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Abstract

Existing benchmarks for analytical database systems such as TPC-DS and TPC-H are designed for static
reporting scenarios. The main metric of these benchmarks is the performance of running different SOL
queries over a predefined database. In this paper, we argue that such benchmarks are not suitable for
evaluating modern interactive data exploration (IDE) systems, which allow data scientists of varying
skill levels to manipulate, analyze, and explore large data sets, as well as to build models and apply
machine learning at interactive speeds. While query performance is still important for data exploration,
we believe that a much better metric would reflect the number and complexity of insights users gain in
a given amount of time. This paper discusses challenges of creating such a metric and presents ideas
towards a new benchmark that simulates typical user behavior and allows IDE systems to be compared
in a reproducible way.

1 Introduction

There exists an ever growing set of data-centric systems that allow data scientists of varying skill levels to ma-
nipulate, analyze and explore large data sets. For example, tools like Tableau or Cognos allow users to quickly
analyze high-dimensional data using an interactive and visual interface. Research prototypes like imMens [277],
DICE [[I6,T7] or IDEA [H] aim to improve upon systems like Tableau by using specialized data structures, pre-
fetching, and/or approximation techniques to guarantee interactive latencies over big data sets. Other research
projects like SeeDB [20] or Data Polygamy [5] help users during the exploration process by providing recom-
mendations for interesting visualizations or correlations, whereas systems like DataWrangler [19], Trifacta [45]
or Paxata [B3] assist users in data wrangling and cleaning.

Although many systems and techniques have been proposed, there is currently no systematic way to evaluate
and compare them. For instance, DICE [I"Z] and IDEA [[Z,9, 2] both aim to allow users to interactively explore
large data sets, but do so through different techniques. Both systems leverage speculative execution, but DICE
uses a set of pre-defined exploration paths (e.g., drill-down, roll-up, pivot, etc.) to decide what to speculatively
execute, whereas IDEA’s model is based on a simpler set of operations which only depend on the current set of
visualizations shown on screen. Similarly, both systems try to re-use results between interactions. While DICE
finds overlap among different queries using standard relational algebra rewrites, IDEA rewrites queries on the
probability level. This allows IDEA, in contrast to DICE, to also reuse incomplete results. Furthermore, IDEA’s
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goal is to support complex analytical workflows including predictive model building. Therefore, IDEA provides
an unbounded 2D workspace and a set of pen/touch gestures to support complex analytical workflows. As
opposed to DICE, which uses a more traditional interface and focuses mainly on the interactivity of traditional
data-cube operations. Even though both systems are designed for interactive analytics, it is hard to draw a
comparison due their different approaches and goals. Moreover, systematically comparing a system which
provides approximate results, like IDEA, with a system which always calculates the full result, like Hyper [22],
is a complicated question on its own. This is due to the fact that it requires determining when an approximate
answer meets the same standards as the final answer to the user.

What is needed is a new benchmark for interactive data exploration systems. This is challenging because
such a benchmark has to be user focused and the system’s performance, which is the main metric of existing
analytical benchmarks such as TPC-H [24] and TPC-DS [43], is no longer the most important metric. Moreover,
in interactive data exploration systems users incrementally build queries over the course of a session, which is
another factor that is not represented in the workloads of the previously stated analytical benchmarks. Arguably
the only important metric for data exploration systems is how efficient a user can gain insights from a new data
set such as Insights per Minute. Clearly, the time to execute a single query has an impact on this metric; the
longer queries run, the longer users take to find an interesting insight. What makes it more complicated is that
many other aspects have an impact too. First, as IDEA and DICE have demonstrated, reuse of intermediate
results and idle time between interactions can be exploited therefore making workflow performance dependent
on many other factors. Secondly, the time of fully running a single query matters less. For example, a system
which provides 99% accurate answers for 10 queries is — in most cases — superior over a system which provides
a 100% correct answer for a single query in the same amount of time. Third, a system that slowly executes some
of its queries, but additionally recommends some interesting visualizations to the user or detects common data
errors and other pitfalls is arguably the better tool. Finally, the user interface itself often can have a profound
impact on how quickly users can make discoveries.

However, measuring the time to insights requires the design, implementation and evaluation of open-ended
user studies, which can be time-consuming, expensive and hard to compare (see Section Bl). Instead we ar-
gue for a benchmark that simulates common user behaviour during visual data exploration sessions. While this
approach does not allow comparison of all facets of data exploration systems (e.g., the quality of a visual recom-
mendation), we hope it will enable comparing techniques and systems across a multitude of common interactive
exploration tasks. Furthermore, such benchmark results can then be augmented with individualized user studies
to evaluate features outside of the scope of this benchmark.

Finally, as discussed before, recent interactive data exploration tools not only focus on the aspect of visual
data browsing using simple analytical functions but also offer a broad range of other extensions ranging from
interactive model building and machine learning over producing visual recommendations to interactive data
cleaning. Covering all these aspects is a major challenge when designing a new benchmark.

In this paper, we make the first step towards defining such a new benchmark. We discuss the challenges of
simulating users for benchmarking the different components of an interactive data exploration system. We also
suggest potential metrics to measure the performance of these systems. The remainder of this paper is outlined
as follows: Section [ describes a potential data exploration session and its various facets; Section 3 talks about
insights per minute as a metric and why it is problematic to measure in a benchmark; Section & discusses chal-
lenges and initial solutions for benchmarking the core functionality of an interactive data exploration systems.
Sections B, B, and [@ extend upon these ideas to also include other aspects of IDE including visual recommenda-
tions, model building, risk evaluation, and data cleaning issues. Section B surveys ways to evaluate the overall
user experience, and finally, Section B concludes.
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2 A Motivational Example

To motivate various aspects an IDE benchmark should take into consideration, we outline a fictional data ex-
ploration scenario inspired by projects that have recently emerged in this field, such as Vizdom/IDEA [R, 0],
SeeDB [20], QUDE [2], and imMens [27]].

2.1 Use Case

Eve is a medical researcher at a major Boston area hospital. She obtained a new data set containing information
about intensive care unit (ICU) patients including demographics, physical information, disease codes as well
blood test results, as available in the MIMIC II data set [29]. She wants to get an overview of the data and gain
insights. Eve starts off by visualizing different attributes containing physical and demographic information by
creating visualizations depicting the distribution of all ages, weights and heights (Figure [l A). She notices that
patient ages are frequently set to -1, indicating that those values were not correctly recorded. She applies a data
cleaning step that replaces all such occurrences with null (Figure 0 B) such that they are treated by the system
as missing values. Weight and height have the same issue. However, because weight and height are strongly
correlated, she decides not to substitute the missing values with null, but to perform a different data-cleaning
operation that estimates missing values based on correlated attributes (Figure [ C).
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Figure 1: A: visualizations of patients’ ages, weights and heights. B: Eve drags out a data-cleaning operator (1),
links it to the plot of ages (2) and finally selects the range of age values that she wants to replace with null. C:
Eve drags out a different data-cleaning operator (1). She links it to the weight visualization (2) and again selects
the range of weight values she wants to clean (3). The system shows her the attributes that are most correlated
with weight and Eve decides to use height and BMI (4) as the base attributes to estimate missing weight values.
She creates a new visualization that shows the resulting weight distribution after this cleaning step.

Next, she is interested in finding out more about age distributions of different diseases. She creates a chain
of visualizations that allows her to inspect age distributions of patients with a metabolic disease, and of patients
with a heart failure (Figure ). She then realizes that the two distributions are dissimilar and decides to test the
difference for statistical significance. Because Eve substituted “-1’ values with null, the system automatically
knows that it should not consider the null-values as part of the permutation test. Optionally, based on these
interactions the system could automatically recommend other attributes (i.e., other diseases) that might be of
interest to Eve.

Eve now decides to take it a step further and test to see if she can train a classifier to predict whether a
patient has a metabolic disease with a set of hand-picked attributes such as age and BMI (Figure B). The system
displays accuracy and other statistics about this model and additionally proposes modifications, such as adding
further indicative attributes or changing the underlying prediction algorithm, that will increase the classifier’s
performance.
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Figure 2: Chains of visualizations that show age distributions of patients with a metabolic disease (1) and heart
failure (2). By dragging the two visualizations closer together the system performs a permutation test and
displays significance levels (3). The system also displays additional attributes (4) that Eve might be interested
in, as they might exhibit similar significance levels when comparing such sub-populations.
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Figure 3: Classifier that predicts if a patient has a metabolic disease or not based on a patient’s BMI and age. (1,
2 and 3) shows modifications that the system recommends to increase the model’s performance.

2.2 Discussion

This use case exemplifies the potential of modern interactive data exploration tools. It also raises the question
of whether or not Eve would have gained a higher number or more valuable insights, if she had used a different
system. For instance, the results that were presented to her are approximate visualizations as indicated through
the error-bars in Figure . Would she have gained more insights if they had been exact but took longer to
compute? Would the system’s time spent on finding correlations (see Figure D) be better spent on computing
more accurate approximations? Would a system that automatically implies that “-1” should be treated as a null
value, lead to more discoveries over time?

Conducting user studies that measure the number and complexity of gained insight over time in order to
compare different systems or variants thereof may shed more light on these and many other questions. However,
such insight-based studies are not well suited for evaluating IDE systems, as we describe in the following section.

3 Benchmarking Interactive Data Exploration Systems

In the following, we first discuss why Insights per Minute or time it takes to gain the first insight are problematic
as a metric for a benchmark for an IDE benchmark and provide an overview of alternative metrics that capture
a similar notion.

3.1 The Problem of Using Insights in a Performance Metric

Ultimately, the goal of interactive data exploration is to extract insights from data. Thus, a system that allows to
extract more insights than another system within a given time frame is preferable. However, creating a measure
that captures this notion in a comparable and reproducible way is hard. What is an insight? Do different users
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have different notions of insights? How do we measure the complexity and value of an insight? Are they
domain-dependent?

Recent work in the information visualization community has tried to address these questions. Various studies
and guidelines [3, 26, 39] proposed to conduct user studies that include open-ended tasks with domain experts.
However, evaluating data exploration systems with user studies is problematic for the following reasons: (1)
These studies are expensive to conduct and require a lot of manual coding. (2) The results are hard to compare
and reproduce. These studies usually have a small number of participants and use within-subject designs making
the measured metrics (e.g., insights per minute) unusable for comparisons across different studies. Additionally,
different levels of user expertise and that different studies sample from different populations, e.g., students vs.
domain experts, further complicate comparisons of study results. (3) It is difficult to design controlled user
studies for entire systems. Different user interfaces (Uls) might incentivize different types of insights, e.g., bar
chart vs. pie chart, supported complexity of workflows. (4) The value of an insight is unclear. What is more
valuable: a simple count comparison or knowing we could build a classifier to predict a label with high accuracy?

3.2 Benchmark Overview

We advocate for a reproducible IDE benchmark that does not factor in the variability of insights, domains,
users and user experiences. The core idea is to provide a benchmark that simulates typical user behavior for
common data exploration tasks [21), B2], such as filtering, projecting, as well as model building or reacting to
recommendations. However, the richer the operations are, the harder they become to benchmark. We therefore
suggest a core-set oriented benchmark design where each core-set aims to analyze a different functional aspect of
a interactive data exploration system; e.g., one core set only tests simple analytical operations, whereas another
one tests more complex model building tasks. Which core-sets are used to evaluate a system, therefore, depends
on the supported functionality.

We envision the following four core-sets: Core-Set I focuses on Interactive Visual Analysis [21,37] and con-
sists of operations like building filter chains, aggregations, drill-downs, pivoting, etc., as currently supported by
systems like Tableau. However, it will exclude interactive model building, which is part of Core-Set I1. Core-Set
I and I are tightly coupled as it seems unreasonable to assume that one would build a model without having the
possibility to efficiently inspect the data set. Core-Set 11l is concerned with benchmarking the recommendation
part of a system, whereas Core-Set IV outlines metrics to compare the interactive cleaning and risk evaluation
parts of a data exploration tool. While a system that supports a higher core-set typically includes the func-
tionality of the core-sets below, we envision that each core-set can be tested individually as discussed before.
Furthermore, the higher the core-set number the harder it is to define a benchmark since the sheer complexity of
supported operations is increasing and their comparability becomes more difficult. We therefore focus most of
our discussion on the lower core-sets and discuss initial ideas for the higher ones.

4 Core-Set I - Interactive Visual Analysis

The core of any IDE system is the capability to browse data through visual interfaces. Techniques like linking
and brushing as well as OLAP-like aggregations, traditional statistics, and attribute derivation can help under-
stand complex relationships in the data. The level of support for these operations is determined by various
factors including the user interface, the chosen set of default visualizations, and how fluid, i.e., interactive, the
system is. As a matter of fact, interactivity is one of the most important aspects as recent studies show. For
instance, in [26] the authors argue that latencies of more than 500ms can already have a profound impact on
discovery rates. In the remainder of this section, we focus on benchmarking the interactivity during Interactive
Visual Analysis and discuss more qualitative aspects (e.g., how to evaluate the user interface) in Section B.
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4.1 Objective

The main objective of Interactive Visual Analysis from an interactivity point of view is to ensure that at no point
the user is blocked and can always make an informed decision on what to explore next [[4,T5]. This requires the
system to be fast and responsive, independent of the complexity of a query. Consider a system A that provides a
visualization to a query within 500ms and another system B, which takes 10s to process the same query. Clearly,
A is superior over B. At the same time, a system which is only 50ms faster than another system does not add
much value as it makes less of a difference to users. Similarly, a system which provides an approximate answer
in 500ms and a complete answer for the same query in 10s, is likely to be superior to a system which forces the
users to wait and only returns the complete result after 8s. On the contrary, short response times (e.g., 500ms)
are barely noticeable to users and therefore only marginally affect the user experience.

To that end, the questions a benchmark should consider are: How does a system, which never provides the
full answer but a good approximation compare to a system that eventually provides the complete answer in a
reasonable time-frame? What is a reasonable time-frame? How can progressively refining approximate answers
be evaluated? How much time is the system given in between interactions? In the following, we outline potential
design choices for a benchmark to answer these questions.

4.1.1 Metric

Since we cannot efficiently measure insights per minute directly, we propose a proxy metric called the Inter-
activity Performance metric. One approach would be to measure the time the system takes to provide a good
quality estimate for the results of all interactions. Thus, a system, which on average has shorter response times
to interactions, would be considered superior. However, as argued before, response times below a certain la-
tency requirement (e.g., 500ms) are barely noticeable to users and therefore only marginally improve the user
experience. Therefore, we suggest a performance metric P that reflects how often and by how much a system
violates the latency requirement:

P= Zmam(O;Tq(i) — ty) (1)
el

Where [ is an ordered set of all executed interactions, T (¢) is the time the system takes to execute interaction
T to g-degree of quality and ¢,, the latency requirement. The smaller P, the better the performance.

Response times in computer systems have been studied extensively for problem solving tasks [38]. It was
found that user productivity increases as response time decreases. But systems with a high variability in response
time negatively impact user efficiency. However, it remains unclear whether a system which almost always meets
the latency requirement with only few major exceptions performs better than one which consistently violates
interaction latencies by a little. Potential variations might include different thresholds and weighting schemes
(e.g., logarithmic, exponential, etc.) to correctly penalize different system behaviors such as high variability.

There are several ways to automatically determine the quality of an (approximate) visualization. [?3] defines
a relationship-based quality metric as a good approximation in which the relationships between data groups no
longer change, i.e., the point in time where in a bar-chart diagram the relationship between two bars (where
one is higher than the other) does not change. Another suggested quality metric is the just noticeable difference
(JND) [42]; a good visualization cannot be visually distinguished from the final complete visualization. In some
sense, the IND-based quality metric can be seen as an error-based quality metric with a specific error constant.
That is, a good visual approximation lies within a pre-defined error-bound of the ground-truth visualization.
More specifically, T;() is the time it takes the system to produce a visualization for interaction 7 within an
error-bound of e. We plan to conduct a user study to evaluate which of these quality metrics works best as a
placeholder for real-world users.
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Finally, it is worth noting that the combination of the error-based quality metric and the Interactivity Per-
formance P allows for a direct comparison of visualization error and the maximum time allotted to compute
it. Varying the error bound-threshold € and the maximum latency ¢,, could help to better understand the trade-
offs between computation time and latency. For instance, while it takes one system to compute an approximate
visualization within 500ms and error threshold 5%, another system may constantly perform better after 1s.

4.2 Workload

Having the main metric defined, we still need a way to simulate the user. As described earlier, in IDE systems
users incrementally build queries over the course of a session. Idle time between interactions is often used by
systems to prepare for the next interaction and in contrast to many existing benchmarks, the time users take
between interactions varies a lot. In many cases interactions depend on each other and allow for reuse of partial
results among other things. As a result, a benchmark for visual data exploration has to somehow simulate users’
behavior with their typical think-time between interactions.

One method to derive realistic workflows is to study actual user behavior and synthesize them to exemplary
workflows as done in [9]. By providing a set of potential IDE sessions the simulated users can capture common
user behavior. This allows for adjustments to the synthesized session (e.g., from more novice to expert users).
One idea is that the think-time between interactions could be scaled up or down similar to scaling the data size
to increase the level of difficulty in a benchmark. While creating the different workflows it is important to cover
different aspects of the data. For instance, one workflow could consist of mainly unrelated browsing queries,
where users just look at different attributes in isolation, while another workflow could comprise the creation of a
deep analytics pipeline. Similarly, as for other benchmarks, simulated users should vary their interactions (e.g.,
as [9] shows users tend to investigate outliers as they might contain interesting information).

Finally, a benchmark for visual data exploration should also allow to vary the data and data size. To test the
different properties of the system it is important that the generated data follows different types of distributions
for various attributes and contains random and correlated data. One way to generate such a data set is to take an
existing data set (e.g., the flight data set from [[]) and provide ways to automatically scale it to the desired size
while preserving the most important data properties.

4.3 Reporting

An important aspect of a benchmark is to define the main configurations for which the result should be reported.
We suggest that users of the benchmark can select a scale-factor of the benchmark just as in traditional bench-
marks. In addition, the benchmark should define different configurations such as the browsing configuration or
the no think-time configuration, which have different values for the latency threshold ¢,,, the think-time between
interactions and the error-based quality metric. These configurations allow the user to configure the benchmark
to the targeted use case of the IDE system, while still making all systems comparable using the standard settings.

S Core-Set II - Interactive Model Building

Apart from supporting users in visual analysis tasks, modern IDE systems increasingly help to interactively test
the predictive power of attributes and build models [R, 9,24, &T]. Some of the common tasks in model building,
such as visually inspecting attributes for feature selection, are covered by Core-Set 1. Others, such as model
selection, hyper-parameter tuning etc., need to be evaluated separately and require IDE systems to potentially
train and test hundreds of different configurations. While some progress has been made on how to do this
with interactive latency guarantees [9, 37, 40], it still remains a challenge to compare different interactive model
training systems and techniques.
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5.1 Metric

Arguably, the most relevant metric is Time to Model, the time it takes users to derive a model with a satisfying
model quality. This, yet again, requires user studies with all its difficulties. Thus, analogous to the ideas for
Core-Set I, a better metric for Core-Set II captures how long it takes a simulated user to derive a model with
satisfying quality.

Interestingly, estimating the model quality can also be considered a result approximation. Thus, like for
Core-Set I, we use the Interactivity Performance metric (see Equation [). However, in this case we must measure
the quality of a computed model rather than the quality of a visualization. More specifically, given a workload
that exactly specifies which features and model class the system must use (e.g., train an SVM to predict if a
patient has a metabolic disease based on its age and BMI, as done in Figure B), with a pre-defined validation
method (e.g., 10-fold cross-validation), we can compute the expected “ground-truth” model quality, e.g., the
F-score, offline. This allows us to compare the required time to achieve a certain model quality of a system to
the best known model quality, again represented as an F-score.

Furthermore, this metric also allows comparisons of more complex model search strategies. For example,
it might be possible to allow the system to do automatic algorithm and feature selection, or even feature trans-
formation. In this case, we envision that the workload only defines a high level task and the system reports
the model quality over time. This is then compared to the best known model quality, again represented as an
F-score.

It should be noted, though, that different time weighting schemes as well as using the F-score as a quality
model have implicit assumptions, which may or may not reflect the users intention. For instance, the F-score
is the harmonic mean of precision and recall, yet especially in the medical context often precision is more
important than recall.

5.2 Workload

Since model building is strongly intertwined with the tasks discussed for Core-Set I, the workload for Core-Set II
should also include operations such as browsing, inspecting attributes, etc. In the workload of this core-set model
building tasks should thus be intertwined with simple OLAP-style operations to inspect the data. As most IDE
systems are not yet capable of full automatic model building as proposed in MLbase [24], the workload should
also support different levels of specificity. Highly specific configurations dictate which algorithm and parameters
to use, whereas non-specific ones merely require the system to return predictions regardless of models class,
parameters, and features used.

5.3 Reporting

Core-Set I and Core-Set II essentially use the same metric. Therefore, results can be reported as described in
Section B3. In cases where a strict latency requirement matters less, we suggest reporting the F-score metric for
each trained model within the simulated workflows.

6 Core-Set III - Recommendations

There has been an increasing interest in automatically presenting recommendations to the user when using
IDE systems. These recommendations often come in different forms; e.g. suggesting visualizations [20], or
queries [28], recommending data cleaning steps [45], pointing out potential correlations [8] etc. Evaluating and
comparing the quality of such recommendations is difficult as they typically depend on the data domain and the
history of interactions.

57



6.1 Metric

Prior work in this area often use their own metric of success. The visual recommendation system SeeDB [0],
for instance, rewards recommendations that are orthogonal to what the user has looked at so far, thus it tries to
maximize the coverage of the data space (breadth first). Other approaches put more weight on recommendations
that are based on a sub set of the data that is currently being looked at (depth first). Depending on the task at hand
one of these objectives will be favorable over the other. We advocate that a benchmark for recommendations be
flexible enough to accommodate for multiple metrics and objectives.

The actual benchmark for recommendations as part of IDE can be designed along the lines of matrix comple-
tion problems as used by movie recommendation engines. That is, given a labeled set of “good”” recommenda-
tions it is the system’s task to identify them. Being able to situationally identify such “good”” recommendations
is not the only important aspect. No user wants to inspect 1,000 recommendations. Instead, like with search
engines, only the top-k recommendations really matter. The best recommendations are not useful if they are
displayed too late. Because of this a quality metric like Mean Average Precision (MAP), as used within the
Information Retrieval community, might be the right choice to compare the quality of two recommendation
systems. As before with our Interactive Performance Metric we suggest to penalize individual MAP scores for
recommendations that take longer to compute than some latency threshold.

6.2 Workload

The workload for benchmarking the recommendations produced by the IDE system can be similar to the work-
load of Core-Set I. In fact, the recommendations should not be benchmarked in isolation as it will be important
to see how the system computes them based on ongoing user interactions and how the system prioritizes the
process of creating the visualizations vs. supporting the ongoing user interactions.

The challenge in creating the benchmark lies in pre-labeling the best set of recommendations during every
single step of the predefined workflows. Here, the large amount of publications on how to create benchmarks
for search engines that tackle a similar problem might be relevant.

6.3 Reporting

While we are potentially able to use the same Interactivity Performance metric as for the other core-sets, it is
still important to provide detailed results on the quality of recommendations in form of the individual MAPs,
ROC curves, etc.

7 Core-Set IV - Risk and Data Quality

The last proposed core-set of the benchmark is concerned with evaluating the capability of the system to clean
and integrate data and to detect risk factors (e.g., [6,46]). While there has been some work on creating bench-
marks for certain sub-problems related to data quality (e.g., XBenchMatch [I1] and RODI [34] for schema
mapping or TPC-DI [B6] for data integration in general), other sub-problems are still evaluated in a more ad-hoc
manner. For de-duplication, people often use a few “known” data sets, such as the restaurant data set in [P35, &7],
but to the best of our knowledge no standardized benchmarking suite exist. Similarly, there is no good bench-
mark for “data wrangling” [[[¥], which is surprising given the importance it has for data scientists.
Furthermore, there has been very little work helping the user avoid common pitfalls during the analysis
process. For example, visualizations can be misleading as they sometimes hide certain details. When analyzing
the age of the patients in the MIMIC-II dataset we observed that a significant number of patients were between
the ages of 0 — 20-years-old. We originally believed that this is normal as kids, especially infants, are quite often
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in the emergency room. Only later we discovered, that many records which had an age of 0 since many doctors
apparently use 0 if the age is unknown (like the previous mentioned -1 in Figure ).

Similarly, high-level statistics can be misleading (e.g., resulting in the infamous Simpson Paradox), or rec-
ommendations can be extremely dangerous if not done with care. For example, in a recent paper [3] we showed
that visual recommendation or correlation finders can significantly increase the risk of finding insights, which
just appear by chance [2] (i.e., caused by the multi-hypothesis problem). In fact, interactive data exploration
tools, even without recommendations, increase the chance of false discoveries as they enable the user to test
many more hypothesis than ever before.

As part of the last core-set we plan to evaluate the system’s capability to clean and integrate data as well as its
ability protect users from making (common) mistakes. For example, we envision that as part of the benchmark
requirements, the system lists its data integration capabilities and the types of common mistakes, the system
tries to protect the user from. A more advanced benchmark design could contain certain types of data quality
issues and potential pitfalls (e.g., a Simpson Paradox). That way systems could be evaluated in how many of
these problems are detected as part of a workflow or how many system’s operations were needed to correct the
data error. This requires a very careful design of the data generator and might even entail adjustments to the
attribute distributions based on the scale factor. Another idea is, that the system is tested with risk-control on
and off as part of the Core-Sets I-III. This way the computational overhead of these protections can be factored
in and measured.

However, the feasibility of such a benchmark for Risk and Data Quality control has yet to be determined and
many questions remain unanswered.

8 Evaluating the User Experience

Evaluating the effectiveness of user interface designs, information visualizations and interaction techniques for
data exploration is an ongoing area of research [&,30]. On one hand, the composition of a set of tasks, e.g., load
a dataset, plot the distribution of some attribute and filter based on another attribute, can favor one tool over
another [B5]. This bias is introduced through different factors in the complexity, the design, and the usability
of the software, such as menu design, interaction techniques and defaults like color encoding. On the other
hand, it is hard to conduct “fair” evaluations because tasks used in laboratory user studies don’t normally reflect
real-world tasks executed by domain experts. The tasks often need to be shortened and simplified so they can be
accomplished in a given amount of time. However, simple tasks might lead to fewer discoveries.

In order to compare design choices within the same system, Munzer et al. [B0] presented a model that
defines various levels of design, each with its corresponding evaluation methodology. TouchViz [I0], for in-
stance, conducted a controlled study that compared the effect of two different interaction paradigms (gestural
vs. Windows-Icons-Menus-Pointer) by measuring task completion times and task accuracy. In cases where
these measures are not relevant (e.g., open-ended data exploration), like [B1], we advocate for an open-ended
protocol where researchers observe what insights domain experts gain while exploring the data in a self-directed
manner over the course of a long-term study.

9 Conclusions and Future Work

In this paper, we presented challenges and initial ideas towards a benchmark for IDE systems. We divided the
benchmark into four Core-Sets: (I) Interactive Visual Analytics, (II) Interactive Model Building, (III) Recom-
mendations, and (IV) Risk and Data Quality. For each Core-Set we proposed a potential workload and a metric.
As part of [U] we already started to develop an initial benchmark for Core-Set I and currently work on releasing
that part of the benchmark publicly. In addition, we are actively looking for collaborators to design a concrete
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benchmark for the other Core-Sets. We further hope to achieve a standardized benchmarking suite like the
TPC-benchmarks, which have been driving innovation for years and define a whole industry.
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