
THE UNIVERSITY OF CHICAGO

GRAMMATICAL METHODS IN COMPUTER VISION

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

ERIC PURDY

CHICAGO, ILLINOIS

MARCH 2013

Copyright c© 2013 by Eric Purdy

All Rights Reserved

To my beloved wife

TABLE OF CONTENTS

LIST OF FIGURES . vii

LIST OF TABLES . xii

ABSTRACT . xiii

1 INTRODUCTION . 1
1.1 Examples of Grammatical Approaches . 2

1.1.1 Curve Grammars . 2
1.1.2 Visual Chalkboard . 4
1.1.3 Visual Search Engine . 4
1.1.4 Other Visual Grammars . 4

1.2 Grammatical Vision is Important . 6
1.2.1 Soft Decisions . 6
1.2.2 Modeling Clutter with Object Sub-parts 7
1.2.3 Whole Scene Parsing . 7

1.3 Hierarchical Decomposition and Rich Description 8
1.3.1 Training on rich annotations . 9
1.3.2 Some Problems with Rich Description, and Solutions 10
1.3.3 Rich Description and XML . 12

1.4 Grammars and Statistical Models . 13
1.4.1 Statistical Modules . 13
1.4.2 Independence and the Poverty of Stimulus 13

1.5 Grammatical Vision is Difficult . 15
1.6 Grammar induction is difficult . 15
1.7 Visual Grammars are hard for additional reasons 16

1.7.1 Comparisons are Always Inexact . 16
1.7.2 Dealing with Scale . 17
1.7.3 Plane grammars do not naturally admit efficient parsing 18

1.8 Contributions . 18

2 GRAMMATICAL MODELS OF SHAPE . 20
2.1 Introduction . 20
2.2 Motivating Example: L-Systems . 23
2.3 Dealing with Curves . 29

2.3.1 Discretizing for Efficiency . 29
2.4 Stochastic Shape Grammars: A Generative Model for Curves 31

2.4.1 Restricted Classes of Shape Grammars 34
2.5 Example Grammars . 34
2.6 Parse trees and Inference . 39

2.6.1 Preliminaries . 39
2.6.2 Parse Trees . 40
2.6.3 Inner Parse Trees . 42

iv

2.6.4 Outer Parse Trees . 44
2.6.5 Dealing with Closed Curves . 47

2.7 Building a Grammar From a Single Curve 51
2.7.1 General Case . 52

2.8 Models of Triangle Deformation . 53
2.8.1 Procrustes Distance and The Watson Distribution 53
2.8.2 Non-Parametric Deformation Model 54

2.9 Dealing with Variation in Length . 55
2.10 Parsing to Recover Correspondences . 57

3 PARAMETER LEARNING FOR GRAMMATICAL MODELS 65
3.1 Learning Grammar Parameters with the EM Algorithm 65

3.1.1 The E Step . 66
3.1.2 Computing the Soft Counts . 68
3.1.3 The M Step . 71
3.1.4 Learning Multinomial Distributions 71
3.1.5 Learning Watson distributions . 73
3.1.6 Examples of Learning Watson distributions 75

3.2 Setup for Learning Experiments . 82
3.3 Simple Tuning of hand-built grammar with curves of constant length 88
3.4 Experimenting with different priors over concentration 92
3.5 Multiple Midpoints, and Curves of Constant Length 96
3.6 Multiple Midpoints, Multi-Level Correlations 100
3.7 Full Tuning . 104
3.8 Comparing to Other Models . 106

3.8.1 Independent Gaussians . 106
3.8.2 Comparing to Independent Nonparametric Distributions 106

3.9 Classification Experiment . 106

4 DETECTING OBJECTS IN CLUTTERED IMAGES 112
4.1 Speeding up Detection with Filtration Parsing 112

4.1.1 Lightest Derivation Problems . 112
4.1.2 Solving Lightest Derivation Problems via Dynamic Programming . . 115
4.1.3 Contexts . 117
4.1.4 Homomorphisms . 118
4.1.5 Putting it All Together . 120
4.1.6 Inadmissible Homomorphisms . 122

4.2 Parsing in the Plane with Grammatical Models 125
4.2.1 Plane Parsing . 125
4.2.2 Data Models for Object Detection . 126

4.3 Unintended Reuse and Local Inference . 128
4.4 State space . 129
4.5 Local Constraints . 130
4.6 Energy functions . 130

4.6.1 Useg(L) . 132

v

4.6.2 Uor(D) . 132
4.6.3 Uint(L,D) . 133
4.6.4 Uyd(D) . 133

4.7 Experimental Results . 133

5 FUTURE WORK: STRUCTURE LEARNING FOR GRAMMATICAL MODELS 141
5.1 Introduction . 141

5.1.1 Structural Variation . 141
5.2 Searching Over Grammars . 144
5.3 MDL Priors over Grammar Structure . 145

5.3.1 MDL Priors over Grammar Structure 145
5.4 Creating Reusable Parts with Replacement 146

5.4.1 Approximating the KL Divergence Efficiently 148
5.5 Merging to Create Factorization . 150

5.5.1 Goal: Merging and Factorization . 150
5.5.2 Creating Choice with Merging . 150

5.6 How do we Identify Natural Constituents? 151
5.6.1 Goal: Learning Constituents . 151
5.6.2 Constituency Cues . 151
5.6.3 Figure out optimal single-example grammar 152

6 APPROXIMATE PARSING OF ONE-DIMENSIONAL SIGNALS 155
6.1 CKY parsing . 155
6.2 Decomposition Families . 156
6.3 Parsing with decomposition families . 159
6.4 Constructing Sparse Decomposition Families 160

A MODELS OF LEAVES . 162

REFERENCES . 193

vi

LIST OF FIGURES

1.1 An example of a parsed image. Adapted from the website of the LabelMe dataset
(Russell et al. [2008]). 3

1.2 Even on low-level visual tasks such as segmentation, humans give answers based
on an interpretation of the whole scene. Figure adapted from Martin et al. [2001]. 3

2.1 The problem of drift makes a Markov model unappealing. Random samples from
this model are too similar locally and too dissimilar globally. These shapes were
generated by changing each length l by a multiplicative factor of 1+N (0, σ), and
changing each angle θ by adding π ·N (0, σ). Here σ is the value listed underneath
the shape. 21

2.2 The shape on the left is the original, and the other curves have been produced by
sampling from the hierarchical curve models of Felzenszwalb and Schwartz [2007]
. The model produces curves which have more perceptual similarity than the
Markov model. 21

2.3 Sierpinski’s triangle emerging from an L-system. 25
2.4 The curve from Figure 2.3, deformed randomly using a local model. 27
2.5 The curve from Figure 2.3, deformed randomly using our curve models. 28
2.6 Subsampled curves. Here λ̂ = 40 . 30
2.7 The rules for one of our hand-built grammars. The shaded part illustrates a

reusable part because it occurs on the right hand side of two different rules. . . 35
2.8 The curves used to initialize our hand-built grammars. 36
2.9 Samples from a grammar showing slight geometric deformation. 36
2.10 Samples from a grammar showing articulating parts, reusable parts, and a part

that can be absent. 37
2.11 Samples from a grammar showing a choice between two different variants on a

part, corresponding to a choice between pants and skirt. 38
2.12 The two ways of forming an outer parse tree for X. Here shaded ovals are

unexpanded nodes, shaded triangles are outer parse trees, and unshaded triangles
are inner parse trees. 46

2.13 The three kinds of clockwise intervals. 49
2.14 The three kinds of counter-clockwise intervals. 50
2.15 Recovering a One-to-one Correspondence . 58
2.16 Parsing a Longer Curve . 59
2.17 Parsing a shorter curve with very little geometric variation. 60
2.18 Parsing a shorter curve with significant geometric variation. 61
2.19 Parsing a shorter curve with very little geometric variation. 62
2.20 Parsing a shorter curve with significant geometric variation. 63

3.1 Experimenting with the Watson distribution, part 1. In the first row, the original
triangle T on the left, and the mode of the estimated Watson distribution on
the right. Subsequent rows are samples from Watson(T, 30.00). The estimated
concentration was 63.48. 76

vii

3.2 Experimenting with the Watson distribution, part 2. In the first row, the original
triangle T on the left, and the mode of the estimated Watson distribution on
the right. Subsequent rows are samples from Watson(T, 30.00). The estimated
concentration was 82.09. 77

3.3 Experimenting with the Watson distribution, part 3. In the first row, the original
triangle T on the left, and the mode of the estimated Watson distribution on
the right. Subsequent rows are samples from Watson(T, 30.00). The estimated
concentration was 69.92. 78

3.4 Experimenting with the Watson distribution, part 4. In the first row, the original
triangle T on the left, and the mode of the estimated Watson distribution on
the right. Subsequent rows are samples from Watson(T, 30.00). The estimated
concentration was 77.10. 79

3.5 Experimenting with the Watson distribution, part 5. In the first row, the original
triangle T on the left, and the mode of the estimated Watson distribution on
the right. Subsequent rows are samples from Watson(T, 30.00). The estimated
concentration was 79.39. 80

3.6 Fitting the Watson distribution with different numbers of samples. 81
3.7 The example curve used to initialize grammars. 81
3.8 Training data for learning experiments. 83
3.9 Validation data for learning experiments. 84
3.10 One of three starting structures used in learning experiments. Each bold curve

is a symbol in the grammar, and each division of a subcurve corresponds to one
production of the grammar. 85

3.11 One of three starting structures used in learning experiments. Each bold curve
is a symbol in the grammar, and each division of a subcurve corresponds to one
production of the grammar. 86

3.12 One of three starting structures used in learning experiments. Each bold curve
is a symbol in the grammar, and each division of a subcurve corresponds to one
production of the grammar. 87

3.13 Samples from grammar after 30 rounds of EM, using a grammar based on struc-
ture 1. From simple tuning experiment. 89

3.14 Samples from grammar after 30 rounds of EM, using a grammar based on struc-
ture 2. From simple tuning experiment. 90

3.15 Samples from grammar after 30 rounds of EM, using a grammar based on struc-
ture 3. From simple tuning experiment. 91

3.16 Samples from grammar after 30 rounds of EM, using σ = 1. 93
3.17 Samples from grammar after 30 rounds of EM, using σ = 1000. 94
3.18 Samples from grammar after 30 rounds of EM, using σ = 1000000. 95
3.19 Samples from grammar after 30 rounds of EM, using structure 1. From multiple

tuning experiment. 97
3.20 Samples from grammar after 30 rounds of EM, using structure 2. From multiple

tuning experiment. 98
3.21 Samples from grammar after 30 rounds of EM, using structure 3. From multiple

tuning experiment. 99

viii

3.22 Samples from grammar after 30 rounds of EM, using structure 1. From experi-
ment with multi-level correlations. 101

3.23 Samples from grammar after 30 rounds of EM, using structure 2. From experi-
ment with multi-level correlations. 102

3.24 Samples from grammar after 30 rounds of EM, using structure 3. From experi-
ment with multi-level correlations. 103

3.25 Samples from grammar after 30 rounds of EM. From full tuning experiment. . . 105
3.26 Samples from a model using independent Gaussians. We are using the maximum

likelihood estimate of parameters. 107
3.27 Samples from a model using independent Gaussians. The variance of the Gaus-

sians has been decreased to show the means better. 108
3.28 Samples from a model using independent Gaussians. The variance of the Gaus-

sians has been set to zero to show the means better. 109
3.29 Samples from a model using independent nonparametric distributions for each

point. 110
3.30 Samples from the model of Cootes et al. [1995], from which this figure is taken. . 111

4.1 A parse exhibiting unintended reuse. 129
4.2 Motivation for local constraints. Grey regions represent areas where there is

evidence for edges. 131
4.3 The angle between q−p and D(q) should be close to 90 degrees for interior p and

close to 270 degrees for exterior p. 134
4.4 Output of detection algorithm. Final detection shown top left, segmentation

shown top right, orientation assignments shown in four bottom images. The top
left of the orientation images gives a key to the orientation labels. 135

4.5 Output of detection algorithm. Final detection shown top left, segmentation
shown top right, orientation assignments shown in four bottom images. The top
left of the orientation images gives a key to the orientation labels. 136

4.6 Output of detection algorithm. Final detection shown top left, segmentation
shown top right, orientation assignments shown in four bottom images. The top
left of the orientation images gives a key to the orientation labels. 136

4.7 Output of detection algorithm. Final detection shown top left, segmentation
shown top right, orientation assignments shown in four bottom images. The top
left of the orientation images gives a key to the orientation labels. 137

4.8 Output of detection algorithm. Final detection shown top left, segmentation
shown top right, orientation assignments shown in four bottom images. The top
left of the orientation images gives a key to the orientation labels. 137

4.9 Output of detection algorithm. Final detection shown top left, segmentation
shown top right, orientation assignments shown in four bottom images. The top
left of the orientation images gives a key to the orientation labels. 138

4.10 Output of detection algorithm. Final detection shown top left, segmentation
shown top right, orientation assignments shown in four bottom images. The top
left of the orientation images gives a key to the orientation labels. 138

ix

4.11 Output of detection algorithm. Final detection shown top left, segmentation
shown top right, orientation assignments shown in four bottom images. The top
left of the orientation images gives a key to the orientation labels. 139

4.12 Output of detection algorithm. Final detection shown top left, segmentation
shown top right, orientation assignments shown in four bottom images. The top
left of the orientation images gives a key to the orientation labels. 139

4.13 Output of detection algorithm. Final detection shown top left, segmentation
shown top right, orientation assignments shown in four bottom images. The top
left of the orientation images gives a key to the orientation labels. 140

5.1 If A1 is the original curve, which other curve is most similar to it? Figure adapted
from Basri et al. [1998]. 142

5.2 The original shape from Figure 5.1, decomposed into semantically meaningful
parts. We argue that this decomposition explains why the variation in Figure
5.1 is less semantically different than the variation in Figure 5.3. Adapted from
Basri et al. [1998]. 143

5.3 Two shapes which are not perceptually very similar, although they are related
by a transformation as simple as that in Figure 5.1. The problem is that the
transformation does not respect the perceived structure of the original. Adapted
from Basri et al. [1998]. 143

5.4 Four shapes from G8. 144
5.5 Finding optimal constituents . 153
5.6 Hand-picked constituents . 154

6.1 With a θ-flexible decomposition family, any parse can be adjusted to an allowable
parse by moving the midpoint of each binary rule slightly. On the left, a parse
before adjustment. On the right, after the adjustment. Vertical lines denote
allowable midpoint choices. 157

6.2 Illustrating the construction from Theorem 6.4.1, with k = 4. Rectangles denote
portions of the string between members of the index set. A selection of intervals
that live at each level are shown. 160

A.1 Training examples from class #1. 163
A.2 Samples from learned model for class #1. 164
A.3 Training examples from class #2. 165
A.4 Samples from learned model for class #2. 166
A.5 Training examples from class #3. 167
A.6 Samples from learned model for class #3. 168
A.7 Training examples from class #4. 169
A.8 Samples from learned model for class #4. 170
A.9 Training examples from class #5. 171
A.10 Samples from learned model for class #5. 172
A.11 Training examples from class #6. 173
A.12 Samples from learned model for class #6. 174
A.13 Training examples from class #7. 175

x

A.14 Samples from learned model for class #7. 176
A.15 Training examples from class #8. 177
A.16 Samples from learned model for class #8. 178
A.17 Training examples from class #9. 179
A.18 Samples from learned model for class #9. 180
A.19 Training examples from class #10. 181
A.20 Samples from learned model for class #10. 182
A.21 Training examples from class #11. 183
A.22 Samples from learned model for class #11. 184
A.23 Training examples from class #12. 185
A.24 Samples from learned model for class #12. 186
A.25 Training examples from class #13. 187
A.26 Samples from learned model for class #13. 188
A.27 Training examples from class #14. 189
A.28 Samples from learned model for class #14. 190
A.29 Training examples from class #15. 191
A.30 Samples from learned model for class #15. 192

xi

LIST OF TABLES

3.1 Cross-entropy scores for experiments. Each column represents a different starting
structure. 88

3.2 Classification results on the Swedish leaves dataset. 107

xii

ABSTRACT

In computer vision, grammatical models are models that represent objects hierarchically

as compositions of sub-objects. This allows us to specify rich object models in a standard

Bayesian probabilistic framework. In this thesis, we formulate shape grammars, a proba-

bilistic model of curve formation that allows for both continuous variation and structural

variation. We derive an EM-based training algorithm for shape grammars. We demonstrate

the effectiveness of shape grammars for modeling human silhouettes, and also demonstrate

their effectiveness in classifying curves by shape. We also give a general method for heuris-

tically speeding up a large class of dynamic programming algorithms. We provide a general

framework for discussing coarse-to-fine search strategies, and provide proofs of correctness.

Our method can also be used with inadmissible heuristics.

Finally, we give an algorithm for doing approximate context-free parsing of long strings

in linear time. We define a notion of approximate parsing in terms of restricted families of

decompositions, and construct small families which can approximate arbitrary parses.

xiii

CHAPTER 1

INTRODUCTION

We want to study grammatical methods in vision (also called compositional methods). Much

past work has been done on this, including Amit and Trouvé [2007], Bienenstock et al. [1997],

Fu [1986], Geman et al., Grenander and Miller [2007], Han and Zhu [2009], Jin and Geman

[2006], Potter [1999], Tu et al. [2005], Zhu et al. [2009], Zhu and Mumford [2006], Felzenszwalb

and McAllester [2010], but many fundamental questions remain unanswered.

Grammatical methods are characterized by the following:

• Decomposing images hierarchically, often in a semantically meaningful way. This is

often referred to as parsing the image. Ideally, we would like an explanation for an

entire scene. For example, in Figure 1.1, each image pixel belongs to at least one object

(such as a car), and some objects are sub-parts of other objects (a wheel is part of a

car).

• Part-based object models whose parts are other object models. For example, a model

of a car would contain a model for a wheel, which could also be used to model wheels

on their own.

• Models that contain reusable parts. For example, a model of a face could use a single

model for both eyes. The reusable parts could also use themselves recursively, as is

seen in fractal shapes.

• Modeling some object classes as mixtures of sub-class models. This is important be-

cause some conceptually meaningful classes such as “chair” contain wildly disparate

elements (such as easy chairs and lawn chairs) that cannot be captured by a single

model.

• Models that exhibit large amounts of structural variation. For example, trees of a

single species will have wildly different shapes, which share some common properties.

1

In particular, object models that exhibit choice between different models of various

object parts. These choices may be nested; for example, the number of branches in a

tree is not fixed in advance, and neither is the number of sub-branches of each branch.

This is partly motivated by consideration of the human visual system:

• Humans use context to resolve ambiguities (Bar [2004]). This means that we can only

identify some objects by modeling their relationship to other objects. This can be seen

in Amit and Trouvé [2007].

• Humans interpret some groupings of objects as a larger level object or activity, such

as crowds of people or flocks of birds. Gestalt research demonstrates that perception

has definite, repeatable grouping rules (Wertheimer [1938]).

• Humans seem to interpret whole scenes even when answering simpler visual questions,

such as edge detection and segmentation. This can be seen in Figure 1.2, which shows

an example from the Berkeley Segmentation Database (Martin et al. [2001]).

Grammatical methods are also motivated by theoretical considerations. They are a nat-

ural choice for modeling large structural variations (see Section 5.1). Grammatical models

give a principled way to avoid hard decisions for low-level visual tasks (see Section 1.2).

They allow strong models of background clutter (see Section 1.2). They allow whole scene

parsing (see Section 1.2). They make it easy to integrate models from other domains into

visual models (see Section 1.4.1). Finally, there are theoretical reasons why grammars may

provide better generalization than other models.

1.1 Examples of Grammatical Approaches

1.1.1 Curve Grammars

We wish to build a model of closed curves in the plane. This is an important task because

curves are the boundaries of objects, and we can use this fact to recognize some object

2

(a) An image with objects outlined.

air conditioning building
bus car
door headlight
license plate mirror
plant pole
road sidewalk
sign sky
traffic light tree
wall wheel
window windshield

(b) Labels of the outlined objects.

Figure 1.1: An example of a parsed image. Adapted from the website of the LabelMe dataset
(Russell et al. [2008]).

(a) Human Segmentation

(b) Machine Segmentation

Figure 1.2: Even on low-level visual tasks such as segmentation, humans give answers based
on an interpretation of the whole scene. Figure adapted from Martin et al. [2001].

3

classes. The shape of a boundary is invariant to many photometric effects, in particular

illumination (Canny [1986]).

1.1.2 Visual Chalkboard

As an example throughout this document, we discuss a system which would take images of

a classroom chalkboard and attempt to parse them into lecture notes. This is an application

with lots of noise. It is also an application where different levels of interpretation are required,

since lectures can contain both sentences (which should be interpreted thoroughly, as text)

and drawings (which could be interpreted partially as collections of lines, but which may

contain unsummarizable elements which must be included verbatim).

In Section 1.4.1, we argue that grammars are a natural choice for such an application,

because they make it possible to integrate statistical models from other domains in a straight-

forward and principled manner.

1.1.3 Visual Search Engine

Google image search is a nice and useful thing, but it relies partially on images being associ-

ated with relevant text on web pages. It would be nice to find raw or under-described images,

and it would be nice to base search results more on the contents of the image. We might

also submit images as queries, rather than text. The LabelMe dataset is a good challenge

for this task.

In Section 1.3, we argue that hierarchical decomposition would allow the necessary rich

understanding of relationships between objects.

1.1.4 Other Visual Grammars

Many well-performing vision algorithms can be thought of as special cases of grammatical

algorithms. Some examples can be found in Amit and Trouvé [2007], Felzenszwalb and

4

Huttenlocher [2003], Felzenszwalb and McAllester [2010]. Recognizing these as a special case

means that we may be able to improve upon this work by specifying richer models in some

cases, or models that are better mathematically founded (and thus potentially trainable) in

other cases. There are two tricks for turning a model into a grammar model:

• Mixture models are a special case of grammar models. If we have mixture components

M1, . . . ,Mk with mixture weights p1, . . . , pk, then we can build a grammar model M

in which we have rules:

M →M1 (p1)

→M2 (p2)

. . .

→Mk (pk)

The same is true of nearest neighbor models. This is exciting because mixture models

and nearest neighbor models are often very powerful, but do not generalize well from

a small amount of data.

• Deformable parts-based models are a special case of grammar models (Felzenszwalb

and McAllester [2010]). Let M(x) denote the hypothesis that model M appears at

image location x. If we have part models P1, . . . , Pk, then we can build a grammar

model M which has the rules:

M(x)→ P1(x+ δ1) + · · ·+ Pk(x+ δk)

Pi(x)→ Pi(x+ ∆)

Pi(x)→ I(x1 ± wi, x2 ± hi)

The δi represent the ideal displacement of each part Pi from the object model. The

5

model is deformable because the second kind of rule allows the parts to be randomly

displaced. The probability of Pi(x)→ Pi(x+ ∆) will depend on ∆. The third kind of

rule gives the probability for placing a part, which can be thought of as the probability

that a part Pi would produce the image data under it, I(x1 ± wi, x2 ± hi).

In our model of curve grammars, the second kind of rule is given by the midpoint

distribution µX→Y Z , and the third kind of rule is trivial (see Chapter 2).

1.2 Grammatical Vision is Important

1.2.1 Soft Decisions

While human vision crucially relies on global context to resolve local ambiguity (Bar [2004]),

computer vision algorithms often have a pipeline which makes hard low-level decisions about

image interpretation, and then uses this output as input to higher-level analysis. Algorithms

will be more accurate and less brittle if they can avoid making such hard decisions, as

advocated in Amit and Trouvé [2007], Jin and Geman [2006], Felzenszwalb and Huttenlocher

[2003].

For example, in the visual chalkboard, there will be various stray marks on the chalk-

board. We would prefer not to filter these out with some sort of quality threshold, but

instead mark them as possibilities, try to assemble an overall interpretation of the board,

and then discount any stray marks that do not participate in the interpretation. This seems

much more fruitful than filtering out stray marks, along with some genuine letters, and then

having to be very forgiving of words actually missing some of their letters altogether.

This requires us to combine and resolve information at different levels. Grammatical

methods provide us with powerful inference algorithms for determining the most likely de-

composition of a scene under a given compositional model. Since important local ambiguities

will lead to different global decompositions, this is exactly what is needed: the overall likeli-

hood of the decomposition is a common currency that allows us to negotiate between fitting

6

the local data well, and explaining the local data in a way that allows a good decomposition

of the rest of the image.

1.2.2 Modeling Clutter with Object Sub-parts

We would like to build specific and accurate models of clutter. For instance, for the visual

chalkboard, it would be helpful to have a model for stray chalk marks, rather than a model

for arbitrary unexplained patches; otherwise we will be tempted to explain stray chalk marks

as some letter, possibly a lower-case ’i’. If we try to set our threshold high enough that we

don’t do this, we might start labeling some genuine i’s as background. If we instead have a

model for chalk marks, we can explain stray chalk marks and i’s as particular sorts of chalk

marks, and differentiate them based on context and appearance.

Jin and Geman [2006] suggests modeling clutter in the background with sub-parts of the

objects of interest. Since objects in the background are still objects, and are often related

to the objects of interest, this might allow us to build a much stronger background model in

many cases. In addition, by modeling clutter with sub-parts, we are less likely to hallucinate

whole objects when we see sub-parts. Thus, it is especially important that we have a cheap

way to explain clutter that closely resembles sub-parts of the objects of interest.

With such a system, we might even be able to ignore rather subtle clutter, such as some

stray letters, or even words, from a previous lecture that was not completely erased. Clutter

words would not be part of a line of text, and would thus be identifiable as clutter in the

parsed output, where they would be excluded from the main body of text.

1.2.3 Whole Scene Parsing

It is useful to demand whole scene parses, since it avoids the need to fine-tune detection

thresholds and decision boundaries (Amit and Trouvé [2007]). Consider the example of the

visual chalkboard. Instead of having to set a filter on chalk marks to filter out stray chalk

marks, we simply explain them and discount them, since they are not part of any larger

7

structure, such as a word, that we find interesting.

1.3 Hierarchical Decomposition and Rich Description

It would be very useful if vision algorithms could achieve richer understanding of scenes,

and produce richer descriptions of images. A rich understanding of a scene requires an

understanding of the relationship between objects. Consider an image containing a person

and two objects, where the person is pointing at one of the objects. This is an important

piece of information, and it cannot easily be described by a list of the objects in the image.

Some scenes contain important objects that are nothing more than a particular grouping

of other objects: a crowd is just a collection of people. Moreover, the nature of the collective

object is determined partly by the relationship between its elements. A crowd and a marching

band are two very different objects, but this difference cannot be expressed in a simple listing

of objects. How can vision algorithms achieve this level of understanding, or even represent

it?

One straightforward and general framework for rich description is a labeled hierarchical

decomposition of a scene (Zhu and Mumford [2006]). This takes the form of a tree, where:

• The root node describes the entire image.

• Each node is labeled with the name of an object, and an area of the image described,

which may be approximate.

• The children of a node describe sub-parts of the parent, and have areas inside the

parent node’s area.

We can explicitly encode such a description in an XML-like language. Since grammatical

methods produce and work with such hierarchical decompositions, they give a natural model

for such structures.

A marching band and a crowd would differ in the label assigned to the relevant node,

but the children of those nodes would be similar, i.e., individual people.

8

In the example of the visual chalkboard, rich description would produce more useful

output than simple text. For instance, in transcribing a series of boards as lecture notes,

we would like to be able to label non-textual regions as figures and include them verbatim,

or render them as a collection of lines. Figures could also include text labels, for which

we would want to know both their relationship to the figure and their textual content; a

hierarchical format such as XML would best represent the logical structure involved.

1.3.1 Training on rich annotations

We would also like to train grammars simultaneously on an image and a hand-made rich

hierarchical description of that image. This ensures that our trained grammars will produce

semantically meaningful decompositions of new images: the decomposition will have a struc-

ture similar to that produced by a human, and we will be able to transfer labels onto the

nodes of the decomposition.

This will make it more feasible to output meaningful rich descriptions on a wide range

of data. Stochastic grammatical methods allow us to put soft constraints on descriptions

(“it is unlikely that a person will have an apple for a face”), which will be more flexible and

less brittle than hard constraints (“a person’s face can have eyes, nose, etc., but not fruit”).

We can thus favor more realistic descriptions of scenes while still producing useful output

on very unrealistic scenes (such as Magritte’s “The Son of Man”).

Note that we may still gain information from rich descriptions without a specified cor-

respondence to particular parts of the image. Knowing the correct structure and guessing

at the exact correspondence is no harder than guessing both the correct structure and the

correspondence. Such descriptions would be less labor-intensive to produce, so we might be

able to train on larger datasets.

In general, supervised learning is easier than unsupervised learning. In computational

linguistics, this means that learning a grammar for natural language is much more tractable

given samples of natural language that have been parsed. (These are called bracketed sam-

9

ples.) It is likely that training on rich annotations would also make learning visual grammars

much easier.

1.3.2 Some Problems with Rich Description, and Solutions

For a number of reasons, dealing with rich descriptions is more complicated than dealing

with simpler descriptions. Grammatical methods and hierarchical decomposition give ways

around some of these problems. Some important issues are: Class/Subclass ambiguity and

Questionable Parts.

First, it is worth noting that hierarchical decomposition degrades gracefully into a flat

description, since we can always decompose the root node into a list of objects. Hierarchical

decomposition presses, but does not force, us to explain how any two parts of our annotation

are related, making for more useful description.

• Decomposition provides a reasonable and elegant solution to the Questionable Parts

problem. David Marr explained it thus:

Is a nose an object? Is a head one? Is it still one if it is attached to a body?

What about a man on horseback?

These questions show that the difficulties in trying to formulate what should

be [considered an object] are so great as to amount to philosophical problems.

There really is no answer to them - all these things can be an object if

you want to think of them that way, or they can be a part of a larger

object...(Marr [1983])

In any annotation system rich enough that we might simultaneously label a wheel and

a car, or eyes and a face, in the same image, there is an arbitrary choice of how many

things to label. Forcing these descriptions to be consistent is very difficult (Russell

et al. [2008]). This is especially pronounced with agglomerations, like crowds of people.

There is no point at which a group of people meaningfully becomes a “crowd”; two

10

people are not considered a crowd, and one hundred people are considered a crowd,

but it is impossible to draw a clear line between crowds and not-crowds.

Forcing consistency may even be counter-productive. If we must label every face in a

crowd, then a crowd seen from a distance will have an enormous number of face labels,

most of which are basically guesses. If we never label faces in a crowd, then our visual

search engine may fail to retrieve images of a particular person when they are in a

group, even if they are clearly visible.

Hierarchical decomposition describes a scene as a hierarchy of objects, and further de-

composition of these objects may be optional; as long as we know something about the

object’s appearance, we don’t have to demand that it be broken up into its constituent

parts.

• Grammatical methods also naturally address the Class/Subclass Ambiguity problem:

descriptions of an object can be general or specific, and the level of specificity is fairly

arbitrary. It is clear that we want the query “dancer” in a visual search engine to

return images of people dancing, but these same images should also be returned on the

query “person”.

Grammatical methods model such ambiguity as OR nodes in an AND-OR structure

(Zhu and Mumford [2006]), or by rules of the form

CLASS→ SUBCLASS1

→ . . .

→ SUBCLASSk.

The LabelMe dataset uses a set of labels derived from WordNet (Fellbaum [1998])

that are related via class-subclass relationships. The maintainers of the dataset claim

11

that it requires very little work to map the arbitrary labels provided by users into

these more precise and formalized labels (Russell et al. [2008]). Given such techniques,

the Class-Subclass ambiguity problem is probably not a fundamental barrier to rich

description.

1.3.3 Rich Description and XML

The rich descriptions we have described are naturally represented in XML and similar lan-

guages, which yields some opportunities:

• XML is reasonably human-readable and human-writable. (Comparable formats like

YAML are even more so.) This means that rich photo-tagging could be done by

many people, and also that many users could benefit from a visual search engine that

accepts structured queries. For example, photos inside of an image could be recursively

described as such, allowing us to separate the images containing an actual movie star

from those containing a poster depicting that movie star. As another example, having

a notion of classes and subclasses would allow us to search for BASS < FISH and receive

only pictures of bass fish, and not pictures of the instrument or of other fish.

• Existing technology such as XPath allows computer programs to do efficient and flexible

searches on XML documents. This means that fairly complex image-sorting tasks could

potentially be automated. This could be very good, because some image-sorting tasks

such as content moderation are reported to be very psychologically damaging when

performed by humans.

• One particular XML-based file format is the scalable vector graphics format (SVG). If

we can learn rich visual grammars, we could hope to recover artistic information from

images, so that we could approximate a drawing as a collection of strokes in fills in an

SVG document.

12

Ultimately, we might hope to learn artistic concepts such as drawing style or font,

which would greatly expand the power of graphics programs.

1.4 Grammars and Statistical Models

1.4.1 Statistical Modules

Grammatical methods offer a very powerful and general way to make vision algorithms more

robust: if we can integrate different statistical models in a modular fashion, especially models

trained in different contexts, then our system will be more robust than any single model.

Grammatical methods are well-suited to integrating any statistical model that depends

on the qualities of image objects and the relationships between them. When we can map

objects and relationships between domains (for example, mapping pictures of text to actual

text), this allows us to import already-trained statistical models from very different domains.

Consider transcribing a lecture from the visual chalkboard. The system will better recover

from misidentifying letters if it uses higher-level knowledge about the lecture’s language and

contents. In particular, we can build grammars that integrate such tried-and-true models

as the n-gram model of letters (Manning and Schütze [1999]), the n-gram model of words

(Manning and Schütze [1999]), a stochastic grammar model of phrase and sentence structure

(Manning and Schütze [1999]), and topic models of word choice in the subject of the lecture

(Blei et al. [2003]). All of these models can be trained on large corpora of text, rather than

on smaller datasets of images.

1.4.2 Independence and the Poverty of Stimulus

Grammatical models are typically context-free, which is fundamentally about making inde-

pendence assumptions. We argue that independence assumptions can increase the effective

amount of training data you have.

Remark 1.4.1 (Context-freeness is an independence assumption). Grammatical methods

13

in general are characterized by 1) a method for decomposing novel data in a hierarchical

fashion, and 2) an explanation for each level of the hierarchy in terms of previously seen

data. For example, in a standard CFG, we will have both a parse tree over a sentence,

and a set of labels for the nodes of the parse tree. If the CFG has been automatically

generated (i.e., no human has assigned semantic meaning to grammar elements), then the

label’s meaning will be derived solely from which parts of the training data have received

that label.

For generic grammatical methods, we can define context-freeness by specifying that the

contents of a node N (all nodes below N in the hierarchy) are independent of the context in

which N appears (all nodes not below N in the hierarchy) given the data stored at N (its

label and any attributes).

Remark 1.4.2 (Independence assumptions yield more effective data). Independence as-

sumptions let you effectively multiply the amount of data you have. Consider the following

simple problem: try to classify 0-1 vectors into two classes given a bunch of labeled examples.

Consider the two sort of extreme things we can do: if we assume that each coordinate of

the vector is independent, we get a Naive Bayes classifier, where we basically learn what the

distribution is over a given coordinate for each class. This can be done with a small number

of training examples.

The other extreme is assuming that there is total dependence, that the vectors are just

arbitrary elements of a set, and the individual coordinate values do not mean anything. Then

the maximum likelihood classifier (Paranoid Bayes?) is given by seeing how many times a

specific vector showed up in each class, and picking the class where it showed up more often.

We would have to guess on any novel vector.

If the independence assumption is valid for the data, then the Naive Bayes classifier

acts like the Paranoid Bayes classifier trained on a data set that is exponentially larger.

(Specifically, for each class, we generate all possible vectors that can be made by taking the

first coordinate of a random example from the class, then taking the second coordinate from

14

an independently chosen random example from the class, etc.)

Even when the independence assumption does not apply, context-free grammars are

useful. This can be seen in examining the classic nonsense sentence ”Colorless green ideas

sleep furiously”. The supposed weakness of context-free grammars, that the context-free

assumption is unrealistic, is actually a strength, because it allows us to parse and react to

very unrealistic data.

1.5 Grammatical Vision is Difficult

Little concrete progress has been made with visual grammars. The general frameworks

have few practical results, and people with practical results don’t seem to have a general

framework.

We are also hindered because the closest equivalent to linguistics is the cognitive science

of vision, which is not as well-stocked with intermediate hypotheses and sanity checks. For

example, in linguistics, utterances can be decomposed into phonemes. There is no agreement

as to how a visual signal can be decomposed into canonical parts.

1.6 Grammar induction is difficult

Grammatical methods in vision are inspired by grammatical models like probabilistic context-

free grammars in linguistics. In computation linguistics, the problem of learning a grammar

from unlabeled examples (grammar induction) is very difficult.

There are many negative theoretical results (Lee [1996]), the most fundamental of them

being Gold’s Theorem:

Theorem 1.6.1 (Gold’s Theorem). Consider an algorithm A trying to learn a language

L ∈ Σ∗. A is given an infinite sequence of words w1, w2, · · · ∈ L which contains every word

in L at least once. After each wi, A outputs some Li. A is said to learn L in the limit if,

for some n, L = Ln = Ln+1 = Ln+2 =

15

Then, if a class of languages L contains all languages of finitely many strings, and at least

one infinite language (in particular, if L is the set of context-free languages), no algorithm

can learn all languages in L in the limit.

Note that this result applies to all algorithms, regardless of their complexity.

This is a fundamental theoretical barrier to grammar induction. There is some hope

that we can defeat it by adopting a Bayesian approach, and only hoping to learn sufficiently

simple grammars. This has been attempted several times, but no solution is known for the

associated Bayesian learning problem, and a heuristic search strategy must be used (Cook

[1976], Stolcke [1994], Nevill-Manning and Witten [1997]).

It is clear that the problem of learning context-free grammars applies directly to curve

grammars, since part of our curve model actually is a PCFG (see Chapter 2). The learning

problem might be easier if visual grammars can be simpler in structure than string grammars

for natural languages. We don’t know if this is the case.

1.7 Visual Grammars are hard for additional reasons

1.7.1 Comparisons are Always Inexact

The continuous nature of visual signals means that we will rarely if ever see exact agreement

between two visual objects at the pixel level. Compare a well-defined linguistic object (such

as a word) to a visual part such as an eye; an eye will look slightly different in every image

because of natural variation and photometric effects.

Additionally, because language has well defined symbols, in the case of written language,

or agreed-upon phonemes, in the case of spoken language, it is possible in computational

linguistics to check whether two letters or two words are the same. Working with visual

grammars is thus analogous to trying to solve the problems of computational linguistics

simultaneously with the problems of speech recognition.

Additionally, hand-labeled training data is more readily available in computational lin-

16

guistics. For example, there are datasets of sentences which come with ground-truth gram-

matical parses. Such information is generally unavailable in vision.

Without certain knowledge of correspondence between samples, generalization is difficult.

We are required to infer correspondences between samples in an unsupervised manner. This

generally leads to a unsupervised learning problem, such as clustering, or a correspondence

problem.

1.7.2 Dealing with Scale

Computer vision usually tries to be scale invariant, since a small object closer to the camera

naturally looks like a large object further from the camera. A doubled copy of an image is

hopefully semantically the same as the original image.

We thus have two problems: when an object is too small, its internal structure may be

lost. Generally, fine internal structural elements first become texture (discernible en masse

but not individually) and then disappear completely. The larger object may still, however,

be recognizable by shape.

When an object is too large, we are faced with the task of parsing internal structure of

which we were previously unaware.

These difficulties can probably be dealt with. The first demands that we come up with a

simple appearance model for every object, so that we can detect it without detecting any of

its subparts. Decreased recall is probably OK, as smaller things are actually more difficult

to see.

The second demands that every object be detectable at large scales, even those which have

no sub-parts in our grammar. We can model this with simple infinitely recursive grammars;

sufficiently simple ones can hopefully model almost anything, while basically preventing their

being bias for either one of:

• A “larger” model with more internal structure

17

• A “smaller” model with less internal structure

1.7.3 Plane grammars do not naturally admit efficient parsing

Efficient algorithms for parsing strings with context-free grammars rely on dynamic pro-

gramming, and ultimately on the fact that a string has only quadratically many contiguous

substrings. The elements of visual grammars naturally live in the image plane, and thus do

not have a linear order. A visual object need not even occupy a single contiguous region, in

the case of occlusion. Therefore, a parsing algorithm might in principle have to consider any

subset of the image elements as a node in the parse, leading to an exponential runtime.

1.8 Contributions

Our first contribution is the formulation of a class of shape grammars, a probabilistic model

of curve formation that allows for both continuous variation and structural variation. We

describe shape grammars in Chapter 2 and derive an EM-based training algorithm for shape

grammars in Chapter 3. We demonstrate the effectiveness of shape grammars for modeling

human silhouettes, and also demonstrate their effectiveness in classifying curves by shape.

Our second contribution is a general method for heuristically speeding up a large class of

dynamic programming algorithms, given in Chapter 4. We provide a general framework for

discussing coarse-to-fine search strategies, and provide proofs of correctness. Our method

can also be used with inadmissible heuristics.

Our third contribution is local inference, a method for correcting parses with unintended

reuse, given in Chapter 4. We define an energy minimization problem over low-level assertions

that allows us to detect shapes in cluttered images.

Our fourth contribution is an algorithm for doing approximate context-free parsing of

long strings in linear time, given in Chapter 6. We define a notion of approximate parsing

in terms of restricted families of decompositions, and construct small families which can

18

approximate arbitrary parses.

Chapters 2, 3, and 6 are based on joint work with my advisor, Pedro Felzenszwalb.

19

CHAPTER 2

GRAMMATICAL MODELS OF SHAPE

In this chapter, we describe a formalism for modeling shapes based on context-free grammars.

2.1 Introduction

We are building probabilistic models of shape. For now, we consider only models of shape

that deal with the location in the plane of a fixed number of (ordered) landmarks z1, . . . , zn,

which in our case will define a curve outlining some shape. Some existing approaches to this

problem are: Markov models (Basri et al. [1998], Grenander et al. [1991]), the Procrustes

distance and its probabilistic counterpart, the Watson distribution (Dryden and Mardia

[1998]), and active shape models (Cootes et al. [1995]).

We would like to prove that our models do as well or better in explaining the geometric

variability of various shape classes. The easiest way to compare two generative probabilistic

models is to examine samples from them, and subjectively assess their similarity to real data.

This is inherently a very qualitative evaluation.

Our main goal in building shape models is to allow us to do inference on new curves.

We can calculate a likelihood that a shape class generated a particular curve. We start by

considering models defined by perturbations of a single input curve.

When comparing to other probabilistic models, we can evaluate them in a more quanti-

tative way using the log-likelihood, which is defined as

H({x1, . . . , xn}, q) = −
n∑
i=1

1

N
log2 q(xi).

If X = {x1, . . . , xn} is unseen data, and a large enough sample to be statistically useful,

then H(X, q) is a good measure of how well a model explains unseen data. Smaller values of

H(X, q) suggest that q is a better model. One problematic aspect of the log-likelihood is that

20

Figure 2.1: The problem of drift makes a Markov model unappealing. Random samples from
this model are too similar locally and too dissimilar globally. These shapes were generated
by changing each length l by a multiplicative factor of 1 +N (0, σ), and changing each angle
θ by adding π · N (0, σ). Here σ is the value listed underneath the shape.

Figure 2.2: The shape on the left is the original, and the other curves have been produced
by sampling from the hierarchical curve models of Felzenszwalb and Schwartz [2007] . The
model produces curves which have more perceptual similarity than the Markov model.

it is only meaningful if q is a correctly normalized probability distribution. Often it is easier

to compute q̃(x) = Z ·q(x) for some unknown but fixed constant Z. Due to the unsatisfactory

nature of the competing models we consider, we defer quantitative measurement to Chapter

3.

The most straightforward model for defining a distribution over curve shapes is a Markov-

type model. A curve is a sequence of line segments `1, . . . , `k. We can describe a curve

template by giving the length li of each `i, and the angle θi between `i and `i+1. If we

perturb each li and θi slightly, we get a curve which differs from the original. Some samples

from this are shown in Figure 2.1.

The major weakness of the Markov model is drift : the small perturbations will accumu-

21

late, and the overall shape of the curve will vary greatly. A straight line has some probability

of curling into a tight spiral. Consider a shape like a hand: a hand has fingers that protrude.

This means that there are two points (namely the two points where a finger meets the rest of

the hand) far away in the curve that we always expect to be very close together. A Markov

perturbation of the shape is likely to pull these points far apart.

To defeat this problem, hierarchical curve models were introduced in Felzenszwalb and

Schwartz [2007]. There, the following curve model is given:

• Given a model curve C, decompose C hierarchically by repeatedly cutting it in half,

in a balanced but otherwise arbitrary fashion.

• Suppose our first decomposition is C = DE. We perturb C into C ′ by first perturbing

the midpoint of C slightly. We then rotate and scale the curves D and E to align the

end of D and the beginning of E with the perturbed midpoint.

• We then recursively apply the same process to each subcurve D and E.

It is easy to see that this defeats the problem of drift, because the overall shape of the

curve is determined in a constant number of perturbations of the template curve. If our

perturbations are smaller for larger curves, then we will leave the overall shape very similar

while allowing significant local variation. Some samples from this model are shown in Figure

2.2.

Hierarchical curve models have room for improvement, as can be seen in Figure 2.2. The

variations do not respect the perceptual structure of the original curve; in particular, we do

not see articulated parts being articulated.

In this chapter, we describe a grammatical reformulation of the work of Felzenszwalb and

Schwartz [2007], which we hope will improve upon it in two ways. Firstly, we hope to allow

for structural variation, which we argue is an important goal for computer vision in Section

5.1. Secondly, we give a generative probabilistic model of curves, which allows us to retrain

22

the parameters of a grammar in a mathematically sound way, rather than optimizing many

parameters in an ad-hoc manner (which will tend to be expensive and fragile).

The rest of this chapter is structured as follows: in Section 2.2, we give an informal

discussion of L-systems to motivate our models. In Section 2.3, we describe a method for

sub-sampling curves in order to process them more efficiently. In Section 2.4, we lay out

our grammar formalism. In Section 2.5, we show samples from several example grammars

in order to demonstrate the expressiveness of our models. In Section 2.6, we describe how

to use our models to parse novel curves. In Section 2.7, we describe our method of building

models from a single example curve. In Section 2.8, we give models of triangle deformation,

which are the building blocks of our models of shape. In Section 2.9, we give more details on

how to set initial parameters of our models. Finally, in Section 2.10, we show output from

our parsing algorithm.

2.2 Motivating Example: L-Systems

To motivate our discussion of curve grammars, we will first give an amusing example of

such a grammar, which is inspired by L-systems. A Lindenmayer system, or L-system, is

a parallel string rewriting system. L-systems were formulated to model the shape of plants

and other organisms. They are defined on strings, which are then transformed into pictures

using a “turtle language” akin to Logo. They are a simple and intuitive way to generate

fractal images. Since our formalisms are different from L-systems, we will not discuss their

details, which can be found in Prusinkiewicz [1990].

We will informally discuss curve rewriting systems, where we iteratively replace straight

lines with curves composed of straight lines. We will represent our curves like this: ,

so that we remember which endpoint is which.

23

Consider the following system1:

→ .

Applying this rule a few times, we generate , , and .

We now wish to construct a more complicated system. We need to start distinguishing

different kinds of curves, in this case versus . Consider the following system2

→

→ .

If we start from , we successively generate , , and .

Suprisingly, after a large number of iterations, a pattern arises that may be familiar: Sier-

pinski’s triangle! After eight iterations, we have (filling in the dashed lines for simplicity)

the curve shown in Figure 2.3.

These curves were generated by Inkscape’s L-system function, which has a randomizing

option. It is interesting to randomize the last example. In Figure 2.4, we see a randomized

version C ′ obtained with fairly little noise (10% randomization in the length of line segments,

and 5% randomization in the angles. These parameters only make sense in a more standard

L-system framework). This has no global similarity at all to the other curve! Inkscape is

using a Markov-like source of randomness, and little errors at the local level add up to huge

changes at the global level. (This is exactly the issue shape-tree addresses in contrast to other

deformable models.) If we are going to have a statistical model for perceptual similarity of

curves, we will have to find a way to introduce long-range dependencies.

This brings us to our next section: probabilistic context-free grammars on curves. As a

1. generated by A = A+A+A−− with angle 60◦ in Inkscape

2. generated by A = B +A+B;B = A−B −A with angle 60◦ in Inkscape

24

Figure 2.3: Sierpinski’s triangle emerging from an L-system.

25

preview, we show several random perturbation of Sierpinski’s triangle in Figure 2.5 that do

retain overall similarity.

26

Figure 2.4: The curve from Figure 2.3, deformed randomly using a local model.

27

Figure 2.5: The curve from Figure 2.3, deformed randomly using our curve models.

28

2.3 Dealing with Curves

A continuous plane curve is a continuous function C : [0, 1] → R2. C is closed if C(0) =

C(1). In order to handle curves computationally, we approximate them with discrete curves

(referred to as “curves” hereafter). We create a curve by choosing a finite number of sample

points p0, . . . , pn ∈ R2, where pi = C(ti) for some 0 ≤ t0 < t1 < . . . < tn ≤ 1. A curve is

closed if p0 = pn.

We can concatenate open curves C and D if the last point of C is the first point of D.

We will denote this curve by CD.

We will denote an oriented line segment going from point p to point q by `p,q. A curve

will then have the form

`p0,p1`p1,p2 · · · `pn−1,pn ,

and p0 will be equal to pn iff the curve is closed. For a closed curve, this sequence is circular,

and we consider any cyclic permutation of the line segments to be the same curve.

We will denote the length of a curve in segments by |C|. A curve C will have |C| + 1

sample points (counting p0 = pn doubly if C is closed). We will denote the i-th sample point

of C by C[i], where i ranges from 0 to |C|.

2.3.1 Discretizing for Efficiency

Our inference and learning algorithms run in time that depends on the number of sample

points in a curve. In particular, parsing takes time that is cubic in the number of sample

points. We can therefore vastly speed up inference and learning by working with subsampled

curves. In this section, we describe an algorithm that approximates the shape of a curve

with another, coarser curve.

Let C be a curve with N points. We wish to produce a curve C ′ such that (a) C ′

approximates the shape of C, (b) |C ′| ≈ L, and (c) C ′ is sampled relatively uniformly from

C. We do this by minimizing the objective function (2.1). The first term measures the total

29

deviation between C and C ′, and the second term rewards relatively uniform sampling at

the correct rate.

argmin{ni}
∑
i

λi∑
j=0

∥∥∥∥pni+j − (λi − jλi
pni +

j

λi
pni+1

)∥∥∥∥2

+ α
∑
i

(λi − λ̂)2, (2.1)

where λi is the length of the i-th segment and λ̂ = N/L is the “ideal” segment length. Here

the ni are the indices of the points selected to appear in the downsampled version of the

curve, and the sum in the first term compares each point of the original curve to what we

would interpolate it to be using the downsampled curve. If C is closed, then pni+j wraps

around: pni+j = pni+j mod N .

This minimization can be done with a straightforward dynamic program, where we com-

pute the minimum cost of approximating each subcurve of the curve. Note that we do not

fix the number of sample points in advance, but instead use the number minimizing the cost.

The results of the algorithm can be seen in Figure 2.6. Note that, while we lose fine detail,

the resulting curves closely approximate the original curves.

Figure 2.6: Subsampled curves. Here λ̂ = 40

30

2.4 Stochastic Shape Grammars: A Generative Model for Curves

In this section, we define Probabilistic Context-Free Shape Grammars, a probabilistic model

that allows us to generate random curves, parse curves to find their likelihood, and ultimately

learn distributions over a class of curves.

Analogously to nonterminals in a traditional context-free grammar, we introduce placed

symbols. A placed symbol is of the form Xp,q, where X is a member of a finite alphabet N

or the special symbol `, and p, q are points. Xp,q represents an oriented curve of type X

going from p to q. The path between the endpoints is unspecified.

We specify the type X so that different nonterminals can be related by the grammar.

Recall and from the section on L-systems, which represented different kinds of

curves because they were on the left-hand side of different productions. Therefore, X should

be thought of as specifying a particular class of paths between any two endpoints. By itself,

X is an abstract symbol that can be instantiated as a placed symbol between any p and q.

The special symbol ` denotes a line segment. This takes the place of terminals in tradi-

tional context-free grammars.

Definition 2.4.1. A placed curvilinear form (by analogy with a sentential form) is a sequence

of placed symbols

α
(0)
p0,p1α

(1)
p1,p2 · · ·α

(n−1)
pn−1,pn ,

where α ∈ N ∪ {`}. As with curves, p0 will be equal to pn iff the curvilinear form is

closed, and two closed curvilinear forms will be considered equivalent if they differ by a

cyclic permutation.

An abstract curvilinear form is a sequence of abstract symbols (with no associated geo-

metric information)

α(0)α(1) · · ·α(n−1).

We will specify whether these are open or closed, since there is no other way to tell. Again,

closed abstract curvilinear forms will be considered equivalent if they differ by a cyclic

31

permutation.

We next introduce substitutions and substitution rules, which allow us to transform

curvilinear forms, ultimately producing curves. We will perform substitutions of the form

Xp,q → Y
(1)
p,p1Y

(2)
p1,p2 · · ·Y

(k)
pk−1,q.

Since Xp,q represents an unspecified path from p to q, substitution simply gives a more

specific route, in terms of which points we will visit in between (the pi, which we will call

the midpoint if there is only one of them, and control points otherwise) and what sort of

path we will follow between these points (the Y (i)).

In order to give a substitution rule for performing substitutions, we need to give

• An abstract substitution rule X → Y (1) · · ·Y (k).

• a rule for determining the pi in terms of p and q.

In practice, applying a substitution rule is problematic because the pi live in an infinite

domain (R2), but we want to deal with curves that (1) live in a finite domain (the pixels of

the image plane) and (2) are expected to exhibit a good deal of variation. Thus, we give

a distribution µX→Y (1)···Y (k)(p1, . . . , pk−1; p, q) over the pi called the control point distribu-

tion. When there is only a single control point, we will call µX→Y Z(p1; p, q) the midpoint

distribution.

Definition 2.4.2. A probabilistic context-free shape grammar (PCFSG) is a tuple G =

(N ,R,S, `,M,X), where

• N is a set of abstract symbol types, which we will call nonterminals

• R is a set of abstract substitution rules, with R(X) being the set of rules in R with X

on the left-hand side. The rules are of the form X → Y1 . . . Yk, with the Yi in N ∪{`}.

• S is the starting set of abstract curvilinear forms

32

• ` is a special curve type representing a line segment

• X = {ρX | X ∈ N}∪ {ρS}, where ρX is a probability distribution over R(X), and ρS

is a distribution over S

• M = {µX→Y (1)···Y (k) | (X → Y (1) · · ·Y (k)) ∈ R} is a set of control-point distribu-

tions.

It is worth noting that G has a corresponding abstract grammar Gabs = (N ,R,S, {`},X)

which is just a traditional PCFG. Gabs is an odd PCFG because it only generates strings of

the symbol `; nevertheless, many properties of G are actually properties of Gabs.

For a grammar that generates open curves, we can assume that S has a single curvi-

linear form S, and we will call S the start symbol. We sample from such a PCFSG by

starting with the curvilinear form Sp,q for arbitrary p and q. While our curvilinear form

contains a placed symbol Xp′,q′ such that X 6= `, we pick a random substitution rule

X → Y (1) . . . Y (k) according to ρX , and pick random control points p1, . . . , pk−1 accord-

ing to µX→Y (1)...Y (k)(p1, . . . , pk−1; p′, q′). We then replace the placed symbol Xp′,q′ with the

curvilinear form Y
(1)
p′,p1

. . . Y
(k)
pk−1,q′

. We will disallow substitutions in which any two control

points pi, pj are equal, or in which any control point pi is equal to either of the endpoints p′

or q′. This prevents us from having degenerate placed symbols Xp,p.

There is a slight difficulty here in that we usually cannot define the control-point dis-

tribution if p and q are equal. This is important, since we are mainly interested in closed

curves, so we would like to start with Sp,p for some arbitrary p. In this case, our set S of

starting forms will contain abstract curvilinear forms of length two, which are understood

to be closed. If XY ∈ S is our starting form, we start with the curvilinear form Xp,qYq,p for

arbitrary p, q. We choose a random such curvilinear form according to ρS , and then continue

as before.

33

2.4.1 Restricted Classes of Shape Grammars

In this section, we define some restricted classes of PCFSG’s. Our restrictions are only on

the abstract part of the grammar, so we are just specifying restricted classes of traditional

grammars.

For simplicity and efficiency, we will usually restrict our abstract grammars to be in

Chomsky Normal Form, in which abstract substitution rules can only be of two forms:

• Binary rules of the form X → Y Z.

• Lexical rules of the form X → `.

From now on, we will assume that PCFSG’s are in Chomsky Normal Form. Accord-

ingly, we will speak of midpoints, rather than control points. It is important to note that

PCFSG’s differ from standard PCFG’s in that not all PCFSG’s are equivalent to a PCFSG

in Chomsky Normal Form. This is because not all control point distributions can be realized

as a product of midpoint distributions. For instance, suppose we have a rule A → BCD,

which in the PCFG setting could be replaced with rules A→ BX,X → CD. We could have

a control point distribution µA→BCD(p1, p2; p, q) in which p1, p2 were on a random circle

going through p and q. If we try to replicate such a control point distribution with mid-

point distributions µA→BX(p1; p, q), µX→CD(p2; p1, q), we cannot, because the distribution

µX→CD(p2; p1, q) can only depend on the two points p1 and q, and that is not sufficient to

specify a unique circle.

2.5 Example Grammars

Here we demonstrate the expressiveness of grammatical curve models with some simple

examples. We have built three grammars by hand, by taking the curves shown in Figure 2.8,

and specifying decompositions of them. We show the rules of one of the grammars in Figure

2.7. We show samples from the grammars in Figures 2.9, 2.10, and 2.11. In particular, we

show that a hand-built grammar can exhibit interesting variation, such as:

34

Figure 2.7: The rules for one of our hand-built grammars. The shaded part illustrates a
reusable part because it occurs on the right hand side of two different rules.

• Small geometric deformation (Figure 2.9)

• Articulating parts of an object (fingers on the simplified hand in Figure 2.10)

• The presence or absence of a part (thumb on the simplified hand in Figure 2.10). This

is achieved by giving the nonterminal which generates the thumb the rule Xthumb → `.

• A choice between two different variations on a part (pants vs. skirt in 2.11). This is

achieved by having rules Xlower → YskirtZskirt and Xlower → YpantsZpants, and hav-

ing Yskirt, Zskirt based on a decomposition of the skirt-wearing shape, and Ypants, Zpants

based on a decomposition of the pants-wearing shape.

• Shared parts that occur in different contexts (fingers on the simplified hand in Figure

2.10)

35

Figure 2.8: The curves used to initialize our hand-built grammars.

Figure 2.9: Samples from a grammar showing slight geometric deformation.

36

Figure 2.10: Samples from a grammar showing articulating parts, reusable parts, and a part
that can be absent.

37

Figure 2.11: Samples from a grammar showing a choice between two different variants on a
part, corresponding to a choice between pants and skirt.

38

2.6 Parse trees and Inference

Given a placed symbol Xp,q, the PCFSG defines a distribution over concrete substitution

rules that can be applied:

Psub(〈Xp,q → Yp,mZm,q〉;Xp,q) = ρX([X → Y Z]) · µX→Y Z(m; p, q)

Psub(〈Xp,q → `p,q〉;Xp,q) = ρX([X → `]).

We can then define P (C;G, p, q) to be the probability that we arrive at C by starting

with Sp,q and repeatedly applying a random concrete substitution rule according to Psub.

For a fixed grammar G and a given curve C with points C[0], . . . , C[n], there are potentially

many ways for this sampling process to produce C. In this section, we formalize this by

defining parse trees.

For the sake of simplicity, we will assume in this section that all curves are open, unless

otherwise specified. We deal with the technicalities of closed curves in Subsection 2.6.5.

2.6.1 Preliminaries

Definition 2.6.1. We define the set FG to be the set of all strings of placed symbols

X
(1)
p0,p1X

(2)
p1,p2 . . . X

(k)
pk−1,pk with X(i) ∈ N , where neighboring placed symbols X

(i)
pi−1,piX

(i+1)
pi,pi+1

are constrained to share the point pi.

Let C be a curve of length n, with points C[0] through C[n]. Since C is fixed, we will

abuse notation throughout this section by writing placed symbols XC[i],C[j] as Xij .

We will write a binary tree with root node v, left subtree T1, and right subtree T2 as

v
T1 | T2

.

Definition 2.6.2. Let T1, T2 be labeled binary trees, where u is a leaf node of T1 and v is

the root node of T2. We define a new tree T14�uvT2 to be the tree resulting from deleting u

and attaching T2 in its place.

39

In order to differentiate between abstract and concrete substitutions we will write the

former as [X → Y Z] or [X → `] and the latter as 〈Xik → YijZjk〉 or 〈Xii+1 → `ii+1〉.

2.6.2 Parse Trees

Definition 2.6.3. A G-parse tree is a binary tree T that specifies a set of concrete substi-

tution rules that take a placed symbol Xij to some placed curvilinear form λ.

T has three kinds of nodes:

• Unexpanded nodes, which are labeled with a placed symbol Xij , where 0 ≤ i < j ≤ n

and X ∈ N . Unexpanded nodes are always leaves.

• Lexical nodes, which are labeled with a concrete substitution rule

〈Xii+1 → `ii+1〉,

where [X → `] ∈ R(X), X ∈ N , 0 ≤ i < n. Lexical nodes are always leaves.

• Binary nodes, which are labeled with a concrete substitution rule

〈Xik → YijZjk〉,

where X, Y, Z ∈ N , [X → Y Z] ∈ R(X), and 0 ≤ i < j < k ≤ n. Binary nodes always

have two children. The first must be either of the form 〈Yij → λ〉 or of the form Yij .

The second must be either of the form 〈Zjk → λ〉 or of the form Zjk.

For brevity, we will refer to G-parse trees simply as parse trees.

To simplify notation, we will define the symbol of a node (denoted sym(v)) as:

• sym(Xij) = Xij

• sym(〈Xii+1 → `ii+1〉) = Xii+1

40

• sym(〈Xik → YijZjk〉) = Xik

We have defined parse trees to represent derivations according to the substitution rules

of G. For X ∈ N , 0 ≤ i, j ≤ n, the set of all G-parse trees T such that sym(root(T)) = Xij

is in one-to-one correspondence with the set of all derivations of placed curvilinear forms

from the placed symbol Xij . Unexpanded nodes correspond to incomplete derivations, while

lexical and binary nodes correspond to applications of lexical and binary substitution rules.

The constraints on the children of binary nodes require that our derivation then operate on

the placed symbols produced by the substitution rule.

Definition 2.6.4. The weight of a parse tree T is defined to be

WG(T) =
∏

〈Xij→λ〉∈T
Psub(〈Xij → λ〉).

Note that this product omits the unexpanded nodes of T .

The weight of a parse tree multiplies the probability of each concrete substitution in the

parse tree. We call it a weight rather than a probability because two different parse trees are

not always mutually exclusive events (in particular, if one is a subset of the other), and thus

WG(T) does not sum to one over the set of all parse trees. Trees with unexpanded nodes

correspond to sets of trees, and the weight of the tree is the combined weight of the set.

Observation 2.6.5. Let T1 be a parse tree with an unexpanded leaf node Xij , and let T2

be a parse tree with root node of the form 〈Xij → λ〉. If we define

T = T14�
�Xij
〈Xij→λ〉

T2,

then

1. T is a valid parse tree.

2. WG(T) = WG(T1)WG(T2).

41

2.6.3 Inner Parse Trees

Definition 2.6.6. An inner parse tree of C is a parse tree T in which every leaf node is a

lexical node corresponding to a segment of C. Let ICG (Xij , λ) be the set of all inner parse

trees of C with root node of the form 〈Xij → λ〉. Let ICG (Xij) be the set of all inner parse

trees of C with root node of the form 〈Xij → λ〉 for any λ ∈ FG .

Proposition 2.6.7. We can construct the set ICG (Xij , λ) recursively as follows:

• ICG (Xii+1, `ii+1) =
{
〈Xii+1→`ii+1〉
∅ | ∅

}
if [X → `] ∈ R(X), and empty otherwise.

• ICG (Xij , YikZkj) =

{
〈Xij→YikZkj〉

TY | TZ
: TY ∈ ICG (Yik), TZ ∈ ICG (Zkj)

}
.

Proof. Let T ∈ ICG (Xij). The root node is either of the form 〈Xii+1 → `ii+1〉 or 〈Xij →

YikZkj〉. In the former case, the root is a lexical node, and cannot have any children.

In the latter case, since T is an inner parse tree, the root node cannot be a leaf node, and

it is constrained to have exactly two children, which must be of the form 〈Yik → λY 〉 and

〈Zkj → λZ〉, since T has no unexpanded nodes. Every leaf node of either subtree is also a

leaf node of T , and thus lexical. Therefore the subtrees headed by these nodes are also inner

parse trees, and reside in the specified sets.

Proposition 2.6.8. The set ICG (Xij) is in one-to-one correspondence with the set of deriva-

tions of C[i : j] from the placed symbol Xij according to the substitution rules of G. Moreover,

for T ∈ ICG (Xij), WG(T) gives the probability of the derivation.

Proof. Since inner parse trees cannot have unexpanded nodes, they correspond to complete

derivations of a subcurve from the placed symbol Xij . Since each step of the derivation is

chosen independently from the others, the probability of the derivation represented by the

parse tree is the product of the probabilities of the individual substitutions, which is given

by WG(T).

42

The probability that we derive a curve C[i : j] from a placed symbol Xij is just the sum

of the probabilities of any particular derivation, taken over all possible derivations. This

probability is called the inside probability :

InsideCG (Xij) =
∑

T∈ICG (Xij)

WG(T).

Since P (C | G) is just the total probability of deriving C from G, it is clear by Proposition

2.6.8 that

P (C | G) = InsideCG (S0n).

We can compute the inside probability efficiently:

Observation 2.6.9. We can compute all inside probabilities in time O(|R|n3) by using the

following relations:

InsideCG (Xii+1) =
∑

T∈ICG (Xii+1)

WG(T)

= Psub(〈Xii+1 → `ii+1〉)

by the first case of Proposition 2.6.7.

InsideCG (Xij) =
∑

T∈ICG (Xij)

WG(T)

=
∑

[X→Y Z]∈R(X)
i<k<j

∑
T∈ICG (Xij ,YikZkj)

WG(T)

43

by the definition of ICG (Xij)

=
∑

[X→Y Z]∈R(X)
i<k<j

Psub(〈Xij → YikZkj〉)·

∑
TY ∈ICG (Yik)

∑
TZ∈ICG (Zkj)

WG(TY)WG(TZ)

by the second case of Proposition 2.6.7

=
∑

[X→Y Z]∈R(X)
i<k<j

Psub(〈Xij → YikZkj〉)InsideCG (Yik)InsideCG (Zkj)

2.6.4 Outer Parse Trees

Definition 2.6.10. An outer parse tree of C is a parse tree T with sym(root(T)) = S0n in

which one special leaf is an unexpanded node Xij , and all other leaf nodes are lexical nodes

corresponding to segments of C. Let OCG (Xij) be the set of all outer parse trees which have

unexpanded node Xij .

Proposition 2.6.11. (Illustrated in Figure 2.12) We can construct the set OCG (Xij) recur-

sively as follows:

• OCG (X0n) =
{

S0n
∅ | ∅

}
, if X = S, and is empty otherwise.

44

•

OCG (Xij) =⋃
h<i

[Z→Y X]∈R

{
Tout4�

�Zhj
〈Zhj→YhiXij)〉

〈Zhj → YhiXij〉
TY | Xij

:

Tout ∈ OCG (Zhj), TY ∈ ICG (Yhi)

}⋃
⋃
i<k

[Z→XY]∈R

{
Tout4�

�Zik
〈Zik→XijYjk〉

〈Zik → XijYjk〉
Xij | TY

:

Tout ∈ OCG (Zik), TY ∈ ICG (Yjk)

}

(For notational simplicity above, we are writing Xij in place of
Xij

∅ | ∅ .)

Proof. Let T ∈ OCG (Xij). The unexpanded node Xij may be the root of T , in which case

Xij must be S0n, and we are in the first case.

Otherwise, Xij is not the root of T , and has a parent which is either 〈Zhj → YhiXij〉, or

〈Zik → XijYjk〉. Let us restrict to the second case; the first case is strictly analogous.

If we remove the subtree rooted at Yjk and replace 〈Zik → XijYjk〉 with an unexpanded

node Zik, we get a tree Tout which is a valid outer tree for Zik:

• Tout has a single unexpanded node Zik

• root(Tout) = root(T) = S0n.

Furthermore, the subtree TY rooted at Yjk satisfies sym(root(TY)) = Yjk, and is an inner

parse tree, since all remaining leaf nodes are lexical nodes. This completes the proof.

45

Figure 2.12: The two ways of forming an outer parse tree for X. Here shaded ovals are
unexpanded nodes, shaded triangles are outer parse trees, and unshaded triangles are inner
parse trees.

We define the outside weight as:

OutsideCG (Xij) =
∑

T∈OCG (Xij)

WG(T).

This gives the total weight of parse trees corresponding to derivations of the curvilinear form

`01 . . . `i−1iXij`jj+1 . . . `n−1n from S0n.

Observation 2.6.12. Given the inside probabilities, we can compute the outside weights

in time O(|R|n3) by using the following relations (note that we can do this with dynamic

programming because we can compute the values in a fixed order, based on the length of

the intervals):

OutsideCG (S0n) =
∑

T∈OCG (S0n)

WG(T)

= WG

(
S0n

∅ | ∅

)
= 1

46

by the first case of Proposition 2.6.11.

OutsideCG (Xij) =
∑

T∈OCG (Xij)

WG(T)

=
∑
h<i

[Z→Y X]∈R

Psub(〈Zhj → YhiXij〉)·

∑
Tout∈OCG (Zhj)

∑
TY ∈ICG (Yhi)

WG(Tout)WG(TY)

+
∑
j<k

[Z→XY]∈R

Psub(〈Zik → XijYjk〉)·

∑
Tout∈OCG (Zik)

∑
TY ∈ICG (Yjk)

WG(Tout)WG(TY)

by the second case of Proposition 2.6.11.

=
∑
h<i

[Z→Y X]∈R

Psub(〈Zhj → YhiXij〉)OutsideCG (Zhj)Inside
C
G (Yhi)

+
∑
j<k

[Z→XY]∈R

Psub(〈Zik → XijYjk〉)OutsideCG (Zik)InsideCG (Yjk)

2.6.5 Dealing with Closed Curves

We can think of a closed curve as an open curve whose endpoints are the same. However,

we will prefer to think of it in a different way. We wish to preserve the symmetry of closed

curves by considering any rotation of the curve to be equivalent. We can then define an

“opening” operation, which takes a closed curve C[0], . . . , C[n − 1], and an integer k, and

produces the open curve C[k], C[k+ 1], . . . , C[n− 1], C[0], . . . , C[k] whose endpoints are the

same.

When given a closed curve, we will assume that any of the n possible opening operations

47

are equally likely, and thus have probability 1
n . Alternatively, we can imagine that the closed

curve has had one of the n possible rotations applied to it before we see it, with each rotation

being equally likely.

Given a closed curve, we could then apply the preceding machinery to every possible

opening of the curve. However, this is grossly inefficient, since different openings of the

curve still share many of the same subcurves. Here, we describe a way to take maximum

advantage of this sharing.

Remark 2.6.13. For closed curve grammars, the top-level midpoint distributions µS→XY

(defined in Section 2.4) cannot be proper distributions if our grammar is going to be invariant

under similarity transformations (translation, scaling, and rotation).

The symbol S will be realized as a placed symbol Sp,p, and the placed rule will be of the

form Sp,p → Xp,qYq,p. Then, any choice of midpoint q is equally good, since we can map

the pair (p, q) to a pair (p, q′) via a similarity transformation. This is a problem because we

cannot define a uniform distribution on all of R2!

We handle this by setting µS→XY (·) = 1 in our formulas. We justify this by thinking of

each curve as being a representative of its equivalence class under similarity transformations.

The probability that we see a parse tree is therefore P (C, T | G) = 1
nWG(T). In order

to describe the parse trees, we must allow placed symbols Xij , where j < i. In this case,

Xij will be understood to be a placed symbol that ultimately expands to be all the indices

between 0 and n that are after i or before j. To simplify matters, we introduce clockwise

intervals:

cwn(i, j) =

{k ∈ Z | i < k < j} i < j

{k ∈ Z | 0 ≤ k < j or i < k < n} i > j

{k ∈ Z | 0 ≤ k < n, k 6= i} i = j

.

These are the indices in between i and j on the curve, where we move “clockwise” in the

48

Figure 2.13: The three kinds of clockwise intervals.

49

Figure 2.14: The three kinds of counter-clockwise intervals.

direction of increasing indices. We also introduce counter-clockwise intervals

ccwn(i, j) =

{k ∈ Z | 0 ≤ k < i or j < k < n} i < j

{k ∈ Z | j < k < i} i > j

∅ i = j

.

These are the points which are outside of the clockwise interval between i and j, excluding

i and j.

We can then adapt Observations 2.6.9 and 2.6.12 for closed curves as follows:

Proposition 2.6.14. We can recursively compute inside weights for closed curves in time

O(|R|n3):

50

CInsideCG (Xii+1) = Psub(〈Xii+1 → `ii+1〉)

CInsideCG (X(n−1)0) = Psub(〈X(n−1)0 → `(n−1)0〉)

CInsideCG (Xij) =
∑

[X→Y Z]∈R(X)
k∈cwn(i,j)

Psub(〈Xij → YikZkj〉)CInsideCG (Yik)CInsideCG (Zkj).

Proposition 2.6.15. We can recursively compute outside weights for closed curves in time

O(|R|n3):

COutsideCG (Sii) =
1

n

COutsideCG (Xij) =
∑

h∈ccwn(i,j)
[Z→Y X]∈R

Psub(〈Zhj → YhiXij〉)COutsideCG (Zhj)CInside
C
G (Yhi)

+
∑

k∈ccwn(i,j)
[Z→XY]inR

Psub(〈Zik → XijYjk〉)COutsideCG (Zik)CInsideCG (Yjk).

2.7 Building a Grammar From a Single Curve

The current work is based on Felzenszwalb and Schwartz [2007], in which grammar-like

structures were constructed from single training curves. We follow that approach here.

A grammar GC for a curve C should produce C, and curves which look like C. We are

not trying to achieve structural variation yet, so the only variation that GC needs to account

for is:

• Slight geometric deformations of C

• Curves like C that have more or fewer sample points.

Geometric deformation is modeled with a midpoint distribution that is defined in terms of

C. We discuss our models in Section 2.8. Curves with fewer sample points are modeled by

51

including, for every nonterminal X ∈ N , the rule [X → `]. We initially set the probability

of this rule based on the scale of X, as described in Section 2.9.

The nonterminals of our grammar will correspond to subcurves of C. We model curves

with more sample points than C by allowing any nonterminal X that arises from a subcurve

of length 1 to have two rules:

• X → `

• X → XX

The second rule is infinitely recursive, and thus allows the curve to get arbitrarily long.

2.7.1 General Case

Let C be a curve of length n. A generic parse tree for C is a parse tree that does not refer

to any particular grammar. This will just be a binary tree T where each node is labeled by

an interval (i, j), 0 ≤ i < j ≤ n, and

• The root of T is (0, n)

• If (i, j) is a node, and j − i ≥ 2, then (i, j) has exactly two children, and they are of

the form (i, k) and (k, j) for some k.

• T has n leaf nodes (i, i+ 1) for i = 0, . . . , n− 1.

We can then specify a simple grammar for C that produces the parse tree T . For every

node (i, j) in T , G has a nonterminal X(i,j). When (i, j) has children (i, k) and (k, j), G has

a rule [X(i,j) → X(i,k)X(k,j)]. The scale of the nonterminal X(i,j) is j−i
n (see Section 2.9).

Our choice of an initial grammar for C is thus based on choosing a generic parse for C.

Some choices:

1. An arbitrary parse, chosen to make the tree as balanced as possible. This approach

corresponds most closely to that of Felzenszwalb and Schwartz [2007].

52

2. A parse that has been chosen to respect the natural part structure of C. This approach

would require us to identify natural constituents of curves. There has been some work

on this question, e.g. Richards et al. [1985].

3. We can choose multiple parses, and create a grammar that can parse C in multiple

ways.

Our favored approach is number 3. We want to create a small grammar that can parse

C in as many ways as possible, so that the EM retraining can discover the “correct” sub-

grammar.

2.8 Models of Triangle Deformation

When sampling from our grammar, we place a midpoint q according to the midpoint dis-

tribution µX→Y Z(q; p, r), where Xp,r is the placed symbol we are currently replacing, and

X → Y Z is the substitution rule we are using.

When building a grammatical model from a single curve C, we base the distribution

µX(i,k)→X(i,j)X(j,k) on the triangle C[i], C[j], C[k], with C[i], C[j], C[k] playing the roles of

p, q, and r respectively.

We have experimented with two different approaches to modeling the shape of trian-

gles, the Watson distribution and a non-parametric distribution. Unless otherwise specified,

midpoint distributions will always be modeled with the Watson distribution.

2.8.1 Procrustes Distance and The Watson Distribution

One useful midpoint distribution is given by the complex Watson distribution, which is a

probabilistic analogue of the Procrustes distance.

Let us represent our points (x, y) in R2 as complex numbers x + iy, and ordered triples

of points by vectors of length three. For every such vector z =

(
p q r

)
, we define a

53

canonical version

ẑ =
z − w
‖z − w‖

,

where w =

(
p+q+r

3
p+q+r

3
p+q+r

3

)
. We do this transformation to achieve invariance to

scale and location, since, if y = az + b for a ∈ R, then ŷ = ẑ.

The (complex) Watson distribution is then defined as follows:

Watson(z;µ, κ) =
1

Z(κ)
eκ|ẑ

∗µ̂|2 ,

where µ is the mode of the distribution, and κ > 0 is a concentration parameter. This

distribution is invariant to rotation since, if y = eiθz, |ŷ∗µ̂| = |ẑ∗µ̂|. More details on the

Watson distribution can be found in Dryden and Mardia [1998].

The Watson distribution can be thought of as a probabilistic version of the Procrustes

distance, which can be defined as

dP (y, z) =

√
1− z∗yy∗z

y∗yz∗z
,

and thus

Watson(z;µ, κ) ∝ e−κ·dP (ẑ,µ̂)2 ,

where we are using the fact that ẑ∗ẑ = ‖ẑ‖2 = 1.

2.8.2 Non-Parametric Deformation Model

We have also experimented with the nonparametric distribution given by the Parzen windows

method (Parzen [1962]). We want our grammar to be invariant to simultaneous translation,

scale, and rotation of the points p, q, r. Therefore, we translate, scale, and rotate R2 with a

map φ such that φ(p) = (0, 0) and φ(r) = (1, 0), and represent q via the coordinates q̂ = φ(q).

54

If we have seen samples q1, . . . , qk, then

µX→Y Z(q; p, r) =
1

n

k∑
i=1

1

2πh2
e
‖q̂i−q̂‖2

2h2 .

In the context of kernel density estimators, the parameter h is called the bandwidth.

It specifies how much smoothing to apply to the density estimation. Selecting a suitable

bandwidth is often problematic.

It is worth noting that this nonparametric distribution is just a mixture of Gaussians,

and thus there is no solid distinction between a mixture of multiple copies of the rule X →

Y Z with Gaussian midpoint distributions, and a single copy with a mixture of Gaussians

midpoint distribution. We will prefer the second, since the resulting grammar has a simpler

structure, as discussed in Chapter 5.

2.9 Dealing with Variation in Length

As mentioned before, our grammar models longer curves with rules of the form X → XX,

and shorter curves with rules of the form X → `. When building our initial models, it

is very important to assign reasonable probabilities to these rules, because we want to use

these rules in parsing, but prevent pathological parses. For example, we don’t want to parse

an input curve in such a way that many high-level nonterminals X use the rule X → `

and some low-level nonterminal Y uses the rule Y → Y Y many times. Since the balance

between different rules is governed by a multinomial distribution, we need a reasonable prior

on multinomial distributions that prevents pathological parses.

Let X be a nonterminal. When there is no prior reason to believe that any ρX(X → λ)

is larger than the others, it is natural to use a Dirichlet prior with each αi the same. For

shape grammars, this is not entirely the case; since rules of the form [X → Y Z] and [X → `]

serve different roles in the grammar, we expect their probabilities to take on different values.

In particular, if the nonterminal X is meant to model long curves, it is unlikely that a

55

long curve will have only two sample points, especially if we are parsing a curve that has

many sample points. Therefore, we would expect the probability of [X → `] to be low.

Let C be a curve. We define the scale of a subcurve C ′ to be s(C ′) = |C ′|/|C|. We can

then specify an ideal scale sX for the nonterminal X. Let k = |R(X)|. Our prior distribution

on ρX is then Dir(α1, . . . , αk), where

α1 = k · αdir · e−ωs
2
X

αi = k · αdir ·
1− e−ωs

2
X

k − 1
2 ≤ i ≤ k.

Here α1 corresponds to the rule [X → `]. Suitable values of αdir are probably significantly

less than one, in light of Johnson et al. [2007]. A suitable value for ω is more complicated,

and depends on the value of other model parameters.

This prior is suitable, because it produces grammars biased towards balanced parses. To

see this, consider a grammar G whose parameters are set according to this prior. (This will

be true of our initial grammar, as we describe in Section 2.7.) Let C be a curve of length

n, and T be a G-parse of C. T will then specify nonterminals X1, . . . , Xn to parse each

line segment of C. Thus, the likelihood P (C, T | G) will contain factors ρXi([Xi → `]) for

i = 1, . . . , n. If ρXi([Xi → `]) is e−ωs
2
X , then these factors contribute

e
−ω

∑
i s

2
Xi

in total. Since the Xi combine to parse C, the scales sXi will hopefully sum to approximately

one. In this case the probability will be highest when
∑
i s

2
Xi

is lowest, which occurs when

all the sXi are equal. The stated Dirichlet prior thus pushes G to favor balanced parse trees,

as desired.

56

2.10 Parsing to Recover Correspondences

Given a grammar model and a curve, we want to calculate how likely the curve is under the

model, and we would like to extract the most likely correspondence between the points of

the curve and the parts of the model. We call this process parsing, because it is extremely

similar to CKY parsing with standard PCFG’s. We defer the technical details of parsing

until a later chapter.

We examine parsing in this section by looking at human silhouettes from a dataset

generated by Romer Rosales. We have two versions of this dataset: one where a silhouette

has been automatically extracted by subtracting the background, and the curve simplified

slightly by the discretization method discussed in Section 2.3; and a hand-annotated version,

where we have marked by hand the position of 27 corresponding points on the body in each

image.

Throughout this section, we examine the task of building a grammatical model from one

curve, and using it to parse another curve. We demonstrate the accuracy of these parses by

showing the correspondence between the points of the two curves induced by the most likely

parse.

The easiest parsing task is to recover a one-to-one correspondence between two curves

that have the same number of points, which we demonstrate in Figure 2.15. Because there are

no missing or extra points, this is straightforward. The two curves are both from the hand-

annotated Romer dataset. The grammar is built using a hand-picked set of constituents.

A somewhat harder task is to parse a curve that is longer than the curve on which our

model is based. We wish to recover a reasonable correspondence between the points of the

coarse model curve and a subset of the points of the finer input curve. We do this by building

a grammar model from the coarse curve and using it to parse the finer curve. The grammar

must have lengthening rules, but doesn’t need shortening rules. This demonstrates that we

can model longer curves than were used to build the grammar. This is shown in Figure

2.16, where a model built from a hand-annotated curve is used to parse a curve from the

57

Figure 2.15: Recovering a One-to-one Correspondence

ground-truth Romer dataset. We successfully recover a very reasonable correspondence.

We also wish to recover a reasonable correspondence by building a grammar from a longer

(i.e., finer) model curve and parsing a shorter (i.e., coarser) input curve. This demonstrates

that we can model shorter curves than were used to build the grammar. This task is generally

harder than the prior task.

Here we build a grammar from a ground-truth Romer curve, and try to parse one of the

(much shorter) hand-annotated Romer curves. We can safely assume that every point in

the parsed curve has a corresponding one in the example curve, which is the reverse of the

previous experiments. In order to do this successfully, the grammar needs shortening rules,

but not lengthening rules.

In Figure 2.17, we show the results of parsing a shorter curve with very little geometric

variation. The fine details are not quite right, but overall the correspondence is reasonable.

In Figure 2.18, we show the results of parsing a shorter curve with significant geometric

58

Figure 2.16: Parsing a Longer Curve

59

Figure 2.17: Parsing a shorter curve with very little geometric variation.

variation. In this case, the correspondence found is completely incorrect.

Our models are very sensitive to the initial decomposition specified for the model curve.

The two experiments above used a balanced but otherwise arbitrary decomposition of the

model curve. By using a more carefully chosen decomposition, we get much better parses,

which can be seen in Figures 2.19 and 2.20. In Figure 2.19, the fine details are now ex-

actly what we would expect, in contrast to Figure 2.17. In Figure 2.20, even though we

have the same significant geometric variation as in Figure 2.18, we now find a very good

correspondence.

60

Figure 2.18: Parsing a shorter curve with significant geometric variation.

61

Figure 2.19: Parsing a shorter curve with very little geometric variation.

62

Figure 2.20: Parsing a shorter curve with significant geometric variation.

63

Thus, even on fairly straightforward parsing tasks, our models are extremely sensitive

to the particular hierarchical structure that we impose on the curve. The shortening rules

only allow the parser to chop off constituents. Therefore, it is important to have good

constituents. We address this in Chapter 3 by using multiple decompositions, and learn

which constituents allow us to best explain our data.

64

CHAPTER 3

PARAMETER LEARNING FOR GRAMMATICAL MODELS

In this chapter, we describe a mathematically rigorous way to tune our model parameters

using the EM algorithm. We give the details of the algorithm in Section 3.1. In the remainder

of the chapter, we show samples from various grammatical models after training, in order to

demonstrate that we have learned a correct and interesting model. Finally, in Section 3.8,

we show that samples from standard models fail to model the dataset we are using.

3.1 Learning Grammar Parameters with the EM Algorithm

Let C1, . . . , Cn be independent samples from a grammar G, for which we know the structure,

but not the parameters. We would like to set the parameters of G such that the posterior

P (G | C1, . . . , Cn) is maximized. We can write the posterior as

P (G | C1, . . . , Cn) = P (G) ·
∏
i P (Ci | G)∏
i P (Ci)

∝ P (G) ·
∏
i

∑
T∈ParseG(Ci)

P (Ci, T | G)

= P (G) ·
∑
{Ti}

∏
i

P (Ci, Ti | G),

where this last sum is taken over all collections of one parse tree for each curve.

Unfortunately, it is not known how to maximize this posterior, or even the likelihood.

The likelihood is known to have many local maxima in the case of context-free grammars

for natural languages (Charniak [1996]). Therefore, we are forced to use approximation

techniques. We use the Expectation-Maximization algorithm (Dempster et al. [1977]), which

is a standard approach to finding maximum likelihood or maximum a posteriori estimates

in the case where important variables are unobserved. In our case, the unobserved variables

65

are the parse trees {Ti}.

Let C = (C1, . . . , Cn), and let T be the latent variable (T1, . . . , Tn). We then iteratively

find better and better grammars G(t):

1. E step: Let

Q(t)(G) =
∑
T

[
P (T | C,G(t)) logP (C,T | G)

]
+ logP (G)

= ET∼T|C,G(t)
[

logP (C,T | G)
]

+ logP (G)

2. M step: Let

G(t+1) = argmax
G

Q(t)(G)

3.1.1 The E Step

Q(t)(G) = ET∼T,G(t) [logP (C, T | G)] + logP (G)

Since P (C,T | G) =
∏
a P (Ca, Ta | G), and by linearity of expectation:

Q(t)(G) =
∑
a

E
Ta∼∆

(t)
a

[logP (Ca, Ta | G)] + logP (G),

where ∆
(t)
a (Ta) is the distribution P (Ta | Ca,G(t)).

Let Q
(t)
a (G) = E

Ta∼∆
(t)
a

[logP (Ca, Ta | G)]. We can decompose P (Ca, Ta | G) by using

Proposition 2.6.8 1:

1. If G is a grammar for closed curves, P (Ca, Ta | G) will have an extra factor of 1
|C| . We can ignore this

because the logarithm turns it into an additive constant, which is irrelevant in the M step.

66

Q
(t)
a (G) = E

Ta∼∆
(t)
a

log
∏

〈Xij→λ〉∈Ta

Psub(〈Xij → λ〉)

= E

Ta∼∆
(t)
a

 ∑
〈Xij→λ〉∈Ta

logPsub(〈Xij → λ〉)

We can rewrite this as a sum over all possible concrete substitution rules, using indicator

variables to eliminate absent terms:

= E
Ta∼∆

(t)
a

[∑
i<j<k

∑
[X→Y Z]∈R

1[〈Xik → YijZjk〉] logPsub(〈Xik → YijZjk〉)

+
∑
i

∑
[X→`]∈R

1[〈Xii+1 → `ii+1〉] logPsub(〈Xii+1 → `ii+1〉)

]

=
∑
i<j<k

∑
[X→Y Z]∈R

logPsub(〈Xik → YijZjk〉) E
Ta∼∆

(t)
a

[1[〈Xik → YijZjk〉]]

+
∑
i

∑
[X→`]∈R

logPsub(〈Xii+1 → `ii+1〉) E
Ta∼∆

(t)
a

[1[〈Xii+1 → `ii+1〉]]

In the case of closed curves, the sum over i < j < k will instead be over 0 ≤ i, k ≤ n, and

j ∈ cwn(i, k).

Let

Count
(t)
a (〈Xik → YijZjk〉) = E

Ta∼∆
(t)
a

[1[〈Xik → YijZjk〉]]

= P
Ta∼∆

(t)
a

(〈Xik → YijZjk〉 ∈ Ta)

Count
(t)
a (〈Xii+1 → `ii+1〉) = E

Ta∼∆
(t)
a

[1[〈Xii+1 → `ii+1〉]]

= P
Ta∼∆

(t)
a

(〈Xii+1 → `ii+1〉 ∈ Ta)

67

and let

Q
(t)
a,i,j,k,[X→Y Z]

(G) = logPsub(〈Xik → YijZjk〉) · Count
(t)
a (〈Xik → YijZjk〉)

Q
(t)
a,i,[X→`](G) = logPsub(〈Xii+1 → `ii+1〉) · Count

(t)
a (〈Xii+1 → `ii+1〉).

3.1.2 Computing the Soft Counts

In this section, we show how to compute the soft counts from the inside and outside weights.

Firstly,

∆
(t)
a = P (Ta | Ca,G(t))

=
P (Ca, Ta | G(t))

P (Ca | G(t))

=
P (Ta | G(t))

P (Ca | G(t))
.

Definition 3.1.1. A complete parse tree is a parse tree with root node S0n, and which has

no unexpanded nodes. We will denote the set of complete G-parse trees of C by FCG . We will

denote the set of complete G-parse trees of C which contain a node 〈Xij → λ〉 by FCG (Xij , λ).

Proposition 3.1.2. Every parse tree T ∈ FCG (Xij , λ) can be obtained as

Tout4�
�Xij

(Xij ,λ)
Tin,

where Tout ∈ OCG (Xij) and Tin ∈ ICG (Xij , λ).

Proof. If we remove the subtree rooted at the node 〈Xij → λ〉 and replace it with an

unexpanded node Xij , the resulting tree is an outer parse tree in OCG (Xij). The subtree

rooted at 〈Xij → λ〉 is an inner parse tree with root 〈Xij → λ〉.

68

Observation 3.1.3. For open curves C,

P (〈Xij → λ〉 ∈ T | G) =
∑

T∈FCG (Xij ,λ)

WG(T)

which, by the previous proposition can be broken up as

=

 ∑
Tout∈OCG (Xij)

WG(Tout)

 ∑
Tin∈ICG (Xij ,λ)

WG(Tin)

= OutsideCG (Xij)Inside

C
G (Xij , λ).

For closed curves C,

P (〈Xij → λ〉 ∈ T | G) =
1

|C|
∑

T∈FCG (Xij ,λ)

WG(T)

=
1

|C|
COutsideCG (Xij)CInside

C
G (Xij , λ).

In particular, for open curves, P (C | G) = InsideCG (S0n), and for closed curves, P (C |

G) = 1
|C|
∑n−1
i=0 CInside

C
G (Sii). Thus, for open curves,

Counta(〈Xij → λ〉) =
OutsideCa

G(t)
(Xij)Inside

Ca
G(t)

(Xij , λ)

InsideCa
G(t)

(S0n)
,

and for closed curves,

Counta(〈Xij → λ〉) =
COutsideCa

G(t)
(Xij)CInside

Ca
G(t)

(Xij , λ)

1
|Ca|

∑n−1
i=0 CInside

Ca
G(t)

(Sii)
,

To summarize,

69

Q(t)(G) =
∑
a

∑
i,j,k

∑
[X→Y Z]∈R

Q
(t)
a,i,j,k,[X→Y Z]

(G)

+
∑
a

∑
i

∑
[X→`]∈R

Q
(t)
a,i,[X→`](G)

+ logP (G)

Q
(t)
a,i,j,k,[X→Y Z]

(G) = logPsub(〈Xik → YijZjk〉|G) · Count(t)a (〈Xik → YijZjk〉)

Q
(t)
a,i,[X→`](G) = logPsub(〈Xii+1 → `ii+1〉|G) · Count(t)a (〈Xii+1 → `ii+1〉)

Counta(〈Xij → λ〉) =
OutsideCa

G(t)
(Xij)Inside

Ca
G(t)

(Xij , λ)

InsideCa
G(t)

(S0n)
,

for open curves, and

Counta(〈Xij → λ〉) =
COutsideCa

G(t)
(Xij)CInside

Ca
G(t)

(Xij , λ)

1
|Ca|

∑n−1
i=0 CInside

Ca
G(t)

(Sii)
,

for closed curves.

70

3.1.3 The M Step

We want to find the grammar parameters that maximize Q(t)(G). We have two classes of

parameters: the multinomial distributions ρX , and the midpoint distributions µX→Y Z . We

will consider each in turn.

3.1.4 Learning Multinomial Distributions

A multinomial distribution is a distribution over a finite alphabet a1, . . . , ak, where P (ai) =

pi. Learning a multinomial distribution from independent samples x1, . . . , xn is commonly

done by maximizing the posterior probability

~p = (p̂1, . . . , p̂k) = argmax
~p

P (~p | x1, . . . , xn)

= argmax
~p

P (x1, . . . , xn; ~p) · P (~p),

where P (~p) is a prior distribution over the space of possible (p1, . . . , pk).

The most common choice of prior is the Dirichlet distribution, parameterized by α1, . . . , αk >

0:

Dir(p1, . . . , pk;α1, . . . , αk) =
Γ
(∑

αi
)∏

Γ(αi)

k∏
i=1

pαi−1
i ,

where

Γ(z) =

∫ ∞
0

tz−1e−t dt.

This is because, when all αi ≥ 1, the maximum a posteriori estimate of the {pi} has the

simple form

p̂i =
ci + αi − 1

n+
∑
αi − k

,

where

ci = #{j : xj = i}.

71

More generally, the maximum a posteriori estimate has the form

p̂i =

ci+αi−1

n+
∑
i∈I αi−|I|

ci + αi ≥ 1

0 otherwise

,

where

I = {i : ci + αi ≥ 1}.

Note that results still hold when the counts ci are real rather than integer. This is because

the proofs rely solely on the log-likelihood having the form
∑
ci log pi. In this case, the ci

are referred to as “soft counts”.

When the αi are greater than one, this prior smooths the estimated distribution ~p towards

the uniform distribution. When the αi are less than one, this prior makes the distribution

sparser than the maximum likelihood estimate.

When estimating the production probabilities in a grammar, a sparsifying prior is gener-

ally recommended. One intuition for this is that we are trying to recover a relatively sparse

set of rules from the set of all possible rules; in order to avoid missing a rule, we must give

some weight to (and thus generate observations of) rules that will ultimately be discarded.

In Johnson et al. [2007], a Dirichlet prior with αi = 1
1000 was found to work well for training

context-free grammars for natural languages, although αi between 1
100 and 1

10,000 were found

to work about as well.

In our case, ρX([X → λ]) is a multinomial distribution, and we have soft counts cλ =∑
a,i,j Counta(〈Xij → λ〉).

72

3.1.5 Learning Watson distributions

First, we choose priors. Let X → Y Z be a rule of G. We set µX→Y Z equal to a Watson

distribution with random mode µ and random concentration κ, where

κ ∼ Gamma(σ, θ = κ̄/σ)

µ ∼ Watson(µ0, αmpκ)

where σ is the shape parameter of the Gamma distribution, and κ̄ = ακs.

Currently σ = 5, ακ = 4000.0. αmp is a parameter dictating the balance between prior

and observation. We choose µ0 to correspond to

(
p q r

)
with q being the mean of p

and r.

We wish to update our estimate of the distribution µX→Y Z . Since we are using a Watson

distribution, this means estimating the parameters µ and κ. Let za,ijk be the midpoint

observed in curve a, when we put Ca[j] in coordinates relative to Ca[i] and Ca[k]. The

function we are trying to maximize, Q(t), depends on µX→Y Z as a sum of log probabilities:

∑
a,i,j,k

Count
(t)
a (〈Xik → YijZjk〉) log µX→Y Z(za,ijk)

+ logGamma(κ;σ, θ) + logWatson(µ;µ0, αmpκ).

Thus, the Count values are the soft counts we use to weight the za,ijk. For simplicity, we

will simply say that we have observations z1, . . . , zn with corresponding weights c1, . . . , cn.

Let γ(κ;σ, θ) = logGamma(κ;σ, θ), where

Gamma(x;σ, θ) =
1

θσ
1

Γ(σ)
xσ−1e−

x
θ .

Let c(κ) be the normalizing constant of the Watson distribution.

73

P (µ, κ | z1, . . . , zm) ∝ P (µ, κ)P (z1, . . . , zm | µ, κ)

= exp[αmpκµ
∗µ0µ

∗
0µ− log c(αmpκ) + γ(κ;σ, θ)

+ κ
∑
i

µ∗ziz
∗
i µ−m log c(κ)

= exp[κµ∗(αmpµ0µ
∗
0 +

∑
ziz
∗
i)µ− log c(αmpκ)]

−m log c(κ) + γ(κ;σ, θ)]

logP (µ, κ | z1, . . . , zm) = cnorm + κµ∗(αmpµ0µ
∗
0 +

∑
ziz
∗
i)µ− log c(αmpκ)

−m log c(κ) + γ(κ;σ, θ)

= cnorm + κµ∗Aµ− log c(αmpκ)−m log c(κ) + γ(κ;σ, θ),

Let Q be the terms in Q(t) which depend on µX→Y Z .

Q(µ, κ) = logPprior(µ, κ) +
∑
i

ci logP (zi | µ, κ)

= αmpκµ
∗µ0µ

∗
0µ− log c(αmpκ) + γ(κ;σ, θ) + κ

∑
i

ciµ
∗ziz

∗
i µ− (

∑
i

ci) log c(κ)

= κµ∗(αmpµ0µ
∗
0 +

∑
i

ciziz
∗
i)µ− log c(αmpκ)− (

∑
i

ci) log c(κ) + γ(κ;σ, θ)

= cnorm + κµ∗(αmpµ0µ
∗
0 +

∑
i

ciziz
∗
i)µ− log c(αmpκ)− (

∑
i

ci) log c(κ)

+ γ(κ;σ, θ)

= cnorm + κµ∗Aµ− log c(αmpκ)−m log c(κ) + γ(κ;σ, θ),

where A = αmpµ0µ
∗
0+
∑
ciziz

∗
i and m =

∑
i ci. Since µ only appears in the term κµ∗Aµ,

and A has non-negative eigenvalues, it is clear that we maximize the posterior by choosing

µ to be the dominant eigenvector of A. Let λmax be the associated eigenvalue. Then

74

logP (µ, κ | z1, . . . , zm) = cnorm + κλmax(A)− log c(αmpκ)−m log c(κ) + γ(κ;σ, θ)

Taking partial derivatives, and using the approximation c(κ) = 2π2 1
κe
κ, we arrive at the

approximate solution

∂ logP (µ, κ |, z1, . . . , zm)

∂κ
= λmax − αmp −m+

1 +m

κ
+
σ − 1

κ
− σ

κ̄
= 0

κ̂ =
σ +m

σ
κ̄ +m+ αmp − λmax

µ̂ = dominant eigenvector of A, where A = αmpµ0µ
∗
0 +

∑
ziz
∗
i

Examining this solution, we see that our estimate of the midpoint is similar to the max-

imum likelihood estimate of a Watson distribution, but is adapted to contain αmp artificial

observations at the prior mode.

The posterior estimate of the concentration will be at a maxmimum when all zi are

identical and equal to µ0. In this case, λmax will be m + αmp, and κ̂ = κ̄σ+n
σ . Thus, our

concentration will increase essentially linearly with the number of examples, but will never

be infinite.

In general, the zi and µ0 will be more spread out, causing A to have a lower dominant

eigenvalue, and lowering the concentration.

3.1.6 Examples of Learning Watson distributions

In figures 3.1 through 3.5, we demonstrate that we can learn the mode and concentration

parameters of Watson distributions from training data. In each experiment, we select a ran-

dom triangle (by using a Gaussian in Bookstein coordinates). We then draw 20 samples from

75

Figure 3.1: Experimenting with the Watson distribution, part 1. In the first row, the
original triangle T on the left, and the mode of the estimated Watson distribution on the
right. Subsequent rows are samples from Watson(T, 30.00). The estimated concentration
was 63.48.

the Watson distribution centered at this triangle (using 30 for the concentration parameter

of the Watson). We then reestimate the Watson distribution from the samples. This is a less

noisy version of the learning task that EM faces when refitting the midpoint distributions of

a grammar from 20 samples.

We also show the results of fitting a Watson distribution with differing numbers of samples

in Table 3.6. This demonstrates that the estimated concentration approaches the correct

value as the number of samples increases.

76

Figure 3.2: Experimenting with the Watson distribution, part 2. In the first row, the
original triangle T on the left, and the mode of the estimated Watson distribution on the
right. Subsequent rows are samples from Watson(T, 30.00). The estimated concentration
was 82.09.

77

Figure 3.3: Experimenting with the Watson distribution, part 3. In the first row, the
original triangle T on the left, and the mode of the estimated Watson distribution on the
right. Subsequent rows are samples from Watson(T, 30.00). The estimated concentration
was 69.92.

78

Figure 3.4: Experimenting with the Watson distribution, part 4. In the first row, the
original triangle T on the left, and the mode of the estimated Watson distribution on the
right. Subsequent rows are samples from Watson(T, 30.00). The estimated concentration
was 77.10.

79

Figure 3.5: Experimenting with the Watson distribution, part 5. In the first row, the
original triangle T on the left, and the mode of the estimated Watson distribution on the
right. Subsequent rows are samples from Watson(T, 30.00). The estimated concentration
was 79.39.

80

number of samples mean concentration

(true) 30.00

3 87.55

10 79.70

30 62.15

100 42.28

300 32.47

1000 29.89

Figure 3.6: Fitting the Watson distribution with different numbers of samples.

Figure 3.7: The example curve used to initialize grammars.

81

3.2 Setup for Learning Experiments

For each experiment in this section, we build an initial grammar from a single example

curve (shown in Figure 3.7), train it on the training curves (shown in Figure 3.8), and then

evaluate it by computing the cross-entropy on the validation curves (shown in Figure 3.9).

We show samples from each model in order to demonstrate what has been learned. We

want models to generate reasonable-looking human silhouettes, and ideally generate some

that differ significantly from any training example. For instance, we would like the model to

learn that limbs can move independently of one another.

For all but one of the experiments, we repeat the experiment with three different starting

structures, which are shown in Figures 3.10, 3.11, and 3.12 as decompositions of the example

curve.

Unless otherwise noted, these experiments use Watson distributions and a Gamma(σ =

106, κ = 1000) prior on the concentration of the Watson distributions.

82

Figure 3.8: Training data for learning experiments.

83

Figure 3.9: Validation data for learning experiments.

84

Figure 3.10: One of three starting structures used in learning experiments. Each bold curve
is a symbol in the grammar, and each division of a subcurve corresponds to one production
of the grammar.

85

Figure 3.11: One of three starting structures used in learning experiments. Each bold curve
is a symbol in the grammar, and each division of a subcurve corresponds to one production
of the grammar.

86

Figure 3.12: One of three starting structures used in learning experiments. Each bold curve
is a symbol in the grammar, and each division of a subcurve corresponds to one production
of the grammar.

87

3.3 Simple Tuning of hand-built grammar with curves of

constant length

First, we use EM to train an initial grammar that has no choices: each symbol is on the

left hand side of a single rule, and the only randomness of the model is in the midpoint

distributions. Our grammar is produced from a hand-chosen decomposition. Samples from

the grammar after various numbers of rounds of training are shown below. Since we are

using unimodal midpoint distributions, and our grammar has no choice, all the samples are

slight variations on one particular mean shape. The mean shape chosen is a very reasonable

one, although the arms are longer than is ideal.

We repeat this experiment three times with different initial grammatical structures, to

show how the performance of the algorithm depends on our initial structure. Samples from

the model learned are shown in Figures 3.13, 3.14, and 3.15. There is only a small difference

between the samples from different structures.

Simple Tuning 21679.145584 14944.299535 15952.025953
Multiple Midpoints 7112.552734 4620.838965 5732.380757
Multi-level Correlations 8451.596984 6095.411852 7368.234718
Full Grammar 2807.826409

Table 3.1: Cross-entropy scores for experiments. Each column represents a different starting
structure.

88

Figure 3.13: Samples from grammar after 30 rounds of EM, using a grammar based on
structure 1. From simple tuning experiment.

89

Figure 3.14: Samples from grammar after 30 rounds of EM, using a grammar based on
structure 2. From simple tuning experiment.

90

Figure 3.15: Samples from grammar after 30 rounds of EM, using a grammar based on
structure 3. From simple tuning experiment.

91

3.4 Experimenting with different priors over concentration

In Figures 3.16, 3.17, and 3.18, we show the outcome from training with Watson distributions

and a Gamma(σ, κ = 100) prior on the concentration of the Watson distributions, for σ =

1, 1000, 106. It can be seen that the samples become more realistic the higher we adjust the

weight of the prior.

92

Figure 3.16: Samples from grammar after 30 rounds of EM, using σ = 1.

93

Figure 3.17: Samples from grammar after 30 rounds of EM, using σ = 1000.

94

Figure 3.18: Samples from grammar after 30 rounds of EM, using σ = 1000000.

95

3.5 Multiple Midpoints, and Curves of Constant Length

In the next experiment, we enrich the grammar by adding in several copies (in this case, five)

of each rule, with perturbed midpoints. We randomly perturb the mode of the midpoint

distribution for each copy of the rule, in order to allow the different copies to be used to

explain different data. (If we used the same midpoint for each copy of the rule, parses could

use the rules interchangeably, and EM would never break this symmetry.) In Figures 3.19,

3.20, and 3.21, we show samples from the grammar built using each of the three starting

structures. The samples show significantly more variation than in the previous experiment,

but they also include many ill-formed and unlikely shapes. This is because the grammar

cannot model correlations between levels, so that e.g., it cannot pick the location of the

elbow based on the location of the hand, which means that the arm is often ill-formed and

self-intersecting.

We repeat this grammar three times with different initial grammatical structures, to

show how the performance of the algorithm depends on our initial structure. We show the

log-likelihoods of the validation data after training in Table 3.1.

96

Figure 3.19: Samples from grammar after 30 rounds of EM, using structure 1. From multiple
tuning experiment.

97

Figure 3.20: Samples from grammar after 30 rounds of EM, using structure 2. From multiple
tuning experiment.

98

Figure 3.21: Samples from grammar after 30 rounds of EM, using structure 3. From multiple
tuning experiment.

99

3.6 Multiple Midpoints, Multi-Level Correlations

In this experiment, we enrich the grammar by adding in several copies of each nonterminal,

each of which has several copies of the original rule with perturbed midpoints. If our original

rule was X → Y Z, then we have five copies each of X, Y, Z, and each Xi has five rules of

the form Xi → YjZk, where j and k are chosen independently at random. The midpoint

distribution for each copy of the rule has its mode randomly perturbed to allow the different

copies of a rule to explain different data.

In Figures 3.22, 3.23, 3.24, we show samples from the grammar built using each of the

three starting structures. The silhouettes look much better than in the previous experiment.

This is because we have learned correlations between levels, i.e., the choice of rule at a higher

level influences the choice of rule at a lower level. For example, knowing where we have placed

the point at the end of the arm should give us information about where to place the points

of the elbow. Ideally, we would have five different variants of the nonterminal corresponding

to the arm, each with its own substructure. This results in cleanly articulating parts.

We repeat this experiment three times with different initial grammatical structures, to

show how the performance of the algorithm depends on our initial structure. We show the

log-likelihoods of the validation data after training in Table 3.1.

100

Figure 3.22: Samples from grammar after 30 rounds of EM, using structure 1. From exper-
iment with multi-level correlations.

101

Figure 3.23: Samples from grammar after 30 rounds of EM, using structure 2. From exper-
iment with multi-level correlations.

102

Figure 3.24: Samples from grammar after 30 rounds of EM, using structure 3. From exper-
iment with multi-level correlations.

103

3.7 Full Tuning

In this experiment, we build a grammar from the example curve that allows all possible

decompositions. The grammar has one symbol for every subcurve of the example curve, and

one production for every decomposition of a subcurve into two smaller subcurves. We then

train using EM. Below we show samples from the grammar after training. Note that there

is no longer a choice of initial structure, as we are generating a rule form every possible

decomposition of the example curve. We show the log-likelihood of the validation data in

Table 3.1.

104

Figure 3.25: Samples from grammar after 30 rounds of EM. From full tuning experiment.

105

3.8 Comparing to Other Models

3.8.1 Independent Gaussians

In Figures 3.26, 3.27, 3.28, we see samples from a model using an independent Gaussian

distribution for each point. They are trained on the same dataset as the grammatical models.

Respectively, they show samples from the maximum likelihood model, samples from the

maximum likelihood model with no variance, and samples from the maximum likelihood

model with its variance artificially decreased. It is plain to see that these models are unable

to capture much interesting structure, especially when compared to our models.

We also show (in Figure 3.30) samples from a model of Cootes et al. [1995] trained on

hand shapes, which is a model based on non-independent Gaussians.

3.8.2 Comparing to Independent Nonparametric Distributions

In Figure 3.29, we see samples from a model using independent nonparametric distributions

for each point. The independence assumption is clearly not a good fit for modeling these

curves.

3.9 Classification Experiment

We demonstrate the effectiveness of our models and training procedure by classifying shapes

from the Swedish Leaves dataset. For each class, we build a grammar from the first example

curve, and train it on all the examples in the training set. Our grammar includes, for each

symbol, a shortening rule X → `, and for every symbol that is not on the left hand side of

any other rule, a lengthening rule X → XX.

The performance achieved is shown in Table 3.2. We also show samples from the models

learned in Appendix A.

106

Figure 3.26: Samples from a model using independent Gaussians. We are using the maximum
likelihood estimate of parameters.

Method Recognition Rate
Shape-tree (Felzenszwalb and Schwartz [2007]) 96.28%
IDSC + DP (Ling and Jacobs [2007]) 94.13%
Fourier descriptors (Ling and Jacobs [2007]) 89.60%
Grammatical Models 88.40%
SC + DP (Ling and Jacobs [2007]) 88.12%
Söderkvist (Söderkvist [2001]) 82.40%

Table 3.2: Classification results on the Swedish leaves dataset.

107

Figure 3.27: Samples from a model using independent Gaussians. The variance of the
Gaussians has been decreased to show the means better.

108

Figure 3.28: Samples from a model using independent Gaussians. The variance of the
Gaussians has been set to zero to show the means better.

109

Figure 3.29: Samples from a model using independent nonparametric distributions for each
point.

110

Figure 3.30: Samples from the model of Cootes et al. [1995], from which this figure is taken.

111

CHAPTER 4

DETECTING OBJECTS IN CLUTTERED IMAGES

Given a shape model and an image containing a similar shape, we would like to be able to

find the shape in the image. This is done by searching for a shape that is rated highly by

the shape model, and for which evidence exists in the image. Related work has been done

in Felzenszwalb and Schwartz [2007], Jin and Geman [2006], Felzenszwalb and McAllester

[2010], Felzenszwalb [2005], each concerned with the problem of finding objects in the plane

with recursive costs defined by a hierarchical model.

The rest of this chapter is organized as follows: First, we describe filtration parsing, an

admissible heuristic method for speeding up a wide array of dynamic programming algo-

rithms, which we have used to speed up parsing. We then describe our formulation of object

detection with grammatical models. Finally, we identify unintended reuse as an important

obstacle to using grammatical methods for object detection, and describe our approach to

solving this problem.

4.1 Speeding up Detection with Filtration Parsing

In this section, we describe filtration parsing, a new algorithm that allows us to speed up

certain dynamic programming problems using a technique akin to branch and bound. Similar

techniques have been studied before in Felzenszwalb and McAllester [2007] and Raphael

[2001].

4.1.1 Lightest Derivation Problems

We now discuss filtration parsing, which is a technique to speed up parsing by eliminating

unlikely parses from consideration. It is similar in nature to Felzenszwalb and McAllester

[2007], but it can be applied in a more general context. We first require some preliminaries.

112

We will write a binary tree with root node v, left subtree T1, and right subtree T2 as

v
T1 | T2

. We will also have non-binary trees, which we will write as

v

T1 | . . . | Tk
.

Recall the definition (Definition 2.6.2) of T14�uvT2 from Chapter 2: Let T1, T2 be labeled

binary trees, where u is a leaf node of T1 and v is the root node of T2. We define a new tree

T14�uvT2 to be the tree resulting from deleting u and attaching T2 in its place.

A lightest derivation problem (Felzenszwalb and McAllester [2007]) is a tuple (S,R),

where S is a set of statements and R is a set of weighted inference rules. We require that S

contain ⊥, a special goal-statement. We will denote the weight of a rule R ∈ R by w(R).

The goal is to find the lightest (i.e., lowest cost) derivation of the goal statement using

the rules in R. Our inference rules are of the following form:

A1 : w1

...

Ak : wk

v

C : v + w1 + · · ·+ wk.

Here the antecedents Ai and the conclusion C are statements in S, v is the cost of using

the rule in a derivation, and wi is the cost of deriving Ai. We will also denote such a

rule by 〈C =|v A1, . . . , Ak〉. We write the conclusion on the left to maintain consistency

with the conventional notation for context-free grammars. Note that the antecedents Ai are

unordered, so that 〈C =|v A1, A2〉 and 〈C= |v A2, A1〉 would be considered equivalent.

A derivation of C is a finite tree whose root is labelled with a rule 〈C =|v A1, . . . , Ak〉,

where the subtree rooted at the i-th child is a derivation of Ai. The leaves of this tree are

113

rules with no antecedents. The cost of a tree is the sum of the weights of the rules at its

nodes. We will denote the cost of a tree T by wt(T).

Usually, we will work with lightest derivation problems that are in Chomsky Normal

Form, i.e., inference rules will either have two antecedents,

A : wA

B : wB

v

C : v + wA + wB

in which case they will be called binary rules, or they will have no antecedents,

v

A : v,

in which case they will be called lexical rules.

We will be interested only in lightest derivation problems that are acyclic. A lightest

derivation problem (S,R) is acyclic if there is an ordering ≤ of the statements in S such

that, for each rule 〈C =|v A1, . . . , Ak〉 ∈ R, Ai ≤ C for i = 1, . . . , k.

In most cases, the lightest derivation problem will be specified implicitly by listing ab-

stracts statements and rules which contain free variables. The lightest derivation problem

is then obtained by substituting all possible values for each free variable in the abstract

statements and rules to create concrete statements and rules. In such cases, listing all the

inference rules may be prohibitively slow.

As an example, we can consider CKY parsing with PCFG’s as a lightest derivation

problem. Suppose our a grammar is in Chomsky Normal Form, and we are parsing a string

s1, . . . , sn. The lightest derivation problem will have statementsX(i, j) for every nonterminal

114

X and every pair of integers i, j with 1 ≤ i ≤ j ≤ n. X(i, j) will represent the statement

that nonterminal X has the yield si, . . . , sj . The rules will be, for every binary rule X → Y Z

in the grammar, and all i, j, k with 1 ≤ i ≤ j ≤ k ≤ n,

Y (i, j) : w1

Z(j + 1, k) : w2

w(X → Y Z)

X(i, k) : w1 + w2 + w(X → Y Z)

and, for every nonterminal X, and for every i such that the lexical rule X → si exists,

w(X → si)

X(i, i) : w(X → si),

The cost w(X → λ) will be the negative log of the transition probability specified by the

PCFG. The goal statement ⊥ is in this case S(1, n), where S is the start symbol of the

grammar.

In this case, listing all the concrete inference rules requires O(mn3) time, where m is the

number of productions in the PCFG. This is the running time of the CKY algorithm, which

is too slow to use in many contexts.

4.1.2 Solving Lightest Derivation Problems via Dynamic Programming

Let ∆S,R(C) be the set of derivations of C. We define the cost of C to be

costS,R(C) = min
T∈∆S,R(C)

wt(T).

115

Algorithm 1 lightest derivation(S,R)

Input: S,R
COST ← ∅
BEST ← ∅
for X ∈ S (in ≤ order) do
COST [X]←∞
for 〈X =|v〉 ∈ R do

if COST [X] > v then
COST [X]← v
BEST [X]← 〈X =|v〉

end if
end for
for 〈X =|v Y Z〉 ∈ R do
new ← COST [Y] + COST [Z] + v
if new < COST [X] then
COST [X]← new
BEST [X]← 〈X =|v Y Z〉

end if
end for

end for
return COST,BEST

Observation 4.1.1. Let (S,R) be an acyclic1 lightest derivation problem. We can construct

the set ∆S,R(C) recursively as follows:

∆S,R(C) =

{
〈C =|v A1, . . . , Ak〉

T1 | . . . | Tk
| 〈C =|v A1, . . . , Ak〉 ∈ R, Ti ∈ ∆S,R(Ai)

}

Observation 4.1.2. Let (S,R) be an acylic lightest derivation problem. We can recursively

compute costS,R(C) as

cost(C) = min
C=|vA1,...,Ak

v +
∑
i

cost(Ai).

We can use Observation 4.1.2 in Algorithm 1, which assumes that (S,R) is an acylic

lightest derivation problem in Chomsky Normal Form. Note that this is a standard use of

dynamic programming.

1. In the case of a cyclic lightest derivation problem, this definition would also allow infinite trees.

116

4.1.3 Contexts

In this section, we define “contexts”, which are a sort of dual concept to derivations. A B-

context for C is a derivation of B that is missing a derivation of C. One node of a B-context

for C will be labeled with hole(C) to denote where a derivation of C could be attached. See

also Felzenszwalb and McAllester [2007].

Definition 4.1.3. A B-context for C is either the single-node tree
hole(C)
· if B = C, or a

finite tree whose root is labelled with a rule 〈B =|v A1, . . . , Ak〉, where the subtree rooted

at the i-th child is either a derivation of Ai or an Ai-context for C, and exactly one of the

subtrees is an Ai-context rather than a derivation. The cost of a context T (denoted wt(T))

is the sum of the cost of the rules at all of its nodes. Note that the node labelled hole(C)

has cost 0.

Let ΓS,R(C,A) be the set of A-contexts for C, and let ΓS,R(C) be the set of ⊥-contexts

of C. Define

ocostS,R(C) = min
T∈ΓS,R(C)

wt(T).

ocost is analogous to the outside cost in the Inside-Outside Algorithm for PCFG’s, but here

we are trying to find a lightest derivation rather than sum over all derivations.

Observation 4.1.4. Let (S,R) be an acylic lightest derivation problem. We can construct

the set ΓS,R(C) recursively as follows:

• ΓS,R(⊥) =
{
hole(⊥)
·

}
. (Note that, since the lightest derivation problem is assumed to

be acyclic, this is the only ⊥-context for ⊥.)

•

ΓS,R(X) = { 〈X =|v A1, . . . , Ak〉
T1 | . . . | Tk

|

exactly one Ti ∈ ΓS,R(C,Ai), other Ti ∈ ∆S,R(Ai)}

117

Observation 4.1.5. Let (S,R) be an acyclic lightest derivation problem. Given cost(X)

for all X, we can recursively compute ocost(X):

ocost(⊥) = 0

ocost(C) = min
A=|vC,B1,...,Bk−1∈R

ocost(A) + v +
∑
i

cost(Bi)

This is implemented by Algorithm 2, which assumes that our lightest derivation problem

is in Chomsky Normal Form.

Algorithm 2 outside(S,R, COST)

Input: S,R, COST
OCOST ← ∅
for X ∈ S do
OCOST [X]←∞

end for
OCOST [⊥]← 0
for X ∈ S (in reverse ≤ order) do

for X =|v Y Z ∈ R do
OCOST [Y]← min{OCOST [Y], v +OCOST [X] + COST [Z]}
OCOST [Z]← min{OCOST [Z], v +OCOST [X] + COST [Y]}

end for
end for
return OCOST

4.1.4 Homomorphisms

Definition 4.1.6 (Homomorphism). Let (S,R) and (S ′,R′) be lightest derivation problems.

A homomorphism of lightest derivation problems is a function Φ : S → S ′ such that, for

every 〈C =|v A1, . . . , Ak〉 ∈ R, there exists a rule 〈Φ(C) =|w Φ(A1), . . . ,Φ(Ak)〉 ∈ R′, with

w ≤ v. We also require that Φ(⊥) =⊥.

118

Homomorphisms are called “abstractions” in Felzenszwalb and McAllester [2007]. We

define the specific homomorphisms used in Section 4.2.1.

Lemma 4.1.7. Let Φ be a homomorphism of lightest derivation problems. Then costS,R(X) ≥

costS ′,R′(Φ(X)). Also, ocostS,R(X) ≥ ocostS ′,R′(Φ(X)).

Proof. Let T be the derivation achieving cost(S,R)(X). We can replace each rule 〈C =|v

A1, . . . , Ak〉 used in the derivation with a rule 〈Φ(X) =|w Φ(A1), . . .Φ(Ak)〉, thereby creating

a valid derivation of Φ(X) whose total cost is lower than that of T . Thus the lightest

derivation of Φ(X) also has cost lower than that of T .

A similar argument holds for contexts and ocostS,R.

Definition 4.1.8. Let (S,R) be a lightest derivation problem. A table C mapping state-

ments to weights is a valid lower bound for (S,R) if, for every X ∈ S, cost(S,R)(X) ≥ C[X].

A table C mapping statements to weights is a valid lower bound on contexts for (S,R)

if, for every X ∈ S, ocost(S,R)(X) ≥ C[X].

Lemma 4.1.9. If Φ : S → S ′ is a homomorphism, and C ′ is a valid lower bound for (S ′,R′),

and we define C[X] := C ′[Φ(X)], then C is a valid lower bound for (S,R). C is called the

pullback of C ′ under Φ. The same is true of valid lower bounds on contexts.

Proof. Let X =| A1, . . . , Ak be the rule that achieves X’s lightest derivation. Then

costS,R(X) ≥ costS ′,R′(Φ(X))

by Lemma 4.1.7

≥ C ′[Φ(X)]

119

because C ′ is a valid lower bound for S ′,R′

= C[X]

The proof for lower bounds on contexts is analogous.

Observation 4.1.10. Every derivation of ⊥ in which X appears can be realized as

T14����hole(X)T2,

where T1 ∈ ΓX and T2 ∈ ∆X . Therefore, if cost(X) = minT∈∆X
wt(T) and ocost(X) =

minT∈ΓX , then the lightest derivation of ⊥ using X has cost cost(X) + ocost(X).

Lemma 4.1.11. If T is a lightest derivation of ⊥, and X does not appear in T , then the

value of S,R is the same as the value of S\{X},R′, where R′ is R minus any rules involving

X.

4.1.5 Putting it All Together

Theorem 4.1.12. Let (S,R) be a lightest derivation problem, and let X be a statement.

Suppose that COST is a valid lower bound for (S,R), and OCOST is a valid lower bound

on contexts for (S,R). Then the lightest derivation that uses X has cost at least COST [X]+

OCOST [X].

Consequently, if there is a derivation T of ⊥ with cost wt(T) < COST [X]+OCOST [X],

then no lightest derivation of ⊥ uses X.

We can use this theorem to perform an admissible coarse-to-fine search strategy. Consider

a sequence of LDP’s (S1,R1), . . . , (Sk,Rk), with homomorphisms Φi : Si → Si+1 for i =

1, . . . , k− 1. We can solve the problems in reverse order, using the bound of Theorem 4.1.12

to eliminate statements. This is implemented by Algorithms 3, 4, 5, and 6. Algorithms 3

and 4 are very similar to Algorithms 1 and 2, but they do not consider solutions that violate

120

the lower bound of Theorem 4.1.12. Algorithm 6 shows how to use the inside pass and the

outside pass to organize our search.

We now give an informal description of the algorithm. We start by solving the coarsest

problem (Sk,Rk). We then (using the function lift) lift the solution found from the coarsest

level to the finest level. This is a more standard use of coarse-to-fine search. This gives us

a derivation of ⊥ in (S1,R1), and the cost of that derivation is an upper bound on the cost

of the optimal derivation. Throughout the running of the algorithm, the variable u will be

the lowest cost seen for a derivation of ⊥ in (S1,R1).

Because of Theorem 4.1.12, we can delete any statement from (Si,Ri) if we can prove

that it does not participate in any derivation of cost u or lower. This is not only guaranteed

not to change the minimum cost of a derivation in (Si,Ri), it is guaranteed not to delete

any statement X ′ such that

X ′ = Φi−1(Φi−2(. . . (Φ1(X) . . .),

for any statement X participating in an optimal derivation of ⊥ in (S1,R1). Thus, whenever

we delete a statement X ′ in (Si,Ri), we can also delete all statements in finer problems that

map to X ′.

We alternate between an inside pass, where we compute a valid lower bound for (Si,Ri),

and an outside pass, where we compute a valid lower bound on contexts for (Si−1,Ri−1).

These are implemented by Algorithms 3 and 4, respectively. Algorithm 3 takes a lower

bound on contexts as input, and uses this to delete any statements that do not pass the test

of Theorem 4.1.12. This can be done because, in line 12 of Algorithm 3, when we consider

X, we have already considered all rules with X on the left-hand side, and thus COST [X]

is already a lower bound on the cost of any derivation of X that does not use any deleted

statements.

Similarly, Algorithm 4 takes a lower bound for (Si−1,Ri−1) (derived in Algorithm 6 by

121

taking the pullback of a valid lower bound for (Si,Ri)) as input, and uses this to delete any

statements that do not pass the test of Theorem 4.1.12. This can be done because, in line

3 of Algorithm 4, when we consider X, we have already considered all rules that use X on

the right-hand side, and thus OCOST [X] is at that point a lower bound on the cost of a

context for X that does not use any deleted statements.

We prove the correctness of Algorithm 6 with two lemmas:

Lemma 4.1.13. If OCOST is a valid lower bound on contexts for (Si,Ri), and u is an

upper bound on the optimal cost of a derivation of ⊥ in (Si,Ri), then after

COST , T ← inside(u, (Si,Ri), OCOST),

COST is a valid lower bound for (Si,Ri). Note that inside deletes some statements and

rules from (Si,Ri).

Lemma 4.1.14. If COST is a valid lower bound for (Si−1,Ri−1), and u is an upper bound

on the optimal cost of a derivation of ⊥ in (Si−1,Ri−1), then after

OCOST ← outside(u,Si−1,Ri−1, COST),

OCOST is a valid lower bound on contexts for (Si−1,Ri−1). Note that outside deletes some

statements and rules from (Si−1,Ri−1).

4.1.6 Inadmissible Homomorphisms

We can apply this algorithm even when our homomorphisms do not satisfy the required

lower bounds. In this case, we are not guaranteed to find an optimal solution. Designing

inadmissible homomorphisms that yield good results in practice is an important area of

future work.

122

Algorithm 3 inside(S,R, OCOST , u)

Input: S,R, OCOST , u
1: COST ← ∅
2: BEST ← ∅
3: for X ∈ S do
4: COST [X]←∞
5: for 〈X =|v〉 ∈ R do
6: if COST [X] > v then
7: COST [X]← v
8: BEST [X]← X =|v
9: end if

10: end for
11: end for
12: for X ∈ S (in ≤ order) do
13: if COST [X] +OCOST [X] > u then
14: delete X from S
15: continue
16: end if
17: for Z =|v XY ∈ R do
18: new ← COST [X] + COST [Y] + v
19: if new < COST [Z] then
20: COST [Z]← new
21: BEST [Z]← Z =|v XY
22: end if
23: end for
24: end for
25: return COST ,BEST

Algorithm 4 outside(S,R, COST , u)

Input: S,R, COST , u
1: OCOST ← ∅
2: OCOST [⊥]← 0
3: for X ∈ S (in reverse ≤ order) do
4: if COST [X] +OCOST [X] > u then
5: delete X from S
6: continue
7: end if
8: for X =|v Y Z ∈ R do
9: OCOST [Y]← min{OCOST [Y], v +OCOST [X] + COST [Z]}

10: OCOST [Z]← min{OCOST [Z], v +OCOST [X] + COST [Y]}
11: end for
12: end for
13: return OCOST

123

Algorithm 5 lift({(Si,Ri)}`i=1, {Φi}
`−1
i=1 , T)

Input: {(Si,Ri)}`i=1, {Φi}
`−1
i=1 , T

T` ← T
for i = `− 1 downto 1 do

for X ∈ Si such that Φi(X) is used in Ti+1, in ≤ order do
COST [X]←∞
for 〈X =|v〉 ∈ Ri do

if v < COST [X] then
COST [X]← v
BEST [X]← 〈X =|v〉

end if
end for
for 〈X =|v Y Z〉 ∈ Ri do
new ← v + COST [Y] + COST [Z]
if new < COST [X] then
COST [X]← new
BEST [X]← 〈X =|v Y Z〉

end if
end for

end for
Construct Ti by following BEST [·] values starting with BEST [⊥] as root

end for
return T1, cost(T1)

Algorithm 6 solve({(Si,Ri)}, {Φi})
Input: {(Si,Ri)}, {Φi}
OCOSTk[∗]← −∞
u←∞
best← ∅
for i = k downto 1 do
COST i, T ← inside(Si,Ri, OCOST i, u)

cost, soln← lift({(Sj ,Rj)}ij=1, {Φj}
i−1
j=1, T)

if cost < u then
u← cost
best← soln

end if
OCOST ← outside(Si−1,Ri−1, pullback(COST i,Φi−1), u)

end for

124

4.2 Parsing in the Plane with Grammatical Models

4.2.1 Plane Parsing

For the problem of detecting an object with a grammar in a cluttered image, we have the

following lightest derivation problem: for every pair of points p, q, and every nonterminal X,

we have the statement X(p, q).

For every rule X → Y Z in our grammar, and every triple of points p, q, r, we have

Y (p, q) : w1

Z(q, r) : w2

v = − log (µX→Y Z(p, q, r) · ρ(X → Y Z))

X(p, r) : w1 + w2 + v

and, for every rule X → `, and every pair p, q

v = data(p, q)− log ρ(X → `)

X(p, q) : v

where data(p, q) is a data cost modeling the log-likelihood of a line segment existing be-

tween p and q. Specifically, data(p, q) is chosen so that the sum over all terms will be

log
P (I|parse)

P (I|no object)
, where I is the image data and the probabilities refer to a probabilistic

model of image formation. Our image formation model is described in the next section.

Note that this lightest derivation problem is only acyclic if the grammar used is acyclic.

If the grammar used has cycles, we can require that some rules X(p, r) =|v Y (p, q), Z(q, r)

are restricted to p, q, r such that the distance between p and r is at least as big as that

between p and q, and q and r.

We construct homomorphisms for filtration parsing by coarsening the image grid, which

125

we represent by pairs of integer indices. Let ϕ((i, j)) =
(⌊

i
2

⌋
,
⌊
j
2

⌋)
, and let Φ(X(p, q)) =

X(ϕ(p), ϕ(q)). By repeatedly applying Φ, we construct a hierarchy of lightest derivation

problems, in which each level has 4 times fewer points, 16 times fewer statements and

(roughly) 64 times fewer rules than the previous level.

To make the Φi be legitimate homomorphisms, for each binary rule 〈X(p, r) =|v Y (p, q), Z(q, r)〉

in Ri, we need a lower bound on the cost of rules mapping to it. We can think of this as

finding

min
p′∈P,q′∈Q,r′∈R

µX→Y Z(p′, q′, r′),

where P,Q,R are the sets of grid points in our original lightest derivation problem that map

to p, q, r in the coarsened problem.

We also need a lower bound on the cost of rules mapping to lexical rules 〈X(p, q) =|v〉.

We do this by simply lifting all costs from the finest level.

4.2.2 Data Models for Object Detection

We use a very straightforward data model, that of a Bernoulli model over Canny edges.

We set P (Ep = 1 | p ∈ O) = pfg, P (Ep = 1 | p /∈ O) = pbg.

We use ratio of foreground to background, so that we only have to multiply over pixels

in the object.

126

P (E | O) =
∏
p∈O

p
Ep
fg (1− pfg)1−Ep ·

∏
p/∈O

p
Ep
bg (1− pbg)1−Ep

=
∏
p∈O

(
pfg
pbg

)Ep (
1− pfg
1− pbg

)1−Ep
·
∏
p

p
Ep
bg (1− pbg)1−Ep

∝
∏
p∈O

(
pfg
pbg

)Ep (
1− pfg
1− pbg

)1−Ep

logP (E | O) =
∑
p∈O

[
Ep log

(
pfg
pbg

)
+ (1− Ep) log

(
1− pfg
1− pbg

)]
+ C

=
∑
p∈O

[
Ep log

(
pfg(1− pbg)
pbg(1− pfg)

)
+ log

(
1− pfg
1− pbg

)]
+ C

=
∑
p∈O

[
Ep log

(
pfg(1− pbg)
pbg(1− pfg)

)]
+ |O| log

(
1− pfg
1− pbg

)
+ C

We therefore use the data cost

data(p, q) =
∑
r∈`p,q

Er log

(
pfg
pbg

)
+ (1− Er) log

(
1− pfg
1− pbg

)
.

This correctly implements the data cost when there is no reuse of the same pixel by different

line segments. We discuss this in more detail in the next section.

When doing scene parsing, we will modify this formula slightly. (This idea was first

introduced in Amit and Trouvé [2007].) Pixels that are in already selected objects will be

labelled foreground, and other pixels will initially be labelled background. Let F be the set

of pixels already marked foreground.

logP (E | O) =
∑

p∈O\F

[
Ep log

(
pfg(1− pbg)
pbg(1− pfg)

)]
+ |O \ F | log

(
1− pfg
1− pbg

)
+ C

127

For pixels in F ∩ O, the ratio is one, and thus its log is zero. For pixels not in O, the

ratio becomes a constant as before.

4.3 Unintended Reuse and Local Inference

In this section, we discuss local inference, a method we have used to clean up parses that

exhibit unintended reuse. Our method is as follows: we first parse the image to find the

highest-scoring curve, with or without unintended reuse. We then perform our local inference

procedure, which we formulate as an energy minimization problem. We then reparse the

image, using some constraints derived from the output of the local inference procedure.

Unintended reuse is a serious and fundamental problem in the interpretation of images.

Here, we define the problem and argue that it is not possible to avoid this problem using

standard context-free grammatical models.

We can consider an interpretation of an image to consist of various assertions about the

contents of the image. We can characterize these assertions by asking what region of the

image they refer to, and in particular how large that region is.

Compositional models are those models in which the quality or plausibility of a high-

level assertion (i.e., one that refers to a large image region) is defined recursively in terms of

the quality of lower-level assertions. In order to make these problems amenable to dynamic

programming, we must assume context-freeness. It is thus a general problem of compositional

models that we can only efficiently and exactly compute the quality of high-level assertions

by assuming context-freeness and allowing them to depend on low-level assertions that are

contradictory. This can then result in incoherent interpretations of the image. In our case,

straight-forward maximization of the likelihood under the statistical model described above

yields curves that have many self intersections; curves in which long contours are used

multiple times, often in opposite directions; and curves which do not enclose any area. A

parse with unintended reuse is shown in Figure 4.1.

In general, we cannot sacrifice efficiency beyond a certain point, and so we must search

128

Figure 4.1: A parse exhibiting unintended reuse.

for a coherent interpretation which may not score the highest, even among coherent inter-

pretations.

One approach to solving this problem, used in Jin and Geman [2006], is to fix various

low-level assertions that seem likely, and eliminate incompatible low-level assertions from

consideration. In our case, this approach does not yield good results.

4.4 State space

We assume that there is a single object of interest against a background, and that its bound-

ary is the curve we wish to detect. Let P be the set of pixels in the input image, and let

E ⊂ P be the pixels marked as edges by some edge detector, such as the Canny edge detector

(Canny [1986]). We wish to assign every non-edge pixel to be either figure or ground, i.e.,

inside the object of interest or not inside the object of interest. This will be formulated as

an energy minimization problem. We will represent the labeling as a function L(p), where

L(p) = 1 when p is inside the object, and L(p) = 0 when p is outside of the object.

Because we are trying to prevent edges from being used multiple times, we would in

particular like to prevent or penalize the use of an edge pixel in opposite directions. We thus

add variables to our energy minimization problem to represent the orientation of each edge

pixel. We constrain this orientation to be orthogonal to the gradient at the edge pixel, so

129

each edge pixel has two choices of orientation, represented as a unit vector D(p). We want to

assign orientations so that the object of interest has its boundary traced out clockwise. We

also want the orientation assignment to be consistent with the output of our global parsing

algorithm.

4.5 Local Constraints

We use the output of our local interpretation procedure to modify global inference in two

ways:

• A line segment that goes over an edge pixel with the wrong orientation is assigned the

negative of its normal cost (corresponding to the assumption that it will be used twice

in the parse with the correct orientation, and once with the reverse orientation). The

first part of Figure 4.2 depicts a problematic parse that will be penalized appropriately

by this heuristic.

• A line segment is disallowed if too high a fraction of its pixels are classified as interior,

or if too high a fraction are classified as exterior. (Here interior and exterior refer to the

output of our local inference procedure.) This is meant to eliminate short-circuiting,

in which the optimization procedure double-counts an edge by taking a round-about

way from its head to its tail. Unless the curve encompasses the whole object, this test

generally prevents short-circuiting. The second part of Figure 4.2 shows an example

of short-circuiting.

4.6 Energy functions

We formulate our energy minimization problem as the sum of four terms:

U(L,D) = Useg(L) + Uor(D) + Uint(L,D) + Uyd(D),

130

Figure 4.2: Motivation for local constraints. Grey regions represent areas where there is
evidence for edges.

131

where Useg enforces coherence in the segmentation, Uor enforces coherence in the orien-

tation assignment, Uint enforces consistency between the segmentation and the orientation

assignment, and Uyd enforces consistency between the orientation assignment and the pre-

vious curve selected by our global parsing algorithm. We now discuss each term in turn.

4.6.1 Useg(L)

Useg(L) =
∑

p∼q,p,q /∈E

−α L(p) = L(q)

α otherwise

This energy function is very simple, it is just a sum over all pairs of adjacent non-edge

pixels, where the cost is −α if the two pixels have the same label, and α if they have different

labels, where α > 0 is some constant.

This energy function is a standard model from statistical physics called the Ising model.

It is commonly used in computer vision to denoise images (Besag [1993], Geman and Geman

[1984]). Here we are using it to penalize non-edge boundaries between figure and ground,

which should be rare. When they are necessary, this energy term will push non-edge bound-

aries to be short and simple.

4.6.2 Uor(D)

Uor(D) = −
∑
p,q∈E

wp,qM(p)M(q) [D(p) ·D(q)] ,

where M(p) is the gradient magnitude at pixel p and · is the dot product between vectors.

This energy function pushes our orientation assignment to vary smoothly, as nearby edge

pixels are penalized if their orientations do not point in the same direction. We weight this

penalty by the gradient magnitude, so that stronger edges are given more influence. The

function wp,q is a weighting that specifies how influence dies off over the distance between

p and q. We have used wp,q = e−(x2+y2)/4w2
(1 − β|y|), where x is the component of q − p

perpendicular to the gradient at p, and y is the component of q − p parallel to the gradient

132

at p. Note that wp,q 6= wq,p. The (1 − β|y|) factor captures the fact that parallel edges

sufficiently far apart are more likely to go in opposite directions, because they are likely to

be the two sides of a part of the object.

4.6.3 Uint(L,D)

Uint(L,D) =
∑
p/∈E

∑
q∈E

e
− ||q−p||

2

γ2 (1− 2L(p))M(q) sin θ(q − p,D(q)),

where M(q) is the gradient magnitude at q, and θ(u, v) is the angle between vectors u and

v.

This energy function is motivated by the observation that the angle between q − p and

D(q) tends to be close to 90 degrees when p is in the interior of the object and D(q) is

going clockwise around the object. When p is outside the object and D(q) is going clockwise

around the object, the angle between q − p and D(q) tends to be close to 270 degrees. This

is shown in Figure 4.3. Multiplying the sine of this angle by (1 − 2L(p)), which is −1 in

the interior and 1 in the exterior, yields a quantity that is negative if L(p) and D(q) are

consistent with one another, and thus consistency is rewarded when we minimize the energy.

4.6.4 Uyd(D)

Uyd(D) = −δ
∑
`p,q∈Y

∑
r∈`p,q

D(r) ·
`p,q
||`p,q||

,

where · is the dot product of vectors.

This energy function simply rewards orientation assignments which go in the same direc-

tion as the line segments that make up our initial parse.

4.7 Experimental Results

In our experimental results, we show the final parse chosen. Recall that we parse first, do local

inference, and then reparse with modified data costs. We also show the segmentation into

133

Figure 4.3: The angle between q − p and D(q) should be close to 90 degrees for interior p
and close to 270 degrees for exterior p.

134

Figure 4.4: Output of detection algorithm. Final detection shown top left, segmentation
shown top right, orientation assignments shown in four bottom images. The top left of the
orientation images gives a key to the orientation labels.

figure and ground, and the orientation assignment selected by our local inference procedure.

The orientation assignment is shown in four different images corresponding to four different

pairs of opposite orientations. One orientation is shown in black, and its opposite is shown

in white, while other orientations are shown in grey. The orientation depicted is shown by

the squares in the top left of each image.

These results demonstrate that our local inference procedure, combined with our global

parsing procedure, allows us to locate human silhouettes in clutter-free images.

135

Figure 4.5: Output of detection algorithm. Final detection shown top left, segmentation
shown top right, orientation assignments shown in four bottom images. The top left of the
orientation images gives a key to the orientation labels.

Figure 4.6: Output of detection algorithm. Final detection shown top left, segmentation
shown top right, orientation assignments shown in four bottom images. The top left of the
orientation images gives a key to the orientation labels.

136

Figure 4.7: Output of detection algorithm. Final detection shown top left, segmentation
shown top right, orientation assignments shown in four bottom images. The top left of the
orientation images gives a key to the orientation labels.

Figure 4.8: Output of detection algorithm. Final detection shown top left, segmentation
shown top right, orientation assignments shown in four bottom images. The top left of the
orientation images gives a key to the orientation labels.

137

Figure 4.9: Output of detection algorithm. Final detection shown top left, segmentation
shown top right, orientation assignments shown in four bottom images. The top left of the
orientation images gives a key to the orientation labels.

Figure 4.10: Output of detection algorithm. Final detection shown top left, segmentation
shown top right, orientation assignments shown in four bottom images. The top left of the
orientation images gives a key to the orientation labels.

138

Figure 4.11: Output of detection algorithm. Final detection shown top left, segmentation
shown top right, orientation assignments shown in four bottom images. The top left of the
orientation images gives a key to the orientation labels.

Figure 4.12: Output of detection algorithm. Final detection shown top left, segmentation
shown top right, orientation assignments shown in four bottom images. The top left of the
orientation images gives a key to the orientation labels.

139

Figure 4.13: Output of detection algorithm. Final detection shown top left, segmentation
shown top right, orientation assignments shown in four bottom images. The top left of the
orientation images gives a key to the orientation labels.

140

CHAPTER 5

FUTURE WORK: STRUCTURE LEARNING FOR

GRAMMATICAL MODELS

5.1 Introduction

5.1.1 Structural Variation

Natural object categories such as cars and people exhibit two kinds of variation: continuous

or “plastic” deformations and discontinuous structural variations. Therefore, object models

which allow for both will make vision algorithms much more powerful. The potential for a

satisfying account of large structural variation is one of the most intriguing possibilities of

grammatical methods.

One of the simplest structural variations is occlusion: part of an object may not be visible,

usually because something between the object and the camera is occluding it. Occlusion has

been well understood in computer vision for a long time, and models can be made robust to

it, e.g., the Hausdorff distance in Huttenlocher et al. [1993].

Another common way that objects exhibit structural variation is by having optional parts :

a dog may or may not have a tail, a person may or may not have a hat. Occlusion models

are capable of recognizing such objects with or without their optional parts, but they do

not accurately model optional parts. An optional part is a particular subset of the object

that is likely to not appear, while occlusion allows any not-too-large subset of the model to

disappear.

The usefulness of more general structural variation can be seen in Figure 5.1. Here, the

human eye notices a large similarity between the two shapes A1 and A2, but many curve

models would see very little similarity.

141

(a) A1 (b) A2

(c) A3 (d) A4

Figure 5.1: If A1 is the original curve, which other curve is most similar to it? Figure adapted
from Basri et al. [1998].

We might intuitively describe the second shape, A2, as

A2 = “Take A1, snap off the right appendage, and reattach it beneath the left appendage.”.

This highlights several important points:

The description 5.1.1 of A2 is very short in English, and might be even shorter in a

specialized curve model encoding. Description length is a good proxy for the conditional

probability of observing A2 given that it is a distortion of A1 (Bienenstock et al. [1997]).

Structural variation is a fundamental problem in modeling visual objects. In the absence

of a practical model of structural variation, we must model variation as continuous defor-

mation. Then, any model that declares A1 and A2 to be similar will think that A3 or A4 is

even more similar to A1.

Structural variation cannot be modeled without a semantically meaningful decomposition

of the original curve, like that seen in Figure 5.2. Description 5.1.1 crucially relies on “the

right appendage” making sense to the listener. Thus, perceptually simple structural variation

must respect the perceived structure of the original curve. Contrast Figure 5.1 with Figure

142

5.3, where a similar transformation has been applied with no regard to the perceived structure

of the original curve.

Figure 5.2: The original shape from Figure 5.1, decomposed into semantically meaningful
parts. We argue that this decomposition explains why the variation in Figure 5.1 is less
semantically different than the variation in Figure 5.3. Adapted from Basri et al. [1998].

Figure 5.3: Two shapes which are not perceptually very similar, although they are related
by a transformation as simple as that in Figure 5.1. The problem is that the transformation
does not respect the perceived structure of the original. Adapted from Basri et al. [1998].

Mixture models are a class of models that do not suffer from the continuous deformation

problem of Figure 5.1. However, if there are multiple independent structural variations

possible, it is unlikely that we will see every combination of each form. Consider the shape

grammar Gn that generates shapes that have n arms, each of which can take either of two

forms:

S → Z . . . Z︸ ︷︷ ︸
n

Z → A

Z → B,

where A is pointy and B is rectangular. We show four shapes possible under this grammar

143

in Figure 5.4. A classic mixture model will not be able to generalize in this scenario without

Figure 5.4: Four shapes from G8.

exponentially many training examples, since there are 2n possible shapes. If we instead

have mixture models at the level of individual structural variations, then our model is a

grammatical model in the style of Section 1.1.

5.2 Searching Over Grammars

We want to learn a grammar that explains our training data well, but we also want a

simple grammar, because simpler models exhibit better generalization. We can reward simple

grammars by using a prior based on the Minimum Description Length, described in the next

section. We can then attempt to maximize the posterior probability of G given the training

data and this prior.

Finding the optimal such grammar is a very hard unsolved problem even for standard

CFG’s, as discussed in Section 1.6.1. In particular, we do not know of any optimal way to

search over grammatical structures, so we propose to start from the initial grammars de-

scribed in Section 2.7 and proceed by greedily applying transformations such as replacement

(discussed in Section 5.4), merging (discussed in Section 5.5), and rule deletions. We could

also try a slightly more flexible search algorithm, such as the beam search used in Stolcke

[1994].

In the light of Stolcke [1994], one should consider an initial structure and transformations

such that we can reach any grammatical structure from the initial one.

To assess such a search strategy, a simple task would be to build a shape grammar by

144

hand and take samples from it, and try to recover the grammar from the samples. It is

unlikely that we will recover the same exact grammar, so we would instead try to show that

we can improve some measure of closeness, for instance the cross-entropy on unseen samples.

5.3 MDL Priors over Grammar Structure

5.3.1 MDL Priors over Grammar Structure

Let G = (N ,R,S, `,M,X) be a grammar. We wish to specify a prior over the structural

parts of G: N ,R,S. We use a minimum description length prior for the structure of the

grammar:

P (N ,R,S) =
1

Z
e−len(enc(N ,R,S))

for some binary encoding function enc(·) : {G} → {0, 1}∗. enc must be uniquely decodable,

i. e., enc(N ,R,S) = enc(N ′,R′,S ′) =⇒ N = N ′,R = R′,S = S ′.

The encoding function enc should be as concise as possible, so that simple grammars are

rewarded for their simplicity. We choose to represent N ,R, and S as

(|N |, {(iX , iY , iZ) | [X → Y Z] ∈ R}, {(iY , iZ) | Y Z ∈ S}),

where the iX denote some consistent numbering of the nonterminals. We assume that every

nonterminal X ∈ N has the rule [X → `] ∈ R(X), and thus do not explicitly encode this

information.

Each component of this representation can be encoded in binary:

• |N | is represented as a standard binary integer, taking up kN dlog2Ne bits

• Each (iX , iY , iZ) is represented as three binary integers, each zero-padded to take up

exactly kN bits.

• Each (iY , iZ) is represented as two binary integers, each zero-padded to take up exactly

145

kN bits.

We thus use up kN (1 + 3|R| + 2|S|) bits. We also need to use 2dlog2 kN e + 2 bits to

specify how to break the stream of bits into “words” of kN bits. (We simply need to encode

kN itself. We need to be able to specify where the encoding of kN stops and the rest of the

encoding begins. One relatively simple way to do this is to encode kN in binary, and then

preface every digit with a 1. We then use 00 to denote the end of kN .)

Thus our total description length is

⌈
log2 |N |

⌉
(1 + 3|R|+ 2|S|) + 2

⌈
log2 log2 |N |

⌉
+ 2

5.4 Creating Reusable Parts with Replacement

Given a grammar G, we wish to create a grammar which still explains our training data, and

is simpler. We would also like to create grammars that have reusable parts, as explained

in Bernstein and Amit [2005]. This can be done using the operation of replacing Y with

X: whenever Y is on the right-hand side of a rule, we replace it with X. Whenever Y

is on the left-hand side of a rule, we delete that rule. This may lead to a merging of two

rules [Z1 → XZ2], [Z1 → Y Z2], in which case we combine the multinomial probabilities and

average the midpoint distributions.

Why does this operation create reusable parts? Ideally, before the replacement, Y and

X are nonterminals that are used to parse similar curves (i.e., they have similar yields), but

which fit differently into the larger grammar. After the replacement, these curves will be

parsed only with X, and X will fit into the larger grammar in two different ways. X has

thus become a reusable part.

Note that replacement is asymmetric. This could be good; since approximate similarity

is not transitive, we would like to replace nonterminals X1, . . . , Xk with whichever Xi is

most representative.

This transformation should be applied when the nonterminals X and Y have similar

146

internal structure. Intuitively, this means that any curve generated by X can be generated

by Y with a similar probability, and vice versa.

Suppose that we have two nonterminals X and Y , and we want to decide whether we

should replace Y with X, given that we want a simple model which still explains our data,

which is formalized by trying to maximize the posterior probability of the chosen grammar.

Performing the replacement will simplify the grammar, which will be reflected in the MDL

prior over structure. In order to make sure that we are still explaining the data, we need to

consider the ratio of the likelihood under the current grammar to the likelihood under the

grammar after performing the replacement.

Consider the quantity

Q(G′) = ET∼T|C,G
[
logP (C,T | G′)

]
+ logP (G′)

used as a measure of grammar quality in the EM algorithm. Consider the difference in Q(G′)

created by appling a replacement transformation:

Q(G′)−Q(G) =ET∼T|C,G′
[
logP (C,T | G′)

]
−ET∼T|C,G [logP (C,T | G)]

+ logP (G′)− logP (G).

The last two terms correspond to the reward for simplifying the grammar. The first term

measures how much better or worse the new grammar is at explaining the data.

We can make the simplifying assumption or approximation (used in Stolcke [1994]) that

the distribution T ∼ T|C,G′ is arrived at by sampling from T ∼ T|C,G and performing

147

the operation Replace(Y ,X) on each parse tree; we then have

Q(G′)−Q(G) = ET∼T|C,G
[
logP (C,T | G′)− logP (C,T | G

]
+ logP (G′)− logP (G)

= ET∼T|C,G

 ∑
Yij∈T

log
P (Xij)

P (Yij)

+ logP (G′)− logP (G)

=
∑
a,i,j

Counta(Yij) log
P (Xij)

P (Yij)
+ logP (G′)− logP (G)

5.4.1 Approximating the KL Divergence Efficiently

We can also arrive at a similar but slightly different formula by trying to empirically estimate

the KL divergence between the inside distributions of X and Y . The inside distribution of

X is the distribution over curves that comes from sampling in the standard way. We call

this distribution the inside distribution because its probabilities are calculated in the first

pass of the Inside-Outside Algorithm, as explained in Section 2.6.

The Kullback-Leibler divergence is a popular choice for measuring the distance between

two distributions. It is defined as

KL(P ||Q) =
∑
x

P (x) log
P (x)

Q(x)
.

We can rewrite this as

KL(P ||Q) = Ex∼P (·)

[
log

P (x)

Q(x)

]
,

and it is clear that we can approximate it as

KL(P ||Q) ≈ 1

n

∑
i

[
log

P (xi)

Q(xi)

]
,

where x1, . . . , xn are samples from P . If x1, . . . , xn are instead samples from a distribution

148

R, then we can approximate

KL(P ||Q) =
∑
x

R(x)
P (x)

R(x)
log

P (x)

Q(x)
.

= Ex∼R(·)

[
P (x)

R(x)
log

P (x)

Q(x)

]
≈ 1

n

∑
i

[
P (xi)

R(xi)
log

P (xi)

Q(xi)

]
.

When R() is the empirical distribution R(xi) = 1
n#{j | xj = xi} this simplifies to:

≈
∑
i

[
P (xi) log

P (xi)

Q(xi)

]
.

Let X be a nonterminal. For every subcurve C of any training curve, we can use re-

weighting to consider C as a sample from X’s inside distribution. In this case, P,Q are

the inside distributions of X and Y , respectively. This approximation is especially appealing

because the Inside-Outside algorithm gives us a very efficient way to simultaneously compute

PX(Ca[i : j]) for every nonterminal X and every subcurve Ca[i : j] of every training curve

Ca. Specifically, we can compute all these in O(kn3|N |) time, where k is the number of

training curves, and n is the maximum length of a training curve.

When dealing with the initial grammar, this approximation should be reasonable, since

our initial grammars don’t generate any curves that are too dissimilar from our training

curves. We hope that generalization will take place as the grammar is simplified; thus, the

approximation will get worse as we simplify the grammar.

Given training data C1, . . . , Cn, we can evaluate any transformation that takes G to G′

by examining the posterior

P (G′|C1, . . . , Cn) = Pprior(G′)P (C1, . . . , Cn|G′),

which is computable via parsing. This gives a general search strategy: simply pick the

149

transformation that increases the value of the posterior the most.

5.5 Merging to Create Factorization

5.5.1 Goal: Merging and Factorization

We would like to show that grammars can capture an exponential amount of variability

through factoring, as discussed in Section 5.1.

The easiest task would be to correctly apply merging (Section 5.5) to the n-armed shapes

of Section 5.1, so that we can generate all of the shapes in the class after having seen a small

number of them. We can make this easier by having different arm variants in each of the n

arm slots. We can also start on an easier version by training on bracketed samples.

A harder merging task is to use merging to get accurate models of the Romer and

Weizmann Horse datasets.

5.5.2 Creating Choice with Merging

We want to create grammars that have choice, as described in Section 5.1.1. This can

be done by the operation of merging X and Y : we replace every instance of Y in either

the left or right-hand side of a rule with X. This may lead to a merging of two rules

[X → Z1Z2], [Y → Z1, Z2] (and some other cases). When this happens, we combine the

multinomial probabilities and average the midpoint distributions of the rules.

As a heuristic to guide merging, we plan to apply the approach of the last section, but

to use the outside probability instead of the inside probability. If two nonterminals X and

Y have similar outside probabilities on every subcurve, then X and Y can be said to have

similar outer structure, since the grammar is placing them in similar contexts. Intuitively,

this means that X and Y are interchangeable, so that for any curve in which X is used

to explain a subcurve, there is another equally likely curve where that subcurve has been

replaced with a subcurve that can be explained by Y .

150

5.6 How do we Identify Natural Constituents?

5.6.1 Goal: Learning Constituents

The EM algorithm with a sparsifying prior will hopefully be able to recover grammatical

structure. Therefore, if we start from a grammar with choice (see Section 3.7), we hope

that doing EM iterations will give us a grammar with fewer choices that correspond to

natural decompositions of shapes. Note that this method can only work with many training

examples, and cannot be used to identify natural decompositions of a single shape.

Easy tasks for this would be trying to find constituents in stars and polygons, and the

n-armed shape. We could also try to get intuitively reasonable constituents for silhouettes

of people and horses.

5.6.2 Constituency Cues

In Basri et al. [1998], Richards et al. [1985], Kimia et al. [2003], it is argued that some shapes

have natural constituents, and some shapes do not. Some cues that we believe would give

us some clues to structure:

• Large-scale curvature. If we smooth the points of a curve with a Gaussian, then we

can measure curvature at different levels. We feel that large-scale curvature is likely

to occur only at constituent boundaries.

• Protuberances. If the curve goes out from a point x and then returns to a point y,

where the length of the curve is significantly larger than the distance between x and

y, then the curve from x to y is likely to be a natural constituent. This will also be

true of any points close to x and y, so we should restrict ourselves to pairs (x, y) for

which the ratio

maxz ||x− z||+ ||y − z||
||x− y||

is at a local maximum.

151

5.6.3 Figure out optimal single-example grammar

We use explicit correspondences to learn the statistically best set of constituents when build-

ing a grammar from a single example. (This experiment is closely related to an experiment

in Felzenszwalb [2003].) Specifically, since the points on each curve from the hand-annotated

Romer dataset correspond semantically, we can ask which decomposition of the curves yields

the model which gives the highest log-likelihood to the curves seen. This can be done with

a simple dynamic program:

COST [i, k] = min
j
COST [i, j] + COST [j, k]

−min
µ,κ

∑
a

logWatson(Ca[i], Ca[j], Ca[k];µ, κ)

for k 6= i, (i+ 1) mod n, and

COST [i, (i+ 1) mod n] = 0

Minimizing the sum of negative log-likelihoods of the Watson distribution is simply maximum

likelihood estimation for the Watson distribution, which is explained in Subsection 3.1.5.

The constituents selected by the algorithm are shown in Figure 5.5 The constituents that

seemed most intuitive to me are shown in Figure 5.6.

152

Figure 5.5: Finding optimal constituents. This figure generated by the experiment experi-
ments/6.structure/constituents.

153

Figure 5.6: Hand-picked constituents.

154

CHAPTER 6

APPROXIMATE PARSING OF ONE-DIMENSIONAL

SIGNALS

Recall that the problem of parsing curves with a shape grammar is closely related to the

problem of parsing strings with a weighted context free grammar. The running time of

context-free parsing with a standard algorithm like CKY is cubic, and it is not known how

to do better than this in practice. This makes parsing prohibitively slow for long strings in

particular. This prevents the use of context-free grammars in modeling long one-dimensional

signals, which are instead commonly modeled with Markov models.

The main contribution of this chapter is to introduce an approach for efficient context-free

parsing of very long strings. This would allow fast curve parsing with our shape grammars,

and also the use of context-free models for other problems that involve long one-dimensional

signals.

6.1 CKY parsing

We now recall the CKY algorithm for parsing strings with a weighted context-free grammar

in Chomsky Normal Form, which is shown in Algorithm 7. Let s be a string of length n.

Let (X ,R) be a weighted context-free grammar, with X a set of symbols and R a set of

weighted rules. Let w(X → λ) the weight of the rule (X → λ) ∈ R.

Let [i, j) be the interval starting with i and ending with j − 1. The algorithm works by

computing a cost COST [X, [i, j)] for each symbol X and each interval [i, j), corresponding

to the cost of parsing the substring s[i] . . . s[j − 1] with the nonterminal X.

The O(n3) runtime of the CKY algorithm arises because there are O(n2) substrings,

and many substrings can be decomposed in O(n) ways. If we could limit the number of

constituents and decompositions, we could speed up the algorithm. This brings us to the

next section, where we define a framework for considering restricted families of constituents

155

Algorithm 7 CKY parsing. Returns cost of best parse.

Input: string s, context-free grammar (X ,R)
for X ∈ X do

for i = 0 to n− 1 do
COST [X, [i, i+ 1)]← w(X → s[i])

end for
end for
for ` = 2 to n− 1 do

for i = 0 to n− 1 do
COST [X, [i, i+ `)]←∞
for j = i+ 1 to i+ `− 2 do

for X → Y Z ∈ R do
COST [X, [i, i+ `)]← min{COST [X, [i, i+ `)], w(X → Y Z) +COST [Y, [i, j)] +
COST [Z, [j, i+ `)]}

end for
end for

end for
end for
return COST [S, [0, n)]

and decompositions.

6.2 Decomposition Families

Definition 6.2.1. Let s be a string of length n. A decomposition family for s is a pair

(I,D), where I is a set of intervals [i, j), and D is a set of decompositions of the form

[i, j)→ [i, k) + [k, j),

where [i, j), [i, k), [k, j) ∈ I. I must contain the interval [0, n).

The most trivial decomposition family is the set of all intervals [i, j) such that 0 ≤ i <

j ≤ n, together with all possible decompositions of each [i, j) into [i, k) + [k, j). We will call

this the complete decomposition family.

We would like small decomposition families that can approximate arbitrary parses rea-

sonably well. We capture this notion with θ-flexibility:

156

Figure 6.1: With a θ-flexible decomposition family, any parse can be adjusted to an allowable
parse by moving the midpoint of each binary rule slightly. On the left, a parse before
adjustment. On the right, after the adjustment. Vertical lines denote allowable midpoint
choices.

Definition 6.2.2. A decomposition family F = (I,D) is θ-flexible if, for every interval

[i, j) ∈ I, and every k such that i < k < j, there is a decomposition

[i, j)→ [i, k′) + [k′, j) ∈ D,

where

|k − k′| < θ|j − i|.

A θ-flexible decomposition family is desirable because, for any binary parse tree, there is

a similar parse tree that is allowable under the decomposition family. Here, similar means

that, as we recursively subdivide a curve into subcurves, we can always choose a midpoint

whose index differs from a given midpoint by at most a fixed percentage (e.g., 10% when

θ = 1
10 or 5% when θ = 1

20) of the length of the subcurve, as shown in Figure 6.1. A θ-flexible

decomposition family thus approximates the complete decomposition family, in some sense.

Another notion of approximation is θ-completeness:

Definition 6.2.3. Let s be a string of length n. Let F = (I,D) be a decomposition family

for s. An interval [i, j) is called reachable if there is a sequence of intervals xt such that

x0 = [0, n), xk = [i, j), and there is a decomposition with xt on the left-hand side and xt+1

157

on the right-hand side for every t between 0 and k − 1.

Definition 6.2.4. A decomposition family F = (I,D) is θ-complete if, for every interval

[i, j), 0 ≤ i < j ≤ n, there is a reachable interval [i′, j′) ∈ I such that

|i− i′| < θ|j − i|

and

|j − j′| < θ|j − i|.

Theorem 6.2.5. Let F = (I,D) be a θ-flexible decomposition family for θ ≤ 1
4 . Then F is

2θ-complete.

Proof. Let [i, j) be an interval. Starting with the interval [0, n), we build a sequence of

intervals by picking midpoints so that [i, j) is wholly contained in one side or the other each

time. At each step, we then take the interval containing [i, j) as the next interval in our

sequence.

When we can no longer do this, we have an interval [k, `) such that k ≤ i < j ≤ `. We

claim that

k − i < 2θ(j − i)

and

`− j < 2θ(j − i),

which is what we need for 2θ-completeness.

Since we can no longer pick a midpoint without it being between i and j, by θ-flexibility,

we must have

i− k < θ(`− k)

and

`− j < θ(`− k).

158

Furthermore, we have

`− k = (`− j) + (j − i) + (i− k)

< (j − i) + 2θ(`− k)

(1− 2θ)(`− k) < j − i,

and, since θ ≤ 1
4 ,

1

2
(`− k) < j − i.

We thus have

i− k < 2θ(j − i)

and

`− j < 2θ(j − i),

as desired.

6.3 Parsing with decomposition families

Decomposition families are interesting because they allow us to speed up parsing by searching

over a restricted set of parses.

Theorem 6.3.1. Let G be a context-free grammar with k rules. Let s be a string of length

n. Let F = (I,D) be a decomposition family for s. Then there is a dynamic programming

algorithm (Algorithm 8) to approximately (relative to F) parse s in time O(|D|k).

Traditional parsing corresponds to the complete decomposition family, which has size

Θ(n3). Algorithm 8 with the complete decomposition family is equivalent to Algorithm 7.

Fortunately, we can construct sparse decomposition families of size O(n), which leads to a

linear time approximate parsing algorithm.

159

Algorithm 8 Parsing with a decomposition family

Input: string s, decomposition family (I,D), context-free grammar (X ,R)
for X ∈ X do

for i = 0 to n− 1 do
COST [X, [i, i+ 1)]← w(X → s[i])

end for
end for
for [i, j) ∈ I, ordered by increasing length do
COST [X, [i, j)]←∞
for k such that [i, j)→ [i, k)[k, j) ∈ D do

for X → Y Z ∈ R do
COST [X, [i, j)]← min{COST [X, [i, j)],
w(X → Y Z) + COST [Y, [i, k)] + COST [Z, [k, j)]}

end for
end for

end for

Figure 6.2: Illustrating the construction from Theorem 6.4.1, with k = 4. Rectangles denote
portions of the string between members of the index set. A selection of intervals that live at
each level are shown.

6.4 Constructing Sparse Decomposition Families

Theorem 6.4.1. Let s be a string of length n, and let k be an integer. Then there is a

1
k -flexible decomposition family (I,D) for s that has at most 2nk2 decompositions.

Proof. Let C be the set of integers from 0 to n, inclusive. We will call this the index set.

We recursively define a sequence of subsampled index sets C(i) as follows: C(0) = C, and

C(i+1) is obtained from C(i) by taking every other index. The number of indices in all C(i)

combined is at most 2n.

We will talk about the length of an interval relative to an index set. An interval [a, b)

has length ` in index set C(i) if there are `− 1 indices between a and b in C(i).

An interval [a, b) is allowable if there is some C(i) which contains both a and b, and [a, b)

160

has length at most k in C(i), i.e., there are at most k−1 other indices between them in C(i).

The number of allowable intervals is then at most 2nk.

We will say that an interval [a, b) lives in level i (for i ≥ 0) if a and b are both in C(i),

and if the length of the interval relative to C(i) is strictly greater than k/2 and at most k.

When i = 0, we will not have the minimum length requirement, so all intervals of C of length

at most k live in level 0. It is straightforward to see that each allowable interval lives in a

single level.

If [a, b) is an interval that lives in level i, then we can decompose it as [a, b)→ [a, c)[c, b)

by picking midpoints c from among the indices in C(i). Some of these choices will lead to

intervals that live in level i− 1.

This decomposition family is 1
k -flexible. When picking midpoints at level i, our interval

has length at least k/2 in C(i), so we have at least k/2 evenly spaced midpoint choices. We

can thus choose a midpoint that is within c points of any desired midpoint, where c is at

most 1
k times the length of the interval we are splitting.

There are at most k midpoints per allowable interval, so the number of composition rules

is at most 2nk2.

This demonstrates the existence of linear-size θ-flexible decomposition families, which

yields a linear time approximate parsing algorithm. This in turn means that we can use

context-free grammars to parse long strings, which expands the range of domains where we

can use context-free grammar models.

161

APPENDIX A

MODELS OF LEAVES

162

Figure A.1: Training examples from class #1.

163

Figure A.2: Samples from learned model for class #1.

164

Figure A.3: Training examples from class #2.

165

Figure A.4: Samples from learned model for class #2.

166

Figure A.5: Training examples from class #3.

167

Figure A.6: Samples from learned model for class #3.

168

Figure A.7: Training examples from class #4.

169

Figure A.8: Samples from learned model for class #4.

170

Figure A.9: Training examples from class #5.

171

Figure A.10: Samples from learned model for class #5.

172

Figure A.11: Training examples from class #6.

173

Figure A.12: Samples from learned model for class #6.

174

Figure A.13: Training examples from class #7.

175

Figure A.14: Samples from learned model for class #7.

176

Figure A.15: Training examples from class #8.

177

Figure A.16: Samples from learned model for class #8.

178

Figure A.17: Training examples from class #9.

179

Figure A.18: Samples from learned model for class #9.

180

Figure A.19: Training examples from class #10.

181

Figure A.20: Samples from learned model for class #10.

182

Figure A.21: Training examples from class #11.

183

Figure A.22: Samples from learned model for class #11.

184

Figure A.23: Training examples from class #12.

185

Figure A.24: Samples from learned model for class #12.

186

Figure A.25: Training examples from class #13.

187

Figure A.26: Samples from learned model for class #13.

188

Figure A.27: Training examples from class #14.

189

Figure A.28: Samples from learned model for class #14.

190

Figure A.29: Training examples from class #15.

191

Figure A.30: Samples from learned model for class #15.

192

REFERENCES

Yali Amit and Alain Trouvé. Pop: Patchwork of parts models for object recognition. Interna-

tional Journal of Computer Vision, 75(2):267–282, November 2007. ISSN 0920-5691. doi:

10.1007/s11263-006-0033-9. URL http://dx.doi.org/10.1007/s11263-006-0033-9.

Moshe Bar. Visual objects in context. Nature Reviews Neuroscience, 5(8):

617–629, August 2004. ISSN 1471-003X. doi: 10.1038/nrn1476. URL

http://dx.doi.org/10.1038/nrn1476.

R. Basri, L. Costa, D. Geiger, and D. Jacobs. Determining the similarity of deformable

shapes. Vision Research, 38(15-16):2365–2385, August 1998. doi: 10.1016/S0042-

6989(98)00043-1. URL http://dx.doi.org/10.1016/S0042-6989(98)00043-1.

E. J. Bernstein and Y. Amit. Part-based statistical models for object classification and

detection. volume 2, pages 734–740 vol. 2, 2005. doi: 10.1109/CVPR.2005.270. URL

http://dx.doi.org/10.1109/CVPR.2005.270.

Julian Besag. Statistical analysis of dirty pictures*. Journal of Applied

Statistics, 20(5):63–87, 1993. doi: 10.1080/02664769300000059. URL

http://dx.doi.org/10.1080/02664769300000059.

Elie Bienenstock, Stuart Geman, and Daniel Potter. Compositionality, mdl priors, and object

recognition. In Neural Information Processing Systems, pages 838–844. MIT Press, 1997.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allo-

cation. J. Mach. Learn. Res., 3:993–1022, 2003. ISSN 1533-7928. URL

http://portal.acm.org/citation.cfm?id=944919.944937.

J. Canny. A computational approach to edge detection. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, PAMI-8(6):679–698, Novem-

ber 1986. ISSN 0162-8828. doi: 10.1109/TPAMI.1986.4767851. URL

http://dx.doi.org/10.1109/TPAMI.1986.4767851.

193

Eugene Charniak. Statistical Language Learning (Language, Speech, and Communication).

The MIT Press, September 1996. ISBN 0262531410.

C. Cook. Grammatical inference by hill climbing. Information Sciences, 10

(1):59–80, 1976. ISSN 00200255. doi: 10.1016/0020-0255(76)90061-X. URL

http://dx.doi.org/10.1016/0020-0255(76)90061-X.

T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Active shape models - their

training and application. Comput. Vis. Image Underst., 61(1):38–59, Jan 1995. ISSN

1077-3142. doi: 10.1006/cviu.1995.1004.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-

plete data via the em algorithm. Journal of the Royal Statistical Society. Series B

(Methodological), 39(1):1–38, 1977. ISSN 00359246. doi: 10.2307/2984875. URL

http://dx.doi.org/10.2307/2984875.

I. L. Dryden and Kanti V. Mardia. Statistical Shape Analysis. Wiley, 1 edition, September

1998. ISBN 0471958166.

Fellbaum. WordNet: An Electronic Lexical Database (Language, Speech, and Communica-

tion). The MIT Press, illustrated edition edition, May 1998. ISBN 026206197X.

P. Felzenszwalb and D. Huttenlocher. Pictorial structures for object recognition, 2003. URL

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.6365.

P. Felzenszwalb and J. Schwartz. Hierarchical matching of deformable shapes.

In Computer Vision and Pattern Recognition, 2007. CVPR ’07. IEEE Con-

ference on, pages 1–8, 2007. doi: 10.1109/CVPR.2007.383018. URL

http://dx.doi.org/10.1109/CVPR.2007.383018.

P. F. Felzenszwalb. Representation and detection of deformable shapes. Pattern Analysis and

194

Machine Intelligence, IEEE Transactions on, 27(2):208–220, February 2005. ISSN 0162-

8828. doi: 10.1109/tpami.2005.35. URL http://dx.doi.org/10.1109/tpami.2005.35.

Pedro Felzenszwalb. Representation and Detection of Shapes in Images. PhD thesis, Mas-

sachusetts Institute of Technology, September 2003.

Pedro F. Felzenszwalb and David McAllester. The generalized a* architec-

ture. J. Artif. Int. Res., 29(1):153–190, 2007. ISSN 1076-9757. URL

http://portal.acm.org/citation.cfm?id=1622612.

Pedro F. Felzenszwalb and David McAllester. Object detection gram-

mars. Technical report, University of Chicago, February 2010. URL

http://www.cs.uchicago.edu/files/tr authentic/TR-2010-02.pdf.

K. S. Fu. A step towards unification of syntactic and statistical pattern recogni-

tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(3):

398–404, May 1986. ISSN 0162-8828. doi: 10.1109/TPAMI.1986.4767800. URL

http://dx.doi.org/10.1109/TPAMI.1986.4767800.

Stuart Geman and Donald Geman. Stochastic Relaxation, Gibbs Distri-

butions, and the Bayesian Restoration of Images. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, PAMI-6(6):721–741, Novem-

ber 1984. ISSN 0162-8828. doi: 10.1109/TPAMI.1984.4767596. URL

http://dx.doi.org/10.1109/TPAMI.1984.4767596.

Stuart Geman, Daniel F. Potter, and Zhiyi Chi. Composi-

tion systems. Technical report, Brown University. URL

http://www.cs.umd.edu/~djacobs/CMSC828/Composition%2520Systems.pdf.

U. Grenander, Y. Chow, and D. M. Keenan. Hands: A pattern Theoretic Study of Biological

Shapes, volume 2 of Research Notes in Neural Computing. Springer, New York, 1991.

195

Ulf Grenander and Michael Miller. Pattern Theory: From Representation to Inference. Ox-

ford University Press, Inc., New York, NY, USA, 2007. ISBN 0199297061, 9780199297061.

URL http://portal.acm.org/citation.cfm?id=1512854.

Feng Han and Song C. Zhu. Bottom-up/top-down image parsing with attribute gram-

mar. IEEE Trans. Pattern Anal. Mach. Intell., 31(1):59–73, 2009. ISSN 0162-8828. doi:

10.1109/TPAMI.2008.65. URL http://dx.doi.org/10.1109/TPAMI.2008.65.

D. Huttenlocher, D. Klanderman, and A. Rucklige. Comparing images

using the hausdorff distance. IEEE Transactions on Pattern Analy-

sis and Machine Intelligence, 15(9):850–863, September 1993. URL

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.2238.

Ya Jin and S. Geman. Context and hierarchy in a probabilistic image model. In

Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Confer-

ence on, volume 2, pages 2145–2152, 2006. doi: 10.1109/CVPR.2006.86. URL

http://dx.doi.org/10.1109/CVPR.2006.86.

Mark Johnson, Thomas L. Griffiths, and Sharon Goldwater. Bayesian inference for pcfgs via

markov chain monte carlo. In In Proceedings of the North American Conference on Com-

putational Linguistics, 2007. URL http://acl.ldc.upenn.edu/N/N07/N07-1018.pdf.

Benjamin Kimia, Ilana Frankel, and Ana-Maria Popescu. Euler spiral for shape com-

pletion. International Journal of Computer Vision, 54(1):159–182, August 2003. doi:

10.1023/A:1023713602895. URL http://dx.doi.org/10.1023/A:1023713602895.

Lillian Lee. Learning of context-free languages: A survey of the liter-

ature. Technical Report TR-12-96, Harvard University, 1996. URL

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.7989.

H. Ling and D. Jacobs. Shape classification using the inner-distance. IEEE Trans-

196

actions on Pattern Analysis and Machine Intelligence, 29:286–299, 2007. URL

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.83.814.

Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural Language

Processing. The MIT Press, 1 edition, June 1999. ISBN 0262133601.

David Marr. Vision: A Computational Investigation into the Human Representation and

Processing of Visual Information. W. H. Freeman, March 1983. ISBN 0716715678.

David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database

of human segmented natural images and its application to evaluating seg-

mentation algorithms and measuring ecological statistics. In Proc. 8th

Int’l Conf. Computer Vision, volume 2, pages 416–423, 2001. URL

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.7314.

Craig G. Nevill-Manning and Ian H. Witten. Identifying hierarchi-

cal structure in sequences: A linear-time algorithm, 1997. URL

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.3846.

E. Parzen. On the estimation of a probability density function and

mode. Annals of Mathematical Statistics, 33:1065–1076, 1962. URL

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.8666.

Daniel F. Potter. Compositional pattern recognition. PhD thesis, Providence, RI, USA, 1999.

URL http://portal.acm.org/citation.cfm?id=929684.

Aristid Prusinkiewicz, Przemyslaw; Lindenmayer. The Algorithmic Beauty of Plants.

Springer-Verlag, 1990. ISBN 9780387972978.

C. Raphael. Coarse-to-Fine dynamic programming. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 23(12):1379–1390, 2001. ISSN 0162-8828. doi:

10.1109/34.977562. URL http://dx.doi.org/10.1109/34.977562.

197

Whitman Richards, Donald D. Hoffman, and Codon C. Richards.

Codon constraints on closed 2d shapes. In Computer Vision, Graph-

ics, and Image Processing, volume 31, pages 265–281, 1985. URL

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.5639.

Bryan C. Russell, Antonio Torralba, Kevin P. Murphy, and William T. Freeman. LabelMe:

A database and web-based tool for image annotation. International Journal of Computer

Vision, 77(1):157–173, May 2008. ISSN 0920-5691. doi: 10.1007/s11263-007-0090-8. URL

http://dx.doi.org/10.1007/s11263-007-0090-8.

O Söderkvist. Computer vision classification of leaves from swedish trees. Master’s thesis,

Linkoping University, 2001.

Andreas Stolcke. Bayesian learning of probabilistic language models. PhD thesis, Berkeley,

CA, USA, 1994. URL http://portal.acm.org/citation.cfm?id=221997.

Zhuowen Tu, Xiangrong Chen, Alan Yuille, and Song-Chun Zhu. Image parsing: Uni-

fying segmentation, detection, and recognition. International Journal of Computer Vi-

sion, 63(2):113–140, July 2005. ISSN 0920-5691. doi: 10.1007/s11263-005-6642-x. URL

http://dx.doi.org/10.1007/s11263-005-6642-x.

M. Wertheimer. Laws of Organization in Perceptual Forms (par-

tial translation), pages 71–88. Harcourt, Brace, 1938. URL

http://psychclassics.asu.edu/Wertheimer/Forms/forms.htm.

Long Zhu, Yuanhao Chen, and Alan Yuille. Unsupervised learning of probabilistic

grammar-markov models for object categories. IEEE Trans. Pattern Anal. Mach. In-

tell., 31(1):114–128, 2009. ISSN 0162-8828. doi: 10.1109/TPAMI.2008.67. URL

http://dx.doi.org/10.1109/TPAMI.2008.67.

Song C. Zhu and David Mumford. A stochastic grammar of images. Found. Trends. Com-

198

put. Graph. Vis., 2(4):259–362, 2006. ISSN 1572-2740. doi: 10.1561/0600000018. URL

http://dx.doi.org/10.1561/0600000018.

199

