
Boltzmann 0.38 0.27 0.13 – – 0.22 –
δ-model – 0.44 0.81 -1.00 0.64 -1.00 -0.32
No memory
IQL-ε 0.20 0.03 – 0.46 – 0.06 0.24
δ-model -1.00 -0.04 -0.15 -1.00 0.26 0.34 0.93
γ = 0.75
Boltzmann 0.22 0.46 – – – – 0.32
δ-model -1.00 1.00 -0.39 -1.00 0.23 -0.03 0.33
γ = 0.75
IQL-ε 0.33 0.17 0.05 – – 0.01 0.43
δ-model – 0.50 0.02 -0.72 1.00 -1.00 0.11
γ = 0.9
Boltzmann 0.06 0.07 0.02 – – 0.29 0.55
δ-model -1.00 -0.63 0.39 -0.14 -0.81 1.00 0.77
γ = 0.9
Meta – 0.26 0.27 – – 0.15 0.33
δ-model – -0.60 0.13 -0.97 0.32 0.21 1.00

shown in Figure 4.3 and Table 4.3. Average payoffs are shown for the nor-

malized Prisoner’s Dilemma where R = 0.75, T = 1.0, P = 0.25, S = 0.0. The

first column shows the score of the agent we are evaluating against all the rest,

listed by name. The second column of the table gives an idea of how well the

others do against each opponent. There is a fairly tight distribution, but the

Modeler agent in the final row is an obvious outlier to the upside.

Pairwise results provide a more detailed look at the dynamics between the

different types of teaching and learning agents. First, the teacher versus teacher

games (Table 4.4) demonstrate that two fixed strategies that aim to exploit each
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other will often end up punishing each other instead. Only the 100% Tit-for-

Tat agent stays in a state of cooperation with itself. As one would expect, the

strategies that teach conditional cooperation are more successful against the

learning agents, shown in Table 4.5. The learning agents in these match-ups

show some mixed success (against teachers, see Table 4.6). In general, they do

better against teachers than other learners (Table 4.7), which are not necessar-

ily programmed to enforce cooperation. Furthermore, the learners with higher

discount rates appear to perform more strongly than those with lower γ. The

most likely explanation for this phenomenon is that the learners with longer

lookahead get the slightly higher reward from the exploiting fixed players, in-

stead of merely reverting to mutual defection. That is, they are learning what

the exploiters are trying to teach them: that it pays off to cooperate, albeit in

the exploiting agent’s favor.

4.4.4 Transferability to Other Games

One goal of building meta-reasoning models is that they can be used to predict

behaviors in alternate situations where payoffs differ from the original training

data. This transferability task is meant to provide a check that the agent models

are somewhat generalizable, and not specially built for a given setting.

As a proof of concept, let us begin by using the models trained on the Pris-

oner’s Dilemma with payoffs [3, 4, 0, 1] in a game with payoffs [2, 3, 0, 0.5]. This

test represents a game with the same payoff structure but different payoffs. In

this instance, the models are completely transferable and the performance of

the transferred model and trained model in this game are statistically equiva-

lent.

A final set of experiments was conducted to explore how the models trained
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Table 4.3: Mean performance of agents against the population in normalized
IPD. Note that the modeler scores the best compared to other agents in the
population.
Name of Agent X Agent X’s mean Others’ mean scores

scores vs. others vs. Agent X
Teachers (fixed)
Always defect 0.36 0.21
Always cooperate 0.35 0.88
Random 0.34 0.55
Tit-for-Tat, 100% 0.53 0.53
Tit-for-Tat, 70% 0.50 0.41
Tit-for-Tat, 50% 0.48 0.30
ZD teacher 0.49 0.33
Learners
IQL-ε 0-round memory 0.49 0.40
IQL-ε 1-round, γ = 0.75 0.37 0.29
IQL-ε 1-round, γ = 0.90 0.52 0.64
Boltzmann 0-round memory 0.48 0.49
Boltzmann 1-round, γ = 0.75 0.45 0.43
Boltzmann 1-round, γ = 0.90 0.49 0.47
MetaStrategy 1-round, γ = 0.75 0.46 0.45
Modeler 0.62 0.54

Table 4.4: Pairwise performance of fixed teaching agents against other teachers
in IPD. The agents are the same but the column headings are abbreviations of
the row headers.

Name All D All C Rand. TFT-100 TFT-70 TFT-50 ZD Mean
Always defect 0.25 1.00 0.63 0.25 0.25 0.25 0.25 0.41
Always cooperate 0.00 0.75 0.38 0.75 0.52 0.38 0.45 0.46
Random 0.12 0.87 0.50 0.50 0.38 0.31 0.35 0.43
Tit-for-Tat, 100% 0.25 0.75 0.50 0.75 0.25 0.25 0.25 0.43
Tit-for-Tat, 70% 0.25 0.83 0.54 0.25 0.34 0.25 0.32 0.40
Tit-for-Tat, 50% 0.25 0.87 0.56 0.25 0.25 0.25 0.25 0.38
ZD Teacher 0.25 0.85 0.55 0.25 0.47 0.25 0.29 0.42



136

 0

 0.5

 1

 0  2  4  6  8  10  12  14  16

T
ou

rn
am

en
t S

co
re

Agents

Learning agents
Teaching agents

ZD teacher
Modeler

Figure 4.3: Mean performance of agents against the population in normalized
IPD. The modeler (black bar) outperforms the nearest competitor by over 10%,
a significant margin in this type of tournament.

Table 4.5: Pairwise performance of fixed teaching agents against learners in
IPD.

Name IQL-ε IQL-ε Boltz. Boltz. Meta IQL-ε Boltz. Mean
Rounds of memory 0 1 0 1 1 1 1
γ 0 0.75 0 0.75 0.75 0.90 0.90
Always defect 0.30 0.31 0.34 0.36 0.28 0.33 0.40 0.33
Always cooperate 0.10 0.35 0.06 0.07 0.74 0.73 0.01 0.29
Random 0.16 0.51 0.18 0.14 0.24 0.62 0.14 0.28
Tit-for-Tat, 100% 0.63 0.69 0.32 0.64 0.54 0.74 0.58 0.59
Tit-for-Tat, 70% 0.29 0.62 0.32 0.60 0.48 0.76 0.76 0.55
Tit-for-Tat, 50% 0.27 0.55 0.31 0.59 0.52 0.77 0.63 0.52
ZD Teacher 0.34 0.57 0.33 0.56 0.46 0.79 0.55 0.51
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Table 4.6: Pairwise performance of learners against fixed teaching agents in
IPD.

Name γ All D All C Rand. TFT-100 TFT-70 TFT-50 ZD Mean
IQL-ε N/A 0.23 0.97 0.61 0.63 0.27 0.26 0.28 0.46
IQL-ε 0.75 0.22 0.98 0.60 0.32 0.29 0.26 0.27 0.42
IQL-ε 0.90 0.22 0.76 0.46 0.74 0.66 0.36 0.42 0.52
Boltz. N/A 0.23 0.88 0.50 0.69 0.42 0.31 0.35 0.48
Boltz. 0.75 0.21 0.98 0.62 0.64 0.42 0.32 0.35 0.51
Boltz. 0.90 0.20 1.00 0.61 0.58 0.67 0.33 0.35 0.53
Meta 0.75 0.24 0.75 0.59 0.54 0.36 0.31 0.32 0.44
Modeler N/A 0.25 1.00 0.62 0.75 0.53 0.38 0.46 0.57

Table 4.7: Pairwise performance of learners against learners in IPD.

Name γ IQL-ε IQL-ε IQL-ε Boltz. Boltz. Boltz. Meta Modeler Mean
Rounds 0 1 1 0 1 1 1
γ 0 0.75 0.90 0 0.75 0.90 0.75
IQL-ε N/A 0.65 0.37 0.68 0.33 0.36 0.72 0.26 0.68 0.51
IQL-ε 0.75 0.36 0.67 0.46 0.32 0.46 0.36 0.52 0.60 0.47
IQL-ε 0.90 0.67 0.37 0.74 0.30 0.51 0.75 0.54 0.36 0.53
Boltz. N/A 0.27 0.42 0.30 0.31 0.36 0.36 0.25 0.31 0.32
Boltz. 0.75 0.26 0.36 0.45 0.31 0.41 0.34 0.42 0.64 0.40
Boltz. 0.90 0.70 0.31 0.73 0.28 0.34 0.29 0.39 0.62 0.46
Meta N/A 0.29 0.58 0.74 0.32 0.34 0.46 0.53 0.54 0.48
Modeler N/A 0.68 0.70 0.80 0.31 0.72 0.77 0.58 0.75 0.66

in Prisoner’s Dilemma perform in the Spoiled Child game introduced in Chap-

ter 3. Briefly, Spoiled Child is an asymmetric game where one player is the

child and the other is the parent. The child can choose to behave or misbe-

have, while the parent decides to spoil the child or punish him. The parent is

happy to spoil the child when he is behaving, but prefers to punish when he is

misbehaving. The child’s payoffs are similar to Chicken, where he is better off

getting spoiled, and prefers to misbehave most of all. However, unlike with the

symmetric payoff in Chicken, if the parent is punishing, then the child would

rather behave. This game has a single mixed Nash equilibrium, but the unsta-

ble Spoil/Behave payoff is higher than the mixed Nash payoffs. As a result,

learners can cycle in and out of this outcome over long periods.
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Because these dynamics are similar to Prisoner’s Dilemma while also di-

verging somewhat, it is a valuable test case for the transferability of models

learned in IPD. Indeed, with models trained on agents in IPD, the modeler

performs nearly identically (within 0.01) of the models trained on the Spoiled

Child.

A note of caution is still in order, however, because changing the complex-

ity or information content of a game can have an effect on learning and rea-

soning algorithms as the internal computational and cognitive costs of making

decisions varies. For example, an agent might be observed playing the best

response in a simple game but resort to a random strategy in a harder one.

4.5 Conclusion

The takeaway message of this chapter is that the proposed method for model-

ing learning agents achieves the goal of discovering the optimal policy against

both learners and fixed players. Other algorithms have not been optimized

for this purpose, and instead do well against either fixed or adaptive players

under certain assumptions.
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Chapter 5

Reasoning Models in the Lemonade Stand Game
Tournaments

Imagine a setting where a population of agents play a multi-round game in

which the payoffs are different every time a new match begins. Many real

world situations are likely to have much in common with these non-experienced

domains, as the players respond to a changing world. This problem has

been thoroughly studied in classification/regression [Pan and Yang, 2010] and

reinforcement-learning problems [Taylor and Stone, 2007] under the guise of

transfer learning, but it is rarely mentioned in either traditional game theory

or the field of multiagent systems. Many questions that might have straight-

forward answers in static multiagent environments, such as what constitutes

a best response to a given opponent strategy, become much more challenging

in previously unseen situations. In single-agent learning problems, transfer

learning involves mapping a feature representation or a decision rule between

tasks or domains, while in the multiagent case we must carry across how a

strategic thinker solves slightly different problems. The underlying question

is the same, however: what can be gained from experience when the training

data differs from the test set in some limited way? The meta-reasoning frame-

work provides a method to address these issues.
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5.1 Introduction

This chapter applies the previously introduced meta-reasoning algorithm to

a setting known as the Lemonade Stand Game (LSG) [Zinkevich, 2009]. The

LSG is a simple, constant-sum location game with three players and many

possible equilibria. Traditional, unstructured learning algorithms fail to per-

form adequately because the act of intra-match learning puts an agent at a

disadvantage. To test the overall thesis, for learning data we will analyze a

series of actual competitions to figure out which computerized strategies arise

within a community of researchers and project them into the iterated best re-

sponse (IBR) level space. The LSG tournament follows in the spirit of previ-

ous agent competitions from Rock-Paper-Scissors [Egnor, 2000], a simple two-

player three-action zero-sum game, to the Trading Agent Competition [Stone

and Greenwald, 2005], where multiple actors interact using complex optimiza-

tions. On the complexity spectrum of games, LSG lies between these two com-

petitions, with three players, constant-sum payoffs, and a total of 12 actions.

However, scores in this game can vary widely depending on the particular

agents present, giving an edge to meta-reasoners with an effective model of

the game and their opponents.

It is worth noting here that the concept of strategic levels of reasoning has

not, for the most part, been applied to repeated games. An exception is the

Rock-Paper-Scissors tournament, where meta-reasoning strategies were used

to great effect [Egnor, 2000]. In human behavioral experiments, it is difficult

to control for learning effects shown by participants because people learn in

different ways in different contexts. There are also certain theoretical prob-

lems that arise when deciding upon what is meant by a step of reasoning in

a repeated game. Some of these issues result from the conflict of whether to
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consider reasoning as the computation of a single action in time, or a longer

sequence of actions. In situations where this scope is in doubt, we will prefer

the latter definition but reduced to a repeated strategy, due to ease of represen-

tation. In addition, the issue of how to anchor the reasoning by base strategy is

much less obvious when the game and population have a state. Games where

actions imply a state, such as location games, are convenient domains because

the impression of being in a location immediately suggests constancy as a ba-

sic action choice from which reasoning can flow. Therefore, even if there is no

environmental state, we can speak of the population as occupying a state in

location space.

This chapter is organized as follows. First, in Section 5.2, we introduce the

concept of a location game as a special case of normal form games and address

some issues that arise if these games are repeated.The rest of the chapter is an

original contribution because the Lemonade Stand Game is such a new and

unexplored domain. Following, in Section 5.3, is the Lemonade Stand Game

setup as played by the agents in several of its variations. In Section 5.4, we

look at how depth of reasoning and time horizon capture strategies in the ba-

sic symmetric game. Next, we do the same for the asymmetric version of the

game, in which game payoffs are altered between separate matches so that ex-

perience from one game must be transferred to the future ones. Prediction has

a critical role in this type of game, as utilities are strongly determined by the ac-

tions and reactions of opponents. Finally, we analyze the full group of submit-

ted agents from each of the four annual competitions to provide an empirical

validation for the utilized methods for the purpose of prediction and accurate

modeling. A strategy informed by the population meta-reasoning model is

compared against both submitted agents and alternative learners.
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5.2 Related Work: Location Games

Hotelling games, also known as location games, were devised as a way to rep-

resent the actions of a small number of firms in a market [Hotelling, 1929].

Typically, the players of these games choose a location in some space that rep-

resents the demand of a customer base, and the firms “sell” their products to

the closest customers. (In more advanced versions, economists study games

where a pricing mechanism also exists, but we will focus purely on the loca-

tion aspect here.) In the simple two-player case played on a uniform-density

line, it is fairly straightforward to show that a pure equilibrium exists with both

players at the halfway point.

These types of games have been well studied in the economics litera-

ture [Gabszewicz and Thisse, 1992; Kilkenny and Thisse, 1999]. From a prac-

tical standpoint, location games like the LSG have obvious applications for

retail establishments in a physical space, but they can also be applied in ab-

stract spaces like on the web or social networks. In addition, this model can

apply to political parties on an ideological spectrum, which has been studied

under the guise of median voter theory [Lopez et al., 2007]. Hotelling games

have another interesting property, which is that they have a price of anarchy

equal to (2n− 2)/n where n is the number of players and the social optimum

is considered to be the minimum score of the n players [Blum et al., 2008]. The

concept of a price of anarchy relates the ratio of the optimal average social wel-

fare to the Nash equilibrium values. Therefore, if many Nash equilibria exist,

the resulting payoffs of an equilibrium can severely disadvantage any given

player, which makes it all the more urgent for individuals to act according to

an accurate population model in these settings.
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When these games are repeated, one emergent phenomenon is that, de-

pending on the current configuration of players, certain well-known bima-

trix payoffs can operate between two of the opposing players in response to

a presently fixed third (or nth) player. In particular, when two players are near

each other or at the same location, a standoff occurs that resembles the game

of Chicken. To illustrate this point, consider the following simple example.

Let there be a simple one-shot game with three players (Alex, Bill, and

Carla) and three actions (1, 2, and 3) on a number line, so that 2 is connected to

1 and 3, but 1 is not connected to 3. The utilities of such a game for player i are

defined as

U(ai) = I(ai)/#(ai) + d(ai, a¬i)

where I is the identity function, #(ai) is the number of agents playing ac-

tion ai, and d is a distance function that returns the minimum distance to the

”closest” player in the action space identified by the numbers ( i.e.d(ai, a¬i) =

minj|j 6=i(|ai − aj|)). Let’s imagine that Alex and Bill choose action 3 and Carla

chooses action 2. In this scenario, Carla receives 2 + 1 = 3, while Alex and Bill

get 1.5 each. The payoff matrix for Alex and Bill, assuming Carla stays at 2, is

displayed in Table 5.2 and demonstrates how this situation can be considered

a standoff when repeated. As a result, an analysis of a repeated game like this

one must rely on the time horizon factor that players of the game Chicken use

when deciding when to back down. See Section 2.4 for more details.

While Alex and Bill are both facing off on location 3, their regret equals

ρ = 2 − 1.5 = 0.5 every round. The potential gain, on the other hand, is

G = 4− 1.5 = 2.5. If Alex moves to location 1 after 5 rounds, we estimate γ

at γ̂ ≤ (0.5/(0.5 + 2.5))1/5 = 1/61/5 ≈ 0.7. To repeat the justification for this

formula, a learner facing a non-reasoning player would expect at least even
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Table 5.1: Player A’s payoffs for a three-action location game played on a num-
ber line.

C1 C1 C1 C2 C2 C2 C3 C3 C3
A’s Action B1 B2 B3 B1 B2 B3 B1 B2 B3
1 1

3
1
2

1
2

1
3 2 2 1

2 2 3
2 3 1 3 1 2

3 1 3 1 3
3 5 4 1.5 4 4 2.5 1.5 1.5 1

Table 5.2: A bimatrix game resulting from the situation where two players on
the same location (3) must decide whether to remain or move. The third player
is assumed to be constant at location 2, so there is no benefit to playing action
2. Either player can benefit from action 1, which increases the score from 3

2 to 2.
However, the remaining player benefits more from the change, increasing from
3
2 to 4. This situation resembles Chicken, where there is a superior equilibrium
but there is an incentive to wait for the other player to back down. The three
columns on the right show the same game but with the dominated action 2
removed.

A/B 1 2 3 1 2 3
1 1

2 , 1
2 2,1 2,4 1

2 , 1
2 - 2,4

2 1,2 2
3 , 2

3 1,4 - - -
3 4,2 4,1 3

2 , 3
2 4,2 - 3

2 , 3
2

odds that the current state of affairs will continue for as long as it has been

observed. Therefore, Alex would require a higher γ to justify holding out for

the future payoffs (that may not arrive). The important thing is a consistent

way to map patience to a particular value, and this method works as well as

any other.

This simple game also illustrates the importance of robust beliefs over nar-

row ones. If Carla were to calculate a strategy using level-based reasoning

starting at random L0, she would find that L1 should play 3. At L2, the action

choice depends on how Carla picks the likely population of Alex and Bill. If

Carla believes the population is composed of 100% L1s playing action 3, then

she has no preference over action 1 or 2 as they both get utility 3, as long as she
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does not pick 3 with a guaranteed score of 1. However, if she believes that Alex

is an L1 but Bill is an L0, then she has a different choice. In this case, action 1

is worth (0.5 + 2 + 3)/3 = 11/6, action 2 is worth (3 + 1 + 3)/3 = 7/3, and

action 3 is worth (1.5+ 1.5+ 1)/3 = 4/3. In either case, action 2 is optimal (for

level 2). In the first case, the double L1 assumption caused Carla to completely

misread the structure of the game, and ignore the crucial difference between

action 1 and action 2, which is that action 2 has a higher base score.

5.3 Lemonade Stand Game

The Lemonade Stand Game was introduced as a domain for contestants to try

out algorithms for outwitting opponents in a game with no unique equilibria.

The LSG demonstrates the interaction complexity that can arise in a game from

simple rules [Zinkevich, 2009]. The game is played by three lemonade vendors

on a circular island with n beach locations, where typically n = 12, arranged

like the numbers on a clock. Each morning, the vendors have to set up on one

of the beach locations, not knowing where the other vendors will show up. The

game is played repeatedly for 100 days and the joint action is observable.

Assuming the beach customers are uniformly distributed with 2 per loca-

tion and buy their lemonade from the closest vendor (breaking ties evenly),

the payoff for the day is equal to the distance to the neighboring lemon-

ade vendors. For convenience, denote D(Ai, Aj) as the distance function be-

tween agents i and j on the side with no other agent in between. Then,

Rt
i = ∑j 6=i D(At

i , At
j) except when At

0 = At
1 = At

2 and all players receive 8.

The 2009 and 2010 LSG tournaments took this uniform-density form.

In game-theoretic terms, the uniform LSG is a 12-action normal form game
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on a ring, where the payoff function equals the sum of distances to the right

and left neighboring vendor, so that there are no locations inherently better or

worse than others. Because there are 24 customers in the uniform case, the

cumulative payoff of the three players is 24. The only exceptional formations

are when multiple agents conflict by choosing the same action (Collision). If

two vendors choose the same action, they split the reward normally assigned

in that situation, which is exactly half of the customers. They receive a reward

of 6 and create the most favorable condition for the third agent who receives

the maximum of 12. If all three vendors choose the same action, each receives

8. Because of this conflict, imitation/cooperation does not have the same inter-

pretation that it would in games without this structure.

The Lemonade Stand Game is a special case of a Hotelling game [Hotelling,

1929], and also an ideal example of competitive collaboration. It appears that

players have many repeated turns for observation and experimenting. In re-

ality many matches are settled in the first several rounds, as agents seek to

identify partners and non-partners and mutual history is established. Cooper-

ation, however defined, is self-reinforcing. Therefore, strategies in this game

put a premium on speed of action over time-intensive data collection when

finding optimal actions. This property means that traditional learning meth-

ods, like gradient ascent or regret matching tend to be outperformed by very

simple rules. Because there are many possible Nash equilibria in the game, it

is also unclear which ones are optimal and how to reach them. Our aim is a

model that can explain such phenomena and yield strategies that outperform

at least the simplest heuristics. An alternative approach [de Côte et al., 2010] to

this game identifies a stable equilibrium and classifies agents as leaders or fol-

lowers according to who initiates the equilibrium pattern. While this strategy
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works in some scenarios, in some cases it is possible to identify several levels

of leading and following. It also makes no judgments about whether one is

superior to the other, or how one might measure that performance. In a popu-

lation setting, we might also want to learn the probability of a follower in any

particular round, and as we will see that is what the meta-reasoning model sets

out to do.

The dynamics of this game are particularly interesting because they involve

a sense of competition, as the gains of one always have to be compensated by

the loss of others, as well as a sense of cooperation, because two agents can

coordinate a joint attack on the third. That is, a player able to convince another

player to cooperate with it can achieve a higher average score to the disadvan-

tage of the third player. Of course, each player would prefer to cooperate with

the “friendlier” player, with the knowledge that any attempts may be used

by the other players for their own classification tasks. Ultimately, two play-

ers who can work together best will achieve higher scores at the expense of the

third, who becomes the “sucker”. In this context, collaboration entails dividing

up the constant space between two players, leaving the third a smaller overall

fraction of the pie.

Because coalitions are easy to form and such an essential aspect of the LSG,

this game has unique properties that distinguish it from other purely com-

petitive settings like Rock-Paper-Scissors [Egnor, 2000] or even larger games

like the Trading Agent Competition (TAC) [Stone and Greenwald, 2005]. TAC

agents must perform a great deal of optimization to identify trading opportu-

nities and estimate price values [Jordan et al., 2010]. However, the inherent

symmetry of TAC creates a tendency towards Level-1 type strategies and a re-

sulting equilibrium and away from significant modeling approaches. In the
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LSG, the tension between collaboration and competition leads to a central em-

phasis on reasoning about the decision-making process of other players. That

is, LSG agents must construct strategies to either guide others into partner-

ship, or cause them to compete amongst themselves. The structure of the game

therefore calls forth a modeling approach, even if much of the model-building

or reasoning takes place before the tournament begins.

Figure 5.3 shows an overview of the key strategic patterns in the LSG. Each

agent has to choose an action every round, and the simplest move is to choose

the same action as before (Repeat), matching the same base strategy as before.

Imitation can be understood through an abstracted game between two of the

players, whereby the smaller game resembles coordination such that players

agree to spread out from each other. In the extreme case, an Equilateral ar-

rangement leads to all players getting an equal score of 8. In practice, it is

easier to spread apart from a single opponent, so that the imitation is more like

a mirror image than exact duplication, leading to the Across action. Once two

agents coordinate on the action Across, they will share 18, relegating the third

agent to 6 regardless of the action it chooses. As an illustration of its simplic-

ity, must only find a predictable player and use the action opposite to it.

can be completely oblivious as long as it is predictable (say, a pure Repeat

player).

If an agent finds its opponents in a consistent Across pattern, it will lose un-

less it can entice at least one opponent to break formation. However, achieving

this outcome requires a member of the coalition to deviate from the prior stable

state, thereby risking retaliation as a result. It is also unclear what the series of

steps are that would cause a player to move. For this reason, we can say that

Across is a stable equilibrium in this game.
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Figure 5.2: This figure depicts key strategic patterns of the Lemonade Stand
game. Each of the diagrams refers to a (partial) joint action, and similarly a

strategic move by , expecting opponents to play and . As the domain is
on a ring, the patterns are rotation and reflection insensitive.
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5.3.1 Generalized LSG

A non-uniform, or generalized, version of this game results when we remove

the constraint that the customers are evenly distributed. In the 2011 and 2012

iterations of the LSG tournament, game payoffs were randomly generated by

independently drawing either 6, 12, or 18 customers for each location. See Fig-

ure 5.3 for a visual representation. This variation creates 312 ≈ 5 ∗ 105 pos-

sible utility functions. With a learning lifetime orders of magnitude smaller

than this figure, no learning algorithm can expect to build case-specific models

for each payoff configuration. This limitation holds true especially when con-

sidering the multitude of actions that can be played in the numerous rounds

by the various agents, so that many observations would be required for each

instance. Also, we see that this type of distribution typically leads to dense

clusters of customers appearing in certain locations of the action space. The

resulting asymmetry means that certain heuristics, such as finding the position

with the highest surrounding densities, will outperform other reasoners who

ignore these densities, even agents that do well in the uniform case.

5.4 Level-k Meta-reasoning in a γ-model

In this section we apply the reasoning γ-model to the LSG in its uniform and

asymmetric non-uniform (non-identically iterated) versions. Because the sym-

metric game restricts the number of outcomes, the reasoning is drastically sim-

pler, but the issue of time horizon remains. In the case where new payoff func-

tions are randomly drawn each new game, the reasoning takes a more promi-

nent role, and the temporal questions also become richer.
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Figure 5.3: In the Generalized Lemonade Stand game, customers are unevenly
distributed, with new distributions each new match. Each beach has 6, 12 or
18 customers with equal probability, and each customer gives a profit of 6 (left,
darker colors represent higher values). Given lemonade stands ©, �, and ♦,
the utility for each can be computed (right, colors show to which stand cus-
tomers go).

5.4.1 Uniform game levels

In the symmetric, uniform game, the first action is trivial because no actions are

better than the others. As a result, the agents are assumed to play randomly

on this step, and then the game truly begins at time t = 2 with knowledge of

the location state (all agent actions). A reasonable starting point for the state-

based level 0 (L0) strategy is the uniform random action. However, because

this game is repeated, there is a spectrum of randomness, proceeding from

complete randomness every turn to the opposite extreme of no randomness at

all, or constant action. We can make use of the time parameter here in order

to create a sense of continuity with the higher levels, even though L0 takes

no strategic action. For now, we assume that the L0 strategy is expected to

move randomly within τ time steps. One way to represent τ is as the point

where the sum of a discounted geometric series reaches half of its total value.
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In this instance, the base of the exponent can be interpreted as the probability

of remaining in the same location. Therefore, τ is equivalent to the number

where the following inequality is true for some value of φ, assuming T >> τ:

τ−1

∑
t=0

φt ≥
T

∑
t=τ

φt

1
1− φ

− φτ−1

1− φ
≥ 1

1− φ
− φT

1− φ
− 1

1− φ
+

φτ−1

1− φ

1
1− φ

− φτ−1

1− φ
≥ φτ−1

1− φ
− φT

1− φ

1− φτ−1 ≥ φτ−1 − φT

1/2 ≥ φτ−1

φ ≤ 1
21/τ

The result of this inequality means that if τ = 1, a value of φ = 0.5 yields equal

sums, so that the expected wait time to move is 1. It is not important how we

measure the degree of constancy of the L0 strategy types, as long as higher

means more constant, as φ does here. In fact, φ turns out to be equivalent to

the probability of repeating the last action under the above definition (so that

1− φ is the probability of motion). When examining strategic players who are

deciding whether to delay gratification, the calculation is as above but the φ is

still proportional to the probability of repetition.

The ensuing level 1 reasoner operating under a given belief of the oppo-

nents’ φ should be aware that the two players may have different degrees of

constancy, even though it is impossible to discern immediately without expe-

rience. L1 could therefore employ in-game learning and even some amount of

generalization to optimize its approach, but it will not attribute any agency to

its competitors. L1, then, takes its actions with no accounting for how those
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actions change the state of the game for other agents. As a result, we can speak

of values of φ for these strategies, but the value calculation will always return

an action that is best for the next time step.

In the case of the uniform LSG, it is a simple calculation to see that the

optimal L1 strategy, a best response to semi-random opponents, maximizes

the distance from the other agents, weighted by the degree of constancy of

each agent. If AB is the action of player B and AC is the action of player C,

and φB and φC are the probabilities that B and C remain constant, respectively.

They randomize with probability 1− φB and 1− φC. then the optimal action

for the third agent I is AI∗ = WBAcross(AB) + WCAcross(AC) where WB =

φB(1−φC)
φB(1−φC)+φC(1−φB)

and WC = 1−WB. This formula results from basic function

maximization, and as such exploration plays no useful role in determining the

solution. It is worth noting that if φB = 1 and φC < 1, then WB = 1 and the

resulting strategy is for I to stand Across from B. This stable equilibrium has

been shown to benefit the two players in the Across partnership (here, B and

I) to the disadvantage of the third (C) for as long as it lasts.

To form the second level, we return to the earlier Chicken analysis. In the

presence of an L1 agent, it is profitable for L2 to appear to be as constant as

possible, so that the L1 moves far from L2. However, one can imagine a sce-

nario where the random initial actions lead two players (B and I) to start on the

same location, causing a conflict and a period of experienced regret since there

may be a way to improve utility. Notice that if B moves to the higher half of

the board, perhaps employing the Across strategy from I, there is a temporary

boost in utility. This change in state will cause C, if it is now the sucker in the

relationship, to set up Across from the I who remains in the initial position.

I has seen its score improve significantly simply by out-waiting its opponent.
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Table 5.3: A bimatrix game resulting from the situation where two players on
the same location (3) must decide whether to remain or move. The third player
is assumed to be constant at location 6 unless it receives the minimum payoff
(after one of these players moves). In the uniform case, there is no benefit to
moving first in this scenario.

R/C Stay Move
Stay 1

1−γ (6, 6) ( 9
1−γ , 3 + 6

1−γ )

Move (3 + 6
1−γ , 9

1−γ ) N/A

For this reason, we see how γ re-enters the situation in a way that directly im-

pacts the final outcome of the game. See Table 5.4.1 for the resulting payoffs.

It is clear that if the payoff in the current state is greater than six, there is no

benefit to moving. If less than six, then a move should occur based on the ob-

served (or expected) discount. A payoff of exactly six should lead to an infinite

waiting period, because there is no long-term gain for a new action. On the

other hand, if there is some positive likelihood that another player might act

randomly as a result of a move by this agent, then it might be worth doing so

depending on the relative level frequencies.

For the rest of this analysis, we will assume that in the uniform setting, rea-

soning strategies play the Across action with varying degrees of constancy, pa-

rameterized by γ, until Level 2 is reached, representing completely constant.

So, for shorthand, a player with γ = 0.5 is considered Level 1.5, γ = 0.9 is

considered Level 1.9, and so on. In effect, the estimated value of γ takes the

same form as the case where φ is computed using the sum of geometric series.

The main difference here is that the sum is the discounted rewards received,

whereas earlier the rewards are ignored. Section 2.4 details the process of com-

paring past regrets with future expected rewards, given the expected response

of an opponent.
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5.4.2 Meta-learning Level-based Model Distributions over k

and γ

The quantal level-k model (Section 2.2) provides a method for producing the

strategies at each level given a precision value λ. To produce an estimate of the

strategy executed by an agent, observe its action and the probability that each

strategy would have selected it. Using this probability, we arrive via Bayes at

the likelihood that this agent is acting according to this strategy, and therefore

that it reasons at the level that would produce that strategy. The normalized

likelihoods for all reasoning levels give an estimated meta-reasoning model of

this agent. As described in the extended meta-reasoning model for populations

(Section 2.5), the two sets of observations that determine the distribution over

levels are initial actions and subsequent actions (made in the context of a state).

Because the number of these observations may tend to be small in a single

instance of the game at hand, we must gather data over many matches, with

many different payoff functions, and hope that patterns arise. There are several

ways to build models from this data. In the comprehensive survey and analysis

done with human data [Wright and Leyton-Brown, 2010], the authors used

a maximum likelihood method to make predictions of future behaviors. For

our purposes, this predictive ability may not be enough because we would

like to be able to generate strategies in response to a meta-learned model. A

further difficulty is that limits on available computation time constrains the

ability to re-compute entire distributions for each new decision. Therefore, a

compromise solution is to simply average together the resulting likelihoods for

every instance observed.
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5.4.3 Planning with a Meta-learned Level-based γ-Model

Once the reasoning level distribution is estimated, we turn to finding optimal

responses to the underlying population. The process used to accomplish this

task is basically the mirror image of the learning mechanism. Given a new

LSG instance, we discover the initial action levels, up to the third. In our case,

three is sufficient because the reasoning only needs to handle three agents.

It so happens that by choosing one action from each of the three level-based

reasoners will yield a very good approximation to the likely final state of a

series of best response steps, starting from any initial position. Note that this

assumption amounts to a prior belief that the agents select their action with

high precision, such that λ = ∞. In the event that the space cannot be divided

in this way, there are probably a high number of equally good starting points

distributed more or less evenly around the circle. We will suffice to call these

final three actions stable for lack of a better term.

With these three candidate actions limiting the search space, we can easily

find the scores assuming that there is one agent at each location, giving a rank-

ing of these three, which will not necessarily correspond to the level that first

produced them. (See Figures 5.4.3 and 5.5 for an example visual explanation.)

To review the workings of the modeling algorithm (Algorithm 1), each time

a decision is observed, whether it is the first observed action or a subsequent

change in action, this action is assigned a strategy vector σ of length K, where

K is set to 4 in this case. To estimate the posterior probability that an observed

agent i is operating at a given level, first calculate the likelihood of the observed

action, for each level k, starting with π0(ai) =
1
|A| :
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πk(ai) =
eλui,k(ai)

∑a′i
eλui,k(a′i)

.

Then. the probability that the agent reasons at level K can be computed

using Bayes rule:

σ̂i,k =
πk(ai)

∑k′ πk′(ai)
.

The same procedure can be applied to the state-based level strategies, but sub-

stituting the repeat action for random in Level 0.

It is unlikely that the three players will end up picking a different one of

the three stable actions, but it depends on their relative reasoning level. More

likely is that at least one of our two opponents will choose the highest ranked

action, as all else equal it would be the best one. Fortunately, this situation is

ideal for us to analyze using the regret-based approach mentioned in Section

2.5.

The amount of time that has passed before this move provides evidence

about how long this agent would expect to wait in the future, as a function of

the relative benefit it receives by moving to a new location. That is, if we have

an estimated discount factor (γ) for our target population, then we know how

long to expect an opponent to wait before switching to the lesser stable action,

leaving our agent in command of the best one. If γ is sufficiently low, it will be

worth the initial cost to be the lucky agent to wait to collect the higher score.

However, if the population has demonstrated high γ and therefore a lot of pa-

tience, then it may in fact be optimal to take one of the lower ranked stable

actions, and hope that our opponents end up fighting Chicken-style over the

highly ranked location, to our agent’s benefit. The parameterized model ac-

counts for these opposing forces and combines them to compute the estimated

values for each of these stable points over an entire game, prior to the start of
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the game. Although we have described this process in words here, our agent

was built according to the level-k γ-model. It is able to quantitatively discover

this solution automatically, and thus fully implement a meta-reasoning model-

based response.

In essence, this process uses data from prior games to construct a distribu-

tion over the strategy space given new payoff function. The shifting densities

put the agents in a shifting landscape, but crucially the rules and structure of

the game remain in place. Thus, the decision process is an ideal test case for

the ability to transfer knowledge through a meta-reasoning framework. We

now turn to evaluating this modeling approach through the performance of an

agent that uses this method.

5.5 Generalized LSG Experiments

The mark of a successful model is to predict outcomes, and the state-based

multiplayer IBR framework presented here is no exception. In this section, we

test the correlation between the various model parameters and final competi-

tion scores. Our results can be summarized in Figure 5.7. We took the level

distributions for each agent and found the average estimated level for both

initial action and state action in this manner. Then, we examined the history

leading up to a change in state and recorded the regrets of the participating

agents, and thereby arrived at bounds on γ. This step gives three total model

parameters, including the discount factor. All three are highly positively cor-

related with final performance. If we combine all three values to predict the

score, we reach a 0.83 coefficient of correlation and over 0.9 for prediction of

rankings. The initial action level has highest performance at L2, on account of

other agents playing sub-L2 strategies. Recall that the level-k model prescribes
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Figure 5.4: Top: Sample payoffs in the Generalized LSG (darker colors repre-
sent higher values). Bottom: Expected payoffs for reasoning Level 1, where
darker colors represent higher values. The circle denotes the best available
action against two random players (L0).

responding to the average degree of sophistication in the population, and not

necessarily the highest possible strategy calculation with the most reasoning.
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Table 5.4: 2009 LSG Tournament results including two agents inspired by the
γ-Model hierarchy (italicized). The winners are in bold. Level 0.83 would
correspond to a player that Sticks with probability of 0.83, but is random the
rest of the time. An agent that would qualify as Level 1.63 would mean that a
player Sticks when in an advantageous starting position. When its initial spot
is less beneficial than it is constant with probability equal to 0.63, and the rest
of the time moves Across from another player, preferring the more constant
one. In cases where it is already Across from a player, it remains in place by
choosing the same action.

Rank Strategy (Affiliation) Score Error Est. Level
1. Meta-reasoning Model (new, adaptive) 8.62 ± 0.0069 1.63
2. EA2 (Southampton/Imperial) 8.58 ± 0.0069 1.63
3. CoOpp (Rutgers) 8.55 ± 0.0055 1.38
4. ModifiedConstant (Pujara, Yahoo!) 8.52 ± 0.0076 1.93
5. MyStrategy (Waugh, CMU) 7.97 ± 0.0087 0.96
6. ACT-R (Reiter et. al., CMU) 7.95 ± 0.0086 0.96
7. GreedyExpectedLaplace (Princeton) 7.57 ± 0.0086 0.83
8. FrozenPontiac (U Michigan) 7.44 ± 0.0075 0.63
9. GregStrategy (U Texas Austin) 6.82 ± 0.0054 0.13
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Figure 5.6: Estimated levels of competitors in two Lemonade Stand Game tour-
naments. Both sets of agents show positive correlation between reasoning and
performance. R2 values are 0.77 for 2009 and 0.34 for 2010. The more recent
agents show a shift to higher reasoning levels, as well as a compression of
scores.

5.5.1 Experiments using 2009 and 2010 agents

The levels of LSG, while useful, are theoretical constructs. Nonetheless, the

basic elements of this account arose in a group of agents developed indepen-

dently. This section shows the viability of the level-based analysis by applying

it to the two rounds of open LSG competitions, one in Dec. 2009 and the other

in Dec. 2010. The submitted strategies were a diverse collection. No two were

alike and ranged from complete uniform action to near constant, to Across-

seeking and initiating, and many in between.
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Table 5.5: 2010 LSG Tournament results including an agent inspired by the
γ-Model hierarchy.

Rank Strategy (Affiliation) Score Error Est. Level
1. Meta-reasoning Model (new, adaptive) 8.37 ± 0.0099 1.98
2. Waugh (Carnegie Mellon) 8.27 ± 0.0094 1.93
3. Matchmate (GA Tech) 8.22 ±0.0095 1.13
4. ModifiedConstant (Pujara, Yahoo!) 8.17 ±0.0097 1.93
5. Shamooshak (Alberta) 8.13 ±0.0094 1.25
6. TeamUP (Southampton/Imperial) 8.12 ± 0.0099 1.83
7. Collaborator (Rutgers) 8.10 ±0.0105 1.38
8. GoffBot (Brown) 8.00 ±0.0108 1.13
9. Meta (Carnegie Mellon) 7.72 ±0.0102 1.38
10. Cactusade (Arizona) 7.21 ±0.0085 1.13

Tournaments run on both sets of agents demonstrate the power of an adap-

tive strategy. Tables 5.4 and 5.5 show the results including a new adaptive

agent with a discounted level-based meta-reasoning model of its opponent

population. In both cases, it outperforms the others in the test suite.

To apply the model to real agents, we would like to classify each strategy

by level or as a hybrid between levels. If our level-k γ-model is a good fit

for LSG, populations consisting of agents that correspond to a similar mix of

levels should behave, and score, in roughly the same way as their idealized

counterparts. Since each level has its unique strengths and weaknesses, perfor-

mance depends on the makeup of the population and specifically the relative

frequency of each level. For the purposes of this paper, we classify a strategy

by inspecting how it scores against idealized strategies from each of the levels

we identified. See Figure 5.6 and Tables 5.4 and 5.5 (right hand side) for these

estimated levels. We ran the submitted agents against strategies over various

values for the relevant parameters, such as φ0, φ1 ∈ [0, 0.5, 0.75, 0.9, 0.95, 1.0].

Again, the decimal values for L1 correspond to the probability of players re-

peating their action when they receive less than the security value (remaining
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constant otherwise), while the probabilities are not conditioned on this state.

Using the derived strategies as benchmarks to compare to, we take the squared

difference between unknown agent and level representative and find the small-

est difference between two adjacent scorings, say Level 1.95 and 1.975.

The rankings of the players in both tournaments provide a rough correla-

tion to the amount of reasoning. The bottom half of the 2009 performers act like

the base assumption strategies. The top half behave like those derived in the

higher levels of the γ-model model. From the 2010 data set, we find that—on

average—reasoning has shifted up a level. Players identify the Across posi-

tion as a goal state, but the top performers are more patient to get there, which

implies more reasoning (or forward-thinking) according to the model.

5.5.2 Experiments using 2011 and 2012 agents

The experimental data presented next is derived from the submitted set of

agents from the July 2011 and 2012 Generalized LSG tournaments, which im-

plemented the LSG with varying customer distributions. We have two goals

in the following analysis. The first is to show that the features resulting from

the derived level-based model accurately predict performance in the tourna-

ments. This claim is confirmed by the more advanced strategies under this

definition being among the winners. Second, we would like to demonstrate

how this level data can be utilized to efficiently determine the distribution over

types that are present in an ongoing series of games, and subsequently outflank

them. This goal was of interest for the 2012 competitions, where agents had the

chance to observe opponents in action over many games, albeit anonymously,

and respond as they wished. As a side point, it has been observed that in LSG’s

current form, there is not much opportunity for modeling and responding to
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Figure 5.7: A comparison of the final 2011 competition score with the maxi-
mum likelihood level (R2 = 0.73), estimated state-based level (R2 = 0.72) and
estimated score (R2 = 0.83). (a) The best fit over the data points is a quadratic
function because most of the agents are L1 or less, which means that L3 does
worse than an L2 strategy in this population. (b) Average likelihoods of each
level are computed and normalized, and then each level is weighted by the
corresponding likelihood. The Spearman’s rank coefficient is 0.93. (c) The es-
timated score is output by the final model as a function of initial level, state-
based level, and discount factor. The Spearman’s rank coefficient is 0.9. The
trendline shown is X=Y.

Table 5.6: Results of an internal experimental match-up including the top
four agents of the 2011 Tournament and an agent constructed using the meta-
reasoning modeler. Average score over 100 repetitions of each match shown.

Ranking Agent Score Error
1 Meta-reasoning Model (new, adaptive) 51.61 ± 0.39
2 Rutgers 49.36 ± 0.37
3 Alberta 47.63 ± 0.39
4 Harvard 47.60 ± 0.32
5 Brown 43.10 ± 0.34

opponents within games, as matches are often settled within a small number

of moves. Therefore, any agent that possesses an accurate model of behaviors

will have a great advantage when it comes to planning a strategy in matches

with previously unseen density functions.

In Table 5.7, we show the performance of our agent, the Full-Model agent,

against the top four challengers in the 2011 tournament. The best submissions

are used since other strategies have been observed to emulate them in time for

the next competition [Zinkevich et al., 2011], and we would like our agent to
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Table 5.7: Results of an internal experimental match-up including all agents
of the 2011 Tournament and an agent constructed using the meta-reasoning
modeler. Average score over 100 repetitions of each match shown.

Ranking Agent Score Error
1 Meta-reasoning Model (new, adaptive) 50.48 ± 0.42
2 Rutgers 50.06 ± 0.33
3 Harvard 49.21 ± 0.35
4 Alberta 48.83 ± 0.30
5 Brown 48.40 ± 0.36
6 Pujara 47.27 ± 0.39
7 BMJoe 46.95 ± 0.37
8 Chapman 45.46 ± 0.35
9 GATech 45.03 ± 0.31

Table 5.8: Results of the final 2012 Tournament, which includes an agent con-
structed using the full state-based γ hierarchy. Average score over 100 lifetimes
of 100 matches shown.

Ranking Agent Score Error
1 Rutgers (Meta-reasoning Model) 52.33 0.14
2 Waterloo 48.92 0.17
3 Alberta 48.13 0.16
4 Harvard 46.30 0.12
5 Sydney 45.33 0.10

perform well against likely future competitors. This agent runs the model to

estimate the game-length values of the best starting points, and selects the best

of these accordingly. Once the game has begun, it switches into state-based

mode and makes regret-informed decisions using an internal value of γ that

may be adjusted based on observations from the population.

Table 5.8 shows the results of the fourth and final tournament in 2012,

where the γ-Model agent detailed above was submitted by the Rutgers team

and won a convincing victory. The power of this modeling/planning tech-

nique is demonstrated by the fact that the margin of victory of about 7% was

over three times as large as in previous competitions. Clearly, if the predictions

of opponent play in each succeeding game were inaccurate, then the method
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would recommend actions that would not pay off as well as the results indi-

cate.

5.6 Conclusion

As the experiments demonstrate, a meta-reasoning model that includes rea-

soning ability and future discounting in a population of strategies is a superior

method for predicting and responding in a highly strategic scenario. A base set

of action primitives including randomness, repetition, and imitation provides a

strong starting point for constructing the hierarchy. The results from 2011 and

2012 show that this type of meta-reasoning model performs well at transfer-

ring experience to new, previously unseen payoffs. In particular, the modeler

can apply its experience to a new setting through a process of forecasting fu-

ture behaviors of the model it has learned. This generalized algorithm uses the

trained parameters to generate new dynamic strategies in response to a payoff

function and the likely states generated by the population model.
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Chapter 6

Empirical Agent Based Models of Cooperation in
Public Goods Games

In previous chapters, I have focused on predicting the behavior of artificial

agents for the purpose of building a modeler agent that can do well against

them. Here, I use prediction for another purpose; namely, to evaluate a suite

of models to select the best one for a different set of experiments. Addition-

ally, the historical data is not artificially generated, but gathered from a set of

online public goods games experiments with human participants. I then use

the models trained on this data set to explore the parameter space in a range of

scenarios that the original data does not cover.

First, I present how agent-based models have traditionally been used in

the literature and why it is important to empirically validate such models, and

in the process defining Empirical Agent-based Models (EABMs). Section 6.2

contains selected related work in the field of ABMs and public goods experi-

ments. In Section 6.3, I detail the experimental setup and data set. The next

two parts, Sections 6.4 and 6.5, show how to apply the meta-reasoning model

from Chapter 2 to this domain, both deterministically (a point prediction) and

stochastically (distribution over predictions). These sections also provide eval-

uations of the established models, first on an individual prediction basis, and

then at the level of population distributions. Section 6.6 presents the results of

simulations of the trained EABMs in new domains like larger networks with
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complex structure, and Section 6.7 concludes.

6.1 Introduction to Empirical Agent-based Modeling

Agent-based models (ABMs), also sometimes called “individual-based mod-

els” or “artificial adaptive agents” [Holland and Miller, 1991], constitute a rel-

atively recent approach to modeling complex systems—one that stakes out a

middle ground between the highly formal but also highly abstracted approach

of traditional mathematical models—emphasizing analytical solutions of alge-

braic or differential equations—and the richly descriptive but also ambiguous

and imprecise approach of intuitive reasoning [Bonabeau, 2002]. ABMs typi-

cally assume the existence of discrete agents, whose behavior is specified by

rules that depend on the states of other agents, as well as some arrangement of

interactions between the agents, where both the agent rules and the interaction

patterns can vary from very simple and abstract—as in cellular automata—to

highly complex and realistic. On the strength of their flexibility and realism,

ABMs have been extensively deployed over the past thirty years to model a

wide range of problems of interest to social scientists, including neighborhood

segregation [Schelling, 1978], organizational problem solving [Lazer and Fried-

man, 2007], cooperation and conflict [Axelrod, 1984], opinion change [Deffuant

et al., 2000], cultural evolution [Axtell and Epstein, 1996; Axelrod, 1997], and

political state formation [Cederman, 1997].

The generally greater complexity of ABMs, however, also requires the mod-

eler to make potentially many assumptions regarding (a) the amount and type

of information possessed by the agents, (b) the manner in which that informa-

tion is processed, and (c) the rules governing the interactions between agents.
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Traditionally, these modeling choices have been made on the grounds of intu-

itive plausibility, rather than on empirical accuracy. This choice reflects, in part,

the philosophical position of ABMs researchers who have viewed ABMs as

thought experiments intended to explicate theories and explore causal mech-

anisms, not as forecasting engines [Axelrod, 1997; Macy and Willer, 2002]. In

recent years, however, the idea of grounding modeling assumptions on empiri-

cal observations of human behavior has begun to attract attention [Janssen and

Ostrom, 2006; Heckbert et al., 2010]. There are two main reasons for this new

emphasis, one technological and one philosophical. The advent of large online

data sets has enabled the construction of behavioral models of individuals at

a level of detail never before possible. The deeper issue is that even plausible

and apparently innocuous assumptions about agent behavior can turn out not

only to be mistaken but also critical to the emergent behavior of interest. Even

if the goal of agent-based modeling is theory explication not empirical accu-

racy per-se, a certain amount of empirical accuracy may be necessary in order

to avoid spurious conclusions.

To illustrate the potential problem, consider two provocative papers from

the organizational learning literature that used ABMs to explore the impact of

“network efficiency” on collective problem solving [Lazer and Friedman, 2007;

Fang et al., 2010]. Both papers reached the same surprising and counterintu-

itive conclusion: that under certain general conditions, inefficient networks—

those with long path lengths and slow diffusion times—should outperform ef-

ficient networks when nodes were searching for a global optimum in a fitness

landscape. The explanation was that the models assumed that when an agent’s

neighbor discovers a superior solution, the agent would copy their neigh-

bor, hence efficient information diffusion led to herding onto local optima,
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whereas inefficient diffusion allowed for greater exploration, hence higher like-

lihood of discovering the global optimum. Subsequent human subjects exper-

iments [Mason and Watts, 2012], however, have found that human agents do

not copy with a fixed probability, and in general do much less copying than

the agents in the models. Moreover, the greater exploratory tendencies of hu-

man subjects vis-a-vis the artificial agents, turns out to eliminate the putative

benefits of inefficiency, while the costs (slower diffusion of information about

successful solutions) remain. The result is that in experiments, efficient net-

works always outperform inefficient networks, even under conditions chosen

specifically to favor exploration [Mason and Watts, 2012].

This chapter articulates an approach labeled “empirical agent based mod-

eling” (EABM), in which candidate models are first trained and evaluated on

data from human-subjects experiments, and then deployed in the same way as

traditional ABMs to explore regions of the parameter space outside of those in

which the original experiments were conducted.1 Adopting this data-oriented

approach means motivating and evaluating our models almost exclusively in

terms of how well they predict observable player actions2 , ignoring obvious

criteria such as psychological interpretability or theoretical plausibility. As a

consequence, the models do not map in a straightforward fashion to conven-

tional agent-based models, which are often motivated by strategic or psycho-

logical arguments; however, as we will indicate, a number of these models

are in fact behaviorally equivalent, and therefore are effectively included in

the following analysis. Finally, although the idea of empirical validation of

1 Note that agent models could also be evaluated on data from non-experimental sources
such as role-playing games, participant observation, or surveys [Janssen and Ahn, 2006].

2 Where predictive performance of competing models is close we can also place some
weight on parsimony.



171

ABMs is general, here we examine the approach in the specific context of co-

operation in public goods games, an important problem in social science, and

to agent-based modeling in particular [Axelrod, 1984, 1997; Macy and Willer,

2002], Critically, it is an area in which recent large-scale human subjects experi-

ments [Suri and Watts, 2011; Wang et al., 2012] have made the appropriate data

available for training and testing EABMs.

6.2 Related Work

Although empirical evaluation of ABMs is a topic that has received relatively

little attention, a handful of attempts have been made, also in the context

of games of cooperation. The earliest, by Deadman 1999, attempted to fit

data from previously conducted common pool resource experiments with a

reinforcement-learning model. According to Deadman, the resulting aggre-

gate behavior was “similar” to the empirical data, but no quantitative evalua-

tion was performed and no alternative models were considered. Subsequently,

Castillo and Saysel 2005 developed a system-dynamics model of player behav-

ior also in common pool resource games, and compared its behavior with data

from field experiments involving fisherman and crab hunters from the Provi-

dence Island of Columbian Caribbean Sea. The authors assessed their model’s

validity predominantly in terms of its ability to display behavior that is con-

sistent with theoretical expectations (e.g. its sensitivity to key parameters), not

empirical data. Nevertheless, they showed that it was possible to find param-

eters for which the model could approximately replicate observed aggregate

contributions, where again no quantitative evaluation was performed and no

alternative models considered.
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There are other well-known examples where modelers have aimed to repli-

cate historical phenomena, such as the Artificial Anasazi Project [Axtell et al.,

2002]. Again, because only a small amount of aggregate data is available, such

as the number of farms in the valley, it is difficult to evaluate the results of

these experiments by how closely the model captures the agent behavior. In

other research studying more recent economic data, it is notable that many

of the proposed ABMs also focus on reproducing aggregate measures such as

GDP [Fagiolo et al., 2007a]. The problem with training the various parameters

of ABMs to capture these aggregate observations is that it is very susceptible

to overfitting those parameters and could produce wildly divergent results in

a situation where the conditions are slightly different. Finally, and most sim-

ilar to the current work, Janssen and Ahn 2006 fitted an experience-weighted

attraction (EWA) model of learning [Camerer and Ho, 1999] to data from two

earlier experiments. Fitting separate models to individual players, they iden-

tified 8 player “types,” defined in terms of their best-fit parameter values, that

accounted for the vast majority of the sample population.

The contribution of the following analysis differs from, and builds upon,

this previous work in three key respects:

1. Prediction. Whereas previous attempts have emphasized plausibility and

interpretability of the candidate models over predictive accuracy, this

work takes a machine-learning approach, similar to that adopted by

Wright et al. 2012, in that it introduces a basket of models and com-

pares their predictive performance on out-of-sample test data. Note that

this approach does not rule out cognitively plausible models—indeed,

as indicated below, a number of conventional models of cooperation, in-

cluding well-known strategies like Tit-for-Tat, are behaviorally consistent
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with the ones proposed here. Because the primary goal is predicting be-

havior, however, we can be less concerned with the underlying cognitive

model than with the behavior itself. Even so, the structure of the best

models seem to imply the existence of certain psychological biases, such

as inertia and following the crowd.

2. Evaluation. The model performance is evaluated more rigorously than

previous work, first on average contributions over time, and second on

the full round-by-round distribution of contributions—a far more chal-

lenging requirement.

3. Application. Finally, going beyond simply fitting a model to the exper-

imental data, a selected model is then deployed to explore parameter

regimes beyond those covered by the experimental design. In other

words, this approach preserves the “ABM as thought experiment” tra-

dition of agent-based modeling, but attempts to ground it in agent rules

that are calibrated to real human behavior within some domain.

With these elements, the Multiagent Cycle described in the first chapter is

in full effect. The experimental data, detailed in the next section, was gath-

ered to investigate the relationship between behavior in public goods games

on social networks. This domain is interesting in part because observations

have long contradicted the predictions of game theory, which is that people

shall decline to contribute to the common good. Another reason is that there

is still no consensus about how to model behavior in this realm, with possible

explanations ranging from reciprocation to altruism to delayed best response.

Although the original hypothesis laid out by Suri and Watts 2011 was not

confirmed, the data holds deeper value when it comes to this latter question,
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because it contains multiple observations of the same people in this game un-

der various circumstances. Finding a model that is maximally predictive is

imperative when it comes to using it for future applications. For this reason,

the model-building step in the cycle is key because it connects what is known

to what we would like to know.

The later sections will attempt to complete the cycle by using the learned

models in simulated domains that are too big to gather reliable human data for

a number of reasons such as coordination, technology, and cost. However, once

we can trust the underlying generative model due to exhaustive testing, the

results of such explorative simulations will have a firmer basis for hypotheses

that emerge out of them.

6.3 Background on Experimental Setup and Data

Before defining and analyzing the models, let us first briefly describe the ex-

periments used to gather the data, which were conducted using Amazon Me-

chanical Turk3 (AMT), and were originally reported by Suri and Watts 2011

(hereafter referred to as SW). The experiments were a variant of a linear pub-

lic goods game [Ledyard, 1995], a game of cooperation that is widely studied

in laboratory settings. Each game comprised 10 rounds, where in each round

each participant i was allocated an endowment of e = 10 points, and was re-

quired to contribute 0 ≤ ci ≤ e points to a common pool. In standard public

goods games, participants’ contributions are shared equally among members

of the same group. SW, however, studied a variant in which participants were

3 http://www.mturk.com

http://www.mturk.com
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arranged in a network, so they shared their contributions with their neigh-

bors. To reflect this change, players’ payoffs were given by the payoff function

πi = ei − ci +
a

k+1 ∑j∈Γ(i) cj, where in place of the summation over the entire

group of n players, payoffs are instead summed over Γ(i), the network neigh-

borhood of i (defined to include i itself), and k is the vertex degree (all nodes in

all networks have the same degree). Therefore, i’s contributions were, in effect,

divided equally among the edges of the graph that are incident on i, where

payoffs are correspondingly summed over i’s edges. From this payoff function

it is easy to show that when 1 < a < n, players face a social dilemma in that

all players contributing the maximum amount maximizes social welfare, but

individually players are best off if they contribute nothing, thereby free-riding

on the contributions of others.

SW chose networks that spanned a wide range of possible structures be-

tween a collection of four disconnected cliques at one extreme, and a regular

random graph at the other, where all networks comprised n = 24 players, each

with constant vertex degree k = 5. SW conducted a total of 73 networked

experiments on AMT over a period of 6 months, including the following treat-

ments, which are analyzed in this work4 :

1. All Human, 23 games. All 24 players were human subjects.

2. Altruistic Dummies, 13 games. Four positions were played by com-

puter, which contributed the full endowment each round. The dummies

were arranged so that each human player was adjacent to precisely one

dummy (i.e., the dummies constituted a covering set for the graph).

4 Section 6.5.3 makes use of an additional set of 15 related experiments conducted after the
publication of SW. Because they were not described in SW, however, they are not included in
the main results.
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3. Free Riding Dummies, 17 games. Same as for altruistic dummies, but the

dummies contributed zero in each round.

4. Neighboring Altruistic Dummies, 20 games. Same as for altruistic dummies,

but the four dummies were arranged in two pairs, such that some human

players were adjacent to two dummies, while others were adjacent to

zero.

Surprisingly, SW found that network topology had no significant effect on

contributions in any of the experimental treatments. From the Altruistic and

Free Riding Dummy conditions, they established that players were behaving

as conditional cooperators (in the generalized TFT sense), hence contributions

in neighborhoods with high local clustering were more correlated than those

with low clustering; however, the symmetrical nature of conditional coopera-

tion effectively led positive and negative effects to cancel out. Moreover, from

the concentrated dummies (Neighboring Altruistic) condition, they also estab-

lished the absence of multi-step contagion of positive effects, although they did

not rule out negative contagion.

6.4 Deterministic Models

This section defines and then evaluates a collection of models that can be con-

sidered deterministic, meaning that the output of a model is the expected con-

tribution for the next round. All the deterministic models presented here suf-

fer from a major shortcoming in predicting the full distribution of contribu-

tions, because they cannot in fact be expressed as distributions. Nevertheless,
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we begin with them for three reasons: first, they are relatively simple and in-

tuitive; second, they perform reasonably well at predicting average contribu-

tions; and third, they are frequently invoked both in agent-based models of co-

operation [Axelrod, 1984] and also in previous attempts to replicate empirical

data [Deadman, 1999; Castillo and Saysel, 2005; Janssen and Ahn, 2006]. Fur-

thermore, the components of these models represent the base strategies from

the meta-reasoning framework. Specifically, the actions of repeat and imitate

feature prominently, although they function as a weighted combination that

outputs a new action on the spectrum between full cooperation and full free-

riding. Certain games have a particular structure wherein the payoffs can be

considered as a continuous function over the action space. As a result, one can

view strategies in this space as a simple linear function mapping actions from

one round to the next. This property may not hold for games in general, but, in

this class of games, it allows us to examine heuristics of the subsequent form.

While the predicted behaviors resulting from the following behavioral rules

do not take payoffs directly into account, they do react to the observed behav-

ior of others in a way that mimics intelligent thinking. For instance, the action

in the next round may be influenced by others through a reciprocal relation-

ship, or it may change towards selfish behavior, or some mix of the two. The

best response option is another core component in this framework, and some

of the following models also include a temporal aspect that allows for some

measure of forward thinking. In later sections, the repeat/respond dynamic

will serve as an anchor for the probabilistic strategy that appears to match the

population better.
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6.4.1 Model Definitions

Here are several representative deterministic models explored in the following

analysis.

Linear Self-factor Model. Perhaps the simplest model one might imagine cap-

tures the commonly observed empirical regularity that players who contribute

a lot (respectively, a little) in the previous round are more likely to contribute a

lot (respectively, a little) in the current round [Wang et al., 2012]. Formally, the

model predicts ci,t, player i’s contribution on round t, to be a linear function of

player i’s contribution in the previous round ci,t−1:

ĉi,t = β1ci,t−1

In essence, this β1 coefficient is the repetition factor that determines how stable

a player is. If β1 = 1, then the same action would be repeated ad infinitum.

Linear Neighbor-factor Model. A second simple model is motivated by the

notion of conditional cooperation [Fischbacher et al., 2001]—the more player

i’s neighbors contribute, the more player i is likely to contribute. Specifically,

ci,t is predicted by the weighted average of player i’s neighbors’ contribution

in the previous round, c̄i,t−1:

ĉi,t = β2c̄i,t−1

The β2 incorporates how dependent the behavior is on others’ actions, reflect-

ing the imitation base component. Thus, a high β2 would cause a player to

converge to the same contributions as her neighbors over time.

Linear Two-factor Model. Next, we combine these two single-parameter mod-

els in a two-factor model that predicts ci,t, player i’s contribution on round t,

as a weighted linear combination of (a) player i’s contribution in the previous
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round ci,t−1, and (b) the average contribution in round t− 1 of the local neigh-

bors of player i, c̄i,t−1:

ĉi,t = β1ci,t−1 + β2c̄i,t−1

The coefficients β1 and β2 therefore capture the relative importance of

player’s previous actions versus his neighbors’ previous actions, where we

note that models of this general form (“place some weight on my own in-

trinsic inclination to contribute and some weight on my neighbors’ contri-

butions”) generate behavior that is consistent with conditionally-cooperative

models such as Tit-for-Tat [Axelrod, 1984], and even more complicated strate-

gic models such as that proposed by Kreps et al. 1982. By combining these

factors into a linear equation, we retain the spirit of a base non-reasoning strat-

egy, while also achieving some robustness in terms of predictions.

Triangle-shaped Model. Motivated by Fischbacher et al. 2001, who observed

that some players contribute proportional to their neighbors up to about 50%

of the total endowment, after which their contributions decline in proportion

to their opponents, let us examine the following “triangle” model:

ĉi,t = β1ci,t−1 + β2c̄i,t−1 + β3(5− |5− c̄i,t−1|)

Threshold Model. Previous theoretical models [Glance and Huberman, 1993;

Lopez-Pintado and Watts, 2008] have posited that players will contribute to a

public good only when the average neighborhood contribution is above a cer-

tain threshold. We capture the essence of these “threshold models” using a

logistic function, which maps a continuous variable onto the [0, 1] range and

does so with a gradual probabilistic change between binary options. This func-

tion can represent rapid changes in behavior as a threshold and is written as:

σ(c̄i,t−1) =
1

1 + e−λ(c̄i,t−1−θ)
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Note this function has two parameters: θ, which is the midpoint where an

average neighbor contribution of c̄i,t−1 = θ leads to a probability equal to 0.5;

and λ, which indicates how rapidly the function changes around the midpoint

(i.e. as λ increases, the threshold approaches a step function). The resulting

model is as follows:

ĉi,t = β1ci,t−1 + β2σ(c̄i,t−1) = β1ci,t−1 +
β2

1 + e−λ(c̄i,t−1−θ)

Let us note that the Tit-for-Tat strategy (“cooperate when others cooperate”)

translates roughly 5 to a threshold model with β1 ≈ 0, β2 ≈ 10, λ � 1,

and θ = θ∗, where θ∗ determines the position of threshold separating coop-

eration from defection. While the previous models are linear functions, the

nonlinear threshold creates an all-or-none dynamic, pushing the estimated ac-

tion towards the extremes. Still, the link between repetition/imitiation and

next action is maintained, just with a different montonic mapping.

Time Discounted Models. The models above are all strictly reactive. Al-

though backward-looking behavior is consistent with previous ABM models

of cooperation [Macy and Willer, 2002], evidence from experiments on reward,

punishment [Fischbacher et al., 2001] and partner updating [Wang et al., 2012]

indicate that players are forward-looking, in the sense that they choose their

current action in part in anticipation of how they expect other players to be-

have. In this context, forward-thinking involves an agent reasoning about how

players built from one of the simpler models will react to its own behavior.

Conveniently, the basic model reduces to itself when performing a step of op-

timization. A player who believes that the opponents are going to partially

reciprocate will respond with some amount of cooperation, based on how much

5 Technically Tit-for-Tat is defined for a two-player repeated prisoner’s dilemma, so the
translation to a multiplayer public goods game is necessarily imperfect.
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the others are already contributing. This crucial point links a player’s beliefs about

others directly to the amount that could be lost if the wrong action is played.

Additionally, the payoff at risk is proportional to the amount of time remaining

in a repeated game; there is little sense in considering someone’s reaction if the

game will be over next round.

The relevant concept, as seen previously, is “future discounting:” the idea

that people prefer payoffs today to larger payoffs tomorrow [Williams, 1938].

The relative size of this preference can be captured by a discounting parameter.

It is here that recursive modeling can enter the picture of an n-player game.

Assuming that the others implement a two-factor model, one of these weights,

β2, is the mechanism for participants to condition their play on others’ actions.

If we take the view that i’s contribution in the present round serves as an

investment in keeping i’s neighbors in a generous state, and setting 0 ≤ δ ≤ 1

as the discount rate, we can derive time-discounted versions of the two-factor

linear and threshold models as follows:

ĉi,t = β1ci,t−1 + β2

T

∑
τ=t

δτ−t c̄i,τ

where T is the total number of rounds in the game and δ is the discount rate.

A player may have realized from prior play that his neighbors’ contributions

levels decline with time, but respond positively to high contributions. So, we

can model the above equation as:

ĉi,t = β1ci,t−1 + β2

T

∑
τ=t

δτ−tθτ−t c̄i,t−1
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where 0 ≤ θ ≤ 1. Setting γ = δθ and simplifying the geometric series gives:

ĉi,t = β1ci,t−1 + β2c̄i,t−1

(
1− γT−t+1

1− γ

)

Thus, we obtain the following models.

Discounted Two-Factor Model: ĉi,t = β1ci,t−1 + β2
1− γT−t+1

1− γ
c̄i,t−1

Discounted Threshold Model: ĉi,t = β1ci,t−1 + β2σ

(
1− γT−t+1

1− γ
c̄i,t−1

)
where σ is the logistic function described in the Threshold Model subsection.

6.4.2 Predicting Average Contributions

Having defined a basket of models derived from the meta-reasoning frame-

work, we can now proceed to evaluate them on their ability to predict the next

action in the game for player i (ci,t, the contribution at time t) given the current

level of personal (ci,t−1) and average neighbor contributions (c̄i,t−1). Consis-

tent with previous work [Janssen and Ahn, 2006], there are two different types

of evaluation based on predicting individual contributions: a homogenous pop-

ulation evaluation, which assumes that all players act the same way; and a

heterogeneous population evaluation, in which each player is allowed to behave

differently—sometimes very differently. Previous studies of public goods ex-

periments [Fischbacher et al., 2001; Janssen and Ahn, 2006] have observed that

behavioral data is better explained by allowing for heterogeneous types; how-

ever, homogenous strategies allow us to use more data to fit and evaluate each

model, so let us consider both.
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Homogenous Population Evaluation

As just noted, beginning with the assumption of a homogenous population, all

players are described by the same set of model parameters. Each model is then

fit using regression or parameter search where appropriate. For evaluation, the

leave-one-out method is applied; that is, for a total of g games train on g− 1

games, and test on the gth game, where every game is the test set once. The

evaluation metric for each model’s performance is root mean squared error

(RMSE), a simple, intuitive measure of predictive accuracy.6

Table 6.1 shows the results of this evaluation. The two single factor mod-

els do the worst, where the self-factor model beats the neighbor-factor model,

indicating that the contribution of player i, ci,t−1, has more predictive power

than the average contribution of player i’s neighbors, c̄i,t−1. The linear 2-factor

model, which uses both player ci,t−1 and c̄i,t−1, has better predictive accuracy

than either single factor model alone; thus there is predictive power in using

both ci,t−1 and c̄i,t−1. In general, the linear 2-factor, discounted 2-factor, trian-

gle, and threshold models are comparable in performance. Because the simple

linear 2-factor model has an error close to models with more parameters, it is a

good tradeoff between parsimony and predictive accuracy.

Heterogenous Population Evaluation

Analogous to the homogeneous case, each model is trained on the majority of

a player’s games, keeping a hold-out set of 20% of the total or a single game,

6 Note that using log-likelihood and max-likelihood to fit the models is a common technique
in these domains. However, the risk of over-fitting individual behavior (see next section) was
significant due to sparsity of available data in many cases. Regression appears to robustly fit
the models.
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Table 6.1: Homogenous model evaluation leaving one game out. The errors
are the average RMSE for predicting individual contributions. Standard errors
are all less than ±0.02.

# of All Altruistic Free-Riding Neighbor
Model name Params Human Dummies Dummies Dummies Mean
Self-factor 1 2.37 2.19 2.09 2.36 2.25
Neighbor-factor 1 3.16 3.40 2.72 3.37 3.16
Linear 2-Factor 2 2.27 2.14 2.02 2.31 2.18
Disc. 2-factor 3 2.26 2.12 2.02 2.30 2.18
Triangle-shaped 3 2.26 2.11 2.00 2.27 2.18
Threshold 4 2.25 2.12 1.99 2.29 2.16
Disc. Threshold 5 2.23 2.07 2.00 2.26 2.14

Table 6.2: Heterogenous model evaluation leaving one game out. RMSE results
are shown for several behavioral models, based on learning a custom model for
each player.

# of All Altruistic Free-Riding Neighbor
Model name Params Human Dummies Dummies Dummies Mean
Self-factor 1 2.05 1.87 1.74 1.96 1.91
Group-factor 1 2.36 2.24 1.81 2.37 2.20
Linear 2-Factor 2 1.97 1.87 1.57 1.89 1.83
Disc. 2-factor 3 1.98 1.80 1.57 1.92 1.82
Triangle-shaped 3 2.11 1.93 1.67 1.75 1.87
Threshold 4 1.98 1.87 1.58 1.76 1.80
Disc. Threshold 5 2.02 1.86 1.59 1.87 1.83

whichever is larger7 . We then evaluate the model on the hold-out set, re-

peating this procedure with a rotating hold-out set until all games are tested.

We compute the RMSE on the test set and average those across all players

weighted by their experience. The results of this analysis are shown in Ta-

ble 6.2.

Although each model is now fit with much less data than in the homoge-

neous case, in general errors are reduced by learning individually customized

7 Any player with fewer than three games is excluded on the basis that there is not enough
training data for that individual.
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Figure 6.1: Average contributions per round for (a) experimental results from
Watts and Suri 2011 and (b) simulated results using the time-discounted two-
factor model.

models. We also see varying performance in the different treatments. For ex-

ample, including a triangle strategy hurts performance when predicting trials

with free riders, but helps when there are multiple high contributors present.

Finally, Fig. 6.1 shows graphically, for the special case of the discounted two-

factor model, how the predicted average contributions (right panel) compare

with the empirically observed contributions from Suri and Watts 2011, for the

three main treatments: all human, altruistic dummies, and free-riding dum-

mies. Visually, the curves, which are generated via the method described in

section 6.4.3, are hard to distinguish, indicating that the quantitative perfor-

mance measures in Table 6.2 correspond to qualitatively meaningful agree-

ment.

Analysis of Types

The superior performance of the heterogenous models in spite of their more

limited data suggests that players use a variety of strategies that are not being

captured by the homogeneity assumption. It can be instructive to ask what the

population looks like, in terms of its distribution over these parameters. The
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following results derive the first-round equivalent weights for players with

γ > 0, because by necessity the relevant models assign lower weightings to the

β terms to make up for the extra discounted term. As a result, the coefficients of

some players will add to more than one, but we would expect them to decrease

over the course of the game. Fig. 6.2 confirms the intuition that each player

concocts his or her own strategy, showing that the distributions of the three

parameters in the discounted two-factor linear model, β1, β2, and γ, all have

broad support. Interestingly, Fig. 6.2 also shows that the distributions of β1

and γ are effectively tri-modal, while the distribution of β2 is close to uniform.

Motivated by this observation, the population is partitioned into “types” as

follows: for β1 allocate players to “low” (β1 < 0.25), “medium” (0.25 ≤ β1 <

0.75), and “high” (0.75 ≤ β1); for β2, we have “low” (β2 < 0.5) and “high”

(0.5 ≤ β2); and γ, low, medium, and high as per β1. As Table 6.3 shows, this

partition corresponds to 18 cells, or “types”, of which 9 have between 7% and

14% of the population. Together, these 9 types account for nearly 90% of the

population8 . In addition, note that 90% of the population lies in the medium

ranges of γ and β1, which constitutes only half of the parameter space, while

there is a near even split between highly reciprocating players with high β2

(46% are above 0.5) and those with low β2 (54% are below 0.5). We might

describe players with high γ as forward thinkers, and those with high β2 as

conditional cooperators.

As a side note, by individually customizing these models we see that cer-

tain models fit some individuals better than others, in terms of the best testing

performance. The best model for an individual varies across the population,

8 Interestingly, Janssen and Ahn 2006 presented a similar result using a different method-
ology, finding that a similar majority of players were accounted for by 8 out of 16 possible
types.
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Figure 6.2: The distribution over types in the heterogeneous discounted two-
factor model.

Table 6.3: Frequency of type by player, low, medium, or high discount, low,
medium, or high personal weight, low or high neighbor weight. One could
easily ascribe cognitive motivations to these values.

Neighbor: β1 Low High
(Reciprocation) β2 < 0.5 β2 ≥ 0.5
Personal: β2 Low Medium High Low Medium High Sum

β1 < .25 .25 ≤ β1 < .75 .75 ≤ β1 for γ
Discount γ
Low (γ < .25) 0.07 0.07 0.02 0.07 0.10 0.00 0.33
Medium 0.02 0.14 0.11 0.10 0.12 0.00 0.49
(.25 ≤ γ < .75)
High (γ ≥ .75) 0.00 0.09 0.02 0.02 0.05 0.00 0.18
Sum for β1 0.09 0.30 0.15 0.19 0.27 0.00
Sum for β2 0.54 0.46

suggesting that not only is there a distribution across parameter values, but

also across the decision-making process itself. We can attempt to use the most

general model when possible to allow for a single model to capture these vari-

ations, but still face a tradeoff between the number of parameters and small

amounts of data.
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6.4.3 Predicting Full Distribution of Contributions

The model evaluation of the previous section seems promising and is also con-

sistent with previous attempts to validate models empirically, which have also

focused on average contributions over time [Deadman, 1999; Castillo and Say-

sel, 2005; Janssen and Ahn, 2006]. In light of this history, however, it is impor-

tant to realize that the average contribution is potentially an extremely poor

proxy for the full distribution of contributions. The reason is that contributions

in public goods games are strikingly bimodal, with extreme actions of zero and

ten appearing as the two modes, and a minority playing the actions between

one and nine [Ledyard, 1995; Suri and Watts, 2011]. Over time the number

of players at the maximum contribution declines while those who contribute

zero increases significantly, but the bimodality persists. Clearly it is possible

to accurately predict the average of a bimodal distribution while completely

misrepresenting the underlying distribution. Yet, also clearly, it would be de-

sirable for any agent-based model to replicate the full distribution as well as

the average.

Thus motivated, we can now evaluate the same models in terms of their

ability to predict the full empirical distributions, training one instance of each

model per player on half of the data in each treatment, and testing against the

distribution of the other half. Specifically, we first construct a simulated pop-

ulation of agents in the following manner: if player i is in the test set and the

training set, put the model for player i in the simulated population in propor-

tion to its experience in the test set; and if player i is in the test set but not the

training set, we select at random from the training set chosen weighted by that

player’s experience in the training set. For each simulated population, we can

then run a simulated game by sampling 24 players from the population and
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Figure 6.3: Actual population behavior compared to the deterministic dis-
counted 2-factor model.

running their models using first round contributions chosen from the distribu-

tion of actual first round contributions in the test set. By repeating this process

20 times to get 20 simulated games, we arrive at roughly the number of actual

games in each experimental treatment.

The result for the discounted 2-factor model is illustrated graphically in Fig-

ure 6.3, from which it is evident that the distribution of the model’s predictions

is clearly distinguishable from the bimodal distribution of the empirical data.

That means that the average value is not the best indicator for what is going

on at the micro-level, even though it is useful to fit model parameters. We can

express this qualitative observation quantitatively through 100 repetitions this

process by finding the Kullback–Leibler (KL) divergence, a standard measure

for the extra information needed for a model to represent some original dis-

tribution, between the simulated and empirical distributions of rounds 2-10.

For example, as shown in Table 6.4, the linear 2-factor model with low RMSE

has a relatively high KL divergence value above 1, meaning that, on average,

the log-odds ratio of the two distributions is off by a factor of 3 or greater. In

general, Table 6.4 shows relatively poor performance for all the deterministic
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Table 6.4: Evaluation of the distribution of the population’s contribution for the
deterministic models trained on half the experiments and tested on the other
half. KL divergence measures (non-symmetrically) the difference between the
true data and model output. Lower KL divergence represents higher accuracy.

# of All Altruistic Free-Riding Neighbor
Model name Params Human Dummies Dummies Dummies Mean
Linear 2-factor 2 1.32 2.40 1.15 4.82 2.42
Disc. 2-factor 3 0.84 1.36 0.93 4.17 1.83
Threshold 4 0.96 1.10 1.87 2.12 1.52
Disc. Threshold 5 3.29 2.17 1.07 6.16 3.17

models. The reason is that in spite of their differences, all the deterministic

models predict that high contributing agents will reduce their contributions

steadily over time—a tendency that leads the initially bimodal distribution to

become increasingly unimodal—whereas empirically, human agents tend to

jump from very high to very low contributions almost discontinuously, spend-

ing very little time in the middle of the distribution and thereby preserving the

bi-modality of the distribution even as the mean decreases. Predicting average

contributions, in other words, is no guarantee of having captured the underly-

ing behavioral dynamics.

6.5 Stochastic Models

Motivated by the observation that individual contributions are not well repre-

sented by the expectation, it makes sense to introduce a method for construct-

ing stochastic models that builds on the successful aspects of the deterministic

models, but more accurately captures the bi-modality of the empirical distri-

bution. The general approach is that for each of the deterministic models in
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the previous section, we can define a corresponding stochastic model that in-

vokes the deterministic model as a subroutine. Rather than predicting an ex-

pected contribution, however, the stochastic model instead makes use of the

deterministic model to predict that player i will make the same contribution

they did in the last round with probability φ, and change to 0 with probability

1 − φ. This model essentially limits the choices to cooperate (contribute the

same) and defect (contribute nothing). In addition, the stochastic model also

predicts that a player will make a strategy uniformly distributed in the range

[1, 10] with probability ε, which is estimated directly from the data and reflects

the empirical observation that some agents play the non-extremal actions or

just do something completely unpredicted. To make the probabilities sum to 1,

the probability of free-riding is adjusted to 1− φ− ε.

To illustrate our method for generating a stochastic model from a determin-

istic one, let us use as an example the linear 2-factor model described above.

From Section 6.4.1 we see that the two factor model predicts the next round’s

contribution via

ĉi,t = β1ci,t−1 + β2c̄i,t−1

Conditioned on ci,t−1 > 0, we can rewrite this equation as

E[ĉi,t | ci,t−1 > 0] = ci,t−1

(
β1 + β2

c̄i,t−1

ci,t−1

)
Notice that one can interpret this expectation as a value times the prob-

ability of a player contributing that value. Since contributions generally de-

crease, it is most often the case that ci,t ≤ ci,t−1. In addition, contributions

are always at least 0. Thus, we can interpret φ(ci,t−1, c̄i,t−1) = β1 + β2
c̄i,t−1
ci,t−1

as

a probability of playing ci,t−1 again during round t. Players may, of course,

choose not to contribute the same as they did last round. It is possible that
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players increase their contributions or contribute some amount between 1 and

10. To capture these cases, we let ε be the probability of contributing a random

amount Pr[ci,t = U [1, 10]] = ε. Figure 6.3 shows that players often contribute

0. So we let the remaining probability, 1− ε− φ(ci,t−1, c̄i,t−1) be the probability

of contributing 0. Combining these quantities gives

E[ĉi,t|ci,t−1 > 0] = ci,t−1(1− x)φ(ci,t−1, c̄i,t−1) + 5.5ε,

where x = 5.5ε
φci,t−1

corrects the upward bias in the expectation caused by the

uniform random variable in [1, 10]. Observe that if we plug x into the above

equation we get:

E[ĉi,t|ci,t−1 > 0] = ci,t−1φ(ci,t−1, c̄i,t−1),

which shows that the stochastic model will output the same prediction, in ex-

pectation, as the deterministic model. However, we shall see that the actual

distribution of predictions is much closer to the experimental data. The above

equation describes the model for when ci,t−1 > 0. When ci,t−1 = 0, players

most often play 0 for the rest of the game, but occasionally they do increase

their contributions. To capture this effect we say that a player might contribute

an amount uniformly distributed in [1, 10] with probability ε0, giving

E[ĉi,t | ci,t−1 = 0] = 5.5ε0

In this case we can fit ε0 to the data so that we can ensure that the expected pre-

diction of the stochastic model is the same as the prediction of the probabilistic

model.

Recall that φ was defined in terms of the linear 2-factor model. The other
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parameters, ε and ε0, were fit to the data. Thus, this stochastic model is deter-

mined by

Pr[ci,t = ci,t−1 | ci,t−1 > 0] = φ(ci,t−1, c̄i,t−1) = β1 + β2
c̄i,t−1

ci,t−1

The general technique described here can similarly be applied to each of

the models defined in Section 6.4.1.

6.5.1 Baseline Stochastic Models

Although this recipe for generating a stochastic version of each of the pre-

viously defined deterministic models yields a corresponding collection of

stochastic models, it is clearly not the only way of generating a plausible

stochastic model. To check that the deterministic component of our stochas-

tic models is contributing to their performance in a meaningful way, therefore,

let us add two unrelated baseline models that are also stochastic in nature but

derive their probabilities in different ways.

Simple Stochastic Model

The first baseline model is extremely simple. Again, let φ be the probability of

a player contributing the same in round t as in t− 1. But, this model estimates

φ directly from the training data and does not use a deterministic model to do

so. Let ε be the probability of contributing some amount uniformly distributed

in the range [1, 10]. Again, ε is estimated from the training data. Finally, let

1− ε− φ be the probability of contributing 0. Thus, this model is given by

E[ci,t] = ci,t−1φ + 5.5ε

Since this model estimates φ directly from the data, comparing the stochas-

tic models that estimate φ using a deterministic algorithm to it will allow us to
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understand how much predictive accuracy a trained deterministic model adds.

Experience-Weighted Attraction

A different type of stochastic model, a version of which has been used pre-

viously to model agent behavior in public goods games [Janssen and Ahn,

2006], is motivated by the notion of Experience-Weighted Attraction (EWA),

proposed by Camerer and Ho [1999], as a way to represent gradual learning

in response to payoffs. The EWA model keeps track of two variables for ev-

ery player: the number of observations Nt, and Ajt, attraction of action j after

period t. These attraction values represent the current tendency of playing the

corresponding actions, and can therefore be converted directly into a proba-

bilistic strategy.

Updating has two steps. In step one, the experience is updated as Nt =

ρNt−1 + 1, where ρ is an experience decay parameter. In step two, the attrac-

tions are changed:

Aj,t =
1

Nt
(φNt−1Aj,t−1 + [δ + (1− δ)I(si, sj)]Ui(ci,t, c̄t))

where U is the utility function over the actions of the players in the neighbor-

hood and I indicates whether the strategy was used at time t. The values φ and

δ are parameters of the model respectively representing the decay of previous

attractions and a calibration of actual versus imagined effects.

To convert the attraction values to a strategy, a logit function is typically

used, which has its basis in the quantal response function and uses a tempera-

ture parameter λ:

Pj,t+1 =
eλAj,t

∑M
k=1 eλAk,t

.

Along with the experience decay ρ, this model contains four parameters



195

Round 1 Round 2 Round 3 Round 4 Round 5

Round 6 Round 7 Round 8 Round 9 Round 10

Figure 6.4: Average action frequencies of the actual population (gray bars) ver-
sus the heterogeneous population, 2-factor discounted stochastic model (black
bars).

that must be set by an exhaustive brute-force search. Extra parameters are

sometimes added to represent temporal decay or modify the utility function

that might be shifted towards considering other players’ utilities. Unfortu-

nately, the entire parameter space must be searched simultaneously because

of the non-linear ways that each parameter interacts with and depends on the

others. As a result, fitting this model takes time exponential in the number of

parameters. An alternative is to use the self-tuning EWA model, which relies

on a single parameter and the other parameters are adjusted on the fly. How-

ever, this option does not necessarily solve the problem, as different sequences

or conditions can result in divergent outcomes for test data.

6.5.2 Predicting the Full Distribution of Contributions

The ability of the stochastic models to predict the distribution of the popu-

lation’s contributions can be tested using the same method described in Sec-

tion 6.4.3; that is, the same models are trained on the no-dummy treatment

and compared to the human behavior data across each treatment to test for
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Table 6.5: Evaluation of the simulated stochastic models’ output distribution
of contributions where individual models are trained on half the experiments
and tested on the other half. KL divergence measures (non-symmetrically)
the difference between the true data and model output. Lower KL divergence
represents higher accuracy.

# of All Altruistic Free-Riding Neighbor
Model name Params Human Dummies Dummies Dummies Mean
Simple Stochastic 3 0.44 0.47 0.61 0.83 0.59
Stochastic 2-factor 4 0.34 0.68 0.53 0.81 0.59
Stochastic Disc. 2-factor 5 0.20 0.53 0.47 0.72 0.48
Stochastic Threshold 7 0.20 0.65 0.43 0.71 0.50
Stochastic Disc. Threshold 8 0.24 0.63 0.64 1.11 0.66
EWA 5 0.70 1.22 1.21 1.34 1.12

transferability across experiments. Figure 6.4 shows the results for the stochas-

tic version of the discounted two-factor model over 20 independently gen-

erated populations, each playing one game with 24 players. Visually, the

match is much better than for the deterministic case, an impression that is con-

firmed quantitatively in Table 6.5, which shows the KL divergence between

the true population behavior in the all-human experiments and the actions

output by the simulated model. Clearly, the performance of the stochastic

models is strikingly better than their deterministic counterparts. Moreover,

the stochastic models using the deterministic subroutines outperform both the

simple stochastic baseline model and also the EWA model, which performs rel-

atively poorly. These results, in other words, justify the approach to construct-

ing meta-reasoning stochastic models: clearly the information contained in the

deterministic predictions is useful. However, converting them to stochastic

generative processes dramatically improves their ability to replicate the full

distribution while slightly decreasing RMSE performance.
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Figure 6.5: Average contributions per round for the stochastic discounted two-
factor model (right) compared with empirical data (left).

6.5.3 Selecting a Model

Table 6.5 shows that the stochastic discounted two-factor model exhibits the

best overall performance with respect to the KL divergence. In addition, Fig-

ure 6.5 shows that this simulated model generates average aggregate contribu-

tions over time that are again visually similar to those from Suri and Watts 2011

and comparable to those generated by the deterministic version of the same

model.9 Finally, Table 6.6 shows the transfer learning performance of each

model; i.e. where each model is trained on the all-human data and then eval-

uated on a distinct experimental treatment. To maintain a fair comparison be-

tween all treatments, the test set for the all-human treatment that is used here

is a second set of all-human experiments conducted by Suri and Watts several

months after the experiments reported by SW 2011. This set of experiments

9 Because the stochastic model makes predictions about the probability of a move, not the
actual contribution, it is unclear how to evaluate its performance using the RMSE tests from the
previous section. On the one hand, evaluating the expected contribution yields performance
very close to the deterministic models, where the only effective difference lies in the additional
noise term. On the other hand, first generating the full distribution of simulated moves and
then scoring each move results in much higher RMSE. This is because the stochastic models
predict extreme values and RSME penalizes heavily when one of these predictions is wrong.
Since we are interested primarily in replicating the distribution of moves, and because the
average of this distribution is also close the empirical average, the RMSE tests are omitted.
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Table 6.6: Evaluation of the simulated stochastic models’ ability to transfer ex-
perience across different experimental setups. Actual behavioral data is com-
pared using KL divergence to simulated output distribution of the popula-
tion’s contribution where individual models trained on the all human treat-
ment and tested on the other treatments, including previously left-out all hu-
man experiments. Lower KL divergence represents higher accuracy.

# of All Altruistic Free-Riding Neighbor
Model name Params Human Dummies Dummies Dummies Mean
Simple Stochastic 3 0.19 0.21 0.32 0.22 0.24
Stochastic 2-factor 4 0.13 0.24 0.19 0.17 0.18
Stochastic Disc. 2-factor 5 0.08 0.16 0.28 0.15 0.17
Stochastic Threshold 7 0.13 0.32 0.17 0.18 0.20
Stochastic Disc. Threshold 8 0.14 0.32 0.38 0.19 0.26
EWA 5 0.44 0.40 1.09 1.13 0.77

differed from the original all-human experiments in two respects: first, given

the lapse in time relative to the churn rate of workers on AMT, the subject

pool was largely distinct; and second, subjects were informed not only of the

contributions and payoffs of their immediate network neighbors (the original

treatment), but also those of their neighbors’ neighbors, along with the connec-

tions between them. For both reasons, this set of all-human experiments can

be considered to be a true out-of-sample test set, hence the all-human results

in Table 6.6 can be compared naturally with those of other treatments. Based

on both within treatment (Table 6.5) and between treatment (Table 6.6) perfor-

mance, therefore, we should select the stochastic discounted two-factor model

as the preferred model for conducting the agent-based simulations, to which

we turn next.
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6.6 Simulating Empirical Agent-Based Models

Having selected the stochastic discounted two-factor model (SD2F) model as

our candidate empirical agent-based model, we now return to our original mo-

tivation of deploying this model in the traditional manner of ABMs, namely as

thought-experiments designed to generate new theoretical insights. Specifi-

cally, the first step is to fit a customized model for all players, which allows

us to construct a model population from which agents are drawn to partici-

pate in a series of games. In this explorative setting, other parameters of the

situation, such as the network size or structure, or the arrangement of player

types to nodes in the network, can be varied systematically. In this way, we can

explore a much broader range of the parameter space than would be possible

with human subjects experiments.

6.6.1 Network Size

Recall that the main result of SW was their surprising finding that network

topology had no significant impact on contributions. Because, however, the

networks in question were relatively small (N = 24) it is possible that the lack

of effect was due simply to insufficient variation in the path lengths, which

for the connected networks varied only between 2 and 2.5. If true, then run-

ning the same experiments on much larger networks would allow for greater

variation in the underlying structural features, and hence greater impact of

structure on contribution. Testing this hypothesis requires us to simulate the

model populations on networks of increasing size, ranging from N = 24 to

N = 2400. Interestingly, Figure 6.6A shows no dependency on size for the

three fully connected topologies studied by SW: the connected cliques, the
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Figure 6.6: Average game contributions vs. N for (a) the connected clique,
small-world and random regular topologies studied by Suri and Watts [2011],
and (b) Erdös-Renyi, exponential, and scale-free random graphs.

small-world network, and the random regular graphs. Figure 6.6B shows simi-

lar findings for three other natural topologies—an Erdös-Renyi random graph,

a random graph with an exponential degree distribution, and a scale-free ran-

dom graph10 —suggesting that the conclusion of SW is robust with respect to

network size but not across other graph distributions. We should expect this

result because the decisions faced by individual agents is insensitive to the to-

tal number of players in the network, but can depend heavily on the number

of neighbors.

6.6.2 Network Density and Variance of Degree

Another possible explanation for the absence of dependence on network struc-

ture in the SW experiments is that all players had equally sized neighborhoods,

thus overlooking two additional sources of variation in network structure: the

10 The exponential and scale-free random graphs were constructed using the configuration
method [Newman, 2003].
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average degree d of the network; and the variance var(d) (across players). Test-

ing these dependencies, Figure 6.7 shows that although varying d has no im-

pact (Figure 6.7A), increasing the variance of degree leads to lower contribu-

tions (Figure 6.7B, solid squares), consistent with the scale-free results from

Figure 6.6B. On reflection, these results make sense. As explained in Section

3, the network version of the public goods game effectively splits a player’s

contribution equally among its edges, hence all else equal nodes with many

partners contribute less per partner than nodes with few partners. As long as

all players have the same number of partners, the dependency on degree is

symmetrical, hence the average density has no effect in the case of zero vari-

ance. Increasing the variance, however, breaks this symmetry, creating win-

ners (high degree nodes) and losers (low degree nodes), where the latter are

thereby more inclined to lower their contributions. Following this reasoning,

we should expect networks with high variance to yield somewhat lower aver-

age contributions, as indeed the simulations suggest.

For similar reasons, we might also expect that contributions should depend

on “degree assortativity” α, the tendency of high (low) degree nodes to be adja-

cent with other high (low) degree nodes [Newman, 2003]. Indeed, Figure 6.7B

shows that as α changes from negative (crosses) to positive (open circles), the

dependency on variance decreases. Most of this effect, however, is due to the

positive assortativity: that is, when high-degree players are more likely to be

neighbors with each other (likewise for low-degree nodes), contributions in-

crease, mitigating the effects of degree variance.
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Figure 6.7: Average game contributions for random graphs of size N = 240 vs
(a) average degree k and (b) variance var(k) of the degree distribution.

6.6.3 Correlations between Player Type and Node Degree

The dependency of contributions both on degree variance and also assortativ-

ity raises an additional possible source of dependency—namely that assigning

more (or less) generous players to nodes with higher (or lower) degrees might

mediate or alternatively exacerbate the effects of breaking the degree symme-

try. To check this hypothesis, define a new parameter ρ = corr( β1+β2
1−γ , d), which

quantifies the correlation between the overall generosity of agents in the SD2F

model (as measured by their respective parameters) and the degree of a node

in the network. As ρ is varied, that is, high degree nodes become either more

(ρ > 0) or less (ρ < 0) likely to be generous. Figure 6.8 shows the same results

as Figure 6.7B except where ρ is now strongly negative (left panel) and strongly

positive (right panel), respectively. Interestingly, in networks with negative or

no assortativity (α), a negative ρ lowers contributions further, while a positive

ρ can by and large reverse the effects of negative assortativity. Positive assor-

tativity, moreover, appears to compensate for increasing variance regardless of

ρ. Overall, we conclude that both positive ρ and positive α can reverse the neg-

ative contributory effects of an unequal network, while negative values cause
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Figure 6.8: Average game contributions vs. degree variance where player gen-
erosity and node degree are (a) negatively correlated, and (b) positively corre-
lated.

low contributions in an unequal network to drop still further.

6.7 Conclusions and Future Work

The experiments of this chapter demonstrate the overall success of an approach

of basing stochastic agent models on the fundamental components of repeti-

tion, imitation, and randomness. Because imitation is ill-defined in a context

with many agents, it makes sense to use the average action as an attraction

point that can slow or speed the tendency towards a best response. The added

resilience with the decaying time parameter is one way to incorporate extra

reasoning or forward-thinking when it becomes computationally infeasible to

recursively model everyone at once. In sum, this type of meta-reasoning model

has proven its utility in these complex settings where people make decisions

in a myriad of ways.

A possible limitation of this approach, however, relates this emphasis
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on empirically accurate models of agent behavior over the traditional em-

phasis among ABM researchers on cognitive plausibility. Aside from inter-

pretability, cognitively plausible models would seem to have the advantage of

generalizability—that is, one might expect the same model to work not only in

the exact conditions tested in a given experiment, but across a broad range of

conditions. By contrast, a cognitively implausible or otherwise uninterpretable

model seems less likely to apply to novel conditions, even if it performs well

on the training data. For example, the finding in the previous section that

contribution levels do not change with network density seems highly depen-

dent on the assumption—implicit in the behavioral model—that the marginal

per-capita return (MPCR) defined in the payoff function does not depend on

degree. How would player behavior change if that assumption were violated?

Because we have no model of how the agent is thinking about the game, or

evaluating its utility, we cannot say. All the same, it is perhaps the lack of data

that prevents us from finding this type of dependency, and presumably the

meta-reasoning model could be adapted accordingly. In reality, even models

with a deeper basis in utility theory, such as experience-weighted attraction,

suffer from a lack of an easy interpretation of how the parameters work to-

gether, notwithstanding loose cognitive connections. One big reason for this

weakness in previous models is that the change in one parameter can affect

how the others are expressed in the model, in somewhat unpredictable ways.

Although the issue of generalizability is an important one, note that even

cognitively plausible models can fail in exactly the same way. Most obviously,

it can happen when the circumstances are varied in a way not imagined by

the modeler, but as noted in Section 1, models can fail even under precisely
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the conditions imagined simply because humans agents violate the model as-

sumptions in subtle but consequential ways. Furthermore, it is possible that

players will act differently in a game when the rules or structure of a game is

changed, leading to the possibility that a model trained in one scenario will fail

to adequately predict in another. This phenomenon would hold true if there

is some cost to reasoning that alters the tradeoff between high utility and the

problem-solving required to achieve it, such that a player could do more or

less reasoning or learn in a different way. Currently, models do not have the

capacity to account for this type of dependence on the difficulty of reasoning,

and thus all of them would fail to transfer between games that are different

enough. Thus, while interpretability seems a desirable feature for ABMs, all

else equal, empirical calibration has advantages when it comes to robustness

and blindness to modeler bias. In any case, the challenge of generalizability

can be reframed as one of conducting the appropriate range of experiments.

This last point therefore motivates a need a for tighter integration between

agent-based modeling and behavioral experiments (as well as data collection

more broadly). In the current work, that is, data from behavioral experiments

was used to identify an empirically accurate ABM. This empirical agent-based

model was applied to an exploration of the behavior of hypothetical human

agents across a much broader parameter space than was possible in the ex-

periments. A natural next step is to view these results as new hypotheses—

about the effect of assortativity, for example, or lack of effect of density—to

be tested in future experiments. These experiments, in turn, would no doubt

lead to more accurate and generalizable EABMs, which could then be used

to perform still more general simulations, followed again by more hypotheses

and more experiments. In short, the demonstrated results advocate that future
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work should attempt to close the “hypothesis-testing loop” of the Multiagent

Cycle, thereby allowing behavioral experiments and EABMs to complement

and reinforce one another over time.
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Chapter 7

Conclusion

This dissertation has explored the use of an agent and population modeling

framework that justifies the hypothesis that simple heuristics plus some learn-

ing, reasoning, and planning are the basis of decision-making in repeated mul-

tiagent interactions. The rest of this chapter summarizes my contributions to

the field of empirical multiagent studies and the framework’s application to

selected strategic domains.

To review, Chapter 2 introduced the formal meta-reasoning model used in

the following chapters. Chapters 3 and 4 explored how the model works with

simple learning algorithms in repeated games. In Chapter 5, the focus was

on reasoning and planning against an anonymous population in the Lemon-

ade Stand Game, where an accurate opponent model is more important than

within-match learning. The final experiments in Chapter 6 applied the frame-

work to humans in public goods games, which have been a popular setting that

economists have used to make discoveries about non-equilibrium behavior.

7.1 A Meta-reasoning Framework for Repeated Games

The meta-reasoning model presented above is built upon certain foundational

assumptions. First, players who are making strategic decisions apply some
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amount of reasoning in the form of cognitive effort to succeed in a game. Be-

cause thinking carries a computational cost, perfectly optimal play becomes

harder to carry out as the difficulty of the task increases. In addition, the

widespread use of bounded rationality is public knowledge, which further de-

creases the likelihood that players will enter into, much less begin with, an

equilibrium state in complex social situations. The form that reasoning will

take in practice will depend on the circumstance. In p-beauty games, a rea-

soning step takes the form of a multiplication operation. Other games require

a more advanced optimization procedure. When learning is a feasible option,

then teaching could be the proper response.

The next assumption is that non-reasoning behavior takes the form of a rel-

atively small set of base strategies, which depend on the details of the game.

These strategies are based on fact that the temporal aspect of sequential game

decisions focuses behavior on actions that have been previously and recently

played, either by the individual in question or the other participants in the

game. These psychological tendencies, defined as repetition (φ) and imitation

(µ), provide two main pillars for the set of base strategies. Possible explana-

tions for the widespread observation of repetitive strategies include comfort,

reinforcement, or simple inertia. Imitation is also viable when people expect

that others have superior experience or knowledge. A third supporting heuris-

tic is simple randomness (ε), which has been the anchor of single-round iter-

ated reasoning models since their inception and covers the rest of the base-level

strategy space, thereby providing an outlet for noise. These base components

are the foundation for further reasoning in a repeated scenario, and a non-

reasoning agent can be represented as a stochastic mixture of them: [ε, φ, µ],

corresponding to the probabilities of randomness, repetition, and imitation.
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In addition, the iterated best response to maximize future discounted reward

yields additional features, with their corresponding parameters ωk,γ.

For complex or asymmetric games, the mapping of these action primitives

to specific actions can itself be an challenging question. For example, how to

imitate another player is not always clear or possible, although the answer is

self-evident in other cases. Imitation could simply mean a complementary ac-

tion, as when coordination is possible only if players choose opposite actions.

Routing games are an instance with this property. The point is that these ab-

stracted features can provide more information about future actions than the

original inputs. I have added in the extra insights about how to define and

extract these primitives in an automated way.

The final assumption is that players engage in some amount of forward-

thinking, ranging from zero to near-infinite. The choice of horizon for planning

the consequences of the next action can have a large impact on the decisions of

agents. Indeed, the conflict between short-run and long-run effects of choices

has been studied in psychology and related disciplines for a long time and

remains a significant challenge in understanding and shaping group decisions

in a globalized world. One way of representing the time horizon of an agent is

the discount rate, which weights the values in future time steps according to a

decreasing exponential function. This parameter is not the only way to account

for short-term thinking (a hyperbolic function provides an even steeper drop

off), but it has some mathematical convenience.

Whether these assumptions are more well-founded than the traditional

game theory assumptions of perfect reasoning and common knowledge is a

valid question. This dissertation takes the view that there are empirical rea-

sons for using a framework that is more resilient to a variety of outcomes. In a
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world of big data, it would seem that modelers should prefer this approach to

the alternative.

I have addressed the algorithmic challenges of training predictive models

built from a meta-reasoning framework in part by carefully defining the ac-

tions output by each strategic component and partially by constraining pre-

vious models. By representing each agent’s strategy with a small number of

parameters, a modeler using this technique can efficiently compute the set of

strategies and find the optimal parameter setting. This method reduces a dy-

namic modeling problem into a machine-learning problem with inputs (the

underlying strategy types) and targets (the next action in the sequence). This

dissertation has used regression and gradient methods to fit the models, but

future analysis is not limited to these tools.

7.2 Experiments in Repeated Games

The games and sources of data explored above have the property that differ-

ent types of behavior emerge based on the decision-making process employed

by the participating agents. Models built for the purpose of transferable pre-

diction will be most robust when they can capture the relative frequencies of

these types. What unites these three experimental settings is the perception

of agents that the joint action serves as a state of the world, which then af-

fects the resulting decisions. One common theme is the conflict between co-

operation and private interest (or at a higher level, between conditionality and

non-responsiveness), which prisoner’s dilemma and public goods have long

been used as basic tools to investigate. The Lemonade Stand Game shares

the cooperative element, although the decision about the characteristics of an

ideal partner requires a little more thought. The tension between long-term
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and short-term results is another key element here. In long interactions, it can

often benefit a player to make short-term sacrifices for the sake of ultimate

reward. However, thinking about future possibilities is also computationally

intensive, and players must once again try to identify agents with this capacity

and respond to them differently than a myopic opponent. These games are in-

teresting to people because there is more than one way to play, and the choice

of strategy is influenced by repeated experience with other social agents, who

bring a unique perspective to the interaction.

7.2.1 Learning Algorithms in Simple Games

In the single-round version of social dilemma games, the basic conflict is be-

tween cooperation and defection. In the case of repeated games, the more

important distinction is between reciprocation and unconditionality (the ob-

servation that a player will not encourage or respond to good behavior). A

modeler that can distinguish between players of these two types will have a

sure advantage when it comes to constructing a strategy and can exhibit supe-

rior performance as a result.

Chapter 3 described how a variety of learning algorithms behave in 2-

player, 2-action games, with a special focus on memoryless ε-greedy Q-

learning. This algorithm has the unique property that it can cooperate con-

ditioned on the other player’s conditionality, without knowing the state of the

previous round. This algorithm presents a challenge for a modeler because,

in the empirical setting, it does not converge to any particular behavior, but

instead adapts in response to the relative cooperation it sees.

Chapter 4 used the framework described above to build models of his-

torical data of learners and teachers. For a pure teaching strategy, the base
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mappings are sufficient in these cases. A learner attempting to maximize the

discounted sum of rewards will incorporate a mix of the discounted best re-

sponses, along with the base strategies. Furthermore, a learning agent will

increase its probability of certain discounted responses as its reward changes.

This observation led to the development of the δ-model, a dynamic model that

shifts the probabilities as a linear function of the deviation of reward from a

midpoint. Using regression over data gathered from a series of trial runs, the

parameters of the δ-model can then be used to craft an optimal teaching re-

sponse that would not be available without these observations. The modeler

outperforms the other algorithms provided history against a set of strategies

covering the space.

The issue of adaptive algorithms arises whenever players have the oppor-

tunity to respond to their environment over long temporal periods. Chapter 4

lays out one way to deal with learning agents, by demonstrating a link between

accumulated rewards and the change in behavior. The lessons from these sim-

ple games show how some of this behavior can be captured by a general mod-

eling framework, which can then be applied to more complex domains.

7.2.2 Lemonade Stand Game

Chapter 5 investigated the behavior of a population of software agents in the

Lemonade Stand Game (LSG), a special case of the class of games known as

location games, or canonically as Hotelling Games. These types of games are

typical of the decisions faced by retail establishments when deciding upon lo-

cations for stores, given that others are doing the same. More generally, the

strategic choices in this game have a similar structure to any where players
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need to find a balance of meeting demand for some item in the face of compet-

ing supply. As such, they are a microcosm of the challenges faced in the realm

of auctions and markets.

The significant effect of others’ behavior, along with the confluence of

competition and partnership that emerge in the LSG, means that modeling—

understanding the behavior of competitors—takes on paramount importance.

This dissertation shows how to successfully apply a meta-reasoning frame-

work to this class of games, and how models trained on historical data can

be transferred across different payoff regimes. In particular, the [ε, φ, µ] basis

is a helpful place to start the iterated reasoning process, where the degree of

repetition as well as imitation (in this context, the mirroring or across action)

provide the groundwork for how likely players are to remain in their location

or move to a new one. The time horizon or discount factor is also a useful way

to capture how these probabilities vary from one state to another.

In the 2011 and particularly the 2012 competition, the ability to transfer ex-

perience across the large payoff space resulted in a convincing victory and val-

idation for this modeling approach. The large gap in performance between the

Rutgers agent and the next-best player demonstrates clearly that even anony-

mous population models have tremendous potential for predicting the likely

course of play in these rich and noisy domains. The strength of the model

shines through as a technique for forecasting the behavior of the population

for a previously unobserved payoff function.

7.2.3 Public Goods Behavioral Experiments

Much of the focus on models in economics is the link between utility

and response, and how this dynamic leads to some equilibrium over time.
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Economists have proposed learning rules such as experience-weighted at-

traction to explain non-equilibrium behavior. This adaptive mechanism is a

non-linear strategy function that contains parameters for update speed, noise,

other-regarding preferences, etc. However, this dissertation takes the perspec-

tive that a repeated base strategy (again, the parameters [ε, φ, µ]) combined

with some extra forward-thinking is a more robust model for training with lit-

tle data because the linear nature of this type of strategy function is easier to

fit.

The experimental results in Chapter 6 demonstrate the strength of this

model, especially when converted into a stochastic generative strategy. This

type of strategic model, when customized to individual players, reproduces

the distribution over the actions of the population well. Predicting a group’s

behavior from individual models is a different objective from training accurate

models, but is sometimes the more important goal.

7.3 Implications for Future Research

This dissertation outlines a general framework for modeling agent behavior in

strategic settings. In a world of proliferating data sources in social domains,

there will be increasing need for efficient models that transfer to new situa-

tions. As explained throughout the document, a pure statistical analysis can

fail without some connection to the reasoning process that self-directed agents

execute when interacting with others. The consequence of this phenomenon

is that model builders will be forced to rely on more sophisticated approaches

whenever people are making social decisions. The conclusion from the case

studies investigated above is that a simple yet general agent modeling frame-

work is both feasible and valuable.
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