
NEW ALGORITHMS FOR APPEARANCE MODELING

IN IMAGE SEGMENTATION

JEOVÁ FARIAS SALES ROCHA NETO

M. Sc. in Applied Mathematics, Brown University, 2021

M. Sc. in Computer Science, University of Nice-Sophia Antipolis, 2015

B. Eng. in Telematics Engineering, Federal University of Ceará, 2016

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

BROWN UNIVERSITY

2021

a

© Copyright 2021 by Jeová Farias Sales Rocha Neto

This dissertation by Jeová Farias Sales Rocha Neto is accepted in its present form by the

School of Engineering as satisfying the dissertation requirement for the degree of Doctor of

Philosophy.

Date: ,

Pedro F. Felzenszwalb, advisor.

Recommended to the Graduate Council

Date: ,

Matthew T. Harrison, reader.

Date: ,

Benjamin B. Kimia, reader.

Approved by the Graduate Council

Date: ,

Andrew G. Campbell,
Dean of the Graduate School.

Vita

Jeová Farias Sales Rocha Neto received his B.Eng. degree in Telematics En-

gineering with enphasis in Computer Engineering in the Federal University of

Ceara, Fortaleza, Brazil, in January 2016. His undergraduate thesis research

consisted in statistical level set methods for Synthetic Aperture Radar (SAR)

image segmentation. His undergraduate thesis advisor was Professor Fátima

Nelsizeuma Sombra De Medeiros.

Before completing his undergraduate degree, he had received a M. Sc in Computer

Science with emphasis in Video, Image and Multimedia from the University

of Nice-Sophia Antipolis, Nice, France in 2015. There he studied 3D shape

classification methods using 2D projections. His research advisor was Professor

Marc Antonini.

In 2016, he joined Brown University to pursue a graduate studies at Brown’s

School of Engineering and became a member of the Laboratory for Engineering

Man/Machine Systems (LEMS). At Brown he studied under Professor Pedro

Felzenszwalb in the School of Engineering, received a Sc.M. in Applied Math-

ematics in 2021 and (with the completion of this thesis) a Ph.D. in Electrical

and Computer Engineering also in 2021. His main research interest is in discrete

optimization methods for unsupervised image segmentation and clustering.

iv

Acknowledgments

Firstly, I would like to thank my advisor Prof. Pedro Felzenszwalb for guiding

me in my work over these past 5 years. I specially thank him for his patience

with me during some personal and professional hardships I faced in my PhD.

Without it, I wouldn’t be able to finish this thesis on time and complete my

degree. I personally very much admire his qualities as a researcher: his attention

to details, his quick intuition, his impressive knowledge, his ability to write simply

and objectively and, specially, his joy at studying computer vision or machine

learning problems. In many ways, that inspires me very deeply as a researcher

and I hope to develop some of these traits during my professional career. I also

thank Prof. Felzenszwalb for having introduced to me his wife, Prof. Carly

Klivans, and their children, Aaron and Audrey. We thankfully shared very good,

fun and memorable moments all together.

I would like to thank the examination committee including Prof. Benjamin

Kimia and Prof. Matthew Harrison. Their feedback, comments, and criticism

are critical to improving this work.

I thank my academic sister, Anna Grim, for having introduced me to Sum-

mer@Brown and to APMA’s Directed Reading Program, where I could practice

my teaching and advising skills and through which I revived my passion for the

academic life. I also thank my lab mates, Berk, Hongyi and Peter for the good

conversations, for the fun places we visited and for the fun games we played. I

thank my academic collaborators, Alice and Marilyn, for the research discussions

and their kindness towards me. I also take the opportunity to thank Prof. Basilis

Guidas for his warm welcome when I arrived at Brown and for all classes I took

with him.

v

vi

I thank the friends at made at Brown-RISD Catholic Community. I thank Father

Albert Duggan, O.P. for the sacraments he administered to me, they became the

source of grace I needed to resist the temptation of giving up. I also thank him

for answering my hard spiritual questions, for talking to me about Thomistic

themes and for being present when I needed. I thank all FOCUS missionaries

I met along the way: Kevin, Catherine, Josh, Anna, Mark, Jessica, Angela,

Nick and Zoe. In particular, I thank Kevin for being my best American friend,

whom I greatly admire, and for being there always. I am also very thankful to

the community at Church of St. Mary on Broadway, my home parish. There

I made many incredible friends and was able better appreciate the Traditional

Catholic Liturgy. I also thank Father John Berg, F.S.S.P., Father William Rock,

F.S.S.P. and Father John Kodet, F.S.S.P. for being so spiritually supportive in

my struggles during the pandemic. I finally thank Father George Crafts for being

my spiritual director over all these years and for teaching me how to work better

and sanctify my ordinary life.

I thank my wife and best friend, Leidiane, for her immense support and for being

next to me when I felt I couldn’t go on anymore. Since we started dating, she has

been in some many ways the light that brings joy to me and my greatest reason

to move forward and become a better man. I thank my parents, Juscelino and

Inês, for their presence, despite the distance, and their prayers for my work. I

hope one day I can be the son they deserve. I also thank my sister, Joana Maria,

for her support and friendship. A great woman, whom I profoundly admire and

whom miss very much since I moved to America.

Finally but most importantly, I thank God for His constant love, His (sometimes

difficult) pedagogy, for His abundant Providence that sustained His unworthy

servant in the past 5 years.

Contents

List of Figures xi

List of Tables xvi

1 Introduction 1

1.1 Motivation 1

1.1.1 Applications 2

1.1.2 Challenges 3

1.2 Organization of this thesis 4

2 Graph-based Image Segmentation and Spectral Clustering 7

2.1 Graph-based Methods for Image Segmentation 7

2.1.1 Bayesian Formulation 8

2.1.2 Markov Random Fields and the Gibbs Formalism 9

2.1.3 Graph Cuts 11

2.2 Appearance Modeling 15

2.2.1 User interaction 16

2.2.2 Iterative Methods 17

2.2.3 Variational Approaches 19

2.2.4 Implicit Modeling 22

2.2.5 Factorization-Based Methods 23

2.3 Spectral Solvers 25

2.3.1 Normalized Cuts 25

2.3.2 Weight choice 28

2.3.3 Spectral clustering and random walks 29

2.3.4 Practical Considerations 30

vii

viii

2.3.5 Adding constraints to Normalized cuts 30

2.3.6 Multiview Spectral Clustering 31

3 Direct Estimation of Appearance Models 33

3.1 Appearance Models and Image Segmentation 33

3.2 Image Statistics 34

3.3 Appearance Estimation 39

3.3.1 Algebraic Method 39

3.3.2 Spectral Method 42

3.3.3 Estimating w0, w1 and εr 44

3.4 Multi-region case 45

3.4.1 Estimation when r is small 46

3.4.2 Estimation when r is large 48

3.5 Examples 49

3.6 Numerical Experiments 49

3.6.1 Evaluation Measures 49

3.6.2 Synthetic Data 53

3.6.3 Evaluating the effect of ρ 53

3.6.4 Appearance Model Evaluation on Synthetic Images 54

3.6.5 Segmentation Evaluation on Synthetic Images 56

3.6.6 Real Images 59

3.6.7 Experiments using the tensorial method and on multi-region images 63

3.7 Conclusion 66

4 Spectral Image Segmentation with Global Appearance Modeling 67

4.1 Drawbacks of the Traditional Graph Construction 67

4.2 New Criteria for Image Segmentation 68

4.2.1 Spatial Information: Ggrid 69

4.2.2 Global Appearance Information: Gdata 70

4.2.3 Combining Spatial and Appearance information 72

4.3 Segmentation Algorithm 72

ix

4.3.1 Spectral Method 72

4.3.2 Graph Sparsification 73

4.4 Numerical Experiments 75

4.4.1 Segmentation accuracy measure and hardware setting 75

4.4.2 Sparsification algorithm for NCut 75

4.4.3 Evaluation of NCut and MixNCut without sparsification 75

4.4.4 Impact of edge sampling on MixNCut 76

4.4.5 The role of λ on MixNCut 76

4.4.6 Experiments in Real Images 79

4.4.7 Experiments in Synthetic Images 81

4.5 Conclusion 85

5 Penalized Normalized Cuts 86

5.1 Prior work and its limitations 86

5.2 Adding the Penalty 88

5.3 Possible Penalties and Related Segmentation Cues 90

5.3.1 Seeds 90

5.3.2 Region Color Histograms 90

5.3.3 Region Mean Colors 91

5.3.4 Global Appearance Models 92

5.3.5 Combining Cues and Summary 93

5.4 Preliminary Results 93

5.4.1 Synthetic Experiments 94

5.4.2 Real experiments 100

5.5 Conclusion 104

6 Conclusion 106

6.1 Contributions 106

6.1.1 Contributions to appearance modelling 106

6.1.2 Contributions to spectral image segmentation 107

6.2 Future Work 109

x

6.2.1 MRF based segmentation and appearance modeling 109

6.2.2 Spectral image segmentation 111

References 112

List of Figures

1.1 Segmentation examples 2

2.1 Graph Cut algorithm. Adapted from [BFL06] 13

2.2 The graph used in the α-expansion algorithm for a 1D image. The nodes

representing the image pixels are in black and their current graph partitions are

shown in gray. The terminal nodes are depicted as α and ᾱ. The node a is added

in between every pair of nodes whose region assignments are different. 14

2.3 The graph used in the αβ-swap algorithm for a 1D image. The nodes representing

the image pixels are in black and their current graph partitions are shown in gray.

The terminal nodes are depicted as α and β. 15

2.4 Typical user interactions. Adapted from [TBAMB15] 15

2.5 Model estimation and segmentation using ALT. On the bottom, we see how both

foreground and background color distributions estimated by ALT () evolve

compared to the ground truth appearance models (). The evolution of the

segmentations given the models is shown on top. 17

2.6 Grabcut segmentation results. Adapted from [RKB04] 19

2.7 Smoothed Heaviside function for various values of ε. 22

2.8 Linear combination of spectral histograms. Adapted from [YWC15]. 24

2.9 Segmentation result using the original Normalized Cuts formulation. Adapted

from [SM00]. 29

2.10 Biased Normalized Cuts result. Adapted from [MVM11]. 31

3.1 Evaluating independence at a distance. We show the average Bhattacharyya

distance between β̂ and α̂α̂> as a function of r for images with a single Brodatz

texture (see Figure 3.7). 36

xi

xii

3.2 Evaluating independence at a distance. We proceed as in Figure 3.1, but for

individual textures (on the left). 37

3.3 Evaluating independence at a distance. We show the average distance between β̂

and α̂α̂> as a function of r for each region segment of the images in the Grabcut

Dataset [RKB04]. 37

3.4 Evaluating independence at a distance. We proceed as in Figure 3.3, but now for

individual images in the Grabcut Dataset and for their respective foreground and

background segments. 38

3.5 The area where pairs of pixels with ||x− y|| = r can be in different regions. 43

3.6 Estimation of appearance models with ρ = 0.06. In (a) we show the input images

and their ground truth segmentation. In (b) and (c) we show the appearance

models computed using the ground truth segmentation in blue (), the algebraic

method in green (), the spectral method in red () and the tensorial method

(). The images are from the Berkeley Segmentation [MFTM01] dataset. 50

3.7 Selected Brodatz patterns 51

3.8 Ground truth segmentations used to generate synthetic data. 52

3.9 Examples of synthesized images with textures. 52

3.10 Average appearance model estimation error (DB) as a function of ρ on images

composed of IID () and Brodatz () patterns disposed as in GT1 and

GT2. For both (a) and (b) the results on the left are from the algebraic method,

whereas the results on the right are from the spectral method. 54

3.11 Qualitative segmentation results: (a) original image and its ground truth seg-

mentation, (b) algebraic method, (c) spectral method, (d) ALT, (e) LSWD, (f)

ORTSEG, (g) FBS, and (h) PNMF. 57

3.12 Sample images from the Weizmann Segmentation Evaluation Database (SED,

shown in the first row) [AGBB11] and from the Singapore Whole sky Nighttime

Image SEGmentation Database (SWINSEG, shown in the second row) [DSLW17]. 61

3.13 Application our methods in natural scenes. The blue and red contours are the

results of segmentation using appearance models estimated using the algebraic

and spectral methods, respectively. 62

xiii

3.14 Ground truth segmentations used to generate the multi-region synthetic data. 64

3.15 Examples of synthetic textured images generated by the ground truth segmenta-

tion in Figure 3.14. 64

4.1 The edges connecting to a pixel i in Ggrid and Gdata. In the each image, the

thickness of each link is proportional to its weight. 69

4.2 Evaluation of NCut-Graylevel and MixNCut performances without sampling.

Column (a) show the test images of size 40 × 40, with different levels of noise.

In column (c) we show the value of J for a range of values for σI and σX . In

(c), we show evaluate the segmentation performance of MixNCut over various

combinations of σ and λ. In these experiments NCut averaged 6.31 ± 5.28s of

processing time and MixCut, 1.35± 0.25s. 77

4.3 Evaluation of sampling performance for various α. Column (a) shows two different

test images of size 200×200. Column (b) shows the average and standard deviation

of J segmentation measure for 100 runs of MixCut on the respective test image.

Column (c) shows the average time and standard deviation of the same runs.

Here, we set λ = 0.95 and σ = 1. 78

4.4 MixNCut results when varying λ. Column (a) shows the input image. Columns

(b)-(d) show the computed eigenvectors (on the left) and segmentations (on the

right) given by MixNCut for various values of λ and σ = 1. 78

4.5 Segmentation results comparing NCut and MixNCut on real images. Column (a)

shows the input images. Column (b) shows the eigenvector found by the original

NCut formulation on the left and the segmentation result on the right. Column

(c) shows the eigenvector found by the new MixNCut formulation on the left and

the segmentation result on the right. 80

4.6 Segmentation results using the proposed method for images with more than 2

regions. 81

xiv

4.7 Comparing NCut-Graylevel, NCut-Gabor, and MixNCut on textured images.

Column (a) shows the input images. Column (b) shows the eigenvector found by

the original NCut formulation on the left and the segmentation result on the right.

Column (c) shows the eigenvector found by NCut with Gabor features on the

left and the segmentation result on the right. Column (d) shows the eigenvector

found by the new MixNCut formulation on the left and the segmentation result

on the right. 83

4.8 Brodatz Patterns used in the synthetic experiments 84

5.1 Datasets used in our synthetic experiments and generalized eigenvectors computed

form the traditional NCut formulation. In each experiment, the leftmost set is

S1, the central one is S2 and the rightmost one is S3. 96

5.2 Results for NCut penalized with seeds information. In (a) and (c), we show the

initial datasets with the selected seeds circled in red and blue. In (b) and (d), the

computed eigenvectors are shown: on left, for the generalized eigenvalue problem

with dense matrices and, on the right, the same problem but without the explicit

computation of these matrices. The elapsed time of each solver is also presented. 97

5.3 Results for NCut penalized with the histogram disparity cue. In (a) and (c),

one color out of two possible is assigned to each datapoint. In (b) and (d), the

generalized eigenvectors computed using the histogram disparity cue are shown

in the same manner as described in Figure 5.2. 98

5.4 Results for NCut penalized with the color disparity cue. In (a) and (c), a random

RGB color around blue or red is assigned to each datapoint. In (b) and (d), the

generalized eigenvectors computed using the mean color disparity cue are shown

in the same manner as described in Figure 5.2. 99

5.5 Results for for NCut penalized with the appearance model data. In (a) and (c),

a appearance model probability value is assigned to each datapoint according to

the set it belongs to. On the image, their log-ratio values are depicted. In (b)

and (d), the generalized eigenvectors computed using the appearance model data

are shown in the same manner as described in Figure 5.2. 100

xv

5.6 Segmentation results of a blank image when seeds are added to it. In (a) the

proposed seeds are shown in white (background seeds) and dark gray (foreground

seeds). The remaining black pixels are unseeded. In (b), we show the resulting

penalized normalized cut eigenvector when the seeds penalty is applied (α = 1).

The resulting segmentation when the eigenvector in (b) is clustered via K-means

is depicted in (c). Image frames were added for visibility. The seed images are

from the Grabcut dataset [RKB04]. 101

5.7 Segmentation results of a real image when seeds are added to it. In (a) the

proposed seeds are shown in blue (background seeds) and green (foreground seeds)

on the original image. In (b), on the left we show the normalized cut eigenvector

without the use of the seed information and on the right the final segmentation.

In (c), on the left we show the penalized normalized cut eigenvector when the

seeds penalty is applied (α = 1) and on the right we show the final segmentation.

Images are from the Grabcut dataset [RKB04]. 102

5.8 Penalized Normalized Cut Eigenvectors from different segmentation cues/penalties.

In (a) we show the original images corrupted with Gaussian noise. The eigenvectors

computed from the histogram disparity, color disparity and appearance models

cues are shown in (b), (c) and (d), respectively. 105

List of Tables

3.1 Average DB distance between estimated and ground truth appearance models on

the synthetic data generated using different segmentation masks. We evaluate

our algorithms using different methods for selecting w0, w1 and ε (see text). 55

3.2 Average J index of different segmentation methods on the synthetic data generated

using different segmentation masks. 58

3.3 Comparative Segmentation Performance on the SED1 Database. 61

3.4 Comparative Segmentation Performance on the SWINSEG Dataset. 61

3.5 Average performance measures for estimation and segmentation results on the

multi-region synthetic data generated using different ground truth segmentations. 65

4.1 Comparative Segmentation Performance on the SED1 Database. 82

4.2 Comparative Segmentation Performance on the SWINSEG Dataset. 82

4.3 Evaluation of different segmentation methods on textured images. The table

summarizes accuracy and running time of each method on images with different

ground-truth segmentations. 84

5.1 Summary of proposed penalties for the Penalized Normalized Cut formulation 94

5.2 Comparative Segmentation Performance on the Grabcut Dataset for the penalized

and the traditional normalized cuts algorithms. 103

xvi

Chapter 1
Introduction

1.1 Motivation

One of the main features of modern society is its technological advancement. Thanks to that,

the amount of visual data, mostly in the form of images, one has access to is incomparable

to precedent ages and that plays a more and more important role in our lives. Furthermore,

images have the ability to record scenes, which can then be stored and studied. Over the

years, that opened space to immense advances in diverse fields, once barely explored by

scientists and engineers. In medicine, the creation of Magnetic Resonance Imaging (MRI),

Computed Tomography (CT), ultrasound, etc. enabled medical diagnostics and prescriptions

to be more efficient and assisted the discovery of the cure of many challenging diseases. In

remote sensing, satellite and airbone imagery became crucial to forestall surveillance and

political decision making to what concerns nature preservation. In telecommunications, the

onset of digital images made long distance face-to-face human interactions possible, from

affordable video calls to world wide virtual courses.

Along side with the advancements on the acquisition of visual data, there is the process of

extracting useful information from it. This task is usually very challenging to be accomplished

automatically, despite it being natural to our visual cortex. Therefore, the field of computer

vision arose as the study of the means by which one can automate the interpretation

of digitized visual scenes, which requires action on different levels. Low level vision is

concentrated in pre-processing the image for further undertanding or extracting features

from it. High level vision focus its attention on identifying the semantics of a scene, i.e,

which objects are present, what is their context, how do they related to one another,

1

2

Figure 1.1: Segmentation examples

etc. Transitioning from low to high level vision, there is the task of partitioning a scene

in meaningfully related regions, usually defined as image segmentation, one of the most

important and widely studied tasks in computer vision.

In image segmentation, we assume that a scene can be partitioned / segmented in regions

such that there is an intrinsic and meaningful relationship among the objects within each

region. The task then is to recover these regions. In the context of digital images, this task

can be seen a pixel labeling procedure or, in some cases, boundary detection. Figure 1.1

depicts some examples of binary segmentation outputs, where the task is to find exactly two

segments in an image. In each one of these examples, the one object present in the image is

detected. This exemplifies that the algorithm was able to find a meaningful correspondence

between the pixels within the segmented region. The interested reader is invited to the

survey of segmentation techniques and principles in [GW+18].

1.1.1 Applications

Segmentation techniques are widely applied in industry and science as they usually are

prepossessing steps to high level vision tasks such as object recognition or detection. Some

domains of application are the following:

• Medical imaging and diagnostics: As mentioned before, with the surge of CT, MRI

and ultrasound imagery there was an increase of interest in analyzing this kind of

data. Segmentation plays an important role here. For instance, a radiologist may use

segmentation techniques to aid their medical analysis. They can substantially reduce

the diagnostic time by making use of algorithms that automatically detect different

organs, tissue types or disease visual symptoms.

3

• Autonomous vehicles: Self-driving cars need to perceive their environment in order

to drive safely. Therefore, they require automation to detect relevant classes of

objects in their surroundings, like other vehicles, buildings, and pedestrians. Semantic

segmentation enables self-driving cars to recognize which areas in an image are safe to

drive.

• Robotics and manufacturing: Similarly to self-driving cars, robots also need to extract

information from their surroundings in order to operate. In some tasks, this information

is purely visual or its cheaper if it’s visual. Examples of that can be found in automatic

inspection and production line control.

• Creativity tools: It is often necessary for image and video editors to separate objects

at pixel-level. This creates opportunities to implement targeted effects on specific

areas of a given image, such as blurring its background to sharpen the focus on the

foreground or create “stickers” out of specific regions. In the industrial context, image

segmentation also enables the development of “try-on” experiences, where users can

virtually sample different products (clothes, cosmetics, etc.) before buying them.

1.1.2 Challenges

Despite its importance, image segmentation is an ill-posed problem. In general, many

different and equally reasonable segmentations can arise from a natural image. This usually

leads developers and theoreticians to acknowledge the necessity of some level of human

supervision in order to achieve desired segmentation results. This supervision can come in

the form of seeds, where some individual pixels are manually assigned to different segments;

bounding boxes, where the user provides a rectangular region that encompasses the whole

of an object to be segmented; and regions’ appearance models, i.e., the expected color

distributions of each object in the scene. In recent years, there has also been an increasing

interest in learning-based solutions to this intrinsic ambiguity. More and more, practitioners

are successfully using deep neural networks architectures trained in very large labeled image

datasets to attempt segmentation.

Although the above strategies alleviate the ill-posedness of segmentation tasks, they are

4

usually costly (in the case of labeled data) or simply non-available. For that reason it is

also important to consider the problem of unsupervised image segmentation. Here, no user

interaction is needed, which then, as we shall see, requires the image model to be more

restrictive in order to avoid the ambiguity mentioned above.

Beyond this intrinsic ambiguity in image segmentation, the developer has also to face the

effect on image quality on their algorithms. In certain applications, such as in medical and

remote sensing imaging, the input data is often corrupted during the acquisition process.

Furthermore, in these applications, the segmentation algorithm is expected to find low

contrast objects to be segmented in an image. In these situations, methods that rely on edge

detection procedures may underperform at detecting crucial objects in a scene.

For that reason, region-based methods have been successfully applied to segmentation. These

algorithms often depend either (1) on appearance models that characterize the distribution

of pixel values in different image regions or (2) on pair-wise pixel similarity functions that

explicitly model the relationships among pixels within each region. As one may imagine, this

modeling process, when done unsupervisedly, is at the same time challenging and crucial for

the algorithms performance. In (1), for example, researchers have attempted to estimate

these models by using parametric estimation or iterative methods. Despite their practical

success, these solutions present issues in their generalization, due to their parametric nature,

and are usually computationally slow. For (2), classical solutions that consider similarity

between neighboring pixels fail to model regions whose pixels are locally dissimilar and

globally similar, such as textures. Furthermore, the usage of filtering techniques to alleviate

this drawback is notorious for oversmoothing segmentation boundaries.

1.2 Organization of this thesis

In this thesis, the focus will be given to graph-based segmentation methods, where the

segments of an image are found using techniques from graph analysis. Here, we aim to

introduce novel segmentation methods to tackle the aforementioned challenges. These

contributions can be grouped in two domains: appearance estimation for Markov Random

Fields (MRF) based algorithms and similarity graph construction for spectral segmentation

5

techniques with global appearance modelling. In both cases, we show that the traditional

algorithms associated to either section can be improved in performance and/or interpretation.

The proposed algorithms also showed practical convenience, being able to process high-

resolution images without loss of performance.

The remainder of this thesis is organized as follows:

Chapter 2 We review the theory and the state of the art techniques in graph-based image

segmentation, particularly in the domains of MRF modeling and spectral clustering.

We discuss the drawbacks of each method and provide the commonly proposed solutions

to them.

Chapter 3 We introduce two new non-parametric appearance model estimators that work

directly on an image, without any explicit user intervention. These methods rely on

second order statistics of fast estimation, from which simple algebraic expressions

are derived. The estimation is then accomplished by solving a system of linear and

quadratic equations in one method or by computing an eigenvector in the other.

Overall, when added as a step in classical graph cut segmentation solvers, the new

methods are efficient in challenging segmentation scenarios and faster than most of the

considered state-of-the-art unsupervised segmentation techniques. We also introduce

an appearance estimation technique based on the method of moments for images with

multiple regions.

Chapter 4 We introduce a new spectral image segmentation method that incorporates

long range relationships for global appearance modeling. To implement our image

segmentation approach we extend the classical normalized cuts spectral algorithm to

a setting where there are multiple graphs that encode different grouping cues. Our

approach for image segmentation combines two graphs: a dense graph to capture the

global appearance of regions and a grid graph to capture the spatial relationships

between pixels. To tackle the computational challenge of dealing with a dense graph,

we use a graph sparsification approach that enables the efficient segmentation of high

resolution images. In contrast to the common practice, the resulting method can

segment challenging images without any filtering or pre-processing.

6

Chapter 5 We show how to incorporate seed, appearance models and two segmentation

cues in traditional spectral segmentation algorithms in a novel manner. The proposed

framework, named Penalized Normalized Cuts, is constructed such that a penalty

function is added to traditional normalized cut criterion for clustering. Through

simple choices of this plug-and-play penalties, different user/expert or prior knowledge

about the final segmentation can be added to the spectral clustering pipeline in an

interpretable way. On the implementation side, we also show that our formulation

leads a scalable sparse eigenvalue problem that can be efficiently solved via typical

power iteration methods. Finally, we present preliminary results of our methods in

synthetic and real experiments.

Chapter 6 We conclude this thesis by summarizing the contributions of each proposed

method and give an overview of possible future directions of research.

Chapter 2
Graph-based Image Segmentation and Spectral

Clustering

In this chapter we review the theoretical background on graphical methods for image

segmentation. We define our image model and give a brief summary of Markov Random

Fields (MRFs), the associated optimization techniques and Normalized Cuts. We also present

some segmentation algorithms that will be used in the experiments sections of later chapters

for performance comparison.

2.1 Graph-based Methods for Image Segmentation

Let I : Ω→ L be an image on n pixels, where Ω is a set of pixel locations and L is a finite set

of pixel values. For example, for an h by l graylevel image we have Ω = {1, . . . , h}×{1, . . . , l}

while L = {0, . . . , 255}. We use I(i) to denote the value of a pixel i ∈ Ω. In graph-based

image segmentation, I is is represented as a weighted undirected graph G = (V,E). The

nodes in V represent the image pixels and the edge set E consists of edges representing

relationships between pixels, whose weight w(i, j) encapsulates the similarity between pixels

i and j. The task is to partition G into K disjoints sets such that the similarity among the

nodes within a set is high, while the similarity of nodes in different sets is low.

Many graph approaches using the above representation have been developed for image

segmentation. The reasons behind its popularity are (1) the development of efficient

algorithms for computing approximate or exact solution to the the Markov Random Field

(MRF) inference problem and (2) the theoretical and practical advances in tackling graph

clustering problem, specially with the emergence of spectral clustering techniques.

7

8

2.1.1 Bayesian Formulation

In order to model the image segmentation problem, we start by defining the vector x ∈

{1, . . . ,K}n as a labeling vector that assigns each pixel in I to a segment. We model it

as the realization of a discrete random variable X of same dimension and assume it to

be distributed according to a posterior probability distribution P (X = x|I) (shortened to

P (x|I)). Based on that our goal is to find the appropriate x for our problem.

Bayesian statistics is a fundamental theory in estimation and decision-making. According to

the Bayes rule, the posterior probability can be computed by using the formula:

P (x|I) =
P (I|x)P (x)

P (I)
, (2.1)

where P (x) is the prior distribution on labelings x, that gathers all the assumptions about

how good or realistic labelings should behave; P (I|x) is the likelihood function, which models

the probability that I was generated by a segmentation represented by x, and P (I) is a

distribution on I which is a constant when I is given.

In Bayesian decision-making, when both the prior distribution and the likelihood function of

a segmentation are known, the best that can be estimated from these sources of knowledge

is the Bayes labeling, formulated via a risk function:

Risk(x) = EX|I [Cost(x,x′)] =
∑

x′∈{1,...,K}n
Cost(x,x′)P (X = x′|I), (2.2)

where, the cost function Cost(x,x′) (which is also called “loss" in other contexts) computes

the penalty of estimate x when the truth is x′ and can be chosen based on one’s preference.

In Bayesian statistics, that risk is minimized in order to obtain the optimal (Bayes) estimate.

9

In this thesis, we focus our attention to the 0−1 Cost function for its computational benefits1:

Cost(x,x′) =


0, ‖x− x′‖ < δ

1, otherwise
(2.3)

where δ is a small constant. As δ → 0, the risk in Eq.. 2.2 can be approximated by

Risk(x) ≈ 1− cP (x|I) (2.4)

where c is a constant. The Bayes estimate of x is given by the minimizer of Risk(x). Using

Eq. 2.1, it can then be computed as:

x̂ = arg min
x∈{1,...,K}n

Risk(x) = arg max
x∈{1,...,K}n

P (x|I) = arg max
x∈{1,...,K}n

P (I|x)P (x), (2.5)

where we used the fact that P (I) is constant for a fixed image. The above estimator is called

Maximum a posteriori (MAP) estimator and it is one of the most popular statistical criteria

for optimality in bayesian vison modeling [GG84, Li09].

2.1.2 Markov Random Fields and the Gibbs Formalism

Also typical to vision problems is to assign P (x|I) to be the posterior distribution of a

Markov Random Field. Let G = (V,E) be an undirected graph whose nodes correspond

to the random variables X = {Xi}i∈V . Let Ni be the set of neighboring nodes of i on G.

X is said to be a Markov Random Field (MRF) on V with respect to G if the following

conditions are satisfied:

Positivity: P (X = x) > 0 ∀x ∈ {1, . . . ,K}n.

Markovianity: P (Xi|XV \i) = P (Xi|XNi), ∀i ∈ V .

While the the positivity condition is only assumed for technical reasons, the Markovianity

property above characterizes the local characteristics of X. In other words, it states that only

1Another important cost function is the quadratic cost (or loss), whose risk minimization leads to the
computation of the posterior mean. Unfortunately, such statistic is computationally intractable for reasonably
sized problems, such as the ones in image segmentation.

10

neighboring labels have direct interactions with each other. This is an important attribute

for modeling, since it simplifies computation and represents a reasonable approximation of

complex pixel-interactions in real images.

An important step in Bayes labeling of MRF’s is to derive its joint distribution. According

the Hammersley-Clifford theorem [HC71], it is possible to show the equivalence between a

Markov Random Field and a Gibbs Random Field (GRF). X is a GRF on V with respect to

G if and only if its configurations obey a Gibbs distribution, i.e.,

P (X = x) =
1

Z
exp

(
− 1

T
E(x)

)
, (2.6)

where Z =
∑

x exp
(
− 1
T E(x)

)
is a normalizing constant, T is the a constant called tempera-

ture (from now on assumed to be 1) and E(x) is the energy of a configuration x. When X is

a GRF, the energy E(x) can be written as

E(x) =
∑
c∈C

ψc(xc), (2.7)

where C is the set of maximal cliques2 in G, xc are the variables in clique c, ψc(·) are positive

potential functions, defined according to the problem at hand. This formulation has a great

practical value, since it provides a simple way of specifying the joint probability of X by

choosing appropriate clique potentials ψc(xc) according to the desired system behavior.

In most imaging problems, G only contains pairwise interactions between its nodes, i.e, each

clique includes no more than two variables. This leads us to reformulate the configuration

energy as:

E(x) =
∑
i∈V

∑
j∈Ni

ψi,j(xi, xj). (2.8)

In modeling the likelihood distribution P (I|x), we also assume it is Gibbs distributed with

energy function given by:

E(x, I) =
∑
i∈V

φi(xi, I) (2.9)

2A maximal clique a clique that cannot be extended by including one more adjacent vertex, meaning it is
not a subset of a larger clique.

11

for certain unary potential functions φi. Now having expressions for both the prior P (x)

and the likelihood P (I|x), and defining the energy:

E(x|I) = E(x, I) + E(x) =
∑
i∈V

φi(xi, I) +
∑
i∈V

∑
j∈Ni

ψi,j(xi, xj), (2.10)

the MAP problem in Eq. 2.5 can be restated as:

x̂ = arg max
x∈{1,...,K}n

P (x|I) = arg min
x∈{1,...,K}n

E(x|I) (2.11)

In the next section, we will see how the above optimization translates to a segmentation

problem and which strategies can used to (approximately) solve it.

2.1.3 Graph Cuts

In binary segmentation problems, where the goal is to partition an image in two regions, the

random variables in the MRF framework will be binary and will correspond to regions in the

image. A region R is a subset of the pixels in Ω. Assume the image I can be divided into

two regions R0 and R1 and let x ∈ {0, 1}n denote now a binary assignment of the pixels in

Ω.

In this framework, the unary potentials φi(xi, I) assume the meaning of how well the pixel i

has its appearance (color information, for example) represented by the model of label xi. In

many MRF based segmentation solvers [RKB04, TBAMB15], the appearance model θ ∈ RL

described by a label is a discrete distribution that specifies the typical values for the pixels

in the image region defined by that label In other words, it is the normalized histogram of

the pixel values (colors) within a region of I. Let θ0 and θ1 be the appearance models of

regions R0 and R1. A typical choice for φi is φi(xi, I) = − ln θxi(I(i)), i.e., the negative

log-probability of pixel value I(i) being found in region xi. In other words, minimizing each

φi(xi, I) for all i encodes the intuition that pixels should be assigned to regions where they

are most likely to be found in according to their appearance models.

The binary potentials ψi,j(xi, xj) here give a notion of spacial consistency to the final

labeling, i.e., when minimized, it encourages neighboring pixels to have the same labels.

12

In order words, it gives preference to short region boundaries, a common assumption

for realistic segmentations. Therefore, one possible choice for these potentials can be

ψi,j(xi, xj) = |xi−xj | for i and j neighbours in G, which is called the Ising model within the

statistical mechanics community [Isi25, P+98, Ben10]. Another common choice for them is

ψi,j(xi, xj) = exp
(
−‖I(i)− I(j)‖22/σ2

)
, where ‖·‖2 is the Euclidean norm and σ is a constant

[BFL06]. In this thesis, we will use the Ising model for simplicity.

Plugging the definitions of φi and ψi,j back into Eq. 2.10 and adding a multiplicative constant

λ > 0 to ψi,j as a parameter to control the prior model, we have that the MRF energy for a

binary segmentation task becomes:

E(x|λ, θ0, θ1) = −
∑
i∈Ω

ln θxi(I(i)) + λ
∑
i∈Ω

∑
j∈Ni

|xi − xj |. (2.12)

If one has the appearance models θ0 and θ1, the above energy can be efficiently minimized by

what is called the Graph Cuts algorithm. Initially studied by [GPS89], it was then further

developed and popularized by the work in Eq. [BVZ99]. To segment a given image, an

undirected graph G′ = (V ′, E′) is created from G by adding to it two node terminals, s and

t, and the edges connecting each pixel to them:

V ′ = V ∪ {s, t}, E′ = E
⋃
i∈V
{i, s}

⋃
j∈V
{j, t} (2.13)

This construction leads us to two different types of edges and therefore weights, in G′

Terminal edges, t-links: These links encode the appearance terms of the cost function,

represented in our unary potentials. For our appearance based segmentation purpose,

the weight of the edge {i, s} connecting pixel i and s is given by w(i, s) = − ln θ0(I(i)),

while w(i, t) = − ln θ1(I(i)) for the edge {i, t} [RKB04, TBAMB15].

Neighboring edges, n-links: These edges capture the region consistency/boundary terms

of the cost function. Since we are using Ising model potentials, w(i, j) will be constant

and equal to λ.

An example of this construction is depicted in in Figures 2.1a and 2.1b, where the weight of

13

(a) Original Image (b) Graph G′ (c) Minimum st-cut (d) Segmentation

Figure 2.1: Graph Cut algorithm. Adapted from [BFL06]

each edge is indicated in its thickness. In this example, the user has access to the appearance

models of both back and foreground. Then, the segmentation x that globally minimizes 2.12

can be computed by finding the minimum st-cut of G′3. That can be done in polynomial

time using a “max-flow” algorithm [BJ01]. Figure 2.1c shows the minimum cost cut of the

graph in 2.1b and Figure 2.1d provides the final segmentation result.

So far, we dealt with binary segmentation problems, but this framework can be extended to

multiregion segmentation. Consider that we now have K regions in I, each with their re-

spective appearance models θ1, . . . , θK , and redefine x ∈ {1, . . . ,K}n. Then, the multiregion

segmentation problem can be modelled as a minimization of the following energy:

E(x|λ, θ0, . . . , θK) = −
∑
i∈Ω

ln θxi(I(i)) + λ
∑
i∈Ω

∑
j∈Ni

1(xi 6= xj). (2.14)

where 1(·) ∈ {0, 1} is an indicator function. The smoothing term used above is called

Potts model. While minimizing Eq. 2.12 can be exactly solved in polynomial time via a

min-cut/max-flow algorithm, one can show that computing the global minimum of Eq. 2.14

is, in general, NP-hard [BVZ99]. Indeed, the main contribution of the work in [BVZ99] was

to propose approximate iterative solvers for the minimization of Eq. 2.144, called α-expansion

3Let G be a graph containing nodes marked as s and t. The minimum st-cut of G is a partition of its
nodes into sets S and T with s ∈ S and t ∈ T that minimizes

∑
i∈S

∑
j∈T w(i, j), i.e., the weight sum of the

edges going across the partition.
4While we are focused on the Potts model, the authors in [BVZ99] show that their algorithms only require

the smoothing term to be either a metric (in the case of α-expansion) or a semi-metric (in the case of
αβ-swap).

14

and αβ-swaps algorithms. Both methods are based on successive improvements of a current

labeling. In the following, we present a quick overview of these methods, but more details

on these constructions and the respective proofs can be found in [BVZ99].

α-expansion: The main idea of the α-expansion algorithm is to successively segment all

pixels labeled α ∈ {1, . . . ,K} from those labeled as non-α (here represented by ᾱ)

using the standard min-cut/max-flow algorithm. At the end of each segmentation,

the pixels on the same segment as the terminal node representing the α label will

be marked as α and the remaining nodes will keep their prior labels. As shown in

[BVZ99], the region in I labeled as α will necessarily expand or keep its prior size after

each iteration, hence the algorithm’s name.

i a j

ᾱ

α

xi xj

w(α, i) = − ln θα(I(i))

w(ᾱ, i) =

{
− ln θxi(I(i)), xi 6= α

∞, xi = α

w(a, i) = λ1(xi 6= α),

w(ᾱ, a) = λ

Figure 2.2: The graph used in the α-expansion algorithm for a 1D image. The nodes
representing the image pixels are in black and their current graph partitions are shown in
gray. The terminal nodes are depicted as α and ᾱ. The node a is added in between every
pair of nodes whose region assignments are different.

At each iteration t a new graph G(t) is constructed for the current α being expanded

according to a current pixel assignment x(t). Figure 2.2 gives an example of such graph

construction for a 1D image. The algorithm will iterate through each possible label for

α until it converges. The authors in [BVZ99] also provided an approximation factor

for this algorithm when minimizing the energy in 2.14.

αβ-swaps: In this algorithm, we are interested in improving the energy in Eq. 2.14 for the

set of pixels assigned to a pair of labels α and β on a current assignment x(t). The

αβ-swap algorithm successively segments all α-labeled pixels from β-labeled pixels

using the binary graph cut method and relabels as them α or β according to which

segment they end up belonging to.

15

i j

β

α

α β

w(α, i) = − lnθα(I(i))

+ λ
∑
k∈Ni

1(xk 6∈ {α, β})

w(β, i) = − lnθα(I(i))

+ λ
∑
k∈Ni

1(xk 6∈ {α, β})

w(i, j) = λ

Figure 2.3: The graph used in the αβ-swap algorithm for a 1D image. The nodes
representing the image pixels are in black and their current graph partitions are shown in
gray. The terminal nodes are depicted as α and β.

(a) Seeds (b) Bounding Box

Figure 2.4: Typical user interactions. Adapted from [TBAMB15]

At each iteration t a new graph G(t) is constructed according to x(t). Figure 2.3 gives

an example of such graph construction for a 1D image. The algorithm will change the

α− β combination at each iteration and will iterate through all possible combinations

until it converges.

2.2 Appearance Modeling

In most real world imaging problems, the appearance models are not available or are expensive

to obtain. In fact, as shown above, the segmentation problem would be easily approachable

if these models were given. Therefore, the techniques shown in the previous section require

the estimation of these models in order to be applicable in practice.

16

2.2.1 User interaction

A solution for the model estimation issue is to allow for some user interaction. Typically,

the interactive data comes in the form of seeds, where the user marks some pixels to belong

to the background and to the foreground separately (Figure 2.4a), or as a region, usually a

rectangular bounding box, coarsely detecting the location of the object in the image (Figure

2.4b). These solution has been vastly employed in many graph-based image segmentation

approaches.

The classical approach to use seeds within the graph cut methodology was introduced by

[BJ01]. The main idea is to frame the hard constraints imposed by the seeds as weights on

the t-links of the graph construction depicted in Figure 2.1. In [BJ01], the authors set the

weights of the edges from "seeded" pixels to their terminals (say, the foreground seeds to

terminal corresponding to the foreground region) to be constant and kept all the other t-link

weights as zero. The authors in [Gra06] used the seeds data to define the exit nodes of a

random walk on the grid graph defined by the image, where the edge weights corresponds

to the likelihood that walker crosses that edge. Starting from each unlabeled pixel, the

walker computes the probability that it first reaches one of the seeds. The pixel is then

labeled as foreground of background according to that seed. The work in [DMFU10], on

the other hand, proposes a framework where the edge weights are learned from the the

information provided by the seeds. This new graph is then partitioned using the seed-based

graph cut algorithm from [BJ01]. Within the deep learning based approaches, the authors

of [XPC+16] transform the foregroundand background seeds into two Euclidean distance

maps that are then concatenated with the RGB channels of the original image to form a

image-seed pair. Many of these pairs are then generated from a segmentation dataset, from

which a Fully Convolutional Network is trained to estimate segmentation probability maps.

The same authors then extended their method to, potentially misaligned, bounding boxes

in [XPC+17]. In a related approach, [MCPTVG18] proposes adding extreme points in an

object (left-most, right-most, top, bottom pixels) to the CNN pipeline in order to compute

more precise segmentations with less user input. A final example of the use of bounding

boxes in image segmentation is the Grabcut algorithm [RKB04], which will be discussed in

the following section.

17

Initial 3rd iteration 6th iteration 9th iteration Final iteration

Figure 2.5: Model estimation and segmentation using ALT. On the bottom, we see how
both foreground and background color distributions estimated by ALT () evolve compared
to the ground truth appearance models (). The evolution of the segmentations given the
models is shown on top.

2.2.2 Iterative Methods

From Section 2.1, one can arrive at the following observations:

• From a segmentation S of an image in K regions, it is possible to compute the

appearance models θ1, . . . , θK by computing color histograms5.

• From the appearance models θ1, . . . , θK , one can find a segmentation S. Using our

graph image model, this can be done by minimizing Eq. 2.12 when K = 2 using

graph cuts or approximately minimizing Eq. 2.14 for K > 2 using the α-expansion or

αβ-swap algorithms.

These observations turn the image segmentation problem in a “chicken-and-egg” problem and

provide the basis for an simple iterative solution to model-based image segmentation: (1)

start with an initial segmentation S; (2) compute the normalized color histograms of each

region of I according to S; (3) for a constant λ, compute a new segmentation S′ using the

current appearance models; (4) iterate until convergence. To compute a new segmentation

5In RGB images, this computation may be impractical, given the color space size. Further into the text,
we will show how to avoid this issue.

18

using the current appearance models we minimize the energy in Equation (2.12) using the

usual max-flow based algorithms for graph cuts [BVZ99]. It is easy to verify that this

simple iterative method converges. Furthermore, the authors in [TAB14] showed that these

iterations gives rise to a majorization-minimization method for an entropy-based energy.

This local solution then provides a segmentation that is coherent and whose appearance

models have low entropy. In practice, when computing appearance models we “smooth” the

histograms of each region by adding a constant K = 1 to their bins before normalizing them.

In this thesis, this method will called ALT and an example of its iterations is showed in

Figure 2.5 for an image composed of two Brodatz textures [Bro66].

The above method becomes impractical when dealing with RGB images, since the histogram

computation step becomes prohibitive in that space due the the amount of different colors

a typical colored image has. The method proposed in [RKB04], called Grabcut, solves

this issue by estimating parametric appearances (Gaussian mixture models, GMM, with

5 components) on the iteration’s estimation step. They also added a final step for further

user editing via extra seeds addition. Grabcut’s efficient results in practical settings made it

the standard segmentation algorithm in industrial applications, with several open source

implementations. Figure 2.6 depicts some of its results on challenging real world images.

Some improvements were accomplished over the original Grabcut algorithms. [CYW+08]

integrates a local color pattern model and edge model in the graph-cut framework in

order to improve robustness and enhance the discriminability of the method. In [HYL08],

a constrained Delaunay triangulation is used in order to improve the initial foreground

estimation from the bounding box data. The authors successfully applied this technique

to clothing segmentation. The work in [TBAMB15] outlines the correspondence between

the energy in Eq. 2.12 and a probabilistic version of the K-means objective function. From

there, they show that the optimization promoted by the Grabcut algorithm can be improved

by replacing its GMM fitting with a kernel K-means feature clustering. Furthermore, their

new optimization technique is shown to be closely related to normalized cuts, which will be

discussed in further details later. Finally, it is worth noting that the Grabcut method and

its variants have been extensively applied to compute or improve segmentation results when

some data about the foreground and/or background is loosely know. For instance, the work

19

Figure 2.6: Grabcut segmentation results. Adapted from [RKB04]

in [CMH+14] uses the information coming from its object saliency estimator in order to give

an initial loose segmentation mask to Grabcut.

2.2.3 Variational Approaches

Departing from the graph based segmentation modeling, it is worth discussing about varia-

tional approaches to segmentation to the extent that they also realize appearance model

estimation. Within the vast variational image segmentation literature, geometric deformable

models [Set99, CCCD93, MSV95] have been particularly popular within the computer vision

community. This is mainly because of their ability to handle topological changes of the

unknown object to be segmented and their mathematically well established curve evolution

theory. The so-called level set methods sees segmentation boundaries implicitly defined as

zero level set functions. These functions are then optimized according to the segmentation

problem at hand.

Let f(p, t) be a moving curve, where p denotes the parameter for the curve and t denotes

time. We want to evolve the f so that it forms a segmentation boundary. A reasonable

formulation to this propagation is

∂f(p, t)

∂t
= F (x, y)n, (2.15)

where the curve moves along its normal direction n at a velocity F (x, y), where x and y are

the coordinates on the 2D plane. The curve propagation stops where F (x, y) = 0. If F (x, y)

is set to be the reciprocal of the image gradient, for example, the propagation stops where

the gradient is large, very likely being the boundary of an object. Alternatively, we can also

20

define an integral energy function E(f) for the curve f(p, t), such that:

E(f) =

∫
Ω
e

(
x, y, f,

∂f

∂x
,
∂f

∂y

)
dxdy, (2.16)

where e is a local energy function defined at each coordinate in the space Ω. In that case,

solving the Euler-Lagrange equation, one can also show that:

∂f(p, t)

∂t
= −E(f)

∂f
(2.17)

The propagation in Eq. 2.15, however, does not allow for topological changes in the curve

during its propagation. To overcome this problem, the level set method was proposed [Set99].

Let ψ(x, y, t) be a higher dimensional function whose zero level set now implicitly defines

the curve f . Taking ψ to be a 3D surface, then we have that:

f(t) = {(x, y)|ψ(x, y, t) = 0}. (2.18)

One can then show that the curve evolution on Eq. 2.15 is associated with the following

surface evolution:
∂ψ(x, y, t)

∂t
= F (x, y)‖∇ψ(x, y, t)‖, (2.19)

where ∇(·) is the gradient of a function w.r.t. the spacial coordinate point (x, y).

In level set methods, the definition of the energy E(f) (and therefore the associated velocity

F (x, y)) is crucial. In the famous Chan-Vese Active contour formulation [CV01], the following

energy, derived from the Mumford-Shah functional [MS89b], is used:

E(f) =

∫
R0

(I(x, y)− µ0)2dxdy +

∫
R1

(I(x, y)− µ1)2dxdy + λ|∂S|, (2.20)

where R0 and R1 are the image regions defined limited by f , µ0 and µ1 are their respective

mean intensities, |∂S| is the boundary length of the segmentation defined defined by f and

λ is a balancing term. In [CV01], the above energy is extended to an energy on the level set

21

function ψ:

E(ψ) =

∫
Hε(ψ(x, y, t))(I(x, y)− µ0)2dxdy +

∫
(1−Hε(ψ(x, y, t)))(I(x, y)− µ1)2dxdy

+ λ

∫
δε(ψ(x, y, t))‖∇ψ(x, y, t)‖dxdy, (2.21)

where the integral is evaluated on the whole image space, Hε(·) is the is the smoothed

Heaviside function,

Hε(z) =


0, if z < −ε

1, if z > ε

1
2

(
1 + z

ε + 1
π sin

(
πz
ε

))
, otherwise

, (2.22)

and δε is its derivative. Figure 2.7 shows the resulting smoothed Heaviside function for some

values of ε. The above energy is minimized alternating the computation of µ0 and µ1 (with

ψ fixed) as

µ
(t)
0 =

∫
I(x, y)Hε(ψ(x, y, t))dxdy∫

Hε(ψ(x, y, t))dxdy
, µ

(t)
1 =

∫
I(x, y)(1−Hε(ψ(x, y, t)))dxdy∫

(1−Hε(ψ(x, y, t))dxdy
(2.23)

and ψ (with µ(t)
0 and µ(t)

1 fixed) such that it satisfies the Euler-Lagrange equation:

δε(ψ)

[
λ div

(∇ψ
‖∇ψ‖

)
+
(
I − µ(t)

0

)2
−
(
I − µ(t)

1

)2
]

= 0. (2.24)

When this process converges, the final segmentation is given by the zero level set of ψ.

In the above, it is possible to notice some similarities between the alternations in Grabcut

and in Chan-Vese algorithms: both iterate between computing a statistic that pertains to

each region in the current image partition and updating the segmentation given that newly

computed statistic. While the statistic in Chan-Vese is simply the mean color intensity, the

authors in [NBCE09] propose a level set formulation that computes cumulative appearance

models of each region at each step and uses them to update ψ. In their work, the also show

that this new iterative algorithm, under certain assumptions, searches for regions whose local

appearance models (i.e., within a a certain radius around each pixel) are similar according

22

−0.5 0 0.5

0

0.5

1

(a) ε = 0.01

−0.5 0 0.5

0

0.5

1

(b) ε = 0.1

−0.5 0 0.5

0

0.5

1

(c) ε = 0.3

Figure 2.7: Smoothed Heaviside function for various values of ε.

to a Wasserstein distance. In this thesis, this method will be called LSWD, for Level Set

segmentation based on Wasserstein Distances.

2.2.4 Implicit Modeling

Although the appearance information is necessary in model based segmentation algorithms,

it does not need to be explicitly computed. In other words, it is possible to suggest new

appearance-based segmentation energies, whose minimization algorithm does not require

appearance computation. In the algorithm called "Grabcut in One Cut" [TGVB13], for

instance, the authors propose the minimization of the following energy:

E(S, h0, h1) = −‖h0 − h1‖1 + λ
∑
i∈Ω

∑
j∈Ni

|xi − xj |, (2.25)

where ‖·‖1 is the L1 norm and h0 and h1 are the unnormalized appearance models (histograms)

of each region defined by the segmentation S. Here, note that we are interested in the

optimization of both S and the appearances at the same time, such that the ideal segmentation

will put h0 and h1 as far from each other as possible according to the L1 metric. As the

algorithm’s name suggests, this minimization can be accomplished by computing one graph

cut, and the method’s ingenuity lies in the construction of such a graph. The idea is to add L

auxiliary nodes to usual image grid graph, one node for each color in I. Then, each pixel node

is connected to the node that corresponds to its color. In [TGVB13], the authors showed

that the value of a cut on this simple graph has the same effect as computing −‖h0 − h1‖1

23

up to an additive constant. In their paper, they also explain how to use seed or bounding

box data in their proposed framework.

2.2.5 Factorization-Based Methods

In [YWC15], Yuan et al. developed a method to achieve image segmentation by making use

of local pixel information and computing what could be thought as a spectral appearance

model. By spectral, the authors mean the filter responses computed through the convolution

of an image window W with a chosen bank of K filters. Then, for the same window W , they

define a local spectral histogram with respect to a filter bank as:

hW =
1

|W | [hW (1), . . . , hW (K)], (2.26)

where | · | denotes cardinality and hW (i) is the response of the i-th filter on W . In Figure

2.8a, a rectangular region of the image is depicted around a pixel labeled A. For that region,

the authors noticed that:

hW ≈ w1h1 + w2h2 + w3h3 = [h1, h2, h3]>[w1, w2, w3], (2.27)

where h1, h2 and h3 are the spectral histograms of the textures on the upper right, center

and lower left corners, respectively, and w1 + w2 + w3 = 1 (from the location of A and its

surrounding region, w2 should be set to zero). In other words, the spectral histogram around

A is a linear combination of the spectral histograms of the constituent textures in I. That

led the authors to consider the histograms of all possible windows in the image (which can be

efficiently computed using the integral histograms technique [Por05]). Let X be the matrix

of these histograms, stacked, let Z be the matrix of representative spectral histograms (one

for each region) and let β the matrix of weights. Then, it follows that:

X ≈ Zβ. (2.28)

One can manually put a seed in each homogeneous region, i.e. fully inside a sole texture, to

compute representative features and proceed with least squares to estimate the weights of

24

(a) (b)

Figure 2.8: Linear combination of spectral histograms. Adapted from [YWC15].

each region/pixel:

β ≈ (Z>Z)−1Z>X. (2.29)

Finally, the newly computed weights can determine the segment label of each pixel, by

assigning it to the region that has the largest weight. Figure 2.8b show the result of the

application of this algorithm to the image in Figure 2.8a. In [YWC15], it is also proposed a

method to compute the representative features in an unsupervised manner by extracting the

singular vectors of X. Then, nonnegative matrix factorization via an efficient alternate least

squares method is used to ensure the nonnegativity constraints. From this technique, it is

also possible to estimate the number of segments in the image. In this thesis, this method

will be called FBS, for Factorization-Based Segementation.

Drawing from a similar intuition, [BMB16] proposed an algorithm that first oversegments

the image into regions through a watershed transform, extracts features from each region (it

could be a color histogram or the average color within), stacks them into a feature matrix

and uses nonnegative matrix factorization to estimate the regions’ weights. The authors then

used the information from the graph generated by the watershed transform to regularize the

computed weights. Here, this algorithm will be called PNMF, for Projective Non-Negative

Matrix Factorization on a Graph.

Finally, the work in [MMF+14] considers an image as a collection of superimposed textures

and develops an algorithm, named ORTSEG, based on local color histograms, non-negative

25

matrix factorization and image deconvolution (deblurring) to estimate the underlying seg-

mentation.

2.3 Spectral Solvers

So far we have been dealing with the problem of partitioning a graph representing an

image in order to obtain a segmentation. In the previous sections, we explored how this

can be accomplished via appearance modeling and graph cuts. Now, we will focus on

some algorithms to directly partition the image graph without any reference to the region

appearance distributions, even implicitly. To that goal, we shall redefine the original graph

weights to enforce that pixels within a partition should have similar color appearance and

that nearby pixels should generally be given the same labels. In other words, the edge

weights should be defined as similarity functions between pixels, i.e., the more similar pixels

i and j are, the greater w(i, j) is. A discussion on particular weight choices is explored in

Section 2.3.2.

2.3.1 Normalized Cuts

Ideally, in image segmentation we would like the pixels in each partition to be similar to each

other and dissimilar to the pixels from other partitions. Let (A,B) be a disjoint partition (a

segmentation) of G. Suppose w(i, j) measures the similarity between pixels i and j. Then,

a good partition choice could be that that minimizes the total edge weight that has been

removed to produce A and B. This measure is what is called the cut between A and B on G:

Cut(A,B|G) =
∑

i∈A,j∈B
w(i, j). (2.30)

One would consider the optimal partition to be the one that minimizes the cut value.

However, using such criteria heavily favors partitions of unbalanced sizes, as cutting small

sets of isolated nodes in the graph produces very little cut values. To counter this issue,

Shi and Malik [SM00] introduced the normalized cut criteria, which takes into account each

partition’s total edge connections to all the nodes in the graph. The normalized cut value is

26

then defined as:

NCut(A,B|G) =
Cut(A,B|G)

Vol(A|G)
+

Cut(A,B|G)

Vol(B|G)
, (2.31)

where Vol(A|G) =
∑

i∈A,j∈Gw(i, j) is called the volume of A. Using the normalized cuts

criteria, the small cuts isolated nodes may produce are counterbalanced by the small volume

of one of their partitions, which then entails large normalized cut values.

Unfortunately, as mentioned in [SM00], minimizing the normalized cut is NP-complete.

Therefore, we have to rely in approximate solvers. The spectral algorithm introduced in

[SM00] solves a continuous relaxation of the minimum NCut problem. LetW be the weighted

adjacency matrix of G and let D be the diagonal degree matrix with D(i, i) =
∑

j∈V w(i, j).

The matrix L = D−W is the Laplacian of G. Let y ∈ {−1, 1}n be an indicator vector of the

partition (A,B) and 1 a vector of ones in n dimensions. Then, following the demonstration

in [BC06], we have that:

Cut(A,B|G) =
1

4
(1 + y)>W (1− y) =

1

4
(1>W1− y>Wy)

=
1

4
y>(D −W)y =

1

4
y>Ly. (2.32)

Using the same reasoning, we have that Vol(A|G) = 1>D(1−y) and Vol(B|G) = 1>D(1+y).

Finally, introducing the new variables vA and vB , we have that the minimum normalized cut

problem can be stated as:

min
y,vA,vA

1

4

(
y>Ly

vA
+

y>Ly

vB

)
s.t. 1>D(1− y) = 2vA, 1>D(1 + y) = 2vB

y ∈ {−1,+1}n

(2.33)

Defining d = D1 and noticing that y>Dy = vA + vB , the above problem can be restated as:

min
y,vA,vB

(
vA + vB
4vAvB

)
y>Ly

s.t. d>y = vA − vB, d>1 = vA + vB

y ∈ {−1,+1}n

(2.34)

27

Now, define x ∈ Rn as

x =

√
vA + vB
4vAvB

(
I − 1d>

d>1

)
y. (2.35)

Note that d>x = 0. Replacing y by x in Eq. 2.34 and adding the (redundant) constraint

x>Dx = 1 to the minimization problem, we have:

min
x,vA,vB

x>Lx

s.t. d>x = 0, d>1 = vA + vB, x>Dx = 1

x ∈
{
−
√

vA
(vA + vB)vB

,

√
vB

(vA + vB)vA

}n (2.36)

Minimizing only on x and dropping the combinatorial constraint on it, we have the following

relaxed version of the above problem:

min
x∈Rn

x>Lx

s.t. 1>Dx = 0, x>Dx = 1.

(2.37)

which can be solved via the generalized eigenvalue problem:

Lx = λDx. (2.38)

The algorithm then selects the generalized eigenvector x corresponding to the second smallest

eigenvalue (the smallest eigenvalue is trivially equal to 0 for connected graphs), and partitions

V by thresholding x. Figure 2.9 shows an example of eigenvector and segmentation computed

according to the Normalized Cut algorithm described above.

The information contained in the other eigenvectors can be used in K-class clustering

problems. As shown in [MS01] and [NJW01], the idea is to treat each row of the matrix

containing the first K + 1 generalized eigenvectors of L as an embedding of the original

pixel data and cluster it into K clusters using K-means (or any other algorithm). Another

approach to generalize the NCut objective and algorithm to multiple classes can be found in

[YS03].

The NCut criteria and algorithm have been applied in many data clustering and computer

28

vision contexts. The authors in [AMFM10], for instance, used the generalized eigenvectors

of the normalized cut algorithms to provide global cues for edge detection. In [TDP+18], the

normalized cut criteria is used as a loss function to train deep convolutional neural networks

in supervised image segmentation tasks. In [TMAB16], it replaces the appearance terms in

MRF-based segmentation algorithms. On the theory side, the work in [DGK04] showed the

correspondence between the normalized cut and kernel K-means algorithms.

Finally, despite the impact and theoretical implication of normalized cuts, it is worth

mentioning that other cut criteria were proposed and studied for image segmentation, for

instance, mean cut [WS01] and ratio cut [WS03], which will not be discussed in this thesis.

2.3.2 Weight choice

Choosing the weights of G is crucial when designing spectral algorithms. In graph-based

image processing, the common choice of weighing dates back to the conception of bilateral

filters [TM98] and combines two grouping cues in a single weight:

w(i, j) = exp

(
−||I(i)− I(j)||2

2σ2
I

)
exp

(
−||X(i)−X(j)||2

2σ2
X

)
, (2.39)

where σI and σX are fixed parameters set by the user and X(·) is the location in two

dimensions of a pixel in the image. In the original normalized cuts paper, it was also added

an indicator function of whether ||X(i) −X(j)|| < r to w(i, j), where r is also chosen by

the user. The goal is to sparsify G in order to reduce the eigenvector computational burden.

Figure 2.9 shows a segmentation result using the normalized cuts algorithm as proposed in

[SM00].

Besides using the intensity values in Eq. 2.39, the authors in [SM00] also proposed the usage

of filter responses at various scales and orientations in order to model texture information

[MBLS01].

Further developments on formulating the weight function for graph-based segmentation

methods also considered the use of intervening contour cue [AMFM10, MVM11, CC15]. The

intervening contour concept suggests that pixels on the two different sides of a boundary

are more likely to belong to different segments. The affinity between pixels is measured

29

(a) Original image (b) 2nd Eigenvector (c) Final Segmentation

Figure 2.9: Segmentation result using the original Normalized Cuts formulation. Adapted
from [SM00].

as the maximum gradient magnitude or the maximum probability of boundary (Pb) value

[MFM04] on a straight-line path between them.

2.3.3 Spectral clustering and random walks

In [MS01] the NCut algorithm is described in terms of a Markov chain. Let P = D−1W .

The matrix P is the transition matrix of a Markov chain over the vertices V . The long

term behavior of this Markov chain can be characterized by the solutions to the eigenvector

problem

Px = λx. (2.40)

A solution (λ,x) to the eigenvector problem in Eq. 2.40) leads to a solution (1− λ,x) to

the generalized eigenvector problem in Eq. 2.38 and vice-versa. Therefore the generalized

eigenvector x used in the NCut algorithm corresponds to the eigenvector of P with second

largest eigenvalue.

This interpretation of the solutions x of Eq. 2.40 also leads to an interpretation of the

NCut objective as a random walk. Let (A,B) be a partition of V and P (A→ B|A) be the

probability that a walker transitions from a vertex in A to a vertex in B in one step if the

current state is in A and its walk is started in the chain’s stationary distribution π∞ = d
Vol(V) .

One can show that:

P (A→ B|A) =

∑
i∈A,j∈B w(i, j)

Vol(A)
, (2.41)

30

which entails the following:

NCut(A,B|G) = P (A→ B|A) + P (B → A|B). (2.42)

In other words, it means that minimizing the NCut objective has the effect of computing a

partition of V such that, once the walker is in one of the parts, the probability of evading it

is low. This idea can also be tied to the concept of low-conductivity sets in Markov chains

[MS01].

2.3.4 Practical Considerations

On the implementation side, the normalized cuts algorithm poses two main problems when

applied to image segmentation: how to efficiently construct the graph over the pixel set and

how to perform the spectral decomposition. In order to solve them, the usual approach is to

restrict the pixel affinities to take place only between pixels within a small neighbourhood, as

mentioned in Section 2.3.2. That leads to an sparse graph, in which the spectral decomposition

can be solved efficiently with relatively low memory usage. Another possible solution is to

oversegment the original image into superpixels [ASS+12], construct a similarity graph of

them. The eigenvector resulting from the new affinity matrix can then be interpolated back

to the image resolution and thresholded for the final segmentation [CC15].

Furthermore, works such as [PF98, FBCM04, LC10] attenuate the computation burden by

relying on approximate eigenvector solvers. In [PF98], the easy-to-compute first eigenvector

of the similarity matrix is used to separate figure from background. In [FBCM04], Nystrom

low-rank approximation to the similarity matrix before the eigenvalue decomposition takes

place. In [LC10], a truncated power iteration is proposed to approximately compute the

second generalized eigenvector in 2.38.

2.3.5 Adding constraints to Normalized cuts

Similarly to what was discussed in model-based segmentation, it is often necessary to add

constraints to segmentation results that typically stem from seed information. Following

the onset of spectral methods for image segmentation, some effort was put in trying to

31

(a) Original image (b) Original NCut (c) Biased NCut
(1 seed)

(d) Biased NCut
(8 seeds)

Figure 2.10: Biased Normalized Cuts result. Adapted from [MVM11].

adapt these new algorithms to make use of constraints imposed by the user. One of its first

attempts is found in [YS01], where the authors generalized the original NCut problem by

making it subject to constraints of the form Ux = 0, to which they also develop a spectral

algorithm. This result was further generalized to accommodate for general linear constraints

in the work of [EOK11]. In [MVM11], on the other hand, Maji et al. showed that enforcing

constraints in this manner is not robust when the constraints are noisy and proposed an

algorithm that alters, with very little additional time, the unconstrained problem’s solution

to take the imposed constraints into account. Their method, called Biased Normalized Cuts,

can then be run and tested under different sets of seeds with little additional computational

burden. Figure 2.10 shows the resulting eigenvectors when different sets of seeds are imposed

to the original normalized cut eigenvector. Noticing that the Biased NCut method does not

accommodate for two different sets of seeds, one of the background labeling and the other for

the foreground, Chew and Cahill [CC15] proposed a spectral method that deals with both

must-link constraints (among seeds of the same type) and cannot-Link constraints (between

seeds of different kind).

2.3.6 Multiview Spectral Clustering

Finally, spectral clustering techniques have also been adapted to multiview learning. In such

problem, one is concerned on extracting information from data generated from multiple

different feature collectors (or views). For instance, in multimedia-content understanding,

multimedia segments can be simultaneously described by their video and audio signals; and,

32

in content-based web-image retrieval, an object is simultaneously described by visual features

from the image and the text surrounding it. One of the earlier results on clustering within

this paradigm can be traced to [BS04], where the authors propose multiview counterparts of

traditional clustering algorithms, such as EM and K-means.

Within the spectral framework, the work presented in [DS05] proposes a two-view clustering

algorithm that computes the normalized eigenvectors arising from a bipartite graph that

encodes the views. The authors in [KRD11] describe an multiview iterative procedure that

enforces consistency among views by solving the generalized eigenvalue problem for each

view separately using the eigenvectors from other views computed in previous iterations.

Finally, other relevant approaches to multiview clustering consist in mixing the graph of

different views into a sole graph either via their a convex combination [ZB07, ZZLY18] or

according to their Laplacian’s power mean [MGTH18]. To the best of our knowledge, no

multiview clustering algorithm has been developed to treat image segmentation. One possible

explanation for this lack of literature is due to the scaling issues that many of the current

multi-view clustering methods face.

Chapter 3
Direct Estimation of Appearance Models

In this chapter, we describe a novel approach for estimating appearance models directly

from an image, without explicit consideration of the pixels that make up each region. Our

approach is based on algebraic expressions that relate local image statistics to the appearance

models of spatially coherent regions. We describe two algorithms that can use second order

pixel intensity statistics for estimating appearance models for images with two regions. The

first algorithm is based on solving a system of linear and quadratic equations. The second

algorithm is a spectral method based on an eigenvector computation. We also propose an

estimator using third-order statistics. that is able to that estimate appearance models of

multi-region images and the areas of their respective regions We present experimental results

that demonstrate the proposed methods work well in practice and lead to effective image

segmentation algorithms.

3.1 Appearance Models and Image Segmentation

Let I be an image of L colors. Recalling Section 2.1.3, we define an appearance model

θ ∈ RL as the distribution of the typical values (colors) of pixels in a given image region

In graph-based image segmentation, its is very common to use the appearance models of

each of the I’s constituent regions to better distinguish them. In particular, the usage of

appearance models can be broadly categorized into three classes:

The appearances are known a priori The appearances are an input to the segmenta-

tion algorithm. They are either entirely provided by the user or estimated via other

external data, such as seeds [BJ01, TBAMB15].

33

34

The appearances are iteratively optimized with the segmentation Departing from

crude segmentations estimates, the algorithm alternates between fitting the models

and segmented the images given the fitted models [RKB04]. A further explanation of

these methods is found in Section 2.2.2.

The appearances are jointly optimized with the segmentation The segmentation and

appearance models are fitted simultaneously in a common optimization problem

[VKR09, TGVB13]. Section 2.2.4 discusses these methods more deeply.

The methods in this chapter are concerned with the first category of segmentation solvers, but

in a novel manner. We propose new algorithms to estimate the non-parametric appearance

models without the user interaction. That would address some problem faced by the other

categories, such as runtime and lack of generalization, while also introducing the usage of

high-order moments and estimators to graph-based segmentation.

3.2 Image Statistics

In order to approach the appearance model estimation problem, we treat the image as a

realization of a random field and consider two distributions that can be directly estimated

from an observed image.

Let x, y ∈ Ω be a pair of pixels at a fixed distance r from each other, selected uniformly at

random. Since the pixels are in a discrete grid we use the L1 norm to measure the distance

between them.

Q = {(x, y) ∈ Ω2 | ||x− y|| = r}.

(x, y) ∼ Uniform(Q).

Let α ∈ RL be a distribution over L where α(i) is the probability that pixel x has value i.

Let β ∈ RL×L be a distribution over L× L where β(i, j) is the probability that pixel x has

value i and pixel y has value j.

α(i) = P (I(x) = i).

β(i, j) = P (I(x) = i, I(y) = j).

35

Note that we can easily estimate α and β from an observed image. We simply enumerate all

pairs of pixels at distance r from each other and count the number of times we observe pixels

with particular values. If the image is large we can also estimate the two distributions using

a random sample of pairs of pixels at distance r. We use α̂ and β̂ to denote the estimates of

α and β computed from an observed image.

α̂(i) =
1

|Q|
∑

(x,y)∈Q

1(I(x) = i).

β̂(i, j) =
1

|Q|
∑

(x,y)∈Q

1(I(x) = i)1(I(y) = j).

LetR0 andR1 be a partition of Ω into two regions. Let w0 = P (x ∈ R0) and w1 = P (x ∈ R1).

Now consider the probability that x and y are in different regions. Since x and y are

exchangeable, let ε = P (x ∈ R0, y ∈ R1) = P (x ∈ R1, y ∈ R0). The probability that x and

y are in different regions is 2ε.

Now let θ0 and θ1 be appearance models associated with R0 and R1 respectively. We will

relate α and β to w0, w1, θ0, θ1 and ε using two key assumptions. The first assumption is

that regions have homogeneous appearance in the following sense.

Assumption 1 (Homogeneity). The probability that a pixel takes a particular value depends

only on the region the pixel belongs to,

P (I(x) = i |x ∈ Rs) = θs(i).

Note that this assumption does not specify a full generative model for the image. We assume

the pixels in each region have the same marginal distribution, but their joint distribution could

involve dependencies, as we see for example in images with textures. Similar assumptions

have been used in other approaches for image segmentation, including several methods for

unsupervised texture segmentation [NBCE09, YWC15, MMF+14].

The second assumption captures the idea that sufficiently far away pixels are independent.

Assumption 2 (Independence at a distance). If x and y are two pixels with ||x− y|| = r

36

0 5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

r

d
B

(β̂
,α̂
α̂
>

)

Figure 3.1: Evaluating independence at a distance. We show the average Bhattacharyya
distance between β̂ and α̂α̂> as a function of r for images with a single Brodatz texture (see
Figure 3.7).

then,

P (I(x) = i, I(y) = j |x ∈ Rs, y ∈ Rt) = P (I(x) = i |x ∈ Rs)P (I(y) = j | y ∈ Rt).

For images with a single region Assumption 2 is equivalent to β = αα>. Figure 3.1 evaluates

this assumption in textured images from the Brodatz dataset [Bro66]. See Figure 3.7 for

examples of the images in the Brodatz dataset. In this case each image has a single textured

region and we compare β̂ to α̂α̂> for different values of r using the Bhattacharyya distance

(see Section 3.6.1). When r is small we see that the two distributions, β̂ and α̂α̂>, are quite

different, because nearby pixels are not independent. As we increase r we see that β̂ is close

to α̂α̂>, suggesting that pixels that are relatively far from each other are independent. In

Figure 3.2, we show this effect in individual textures. From it, we observe that in highly

regular textures there is trepidation as the distance between β̂ and α̂α̂> decays with the

increase in r. Despite that, in most textures, we observed a smooth decay, mimicking what

is shown in the average experiment of Figure 3.1.

We also evaluated Assumption 2 in real scenes. Figure 3.3 we show the same experiment as

in Figure 3.1, but now considering the foreground and background segments of the images in

the Grabcut Dataset [RKB04]. Figure 3.4 shows the same experiments for individual images

in that same dataset. For computational simplicity, we converted all the evaluated images

in grayscale before running the experiments. Note that the same pattern found in 3.1 is

observed, bringing more evidence of the realistic usage of Assumption 2.

37

0 5 10 15 20 25 30 35 40 45 50

0

0.02

0.04

0.06

d
B

(β̂
,α̂
α̂
>

)

0 5 10 15 20 25 30 35 40 45 50

0

0.05

0.1

0.15

d
B

(β̂
,α̂
α̂
>

)

0 5 10 15 20 25 30 35 40 45 50

0

0.05

0.1

0.15

0.2

d
B

(β̂
,α̂
α̂
>

)

0 5 10 15 20 25 30 35 40 45 50

0

0.2

0.4

r

d
B

(β̂
,α̂
α̂
>

)

Figure 3.2: Evaluating independence at a distance. We proceed as in Figure 3.1, but for
individual textures (on the left).

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

r

d
B

(β̂
,α̂
α̂
>

)

Figure 3.3: Evaluating independence at a distance. We show the average distance between
β̂ and α̂α̂> as a function of r for each region segment of the images in the Grabcut Dataset
[RKB04].

38

0 20 40
0

0.2

0.4

d
B

(β̂
,α̂
α̂
>

)
0 20 40

0

0.2

0.4

0.6

(a) Image

0 20 40
0

0.1

0.2

0.3

0.4

r

d
B

(β̂
,α̂
α̂
>

)

(b) Foreground

0 20 40
0

0.05

0.1

r

(c) Background

Figure 3.4: Evaluating independence at a distance. We proceed as in Figure 3.3, but
now for individual images in the Grabcut Dataset and for their respective foreground and
background segments.

The following proposition shows how the two assumptions above lead to algebraic expressions

relating α and β to w0, w1, θ0, θ1 and εr. These algebraic expressions will enable us to

estimate θ0 and θ1 without explicit consideration of R0 and R1.

Proposition 1. Under Assumptions 1 and 2 we have:

α = w0θ0 + w1θ1. (3.1)

β = (w0 − εr)θ0θ
>
0 + (w1 − εr)θ1θ

>
1 + εrθ0θ

>
1 + εrθ1θ

>
0 . (3.2)

Proof. For (3.1) let x be a pixel selected uniformly at random. Then,

α(i) = P (I(x) = i)

= P (x ∈ R0)P (I(x) = i |x ∈ R0) + P (x ∈ R1)P (I(x) = i |x ∈ R1)

= w0θ0(i) + w1θ1(i)

For (3.2) let x and y be two pixels with ||x− y|| = r selected uniformly at random. Note that

P (x ∈ R0) = P (x ∈ R0, y ∈ R0) + P (x ∈ R0, y ∈ R1).

39

Therefore P (x ∈ R0, y ∈ R0) = w0 − εr. Similarly P (x ∈ R1, y ∈ R1) = w1 − εr. Now,

β(i, j) = P (I(x) = i, I(y) = j)

= P (x, y ∈ R0)P (I(x) = i, I(y) = j |x, y ∈ R0) +

P (x, y ∈ R1)P (I(x) = i, I(y) = j |x, y ∈ R1) +

P (x ∈ R0, y ∈ R1)P (I(x) = i, I(y) = j |x ∈ R0, y ∈ R1) +

P (x ∈ R1, y ∈ R0)P (I(x) = i, I(y) = j |x ∈ R1, y ∈ R0)

= (w0 − εr)θ0(i)θ0(j) + (w1 − εr)θ1(i)θ1(j) + εrθ0(i)θ1(j) + εrθ1(i)θ0(j)

3.3 Appearance Estimation

As discussed in the previous section we can estimate α and β directly from an image. In

this section we show how we can recover θ0 and θ1 from α and β or their estimates α̂ and

β̂. Initially we assume that w0, w1 and ε are known, and present two different methods

(Sections 3.3.1 and 3.3.2) for estimating θ0 and θ1. We consider the case where w0, w1 and ε

are unknown in Section 3.3.3.

3.3.1 Algebraic Method

Suppose α, β, w0, w1 and ε are known, and consider the problem of recovering θ0 and θ1. Let

L = {1, . . . , k}. We have 2k unknowns θ0(1), . . . , θ0(k) and θ1(1), . . . , θ1(k). Proposition 1

defines k linear and k2 quadratic constraints,

α(i) = w0θ0(i) + w1θ1(i). (3.3)

β(i, j) = (w0 − ε)θ0(i)θ0(j) + (w1 − ε)θ1(i)θ1(j) + εθ0(i)θ1(j) + εθ1(i)θ0(j). (3.4)

Since θ0 and θ1 define probability distributions we also have the additional constraints that

both vectors should sum to one and θ0(i) ≥ 0, θ1(i) ≥ 0 for 1 ≤ i ≤ k.

40

Minimal constraints We first consider a simple method that uses a subset of the con-

straints to solve for all of the unknowns in the appearance models. The approach uses the k

linear constraints defined by α and k quadratic constraints defined by a single row of β. For

the derivation below we treat α and β as known although in practice we only have empirical

estimates of the two distributions.

1. Let i ∈ L. Using the quadratic constraint defined by β(i, i) and the linear constraint

defined by α(i) we can solve for θ0(i) and θ1(i),

θ0(i) = α(i)±

√
w0w1−ε
ω2
1

(β(i, i)− α2(i))

w0w1−ε
w2

1

, θ1(i) =
α(i)− w0θ0(i)

w1
. (3.5)

2. Now consider each j ∈ L with j 6= i. Since we solved for θ0(i) and θ1(i) in Step 1,

now β(i, j) defines a linear constraint on θ0(j) and θ1(j). Together with the linear

constraint defined by α(j) we can solve for θ0(j) and θ1(j),

θ0(j) =
w1β(i, j)− α(j)(w1θ1(i) + ε(θ0(i)− θ1(i)))

(w0w1 − ε)(θ0(i)− θ1(i))
, θ1(j) =

α(j)− w0θ0(j)

w1
. (3.6)

When β(i, i) = α2(i) we have θ0(i) = θ1(i). To avoid dividing by zero when solving for

θ0(j) in Step 2 and to increase the robustness of the method, we can select i maximizing

β(i, i)− α2(i) in Step 1. Note that if β(i, i)− α2(i) = 0 for all i then θ0 = θ1 = α.

To solve for θ0(i) in Step 1 we require that (w0w1 − ε)(β(i, i) − α2(i)) ≥ 0. Proposition 2

below shows that under the assumptions we have made

β(i, i)− α2(i) = (w0w1 − ε)(θ0(i)− θ1(i))2. (3.7)

Therefore (w0w1 − ε)(β(i, i)− α2(i)) ≥ 0.

Least squares solution The approach described above uses a small number of the

constraints defined by α and β to exactly recover θ0 and θ1. However, in practice we only

have empirical estimates of α and β. We also don’t expect real data to perfectly fit our

assumptions. We now describe an alternative method that uses all of the constraints defined

41

by α and β in a least squares formulation.

Let i1, . . . , ik be an ordering of L = {1, . . . , k}. Our empirical results show that ordering the

indices in decreasing value of β̂(i, i)− α̂2(i) works well and is better than a random order.

1. We start by solving for θ0(i1) and θ1(i1) using the quadratic constraint defined by

β̂(i1, i1) and the linear constraint defined by α̂(i1).

θ0(i1) = α̂(i)±

√
w0w1−ε
ω2
1

(β̂(i1, i1)− α̂2(i1))

w0w1−ε
w2

1

, θ1(i1) =
α̂(i1)− w0θ0(i1)

w1
. (3.8)

2. We iterate ` from 2 to k and solve for θ0(i`) and θ1(i`) in each step. When solving for

θ0(i`) and θ1(i`) we already have values for θ0(i1), . . . , θ0(i`−1) and θ1(i1), . . . , θ1(i`−1).

Therefore β̂(i1, i`), . . . , β̂(i`−1, i`) define ` − 1 linear constraints on θ0(i`) and θ1(i`).

Together with the constraint defined by α̂(i`) we form a system with ` linear equations

and 2 unknowns that can be solved using linear least squares:

∀j ∈ {i1, . . . , i`−1} ((w0−ε)θ0(j)+εθ1(j))θ0(i`)+((w1−ε)θ1(j)+εθ0(j))θ1(i`) = β̂(j, i`),

w0θ0(i`) + w1θ1(i`) = α̂(i`).

3. We improve our estimates by iterating ` from 1 to k and re-estimate θ0(i`) and θ1(i`)

in each step. To re-estimate θ0(i`) and θ1(i`) we use β̂(j, i`) and the current values

for θ0(j) and θ1(j) for j 6= i` to define k − 1 linear constraints. Together with the

constraint defined by α̂(i`) we form a system with k linear equations and 2 unknowns

that can be solved using linear least squares:

∀j 6= i` ((w0 − ε)θ0(j) + εθ1(j))θ0(i`) + ((w1 − ε)θ1(j) + εθ0(j))θ1(i`) = β̂(j, i`)

w0θ0(i`) + w1θ1(i`) = α̂(i`)

Empirically we found that iterating over the entries one time using this method is

enough to obtain improved results.

42

4. We set θs(i) = max(θs(i), 0) and normalize θ0 and θ1 to add up to one. This ensures

θ0 and θ1 define valid probability distributions.

Note that there are two choices for the value of θ0(i1) when solving the quadratic equation

in Step 1. We consider both choices to estimate full appearance models. We then compare β

defined by the estimated models and Equation (3.2) to β̂ using the Bhattacharyya distance.

We select the appearance models leading to the smaller Bhattacharyya distance.

3.3.2 Spectral Method

Now we describe a spectral method for estimating the appearance models. As in the previous

section we assume w0, w1 and ε are known. The following proposition provides the basis for

the approach.

Proposition 2.

β − αα> = (w0w1 − ε) (θ0 − θ1) (θ0 − θ1)> (3.9)

Proof. First note that w0 + w1 = 1 implies w0w1 = w0 − w2
0 and w0w1 = w1 − w2

1.

β − αα> = (w0 − ε)θ0θ
>
0 + (w1 − ε)θ1θ

>
1 + εθ0θ

>
1 + εθ1θ

>
0 − (w0θ0 + w1θ1)(w0θ0 + w1θ1)>

= (w0 − ε− w2
0)θ0θ

>
0 + (w1 − ε− w2

1)θ1θ
>
1 + (ε− w0w1)θ0θ

>
1 + (ε− w1w0)θ1θ

>
0

= (w0w1 − ε)θ0θ
>
0 + (w0w1 − ε)θ1θ

>
1 − (w0w1 − ε)θ0θ

>
1 − (w1w0 − ε)θ1θ

>
0

= (w0w1 − ε)(θ0 − θ1)(θ0 − θ1)>

Let u = θ0 − θ1. The above result shows that that matrix β − αα> is of rank one and its

only eigenvector with non-zero eigenvalue is proportional to u. Moreover, the corresponding

eigenvalue is (w0w1 − ε)||u||2.

The matrix β̂− α̂α̂> defines an approximation to β−αα>. Let v be the dominant eigenvector

of β̂ − α̂α̂> normalized so that ||v|| = 1. The vector v gives us an estimate of u/||u|| up to a

sign ambiguity. The corresponding eigenvalue λ can be used to approximate (w0w1− ε)||u||2.

43

2r

R1

R0

Figure 3.5: The area where pairs of pixels with ||x− y|| = r can be in different regions.

We can estimate u as,

û = ±
√

λ

w0w1 − ε
v (3.10)

We can then use α̂ and Equation (3.1) to estimate θ0 and θ1,

θ0 = α̂+ w1û,

θ1 = α̂− w0û.

Finally, we set θs(i) = max(θs(i), 0) and normalize θ0 and θ1 to add up to one. This ensures

θ0 and θ1 define valid probability distributions.

To handle the sign ambiguity in Equation (3.10) we consider both choices to estimate θ0 and

θ1. We then compare β defined by the estimated appearance models and Equation (3.2) to

β̂ using the Bhattacharyya distance. We select the choice of sign in Equation (3.10) leading

to the smaller Bhattacharyya distance.

Notice that we can use simple power iteration methods to compute v and λ. The algorithm

complexity depends only on |L|, which is usually much smaller that the number of pixels in

the image. The rate of convergence of power iteration depends on the spectral gap, which is

proportional to w0w1 − ε.

44

3.3.3 Estimating w0, w1 and εr

The methods described above assume w0, w1 and ε are known. We have experimented with

three different approaches for estimating the appearance models when w0, w1 and ε are

unknown. The first approach simply selects a typical, or average, value for each of the

unknown parameters. The second approach involves an explicit search over a discretized

set of choices for the unknown parameters. The third approach considers an alternation of

appearance model and parameter estimation.

Typical values A simple approximation for w0 and w1 involves setting w0 = w1 = 0.5.

Although this is a crude approximation we have found that it leads to good appearance

models in a wide variety of images.

In order to approximate ε, we start from the assumption that the ground truth segmentation

S is spatially coherent and that the boundary between regions ∂S is short, i.e., |∂S| ≈
√
|Ω|.

In this case ε is proportional to the area within distance r from ∂S divided by |Ω|, see

Figure 3.5. In our experiments we set r = ρ
√
|Ω|, where ρ is a parameter set by the user.

This makes the selection of the distance r be adaptive to the image resolution. Our estimate

of ε then becomes,

ε = κ
r
√
|Ω|
|Ω| = κρ. (3.11)

We have found that setting κ = 0.5 often leads to good results in practice.

Searching over w0, w1 and ε To search over w0 and w1 we use the fact that w0 +w1 = 1

and simply search over possible values for w0. We assume without loss of generality that

w0 ≤ w1 and w0 ∈ (0, 0.5). In practice we discretize the interval (0, 0.5) using a step of size

of 0.05, leading to 11 choices for w0. To estimate ε we search over the interval (0, 0.1) using

a step size of 0.01, leading to 11 choices for ε. Together this leads to 121 combined choices

for w0 and ε.

For each choice of parameters w0, w1 and ε we estimate θ0 and θ1 using either the algebraic

or spectral method above. We then compare β defined by the estimated appearance models

and Equation (3.2) to the empirical β̂ computed from the image. We select the model

45

parameters minimizing the Bhattacharyya distance between β and β̂.

Searching over w0, w1 and ε with the spectral method is fairly efficient because the bottleneck

in the spectral method is computing the dominant eigenvector of β̂− α̂α̂>. Since this matrix

does not depend on the unknown parameters the eigenvector only has to be computed

once. In this case searching for the parameters leads to limited overhead. Searching for

the parameters with the algebraic method is much less efficient. The experiments in the

Section 3.6 evaluate the running time of the different approaches.

Alternating model and parameter estimation We make use of the expressions in

Proposition 1, to propose an alternating scheme for w0, w1 and εr estimation:

1. Start with an initial guess of w0, w1 and εr. In practice we initially set w0 = w1 = 0.5

and εr = 0.1.

2. Compute estimates for θ0 and θ1 using the current values of w0, w1 and εr.

3. Using Eq. 3.1, compute a new estimate for w0 and w1 using the current values of θ0

and θ1 via least squares regression.

4. Using Eq. 3.2, compute a new estimate for εr using the current values of θ0, θ1, w0

and w1 via least squares regression.

5. Normalize w0 and w1 to sum to be positive to one as we did in Section 3.3.1.

6. Iterate until the absolute difference of the current and the previous estimates w0, w1

and εr is below a certain threshold t.

In our experimental section, we also test the case where we remove step 4 above and estimate

εr by searching over a finite range of value, as in the previous section. In practice we note

that both algorithms always converge within at most 15 iterations, when t = 0.01.

3.4 Multi-region case

Our methods for direct appearance estimation shown above have two main drawbacks: (1)

they only apply to binary segmentation problems and (2) they do not provide an "elegant"

46

algorithm to estimate the weights w0 and w1, other than direct evaluation of some finite set

of possible weights. In this section we will describe an algorithm that addresses both issues.

Here, assume the image has K regions R1, . . . ,RK , each with their own appearance model

θ1, . . . , θK ∈ RL and their respective areas w1, . . . , wK , normalized to sum to one. We also

assume K is known.

3.4.1 Estimation when r is small

Let γ ∈ RL×L×L be such that γ(i, j, k) is the probability that three pixels x, y, z ∈ Ω,

each r pixels apart from each other, selected uniformly at random have values i, j and k,

respectively,

γ(i, j, k) = P (I(x) = i, I(y) = j, I(z) = k).

Note that γ can be estimated in the same fashion as β, by counting. Let pr be proportional

to the probability that two pixels x, y and z do not belong to the same region for a given r.

Initially assume that r is small enough so pr is negligible, while still satisfying Assumption 2.

In other words, we assume that the pixels i, j and k, drawn uniformly at random in I, are

close enough, so it is reasonable to expect them to belong to the same region. Furthermore,

we expect their intensities I(i), I(j) and I(k) to still be independent in that setting. An

example of such images are those whose pixel intensities are drawn independently from a

distribution that only depends on the region they fall in.

Proposition 3. For an image with K regions, under Assumptions 1 and 2, and pr negligible,

we have:

α =

K∑
s=1

wsθs. (3.12)

β ≈
K∑
s=1

wsθsθ
>
s . (3.13)

γ ≈
K∑
s=1

wsθs ⊗ θs ⊗ θs, (3.14)

where ⊗ represents the Kronecker product between vectors1.

1Here, the Kronecker product v1⊗v2⊗. . .⊗vm ofm vectors v1, v2, . . . vm ∈ RN is a tensor T ∈ RN×N×...×N

47

Proof. For (3.12), let x ∈ Ω be chosen uniformly at random. Then, we have:

α(i) = P (I(x) = i) =
K∑
s=i

P (x ∈ Rs)P (I(x) = i |x ∈ Rs) =
K∑
s=i

wsθ0(i)

For (3.13), let x, y ∈ Ω with ||x− y|| = r be chosen uniformly at random and assume pr (and

therefore P (x ∈ Rs, y ∈ Rt) for s 6= t) be negligible, while holding Assumption 2. Then, we

have:

β(i, j) = P (I(x) = i, I(y) = j)

≈
K∑
s=1

P (x, y ∈ Rs)P (I(x) = i, I(y) = j|x, y ∈ Rs)

≈
K∑
s=1

wsP (I(x) = i|x ∈ Rs)P (I(y) = j|y ∈ Rs)

=

K∑
s=1

wsθ(i)θ(j),

Since pr is assumed to be negligible, it follows that P (x ∈ Rs, y ∈ Rt, z ∈ Ru) is also small

except when s = t = u. This leads to P (x ∈ Rs) = P (y ∈ Rs) = P (z ∈ Rs) ≈ P (x, y, z ∈

Rs),∀s. Now, for (3.14),

γ(i, j, k) = P (I(x) = i, I(y) = j, I(z) = k)

≈
K∑
s=1

P (x, y, z ∈ Rs)P (I(x) = i, I(y) = j, I(z) = k|x, y, z ∈ Rs)

≈
K∑
s=1

wsP (I(x) = i|x ∈ Rs)P (I(y) = j|y ∈ Rs)P (I(z) = k|z ∈ Rs)

=
K∑
s=1

wsθ(i)θ(j)θ(k),

where the third equality is due to the independence assumption from Assumption 2.

In Eqs. 3.12-3.14 there is a clear application of the more general estimation setting proposed

defined as:
T (a1, a2, . . . , am) = v1(a1)v2(a2) . . . vm(am), (3.15)

where a1, a2, . . . , am ∈ {1, 2, . . . , N}. Note that v1v>2 can be written as a Kronecker product v1 ⊗ v2 in this
definition.

48

by [AHK12], which reduces the estimation problem to a series matricial and tensorial algebra

operations. Let Θ = [θ1|θ2| · · · |θK] ∈ Rd×K and W = diag(w) ∈ RK×K as the diagonal

matrix whose elements are the values in w. Now, from Eqs. 3.13 and 3.14, we can write β

and the s-th slice of γ, denoted as γ(·, ·, s), as:

β = ΘWΘ>, γ(·, ·, s) = ΘW
1
2 diag(Θ(s, ·))W 1

2 Θ>, (3.16)

where Θ(s, ·) = [θ1(s), . . . , θK(s)] is the s-th row of Θ. From the above expression, we

note that β is positive semidefinite and therefore we can compute its SVD as β = USU>.

Now, defining M = US
1
2 leads to ΘW

1
2 = MO for an unique orthonormal matrix O. The

authors in [AFH+12] use the pseudo inverse of M , here defined as M †, as a whitening step

on the slices of γ. In their algorithm, this step was used to to transform γ into a symmetric

orthogonally decomposable tensor whose high order singular vectors could efficiently be

estimated via a tensorial analogous to the power method in matrices. The slices of this

whitened tensor γwhite now present the following property:

γwhite(·, ·, s) = M †γ(·, ·, s)(M †)> = O diag(Θ(s, ·))O>, ∀s ∈ {1, . . . ,K}. (3.17)

The above equation tells us that there must be a unique orthonormal matrix O that

diagonalizes all the slices of γwhite simultaneously. For K = 2, an approximation of O

can be found in constant time by the method proposed by [RRB17] and, for K ≥ 2, the

algorithm proposed in [CS96] approximately solves it in polynomial time. Having computed

the approximate O, an approximate solution to Θ can be found as Θ = MO, followed by the

projection of its columns to the simplex of K − 1 dimensions, i.e., a row-wise normalization.

Finally, noticing that α = Θw from Eq. 3.12, an approximation of w can be computed as

Θ†α followed by its projection to the simplex of K − 1 dimensions. Throughout this thesis,

this approach will be called the tensorial method, for its usage of tensorial operations.

3.4.2 Estimation when r is large

Proposition 3 does not strictly hold in practice, except for some specific scenarios, such as

when the image’s pixel values are randomly drawn IID from a distribution that only depends

49

on the region they are located. In general, pixels are not expect to satisfy Assumption 2 for

small r. Therefore, further investigation is necessary in other to adapt the tensorial method

to this more general case. In the experimental section, we nonetheless show some results

that, ideally, would require a large r in order to have Assumption 2 satisfied.

3.5 Examples

Figure 3.6 illustrates some estimation results on real images for all the estimation methods

proposed in this work. In these examples we used ρ = 0.06 to select r. The values of w0, w1

and ε were estimated separately for each image by searching over discrete choices as described

in the last section. For comparison we also show the appearance models computed using

ground truth segmentations. For the case of a ground truth segmentation the appearance

models are normalized histograms of the pixel values within each region. We see that both

the algebraic and spectral methods give good results in these examples, leading to appearance

models that are close to the ground truth. We also note that the tensorial method gives

reasonably good estimation results for most image regions considered in Figure 3.6, having

its performance comparable to the algebraic and spectral methods, despite the images not

necessarily satisfy the conditions in Proposition 3. However, in the one of them (R0 of the

first image), the algebraic and spectral methods clearly outperforms it, showing the impact

of difficulty estimating appearances from regions that do not observe the requirements from

Proposition 3.

3.6 Numerical Experiments

3.6.1 Evaluation Measures

To evaluate the quality of the appearance models we estimate we compare them to the

appearance models defined by a ground truth segmentation using the Bhattacharyya distance,

dB(p, q) = − ln

(∑
i∈L

√
p(i)q(i)

)
, (3.18)

where p, q are discrete probability distributions over L.

50

(a) Image (b) θ0 (c) θ1

Figure 3.6: Estimation of appearance models with ρ = 0.06. In (a) we show the input
images and their ground truth segmentation. In (b) and (c) we show the appearance models
computed using the ground truth segmentation in blue (), the algebraic method in green
(), the spectral method in red () and the tensorial method (). The images are
from the Berkeley Segmentation [MFTM01] dataset.

51

Figure 3.7: Selected Brodatz patterns

Let I be an image with a ground truth segmentation defined by two regions R0 and R1.

Let θ0 and θ1 be the normalized histograms of the pixel values within each region. Let θ̂0

and θ̂1 be the appearance models estimated from I using one of our algorithms. We assess

the quality of the estimates using a sum of two Bhattacharyya distances, allowing for a

permutation of the region labels,

DB = min

(
dB(θ0, θ̂0) + dB(θ1, θ̂1)

2
,
dB(θ0, θ̂1) + dB(θ1, θ̂0)

2

)
. (3.19)

We will also evaluate the accuracy of segmentations obtained using the estimated appearance

models by comparing them to the ground truth segmentations. We assess the overlap between

two regions J,Q ⊆ Ω in different segmentations using the Jaccard index,

J(S,Q) = |S ∩Q|/|S ∪Q|. (3.20)

Again let I be an image with a ground truth segmentation defined by R0 and R1. Let Q0

and Q1 be the two regions obtained by segmenting I using the estimated appearance models.

We compare the two segmentations using a sum of two Jaccard indices, again allowing for a

permutation of the region labels,

J = max

(
J(R0,Q0) + J(R1,Q1)

2
,
J(R0,Q1) + J(R1,Q0)

2

)
. (3.21)

All of our algorithms were implemented in Matlab and the experiments presented here were

run on a Intel(R) Core(TM) i5-6200U CPU 2.30GHz with 8 Gb of RAM.

52

(a) GT1 (b) GT2 (c) GT3 (d) GT4 (e) GT5

Figure 3.8: Ground truth segmentations used to generate synthetic data.

(a) Textures

(b) Synthetic images

Figure 3.9: Examples of synthesized images with textures.

53

3.6.2 Synthetic Data

We first illustrate the results of a series of experiments with synthetic data. To generate the

synthetic data we used the segmentations masks in Figure 3.8 together with pairs of images

defined as follows:

• IID: we used 50 pairs of random appearance models to generate pairs of images. For

each appearance model we generate a 320 × 320 image where the pixel values are

independent samples from the corresponding distribution.

• Brodatz: we selected all possible pairings of images from the Brodatz textures [Bro66]

shown in Figure 3.7. We resized the images to be 320× 320 pixels and added uniform

IID noise to the pixels to to remove quantization artifacts.

For each pair of images defined above we use the segmentation masks in Figure 3.8 to

generate graylevel images with two regions. Figure 3.9 shows the images generated using

two Brodatz patterns.

3.6.3 Evaluating the effect of ρ

In our experiments we set r = ρ
√

Ω where ρ is a parameter set by the user. This makes the

selection of the distance r be adaptive to the image resolution.

In Figure 3.10 we evaluate the quality of the appearance models estimated by our methods

using different values of ρ on the synthetic data defined by the ground truth segmentations

GT1 and GT2 (Figure 3.8). For these experiments we set w0, w1 and ε using the ground

truth values defined by the corresponding segmentation masks.

Both of our algorithms almost perfectly recover the underlying appearance models for

images where the pixels in each region are IID. In this case the methods work well over

the whole range of values of ρ tested. This is expected since these images strictly follow

both Assumption 1 and Assumption 2 and, therefore, provide the optimal setting for our

algorithms.

For images with Brodatz textures Assumption 2 is violated for small values of ρ. As ρ

increases the assumption is satisfied and the quality of our estimation improves.

54

0 0.05 0.1

0

0.02

0.04

D
B

0 0.05 0.1

(a) Using GT1

0 0.05 0.1

0

0.05

0.1

0 0.05 0.1

(b) Using GT2

Figure 3.10: Average appearance model estimation error (DB) as a function of ρ on images
composed of IID () and Brodatz () patterns disposed as in GT1 and GT2. For both
(a) and (b) the results on the left are from the algebraic method, whereas the results on the
right are from the spectral method.

3.6.4 Appearance Model Evaluation on Synthetic Images

We compare the performance of our methods to estimate appearance models to a variation

of the iterative scheme described in [TAB14], here called ALT.

In ALT, we start with an initial segmentation of the image and alternate between computing

new appearance models using the current segmentation and computing a new segmentation

using the current appearance models. This procedure is iterated until convergence. To

update the appearance models using the current segmentation we histogram the pixel

values in each region. We “smooth” the histograms by adding a constant K = 1 to their

bins before normalizing them. To update the segmentation using the current appearance

models we minimize the energy in Equation (2.12) using a max-flow/min-cut algorithm

([GPS89, BVZ99]).

For the experiments described here the initial segmentation used for ALT is defined by

a square region in the middle of the image. Figure 2.5 shows an example of how the

segmentation and appearance models evolve over time. Empirically, we found that ALT

works well in many examples but a typical failure mode leads to assigning the whole image

to single segment.

Table 3.1 compares the results of our methods to the result of ALT using several values of λ

for the segmentation step. We used ρ = 0.06 (which corresponds to r ≈ 20 pixels for the

320× 320 synthetic images) for both the algebraic and spectral methods. We evaluated our

55

Table 3.1: Average DB distance between estimated and ground truth appearance models on
the synthetic data generated using different segmentation masks. We evaluate our algorithms
using different methods for selecting w0, w1 and ε (see text).

Image Setting

GT1 GT2 GT3 GT4 GT5

Method IID Brodatz IID Brodatz IID Brodatz IID Brodatz IID Brodatz Time (s)

Algebraic

GT w0 and ε 0.000 0.003 0.001 0.028 0.000 0.006 0.001 0.030 0.000 0.007 0.23

w0 = 0.5 and set ε = 0.5ρ 0.000 0.003 0.019 0.064 0.001 0.007 0.016 0.058 0.002 0.011 0.14

Search w0 and ε 0.000 0.010 0.002 0.040 0.002 0.017 0.003 0.032 0.003 0.021 7.81

Alternate w0, w1 and θ0, θ1, search εr 0.000 0.004 0.017 0.047 0.001 0.009 0.017 0.051 0.002 0.013 2.62

Alternate w0, w1, εr and θ0, θ1 0.006 0.019 0.002 0.017 0.002 0.022 0.028 0.108 0.001 0.018 0.48

Spectral

GT w0 and ε 0.000 0.002 0.001 0.034 0.000 0.006 0.001 0.032 0.000 0.007 0.06

w0 = 0.5 and set ε = 0.5ρ 0.000 0.003 0.019 0.067 0.001 0.007 0.016 0.059 0.002 0.011 0.06

Search w0 and ε 0.000 0.008 0.001 0.034 0.002 0.016 0.003 0.040 0.003 0.020 0.16

Alternate w0, w1 and θ0, θ1, search εr 0.000 0.003 0.017 0.050 0.001 0.009 0.017 0.052 0.002 0.014 0.09

Alternate w0, w1, εr and θ0, θ1 0.006 0.018 0.002 0.015 0.002 0.017 0.028 0.108 0.001 0.016 0.10

ALT

λ = 1 0.044 0.091 0.000 0.112 0.000 0.079 0.000 0.098 0.000 0.083 3.70

λ = 3 0.043 0.019 0.000 0.035 0.000 0.021 0.000 0.033 0.000 0.026 3.26

λ = 5 0.043 0.020 0.005 0.014 0.000 0.004 0.032 0.019 0.042 0.016 3.29

λ = 10 0.043 0.073 0.031 0.033 0.027 0.008 0.032 0.046 0.042 0.055 3.04

algorithms using five different approaches for selecting w0, w1 and ε. In the first approach we

set the parameters to the their ground truth values defined by the corresponding segmentation

mask. In the second approach we fix the parameters to typical values that work well for many

images. In the third approach we search over the parameters explicitly (see Section 3.3.3).

In the fourth and fifth approaches, we follow the alternation schemes proposed in Section

3.3.3. All of the approaches lead to good results but searching for the optimal parameters

leads to a significant increase in runtime for the algebraic method.

We see that our algorithms perform extremely well on images where the pixel values in each

region are IID. The results on images with textures are also good and compare favorably

to ALT. This result is compelling in particular because the proposed methods do not rely

on an iterative model re-estimation scheme such as in ALT, which makes them faster and

independent of initialization. The average runtime of the different methods are shown in the

last column of Table 3.1.

56

3.6.5 Segmentation Evaluation on Synthetic Images

After estimating appearance models using either the algebraic or spectral methods we

compute segmentations by minimizing Equation (2.12) using a max-flow/min-cut algorithm

([GPS89, BVZ99]). We compared this approach to several texture segmentation methods.

The methods we compare to include Level Set Segmentation using Wasserstein Distances

(LSWD) [NBCE09], Images as Occlusions of Textures (ORTSEG) [MMF+14] and Factoriza-

tion Based Segmentation (FBS) [YWC15]. For each of these methods, we used the Matlab

implementations provided by the authors. We tuned the parameters of each method to

improve their performance in our dataset. We also evaluate the segmentation results obtained

with the iterative scheme ALT described above.

All of the methods we have used for comparison assume either explicitly or implicitly that

regions have homogeneous appearance. FBS uses a filter bank to define local features, while

LSWD and ORTSEG work with raw pixel values. LSWD, ORTSEG and FBS require the

selection of a window size parameter that has a function similar to r in our methods.

We used ρ = 0.06 to estimate appearance models with our methods. We set w0, w1 and ε

by searching over the parameters explicitly (see Section 3.3.3). We compute segmentations

using several choices for λ in Equation (2.12) and evaluate each choice separately.

Figure 3.11 illustrates some of the segmentations obtained using the different methods for

both types of images (IID and Brodatz) used for evaluation. In these examples we used

λ = 5 to compute segmentations with our methods and in ALT.

Table 3.2 provides a quantitative evaluation on the full set of synthetic images generated

using the procedure described in Section 3.6.2. This is the same data used to generate the

results in Table 3.1. Notice that the runtime of our methods is increased for the segmentation

experiments (Table 3.2) when compared to the model estimation experiments (Table 3.1)

due to the addition of the graph cut computation to obtain a segmentation after estimating

appearance models.

Table 3.2 demonstrates a clear advantage of our methods under the IID case. For the Brodatz

setting, the results demonstrate that our methods provide high quality segmentations without

57

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 3.11: Qualitative segmentation results: (a) original image and its ground truth
segmentation, (b) algebraic method, (c) spectral method, (d) ALT, (e) LSWD, (f) ORTSEG,
(g) FBS, and (h) PNMF.

relying on iterative approaches and filter banks. This makes our methods faster than most

of the other approaches, while still leading to accurate results.

These results confirm the soundness and efficacy of the assumptions presented in Section

3.2. They also confirm that it is possible to design high performance texture segmentation

algorithms working directly with raw images. As can be seen in Figure 3.11 this leads

to segmentations that are accurate near region boundaries, where methods that rely on

filter responses often suffer. Finally, although not presented here for the sake of simplicity,

our methods could have their segmentation performance further improved when using the

estimated appearance as an initial guess for an iterative scheme such as ALT.

58

Table 3.2: Average J index of different segmentation methods on the synthetic data
generated using different segmentation masks.

Image Setting

GT1 GT2 GT3 GT4 GT5

Method λ IID Brodatz IID Brodatz IID Brodatz IID Brodatz IID Brodatz Time (s)

Algebraic

3 1.000 0.896 0.991 0.789 0.977 0.869 0.980 0.780 0.956 0.850 8.13

5 1.000 0.919 0.989 0.814 0.955 0.873 0.966 0.787 0.884 0.841 8.15

7 1.000 0.937 0.986 0.838 0.919 0.856 0.886 0.782 0.708 0.811 8.22

10 1.000 0.936 0.976 0.860 0.793 0.837 0.826 0.777 0.570 0.767 8.31

Spectral

3 1.000 0.894 0.991 0.777 0.977 0.863 0.980 0.780 0.958 0.846 0.53

5 1.000 0.918 0.989 0.805 0.957 0.862 0.965 0.795 0.898 0.841 0.57

7 1.000 0.934 0.986 0.819 0.918 0.845 0.884 0.783 0.759 0.808 0.64

10 1.000 0.930 0.974 0.850 0.804 0.824 0.823 0.783 0.590 0.771 0.72

ALT

1 0.467 0.683 0.990 0.591 0.986 0.700 0.984 0.620 0.982 0.694 3.70

3 0.500 0.874 0.991 0.761 0.981 0.854 0.977 0.757 0.974 0.820 3.26

5 0.500 0.874 0.858 0.843 0.966 0.904 0.187 0.785 0.500 0.835 3.29

10 0.500 0.673 0.141 0.784 0.551 0.842 0.177 0.631 0.500 0.668 3.04

LSWD – 0.936 0.959 0.602 0.737 0.805 0.844 0.576 0.669 0.718 0.776 89.35

ORTSEG – 0.804 0.935 0.785 0.773 0.761 0.883 0.766 0.762 0.719 0.851 1.53

FBS – 0.585 0.908 0.582 0.734 0.549 0.842 0.581 0.700 0.547 0.810 0.08

59

3.6.6 Real Images

We also tested the proposed algorithms on real images from a variety of datasets, including

the Berkeley Segmentation Dataset [MFTM01], the Plant Seedlings Dataset [GJJ+17] and

a Scanning Electron Microscope (SEM) dataset [AMCC18]. The images were chosen such

that Assumption 1 approximately holds.

Figure 3.13 shows some of the results obtained using our methods for estimating appearance

models followed by segmentation using graph cuts. For each image, we used ρ = 0.03 and

λ = 5. These results illustrate how the proposed algorithms work well on a variety of different

types of images.

For these experiments we added a pre-processing step to our algorithms to reduce the total

number of colors in RGB images to a smaller number of quantized values. This is necessary

in order to obtain good estimates for α and β.

To quantize the colors in an RGB image we repeatedly partition the color space until each

partition has at most 1000 pixels. Starting from the whole set of pixels, we partition the set

into two using a random hyperplane in RGB space going through the center of mass of the

set. We recurse this procedure until the stopping criteria is met. The same approach could

be used for vector valued images such as hyperspectral images that arise in remote sensing

applications.

For a quantitative evaluation of our methods on real imagery, we also tested our methods in

two image datasets typically used in Segmentation and Salient Object Detection (SOD):

Segmentation Evaluation Database (SED1) : 100 gray-scale images of various sizes

from diverse natural scenes each with only one salient object/foreground [AGBB11].

Figure 3.12 displays some images from that dataset.

Singapore Whole sky Nighttime Image SEGmentation Database (SWINSEG) :

115 diverse nighttime sky/cloud 500× 500 color images. The images were captured

using a ground-based whole sky imager called Wide Angle High Resolution Sky Imaging

System (WAHRSIS), designed and deployed at Nanyang Technological University in

Singapore [DSLW17]. Figure 3.12 depicts some sample images found in that database.

60

Both datasets provide ground truth segmentation data. For these experiments, we adopted

the F -score to evaluate the performance of our method at detecting foreground pixels. The

F -score Fβ is defined as:

Fβ =
(1 + β2)× Precision× Recall
β2 × Precision + Recall

, (3.22)

where we set β = 0.3, when not explicitly specified, and Precision and Recall are defined as:

Precision =
Q∩R
Q , Recall =

Q∩R
R , (3.23)

where Q and R are the estimated and ground-truth foreground regions, respectively. As

stated in [vR79], Fβ “measures the effectiveness of retrieval with respect to a user who

attaches β times as much importance to recall as precision”.

For each image in each dataset, we tried all combinations of ρ ∈ {0.01, 0.02, 0.03, . . . , 0.1} and

λ ∈ {0, 2, 4, . . . , 10}, choosing the best result in terms of F -score as our final segmentation

estimation. Note that this parameter selection procedure individualized for each image is also

done in some works such as [AGBB11]. For each parameter combination, we also considered

the F -score of the segmentation when the labels are swapped.

In Table 3.3, we show how our methods’ segmentation performances in the images from the

SED1 Dataset [AGBB11] and compare them to some of the F -scores reported in [WS01] for

various other methods. In it we show that our performance is comparable to other algorithms

that are not based on deep learning architectures, proposed in [ZLWS14] and [YXSJ13].

Table 3.4 shows our performance in the images from the SWINSEG. Here we compared our

methods’ performance to the results of other methods reported in [DSLW17]. In fact, we use

make use of two different performance metrics, Fβ and F1 in order to make a fair comparison

to existing evaluations in the literature. Since many images on the SWINSEG dataset do

not satisfy the statistical homogeneity requirement form Assumption 1, our methods are

unable to be as performing on this dataset as it is on SED1.

61

Figure 3.12: Sample images from the Weizmann Segmentation Evaluation Database (SED,
shown in the first row) [AGBB11] and from the Singapore Whole sky Nighttime Image
SEGmentation Database (SWINSEG, shown in the second row) [DSLW17].

Table 3.3: Comparative Segmentation
Performance on the SED1 Database.

Measure

Method Fβ

Algebraic 0.8121

Spectral 0.8056

[WWL+18] 0.8811

[LY16] 0.8546

[LY15] 0.8194

[ZLWS14] 0.7889

[YXSJ13] 0.7426

Table 3.4: Comparative Segmentation
Performance on the SWINSEG Dataset.

Measure

Method F1 Precision Recall

Algebraic 0.75 0.95 0.66

Spectral 0.75 0.94 0.66

[YLM+09] 0.79 0.98 0.69

[YLM+10] 0.26 0.90 0.19

[SWCX17] 0.77 0.68 0.93

[GAL16] 0.62 0.47 0.99

[DSLW17] 0.83 0.95 0.76

62

(a) [AMCC18]

(b) [GJJ+17]

(c) [MFTM01]

Figure 3.13: Application our methods in natural scenes. The blue and red contours are the
results of segmentation using appearance models estimated using the algebraic and spectral
methods, respectively.

63

3.6.7 Experiments using the tensorial method and on multi-region images

For our multi-region experiments, we generate synthetic data in a similar manner as in our

experiments on images with two regions. Figure 3.14 shows the ground truth segmentations

used here. Note that they comprise ground truths of 3, 4 and 5 regions. The IID data

consisted of 50 320× 320 images whose pixels values are independent samples of 50 random

K-tuples of appearance models, K ∈ {2, 3, 4, 5}. The Brodatz data was generated by selecting

uniformly at random 50 sets of K different Brodatz patterns shown in Figure 3.7. Figure

3.15 show some examples of Brodatz images generated from the ground truth segmentations

in Figure 3.14.

From the estimated appearance models, we computed our estimated segmentations using αβ

swaps, as explained in 2.1.3. We chose αβ-swaps iterations instead α-expansion for simplicity,

since the appearance estimation algorithm is more central to our work.

Here, we also need to generalized our performance metrics to the multi-region setting. For the

estimation part, we take the mean of the K Bhattacharyya distances between our estimated

appearances, θ̂1, . . . , θ̂K , and the ground truth ones, θ1, . . . , θK , generalizing Eq. 3.19 . Since

the ordering of these pairs need to match, we go over all permutations of region labels

and consider the minimum mean Bhattacharyya distance. Let Perm(K) be the set of all

permutations of the sequence {1, . . . ,K}. Our multi-region estimation assessment measure

is then defined as:

MultiDB = min
π∈Perm(K)

(
1

K

K∑
s=1

dB

(
θs, θ̂π(s)

))
. (3.24)

In a similar vein, we can generalize the Jaccard measure of segmentation quality in Eq. 3.21

as follows:

Multi J = max
π∈Perm(K)

(
1

K

K∑
s=1

(
J(Rs,Qπ(s)

))
, (3.25)

where R1, . . . ,RK and Q1, . . . ,QK are the ground truth and estimated segmentations,

respectively.

Table 3.5 presents some quantitative segmentation and estimation results using the above

metrics on the generated multi-region synthetic data. Since the tensorial method is also able

64

(a) GT6 (b) GT7 (c) GT8 (d) GT9 (e) GT10 (f) GT11

Figure 3.14: Ground truth segmentations used to generate the multi-region synthetic data.

to estimate the normalized region sizes in each image, we also computed the Bhattacharyya

distance between the ground truth and estimated region weights, w and ŵ, respectively,

according the the region permutation found in Equation 3.24. Additionally, the table also

presents the runtime of the estimation and the segmentation parts separately. Following the

previous sections, we set λ = 5 and ρ = 0.06 in these experiments.

These results demonstrate the effectiveness of using the tensorial method within the IID

generation setting. It is able to attain low appearance estimation errors and high Multi J

values, besides also being able to estimate well the normalized region sizes. This performance

is expected since these images strictly follow the assumptions in Proposition 3. On the other

hand, our proposed method does not perform as well within the Brodatz image framework,

also as expected. Interestingly enough, however, it does generate good region size estimates

and relatively performing segmentation results, specially for low K. This suggests that our

proposed method could perform better in higher resolution textured images.

Runtime-wise, the table also demonstrates that the estimation algorithm is fast for all

tested K. The overall method’s runtime is mainly due to the αβ-swap iterations for the

segmentation part and increases with K, which is also expected.

Figure 3.15: Examples of synthetic textured images generated by the ground truth
segmentation in Figure 3.14.

65

Table 3.5: Average performance measures for estimation and segmentation results on the
multi-region synthetic data generated using different ground truth segmentations.

Image Setting

K = 2 K = 3

GT1 GT2 GT6 GT7

Measure IID Brodatz IID Brodatz IID Brodatz IID Brodatz

MultiDB 0.001 1.248 0.816 1.236 0.016 1.268 0.029 1.236

dB(w, ŵ) 0.000 0.004 0.055 0.006 0.023 0.034 0.006 0.044

Multi J 1.000 0.906 0.988 0.904 0.977 0.749 0.985 0.760

Est. Time (s) 0.219 0.134 0.256 0.134 0.191 0.113 0.192 0.113

Seg. Time (s) 0.396 0.366 0.480 0.384 1.375 1.133 1.236 1.145

K = 4 K = 5

GT8 GT9 GT10 GT11

IID Brodatz IID Brodatz IID Brodatz IID Brodatz

MultiDB 0.060 1.221 0.014 1.233 0.041 1.270 0.079 1.289

dB(w, ŵ) 0.058 0.062 0.215 0.136 0.101 0.079 0.004 0.057

Multi J 0.984 0.630 0.923 0.623 0.979 0.620 0.974 0.629

Est. Time (s) 0.196 0.153 0.197 0.123 0.202 0.126 0.205 0.125

Seg. Time (s) 2.565 0.563 2.512 2.523 4.296 3.663 4.001 3.515

66

3.7 Conclusion

In this chapter we addressed the problem of estimating appearance models for images with

multiple regions. We showed that this can be accomplished without explicit reasoning about

the set of pixels in each region. Instead, by assuming homogeneity of appearance within

each region and independence at a distance we derived three methods for estimating the

appearance of the unknown regions in an image. Our first two algorithms combine the

distribution of pixel values within the whole image with the distribution of pairs of nearby

values to obtain algebraic expressions that can be used to solve for appearance models in

images with two regions. For our third approach, we also considered the distribution of

triplets of nearby pixels and showed how to apply it to appearance model estimation in multi-

region images. Our experiments demonstrate the proposed methods work well in a variety

of settings and the resulting appearance models can be effectively used for segmentation of

textured images. These results also suggest that segmentation algorithms can be improved by

making use of second and third order pixel statistics. This study, however, lacks a throughout

evaluation of tensorial method for different parameters and image generation settings, besides

its comparisons to other multi-region segmentation algorithms. These investigations are left

to future work.

Chapter 4
Spectral Image Segmentation with Global

Appearance Modeling

In this chapter, we introduce a new spectral method for image segmentation that incorporates

long range relationships for global appearance modeling. The approach combines two different

graphs, one is a sparse graph that captures spatial relationships between nearby pixels and

another is a dense graph that captures pairwise similarity between all pairs of pixels. We

extend the spectral method for Normalized Cuts to this setting by combining the transition

matrices of Markov chains associated with each graph. We also derive an efficient method

that uses importance sampling for sparsifying the dense graph of appearance relationships.

This leads to a practical algorithm for segmenting high-resolution images. The resulting

method can segment challenging images without any filtering or pre-processing.

4.1 Drawbacks of the Traditional Graph Construction

The classical similarity criteria in spectral segmentation algorithms [SM00, MVM11] takes

into account both the appearance similarity and distance between pairs pixels. This is

expected, since in real segmentations nearby pixels that are similar in their appearance tend

to belong to the same regions. A typical choice of pixel similarity function is shown in Eq.

2.39, recalled here:

w(i, j) = exp

(
−||I(i)− I(j)||2

2σ2
I

)
exp

(
−||X(i)−X(j)||2

2σ2
X

)
. (2.39)

This formulation, however, poses some practical and theoretical difficulties:

67

68

Intepretability Although this measure is locally intuitive, i.e. one expects pixels that

are close enough and have similar enough appearances to be clustered together, its

global interpretation in the context of the cut is less obvious. In other words, it is

not straightforward to comprehend what is being minimized when one computes the

minimum normalized cut on a graph constructed based on Eq. 2.39.

Short Range and necessity of filtering techniques This construction is essentially lo-

cal in both spacial and color domains, since it assigns large weights to pairs of pixels

that are spatially close and whose colors are similar. Consequently, (1) far away pixels

that are similar appearance-wise and (2) nearby pixels with difference appearances are

both assigned low weights in G. Due to (1), this construction ends up being unsuitable

to deal with textured images, considering they present pixels whose intensities are

correlated even at a distance. The same can be said about noisy images, an example

of (2). A typical resolution to this issue is the use of filtering techniques [SM00], which

results in extra computation overhead and boundary smoothing, making the overall

segmentation algorithm less performing and slower.

Implementation Efficiently constructing this graph is relatively challenging in practice for

large values of σI and σX , even for small images, as discussed in Section 2.3.4. For

example, a typical solution for large σX , which effectively enlarges the range of w, relies

on image pre-processing using super-pixels in order to overcome this computational

problem.

4.2 New Criteria for Image Segmentation

In order to address the above difficulties, we combine two normalized cut values to obtain a

new criteria for image segmentation. We break the grouping cues (spatial proximity and

appearance similarity) into two separate graphs, Ggrid and Gdata. Both graphs are defined

over the same set of vertices, corresponding to the pixels in an image.

1. The graph Ggrid is a grid over the image pixels, where each pixel is connected to the

four neighboring pixels with an edge of weight 1. This graph encourages neighboring

pixels to be grouped together, independent of their appearance.

69

•

•

•

•

i

(a) Ggrid

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

i

(b) Gdata

Figure 4.1: The edges connecting to a pixel i in Ggrid and Gdata. In the each image, the
thickness of each link is proportional to its weight.

2. The graph Gdata is a fully connected graph that encourages pixels with similar appear-

ance to be grouped together, independent of their location. The weights in Gdata are

based on appearance similarity of pixels, and do not depend on pixel locations,

w(i, j) = exp

(
−||I(i)− I(j)||2

2σ2

)
. (4.1)

Figure 4.1 illustrates the graph construction of both Ggrid and Gdata on a image with two

regions.Below we discuss how the normalized cut criteria for each of the two graphs can be

interpreted.

4.2.1 Spatial Information: Ggrid

Let (A,B) be a cut in the grid graph. The cut defines a segmentation of the image into

two regions, with a boundary Γ between them. The cut value, Cut(A,B|Ggrid), counts the

number of neighboring pixels that are in different regions. In general the cut value in the

grid graph and similar graphs can be seen as a measure of the length of the boundary Γ (see

[BK03]).

Observation 1.

Cut(A,B|Ggrid) ≈ Len(Γ).

70

This is a commonly used measure of spatial coherence in image segmentation problems

(see, e.g., [MS89a]). Although the criteria Cut(A,B|Ggrid) leads to spatially coherent

segmentations and is widely used in practice, it gives most preference to trivial solutions

with a small (single pixel) region.

Using the previous observation and noting that Vol(S|Ggrid) ≈ 4|S| for S ⊆ V we can derive

an expression for the value of a normalized cut in the grid graph.

Observation 2.

NCut(A,B|Ggrid) ≈ |V |
4

Len(Γ)

|A||B| .

Minimizing this criteria encourages solutions where the boundary Γ between the two regions is

short (to minimize Len(Γ)) and where the two regions have similar size (to maximize |A||B|).

This criteria encourages spatially coherent regions without promoting trivial solutions where

one region is very small.

4.2.2 Global Appearance Information: Gdata

Now we consider the weight of cuts and normalized cuts in Gdata. For S ⊆ V we use gS to

denote a kernel density estimate defined by the pixel values in S,

gS(c) =
1

|S|
∑
i∈S

K(I(i)− c). (4.2)

Proposition 4.

Cut(A,B|Gdata) = (2πσ2)
d
2 |A||B|〈gA, gB〉,

where d is the dimension of the pixel appearance vectors, gA and gB are densitiy estimates

defined using a Gaussian kernel, and 〈·, ·〉 denotes the standard inner product of functions.

Proof. We use the fact that the convolution of two Gaussians with equal variance is a

71

Gaussian with twice the variance,

∑
i∈A,j∈B

wdata(i, j) =
∑
i∈A

∑
j∈B

exp

(
−‖|I(i)− I(j)||2

2σ2

)

= (2πσ2)
d
2

∑
i∈A

∑
j∈B

∫ ∞
−∞

(
1

πσ2

)d
exp

(
−||I(i)− c||2

σ2

)
exp

(
−||I(j)− c||2

σ2

)
dc

= (2πσ2)
d
2

∫ ∞
−∞

(
∑
i∈A

Kσ2(I(i)− c))(
∑
j∈B

Kσ2(I(j)− c))dc

= (2πσ2)
d
2 |A||B|

∫ ∞
−∞

gA(c)gB(c)dc = (2πσ2)
d
2 |A||B|〈gA, gB〉, (4.3)

Here Kβ(·) is a Parzen window of bandwidth β.

The proposition above is related to the Laplacian PDF Distance in [JEPE05]. It is also

related to the work in [TGVB13] where a different graph construction is used to define global

appearance models.

The weight of a cut in Gdata will be minimized when the pixel values in the two regions have

complementary support. Although this intuitively makes sense, the measure encourages

regions to be unbalanced in size due to the term |A||B| multiplying 〈gA, gB〉.

In order to derive an expression for NCut(A,B|Gdata), we first use a similar reasoning as

in the proposition above to note that Vol(S|Gdata) = (2πσ2)(d/2)|S||V |〈gS , gV 〉. Then, from

the definition of the normalized cut we obtain the following result.

Proposition 5.

NCut(A,B|Gdata) = 〈gV , gV 〉
〈gA, gB〉

〈gA, gV 〉〈gB, gV 〉
.

This criteria is minimized when (1) the distributions gA and gB have little overlap and (2)

both have significant overlap with gV . In particular it penalizes solutions where one region

does not represent a significant amount of the image color data. Both behaviors are expected

in realistic segmentations: (1) different regions in a scene tend to have different appearances

and (2) the appearance of significant/large regions should heavily contribute the overall color

distribution of the entire scene.

72

4.2.3 Combining Spatial and Appearance information

The normalized cut values in Ggrid and Gdata provide complementary measures for image

segmentation. To combine the spatial and appearance cues we use a convex combination,

MixNCut(A,B) = (1− λ) NCut(A,B|Gdata) + λNCut(A,B|Ggrid). (4.4)

The parameter λ ∈ [0, 1] controls the relative importance of the two normalized cut measures.

We interpret MixNCut(A,B) as a mixture of an appearance and a spatial term,

MixNCut(A,B) ≈ (1− λ)

(
〈gV , gV 〉

〈gA, gB〉
〈gA, gV 〉〈gB, gV 〉

)
+ λ

(|V |
4

Len(Γ)

|A||B|

)
. (4.5)

The first term encourages a partition of the image into regions with dissimilar color dis-

tributions, while the second term encourages a spatially coherent partition. Both terms

are normalized and avoid biases towards solutions with small regions. Note that each term

is normalized in a particular way that is natural and has appropriate dimensions for the

individual measures.

4.3 Segmentation Algorithm

4.3.1 Spectral Method

In this section, we provide a heuristic to approximately find the cut (A,B) that minimizes

MixNCut(A,B). The main goal here is to make use the random walk interpretation of

normalized cuts presented in Section 2.3.3 in problems involving multiple graphs.

Let G1 and G2 be two weighted graphs. Now we describe a spectral method for optimizing

a convex combination of two normalized cut values,

MixNCut(A,B|G1, G2) = (1− λ) NCut(A,B|G1) + λNCut(A,B|G2). (4.6)

The approach is based on the Markov chain and conductance interpretation of normalized

cuts ([SM00, MS01]). Let W1 and W2 be the weighted adjacency matrices of the two graphs

73

while D1 and D2 are the diagonal degree matrices. Let,

P1 = D−1
1 W1, P2 = D−1

2 W2, P = (1− λ)P1 + λP2. (4.7)

The matrices P1 and P2 define two Markov chains on V . The matrix P also defines a Markov

chain on V where in one step we follow P1 with probability (1− λ) and P2 with probability

λ.

We compute the second largest eigenvector of P to find a cut (A,B) with small conductance.

In our experiments, we use a Lanczos Process for the truncated eigenvector decomposition.

We use k-means with k = 2 to cluster the entries in the eigenvector into 2 clusters.

Finally, instead of combining two Markov chains, one could also compute a convex combination

of the Laplacians ofGgrid andGdata and proceed with the normalized cut of that new combined

graph. Note however that the desired interpretable per graph normalization would not be

present in that case. Furthermore, as our experiments can attest, combining the Markov

chains produces better empirical segmentation results than the using the convex combination

of Laplacians.

4.3.2 Graph Sparsification

When the matrix P is sparse we can compute the required eigenvector much more quickly.

The grid Ggrid is sparse but Gdata is dense. We sparsify the graph using a random sampling

approach.

The approach described here is complementary to other methods that have been used to

speed up the computation of eigenvectors for clustering. One such method is based on

Nystrom approximation [FBCM04]. Another approach involves power iteration [LC10].

Let G be a weighted graph. To construct a sparse graph G′ we independently sample

m = O(|V |) edges (with replacement) from G, with probabilities proportional to the edge

weights. The weight of each sampled edge is set to 1 (adding up weights if there is repetition).

With this approach the expected value of a cut (A,B) in G′ equals the value of the cut in G

up to a scaling factor of (m/Vol(V |G)). Moreover, if m is sufficiently large then with high

74

probability every cut in G′ has weight close to the cut value in G (up to a scaling factor of

(m/Vol(V |G))) (see, e.g., [WS11]). In the experimental section, we parametrize m = α|V |

with α > 0.

To implement this approach efficiently for Gdata we need to sample edges with probability

proportional to their weights w(i, j) without enumerating all possible edges. We use an

importance sampling method as a practical alternative.

First, partition V into L (≈ 1000 in practice) sets S1, . . . , SL with low appearance variance.

We do this greedily, starting with a single set and repeatedly partitioning the set with highest

variance into two using the k-means algorithm. Let mi be the mean appearance of pixels in

Si and

q(a, b) = |Sa||Sb| exp

(
−||ma −mb||2

2σ2

)
. (4.8)

To sample an edge for G′ first select a random pair Sa and Sb with probability proportional to

q(a, b). Then select i ∈ Sa and j ∈ Sb uniformly at random. Let Zq =
∑

a′,b′∈{1,...,L} q(a
′, b′).

Finally, add the edge {i, j} to G′ with weight w′(i, j) = Zq|Sa||Sb|w(i, j)/(mq(a, b)). This

weighting ensures the expected value of a cut in G′ equals the value of the same cut in G:

E[Cut(A,B|G′)]

= E

∑
i∈A

∑
j∈B

w′(i, j)


= E

∑
i∈A

∑
j∈B

m∑
k=1

Zq|Sa||Sb|w(i, j)

mq(a, b)
1 [{Sa, Sb} and {i, j} selected for the k-th edge]


=
∑
i∈A

∑
j∈B

Zq|Sa||Sb|w(i, j)

mq(a, b)
E

[
m∑
k=1

1 [{Sa, Sb} and {i, j} selected for the k-th edge]

]

=
∑
i∈A

∑
j∈B

Zq|Sa||Sb|w(i, j)

q(a, b)
P [{Sa, Sb} and {i, j} selected]

=
∑
i∈A

∑
j∈B

Zq|Sa||Sb|w(i, j)

q(a, b)
P [i selected|Sa]P [j selected|Sb]P [{Sa, Sb} selected]

=
∑
i∈A

∑
j∈B

Zq|Sa||Sb|w(i, j)

q(a, b)

1

|Sa|
1

|Sb|
q(a, b)

Zq

=
∑
i∈A

∑
j∈B

w(i, j) = Cut(A,B|G)

75

4.4 Numerical Experiments

4.4.1 Segmentation accuracy measure and hardware setting

To measure the accuracy of a segmentation we use the Jaccard Index, defined in Section

3.6.1. The algorithms in this section were implemented in MATLAB and run on the same

hardware specifications of Section 3.6.

4.4.2 Sparsification algorithm for NCut

We compare our new segmentation method with the original normalized cut formulations,

NCut, using the graph construction defined in Section 2.3.2. We sparsify this graph to scale

the eigenvector computation to large images. Again, we accomplish this using importance

sampling. Let H be the graph with weights defined by Equation 2.39. To sample one edge

from H, first select a pixel i uniformly at random. Then, draw a location x from a Normal

distribution centered at X(i) with variance σ2
X and select the pixel j closest to that location.

We add the edge {i, j} to G′ with weight w′(i, j) = exp
(
||I(i)− I(j)||2/2σ2

I

)
. We repeat this

process m times. Again, this choice of w′ ensures the expected value of a cut in G′ equals

the value of the same cut in H. In practice we empirically noticed that setting m = 100|V |

produces the best segmentation results, while keeping a low memory/computation cost.

4.4.3 Evaluation of NCut and MixNCut without sparsification

In order to demonstrate the efficacy of our multiview graphical approach compared to

the traditional graph construction given in Eq. 2.39, we run both NCut and MixNCut

without the graph sparsification step of each algorithm. Figure 4.2 shows the segmentation

performance of each method under various combinations of their parameters. The tested

images were selected such that they have different region sizes and textural appearances.

These results demonstrate the effect of low values for either σI or σX for the normalized

cut method. In this setting, either the first or the second term in Eq. 2.39 is very small,

potentially equalling zero, numerically. Therefore, the graph H is very sparse, which hinders

the algorithm’s segmentation performance. On the other hand, when both parameters

increase past a threshold, the segmentation results abruptly and substantially improve,

76

attaining an approximately constant Jaccard value for any remaining (σI , σX) pair. At that

point, the effect of either parameter on the final result becomes less clear. Furthermore, the

algorithm heavily lessens its performance in textured images, notably when the regions sizes

are unbalanced.

Our method is able to achieve good results in all scenarios, including the textured and/or

unbalanced images. We also note that varying the parameters σ and λ produce clear

implications on the final segmentation result. In other words, differently from NCut, the

variation in each parameter also generates a smooth variation in our algorithm’s performance,

which is very helpful when tuning them. On the practical side, these results also suggest

that our method performs well in the regime of high λ (between 0.8 and 0.97) and low σ.

4.4.4 Impact of edge sampling on MixNCut

Figure 4.3 shows how our algorithm performs under different values of m = α|V |, i.e. number

of sampled edges of Gdata, when sparsified according to the algorithm in Section 4.3.2. Our

method attains satisfactory results for α ≥ 2 and achieves almost perfect segmentations for

values above α = 4. Furthermore, it has the lowest processing time1 around α = 2. Having

that in mind, the number of sampled edges used to sparsify Gdata was set to m = 2|V | for

the experiments with MixNCut in the following sections.

4.4.5 The role of λ on MixNCut

Figure 4.4 depicts the visual impact of varying λ in our method. For low λ’s, MixCut outputs

a segmentation where fine image structures are kept while preserving some image artifacts.

As it increases, the computed eigenvector gets blurred, which causes the final segmentation to

have smoother boundaries. As already mentioned in the text, these results demonstrates the

role that λ, and therefore Ggrid, plays as enforcing consistency within each region, whereas

Gdata promotes the fitting of the color data in each region.

1The increase in computation time for values of α smaller that 2 is due to the slow convergence of the
Lanczos algorithm in that regime.

77

10 20 30 40 50

10

20

30

40

σX

σ
I

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50

0.4

0.6

0.8

1

σ

λ

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50

10

20

30

40

σX

σ
I

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50

0.4

0.6

0.8

1

σ

λ

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50

10

20

30

40

σX

σ
I

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50

0.4

0.6

0.8

1

σ

λ

0

0.2

0.4

0.6

0.8

1

(a) Image

10 20 30 40 50

10

20

30

40

σX

σ
I

0

0.2

0.4

0.6

0.8

1

(b) NCut-Graylevel

10 20 30 40 50

0.4

0.6

0.8

1

σ

λ

0

0.2

0.4

0.6

0.8

1

(c) MixNCut

Figure 4.2: Evaluation of NCut-Graylevel and MixNCut performances without sampling.
Column (a) show the test images of size 40× 40, with different levels of noise. In column
(c) we show the value of J for a range of values for σI and σX . In (c), we show evaluate
the segmentation performance of MixNCut over various combinations of σ and λ. In these
experiments NCut averaged 6.31± 5.28s of processing time and MixCut, 1.35± 0.25s.

78

0 2 4 6 8

0.7

0.8

0.9

1

0 2 4 6 8

1.5

2

2.5

3

(a) Image

0 2 4 6 8

0.6

0.8

1

(b) Jaccard

0 2 4 6 8
1.5

2

2.5

(c) Time (s)

Figure 4.3: Evaluation of sampling performance for various α. Column (a) shows two
different test images of size 200× 200. Column (b) shows the average and standard deviation
of J segmentation measure for 100 runs of MixCut on the respective test image. Column (c)
shows the average time and standard deviation of the same runs. Here, we set λ = 0.95 and
σ = 1.

(a) Image (b) λ = 0.5 (c) λ = 0.9 (d) λ = 0.99

Figure 4.4: MixNCut results when varying λ. Column (a) shows the input image. Columns
(b)-(d) show the computed eigenvectors (on the left) and segmentations (on the right) given
by MixNCut for various values of λ and σ = 1.

79

4.4.6 Experiments in Real Images

We tested our method on real images from a variety of datasets including the Berkeley

Segmentation Dataset [MFTM01], the Plant Seedlings Dataset [GJJ+17], the Grabcut dataset

[RKB04], the PASCAL VOC dataset [EEVG+15] and a Scanning Electron Microscope (SEM)

dataset [AMCC18]. Figure 4.5 shows some of the results we obtained, comparing the original

normalized cuts formulation with our new approach. We can see in these examples how the

new approach can segment challenging images in a variety of settings, often outperforming

the original normalized cuts formulation.

Figure 4.6 illustrates segmentation results using MixNCut to partition an image into 3 regions.

In this case we follow the approach suggested in [NJW02] and [MS01], using k-means with

k = 3 to cluster the pixels using the second and third largest eigenvector of the transition

matrix P in equation (4.7).

For each example in these figures, we ran the algorithms using different parameter values

(specified in the next section), and show the best result among the different runs.

We also proceed as in Section 3.6.6 and evaluated the proposed MixNCut method’s per-

formance on the SED1 and SWINSEG datasets, also described in Section 3.6.6. Here, we

resized the images in the latter database to half of their original size for runtime and memory

constraints. We tested MixNCut and NCut for the same set of parameters described on the

previous paragraph, selecting the best parameter combination based on its F -score, Fβ for

β = 0.3. We again also consider swapping the labels of each segmentation as a possible

result.

Table 4.1 shows the segmentation results as on SED1 reported in [WWL+18], using Fβ as an

evaluation metric, and in [AGBB11], using F1 instead, and compare them to our methods.

Again, we use these two different measures in order to compare to existing evaluations in the

literature. Note that our implementation of NCut improves on the performance of original

segmentation algorithm proposed in [SM00]. Note too, that MixNCut is able to achieve

segmentation results that are on par with some Deep Leaning based methods, such as the

ones introduced in [LY16] and [LY15].

80

(a) Original Image (b) NCut (c) MixNCut

Figure 4.5: Segmentation results comparing NCut and MixNCut on real images. Column
(a) shows the input images. Column (b) shows the eigenvector found by the original NCut
formulation on the left and the segmentation result on the right. Column (c) shows the
eigenvector found by the new MixNCut formulation on the left and the segmentation result
on the right.

81

Figure 4.6: Segmentation results using the proposed method for images with more than 2
regions.

Table 4.2 shows the segmentation results for the proposed methods on the SWINSEG. Note

that here we are not able to use the reported results from [DSLW17] for comparison because

of our choice for a reduced image size.

4.4.7 Experiments in Synthetic Images

For a quantitative evaluation we used images with Brodatz textures [Bro66]. To generate

input images, we mixed pairs of textures using different ground-truth segmentation patterns

and resized the result to 320× 320 pixels.

We compare our method to NCut, using either graylevel intensities or “texture features”,

where we use the magnitudes of the response of 12 Gabor filters (3 wavelengths and 4

orientations) to define appearance vectors for each pixel. We also contrast our proposed

algorithm with the texture segmentation methods mentioned in Section 2.2. They include

LSWD, FBS, PNMF and ORTSEG. In all these methods we try different combinations of

their parameters and select the ones that performed the best in our data based on their

J value. We run our comparisons using the implementations provided by their authors.

As explained in Section 2.2, FBS and PNMF resort to Gabor filtering in their algorithms,

whereas LSWD and ORTSEG make use of local image histograms.

Furthermore, we also compare our method with the Multi-view Spectral Clustering (MVSC)

algorithm [ZB07]. It applies the normalized cuts algorithm on a convex combination of two

82

Table 4.1: Comparative Segmentation Performance on the SED1 Database.

Measure

Method Fβ F1

MixNCut 0.8660 0.87

NCut 0.8188 0.81

[WWL+18] 0.8811 –

[LY16] 0.8546 –

[LY15] 0.8194 –

[TLRY15] 0.7675 –

[ZLWS14] 0.7889 –

[AGBB11] – 0.86

[GSBB03] – 0.83

[SM00]∗ – 0.72

[CM02] – 0.57

∗ Implementation of NCut as reported in [AGBB11]

Table 4.2: Comparative Segmentation Performance on the SWINSEG Dataset.

Measure

Method F1 Precision Recall

MixNCut 0.8316 0.8975 0.8065

NCut 0.7952 0.8799 0.7568

[YLM+09] 0.79 0.98 0.69

[YLM+10] 0.26 0.90 0.19

[SWCX17] 0.77 0.68 0.93

[GAL16] 0.62 0.47 0.99

[DSLW17] 0.83 0.95 0.76

83

(a) Image (b) NCut-Graylevel (c) NCut-Gabor (d) MixCut

Figure 4.7: Comparing NCut-Graylevel, NCut-Gabor, and MixNCut on textured images.
Column (a) shows the input images. Column (b) shows the eigenvector found by the original
NCut formulation on the left and the segmentation result on the right. Column (c) shows
the eigenvector found by NCut with Gabor features on the left and the segmentation result
on the right. Column (d) shows the eigenvector found by the new MixNCut formulation on
the left and the segmentation result on the right.

Laplacian matrices representing different graphs/views. For MVSC, we input wgrid and wdata

to their algorithm and tested their results using the same values of λ and σ as in MixNCut,

picking the best result segmentation according to their J value.

Qualitatively, Figure 4.7 shows some of the input images along with the computed eigenvec-

tors and segmentations arising from our proposed MixNCut method and the tested NCut

formulations. The poor segmentation performance of NCut defined over the pixel graylevels

(Figure 4.7b) can be attributed to its inability to handle textures. Since it only processes

the pixels intensities within a certain radius, the long range pixel relations that are typical

in textures and important in their modeling are missed. This issue is partially solved when

gabor features are considered, but it has the drawback of over-smoothing region boundaries

(first and third examples in Figure 4.7c). In fact, in some extreme cases, it misses an entire

small region (second row of Figure 4.7c). On the other hand, the new MixNCut method

defined directly in terms of “raw” pixel values finds near optimal segmentations in all of

these examples, preserving well the region boundaries and outperforming both baselines.

This mainly due to its capacity to model the global image information without relying on

84

Figure 4.8: Brodatz Patterns used in the synthetic experiments

Table 4.3: Evaluation of different segmentation methods on textured images. The table
summarizes accuracy and running time of each method on images with different ground-truth
segmentations.

J value

Method Time (s)

MixNCut 0.906± 0.080 0.876± 0.107 0.842± 0.133 11.27

NCut-Graylevel 0.541± 0.128 0.470± 0.126 0.538± 0.130 9.53

NCut-Gabor 0.800± 0.173 0.779± 0.197 0.661± 0.193 13.14

MVSC 0.731± 0.273 0.766± 0.214 0.656± 0.284 11.19

LSWD 0.852± 0.129 0.794± 0.198 0.828± 0.119 67.08

ORTSEG 0.853± 0.149 0.668± 0.274 0.826± 0.135 1.56

FBS 0.850± 0.151 0.778± 0.214 0.804± 0.146 0.10

PNMF 0.907± 0.092 0.733± 0.142 0.857± 0.085 14.59

filtering methods.

For the quantitative experiments, we use all pairings of the 10 textures in Figure 4.8 with

three different ground-truth segmentations shown in Table 4.3 to generate three sets of

images. We compute the mean accuracy of each method on each set of images using

several parameter combinations (σI ∈ {20, 30, . . . , 400} and σX ∈ {20, 30, . . . , 100} for NCut;

λ ∈ {.98, .99, .995} and σ ∈ {.1, 1, 10, 30} for MixNCut). Table 4.3 summarizes the best mean

accuracy obtained with each method on each set of inputs. The table also shows the average

running time of each method. We see the new MixNCut approach obtains high accuracy on

all ground-truth patterns, outperforming the other methods, specially the spectral ones.

85

4.5 Conclusion

We introduced a new spectral method for image segmentation that can segment challenging

images while working directly with “raw” pixel values, without any pre-processing or filtering.

The approach is based on a novel combination of appearance and spatial grouping cues using

two different graphs. We use a dense graph to capture the appearance of regions. This

leads to non-parametric models of region appearance. We also introduced a technique that

can be used to sparsify the resulting graph to ease the computational burden of spectral

segmentation. Our results show that long range interactions can capture the appearance

of complex regions and significantly improve the performance of graph-based segmentation

methods. The proposed method is practical and it can be applied to different types of images

(natural, biomedical, textures, etc.).

Chapter 5
Penalized Normalized Cuts

In this chapter, we generalize the original Normalized Cuts framework to allow for the

incorporation of prior knowledge about how pixels should be grouped into the segmentation

pipeline. This additional information comes from two sources: (1) user data about pixels

that should be assigned to certain regions (seeds) or about the expected region appearances

and (2) segmentation cues concerning each region’s color statistics. In order to accommodate

these new features, a plug-and-play penalty function is added to the original Normalized Cuts

formulation without requiring the explicit construction of a large, dense matrix. Although

many strategies have been proposed to add seed information to the Normalized Cuts-based

segmentation pipeline [EOK11, MVM11, CC15], this is, to the best of our knowledge, the

first algorithm to add global appearance data and other segmentation cues to the original

spectral framework. Our promising preliminary results show that the proposed methods

out-perform the traditional spectral clustering algorithm and can be successfully used in

image segmentation tasks.

5.1 Prior work and its limitations

Since the conception of the Normalized Cuts criteria and algorithm [SM00], many attempts

have been made to generalize these concepts to include additional constraints. In particular,

this body of work has been divided into algorithms that include these constraints in a hard or

in a soft manner. For the former, two important papers are: the work of [YS01], which added

linear constraints of the form Ux = 0 to the spectral pipeline, and the ideas in [EOK11],

that generalized that result to problems with constraints like Ux = b.

86

87

As it has been shown in later results, enforcing constraints in a hard way is not robust

in typical real world scenarios [MVM11]. That observation motivated the development of

techniques that encompass the additional constraints softly. The main works here are:

Biased Normalized Cuts The authors in [MVM11] proposed to modify a solution to the

original Normalized Cuts algorithm towards being correlated with a predefined vector

that embodies the additional constraints. Based on the theoretical work of [MOV12],

their proposed algorithm was able incorporate the information about pixels that should

be linked in the final spectral solution (seeds) with a negligible additional runtime to

the traditional NCut algorithm. On the other hand, the Biased NCut algorithm is not

able to handle multiple sets of seeds, such as foreground and background seeds, which

hinders its application in certain image segmentation problems.

Semi-supervised Normalized Cuts In an attempt to create a algorithm that is able

to tackle problems with both must-link seeds (pixels that should be linked in the

final solution) and cannot-link seeds (pixels that should not be assigned to be to-

gether), the authors in [CC15] developed a soft constrained generalization of NCut

called Semi-supervised NCut. In their work, they suggested a new cut criteria that

incorporated both sets of seed constraints and proposed approximate minimizers via

eigenvalue problem solvers. These solvers, on the other hand, require complex algebraic

calculations that hinder its implementation and interpretability. Furthermore, the

proposed method is hard to generalize in other to embody different kinds of constraints

other than seeds.

In this chapter we propose a simple, easy to implement, and scalable, normalized cut

criteria that is able incorporate different constraints in a plug-and-play fashion via a penalty

function. We then derive four possible constraints that can be added in a soft manner to our

methodology and show that they lead to interpretable segmentation objective functions. In

particular, we show that the seed data can be used here to encompass both must-link and

cannot-link pixel information.

88

5.2 Adding the Penalty

Let φ(A,B|G) = ‖J>y‖22 be a quadratic function of the cut (A,B) of graph G, where

y ∈ {−1, 1}n is the labeling vector representing (A,B) and J ∈ Rn×m is a matrix such that

J>1 = 0. Our goal is to study the solutions of the following cut minimization problem:

min
A,B

Cut(A,B|G)− αφ(A,B|G)

Vol(A|G)
+

Cut(A,B|G)− αφ(A,B|G)

Vol(B|G)
, (5.1)

where α > 0 is a constant. In the above, φ(A,B|G) acts as a penalty function and, depending

on the choice of J , it will enable to addition of soft constraints and segmentation cues to

the traditional Normalized Cut formulation in Section 2.3. We call the above minimization

problem and clustering criterion of Penalized Normalized Cuts. Our methodology is based

on the following proposition:

Proposition 6. For J ∈ Rn×m, the minimization problem in Eq. 5.1 can be approximately

solved via a generalized eigenvalue problem.

Proof. We proceed similarly to what is described in Eqs. 2.33-2.37. Introducing the new

variables vA and vB and defining d = D1, we can rewrite Eq. 5.1 in the following way:

min
x,vA,vB

(
vA + vB
4vAvB

)
y>
(
L− αJJ>

)
y

s.t. d>y = vA − vB, d>1 = vA + vB

y ∈ {−1,+1}n

(5.2)

Now, using the transformation in Eq. 2.35:

x =

√
vA + vB
4vAvB

(
I − 1d>

d>1

)
y (5.3)

89

and using the fact that J>1 = 0, we have:

min
x,vA,vB

x>Lx− α‖J>x‖22

s.t. d>x = 0, d>1 = vA + vB, x>Dx = 1

x ∈
{
−
√

vA
(vA + vB)vB

,

√
vB

(vA + vB)vA

}n (5.4)

A spectral relaxation of the above problem can be accomplished by minimizing only on x

and dropping the combinatorial constraint on it. That leads us to the following problem:

min
x

x>Lx− α‖J>x‖22

s.t. 1>Dx = 0, x>Dx = 1,

(5.5)

From which we derive the following:

(
L− αJJ>

)
x = Dx⇔ Lx = (D + αJJ>)x. (5.6)

The matrix D + αJJ> is Positive Definite and, therefore, the above problem constitutes a

valid Generalized Eigenvalue Problem.

Computationally, one could be reluctant of forming potentially dense matrices of the form

JJ>, due to its memory demand, O(n2), and the spectral decomposition runtime requirement,

O(n3). However, for low m, the generalized eigenvector decomposition in Eq. 5.6 can be

efficiently solved via traditional Power Methods, such as the Lanczos algorithm, that does

not require JJ> to be formed explicitly. That strategy was used in [CC15] when the authors

confronted a similar issue.

In the next section, we explore the many ways J can be set in order to encompass several

clustering and segmentation cues or constraints.

90

5.3 Possible Penalties and Related Segmentation Cues

5.3.1 Seeds

We start by the task of adding the constraints imposed by seed information to the formulation

in Eq. 5.1. Let I be an image with n pixels. Let Fore be the set of pixels that are set to

belong to the images foreground and, similarly, Back be the ones in the background. Define

s ∈ Rn as follows:

s(i) =
ns
|Fore|1(I(i) ∈ Fore)− ns

|Back|1(I(i) ∈ Back), (5.7)

for all pixels i ∈ {1, . . . , n}, where ns = |Fore| + |Back|. Now let x ∈ {−1, 1}n be the

labeling vector of a cut (A,B). Without loss of generality, assume the pixels in A (resp. B)

are labeled as 1 (resp. −1) in x. Then we have that:

x>s = ns

[(|A ∩ Fore|
|Fore| − |B ∩ Fore||Fore|

)
+

(|B ∩Back|
|Back| − |A ∩Back||Back|

)]
= ns [(TPR− FNR) + (TNR− FPR)]

= ns [(2× Sensitivity− 1) + (2× Specificity− 1)] ,

(5.8)

where the rates are defined using the convention that region A should be set as the foreground

and B the background. Therefore, Sensitivity (resp., Specificity) concerns the amount of

foreground (resp., background) seeds set to the foreground (resp., background) region.

Furthermore, ‖x>s‖22 accounts for the square of the sum of Sensitivity+ Specificity, which is

maximized if both sensitivity and specificity is as high as possible. That setting is attained

when the seeds are placed in different segments according to their types, foreground our

background. Finally, since s>1 = 0, our framework allows us to set J = s.

5.3.2 Region Color Histograms

For an image I with L colors, consider the one-hot encoding H ∈ Rn×L of image’s pixel

colors, i.e, H(i, j) = 1{Pixel I(i) = Color j}. Let x be an indicator vector of a segmentation

(A,B) of I and hA and hB be the unnormalized color histograms of A and B, respectively.

91

We have that:

‖H>x‖22 = ‖hA − hB‖22, (5.9)

Ideally, we would like to find a segmentation such that the histograms hA and hB are as

distant as possible, i.e., that ‖H>x‖22 is maximized. Therefore, one is tempted to set J to H

in our formulation of φ(A,B). However, this setting is not allowed, since H1 = h, where h

is the unnormalized histogram of I, and therefore 1 6∈ Null(H>).

On the other hand, we can then define

H̃ = H − 1

n
1h> (5.10)

and assure the above requirement, i.e, H̃>1 = 0, making J = H̃ a valid matrix for φ(A,B).

We also have that:

(
H − 1

n
1h>

)>
x = (hA − hB)−

(|A| − |B|
n

)
h

=
(n− |A|+ |B|)hA + (−n− |A|+ |B|)hB

n

=
2(|B|hA − |A|hB)

n
=

2|A||B|
n

(pA − pB),

(5.11)

where pR = hR/|R| is the appearance model of region R ∈ {A,B}. This leads to:

‖H̃>x‖22 =

(
2|A||B|
n

)2

‖pA − pB‖22, (5.12)

which is also a quantity whose maximization is desirable, since we want the segments’

appearance models to be as different as possible, while assuring that |A| ≈ |B|.

5.3.3 Region Mean Colors

Let C ∈ Rn×L be the matrix (resp, vector) of RGB colors (resp, graylevels) of I. With the

binary assignment vector x, we have:

‖C>x‖22 =

∥∥∥∥∥∑
i∈A

I(i)−
∑
i∈B

I(i)

∥∥∥∥∥
2

2

= ‖|A|µA − |B|µB‖22 (5.13)

92

where µR = 1
|R|
∑

i∈R I(i). Again, note that J = C does not have the required property of

J>1 = 0, so we set J = C̃ with

C̃ = C − 1µ>, (5.14)

where µ ∈ RL is the average color of I. We also have that:

(
C − 1µ>

)>
x = (|A|µA − |B|µB)−

(|A| − |B|
n

)
(|A|µA + |B|µB)

=
|A||B|
n

(µA − µB),

(5.15)

which leads to:

‖C̃>x‖22 =

(
2|A||B|
n

)2

‖µA − µB‖22, (5.16)

Therefore, by maximizing the above equation, we maximize the discrepancy between the

mean colors of each region, while making segmented regions have similar sizes (|A| ≈ |B|).

5.3.4 Global Appearance Models

Let θs(c) = P (I(i) = c|i ∈ Rs) be the marginal probability for the color c of a pixel given

that it belongs to the s-th ground truth region of I. In section 2.1.3, that is defined as the

appearance model of Rs. Assume that I has two regions R0 and R1 and that θ0(i) and θ1(i)

are given. Define t ∈ Rn as follows:

t(i) = log

(
θ0(Ii)

θ1(Ii)

)
(5.17)

Now, for a binary assignment vector x, define l as:

l = x>t =
∑
i∈A

log

(
θ0(Ii)

θ1(Ii)

)
+
∑
i∈B

log

(
θ1(Ii)

θ0(Ii)

)
= log

(∏
i∈A θ0(Ii)∏
i∈A θ1(Ii)

)
+ log

(∏
i∈B θ1(Ii)∏
i∈B θ0(Ii)

)
.

(5.18)

Finding A that maximizes the first term above corresponds to an assignment that maximizes

the likelihood of the colors in A being iid generated from the marginal distribution of R0,

while minimizing that they were generated from the marginal distribution of R1. The

opposite happens to B in the second term. In sum, the above metric finds A and B that

93

best match the statistics provided by the appearance models θ0 and θ1, considering that

their colors were generated iid from these models.

Notice, however, that t>1 6= 0 as previously required in order to be set to J . To solve this,

let J = t̃ with

t̃ = t− ν1, (5.19)

where ν = 1
n

∑
i t(i) is the mean of t. Furthermore:

(t− ν1)> x = l − ν(|A| − |B|) and ‖t̃>x‖22 = (l − ν(|A| − |B|))2 (5.20)

Maximizing the above metric also maximizes Eq. 5.18 and encourages the segmented regions

have similar sizes (|A| ≈ |B|), since ν is constant for the image.

5.3.5 Combining Cues and Summary

One can also set J to be a combination of various segmentation cues and constraints. Let

J1, . . . , JK be K matrices used to encode segmentation cues and constraints, such as the

ones discussed in the previous sections. Then, for a segmentation (A,B) of graph G, labeled

according to the binary vector x, defining:

φ(A,B|G) =

K∑
k=1

βkxJkJ
>
k x, (5.21)

for β1, . . . , βk > 0, leads to a cut criteria that emcompasses all the desired segmentation cues

and constraints.

Table 5.1 summarizes the proposed penalties for the various segmentation cues studied here.

5.4 Preliminary Results

In this section, we present some synthetic and real examples of proposed methods performance.

Here, we show that despite their simplicity and generality, they attain desirable clustering

and segmentation results in a scalable runtime. On the other hand, these results are only

preliminary. A further investigation of these algorithms’ performance in different settings

94

Table 5.1: Summary of proposed penalties for the Penalized Normalized Cut formulation

Constraint/Cue J (definition) Measure maximized

Seeds s (Eq. 5.7) Seed Sensitivity + Specificity

Histogram Disparity H̃ (Eq. 5.10) ‖pA − pB‖22
Color Disparity C̃ (Eq. 5.14) ‖µA − µB‖22

Appearance Model Fit t̃ (Eq. 5.19) log
(∏

i∈A θ0(Ii)∏
i∈A θ1(Ii)

)
+ log

(∏
i∈B θ1(Ii)∏
i∈B θ0(Ii)

)

and an in-depth comparison of our methods to related approaches is still lacking and it is

left as future work.

5.4.1 Synthetic Experiments

To illustrate the impact of the incorporation of our penalties to the original NCut framework,

we follow [CC15] and start with two synthetic experiments using points in 2D. In our first

experiment, we sample 100 points uniformly at random from 3 regions of R2, here called

S1, S2 and S3, summing up a total of n = 300 points. In experiment 2, we repeat the same

process for 1000 points in each set. Figures 5.1a and 5.1b show the resulting datasets. We

then construct a dense graph with weights w(i, j) = exp(−‖p(i)− p(j)‖22/2σ2) and σ = 3 for

each experiment and compute the generalized eigenvector-solution for the traditional, non

penalized, Normalized Cuts problem in each graph, depicted in Figures 5.1c and 5.1d. Note

that the algorithm correctly detects the datasets’ constituent groups in both experiments. In

each figure, we also show the elapsed time (ET) for each generalized eigenvector computation.

For all the next implementations of the Penalized Normalized Cuts formulation (Eq. 5.1) in

this section, α is set to 100. The algorithms in this section were implemented in MATLAB

and run on the same hardware specifications of Section 3.6.

In the following experiments, we also differentiate two strategies to compute the generalized

eigenvectors in Eq. 5.6:

Dense: We compute matrices L and D + αJJ> and then perform the traditional Lanczos

algorithm in order to compute the first 2 generalized eigenvetors of our problem. Here,

95

it is required for the solver to explicitly compute a dense n × n matrix, JJ>, and

perform matrix multiplications involving D+αJJ>. In MATLAB code, we run eigs(L,

D+ alpha * J*J’, 2, ’sm’).

Implicit: Here we take advantage of the structure in D+αJJ> to create a matrix function

f(y) to replace the computation of D + αJJ> present within the Lanczos method to

solve the generalized eigenvalue problem in Eq. 5.6. Many approaches can be applied

in this case. Here we choose to approach it by solving:

(D + αJJ>)−1Lx = λx. (5.22)

For J ∈ Rn×m with m << n, the matrix inversion above can be efficiently computed

via the Woodbury matrix identity [Gut46]:

(D + αJJ>)−1 = D−1 − αD−1JOJ>D−1. (5.23)

where O = (D−1 + αJ>D−1J)−1. Now, recall L = D − W and let M = D−1W ,

v1 = αD−1JO ∈ Rn×m and v2 = (1−M)>J ∈ Rn×m. For y ∈ Rn and using Eq. 5.23,

we define f(y) as:

f(y) = (D + αJJ>)−1Ly = −My − v1v
>
2 y. (5.24)

Having M , v1 and v2 computed offline and assuming W sparse and m << n, the above

expression (used within the Lanczos method) can be computed in time linear in n. In

MATLAB, we code it as eigs(@(x) M*x + v1*(v2’*x), n, 2, ’lm’)1.

Experiments with seeds

In order to simulate the impact of using the seeds penalty from Section 5.3.1 in our algorithm,

we set 10% of each dataset to assume a seed role. Figures 5.2a and 5.2c show the seeds

selected from each dataset, circled in blue and red. In each set of each experiment, the

1According to MATLAB’s documentation, in order to define f(y) as a linear function of y, we cannot use
the option for searching for the second smallest eigenvector (’sm’). Therefore, we negate f(y) in Eq. 5.24
and search for the second largest eigenvector (’lm’ option), which entails the same result.

96

(a) Experiment 1: n = 300 points (b) Experiment 2: n = 3000 points

(c) NCut Eigenvector – ET: 0.16s (d) NCut Eigenvector – ET: 0.56s

Figure 5.1: Datasets used in our synthetic experiments and generalized eigenvectors
computed form the traditional NCut formulation. In each experiment, the leftmost set is S1,
the central one is S2 and the rightmost one is S3.

first 10th of its points are selected as seeds. In these examples, the seeds of the same color

should be clustered together, while the ones of different colors are expected to be assigned

to different clusters.

In Figures 5.2b and 5.2d, we show the resulting penalized eigenvectors according to the

procedure in Section 5.3.1. In both experiments, our algorithm is able to better separate

the sets marked with the red seeds from the ones marked with the blue ones, bringing the

eigenvectors from Figure 5.1 closer to the expected result when seeds are being considered.

Note that this outcome is not hindered by the unbalanced clusters in these experiments.

Furthermore, although a perfect pixel assignment separating sets S1 and S3 from set S2 can

be attained in both experiments by thresholding the eigenvectors at 0, the separation of the

sets becomes more evident when more datapoints are considered. This suggests that as the

dataset size increases our algorithm should be able to better cluster its points, but further

experiments are necessary to support this claim.

Moreover, seeds of different kinds are expected to be more explicitly distinguishable from one

another according to their corresponding eigenvector values, since our formulation encourages

97

their separation in different clusters. This effectively explains the behaviour of the first 10th

of each set’s eigenvector values in both experiments. In some sense, one can intuit that the

presence of the seeds “drags” their neighboring datapoints to their respective clusters in our

proposed formulation.

We finally note that solving the generalized eigenvector problem without the explicit compu-

tation of dense matrices effectively reduces the overall computation time, bringing it closer

to the original NCut runtime. This effect is particularly noticeable in larger datasets, as

expected.

(a) Experiment 1 + seeds (b) Eigenvectors – ET: 0.02s (Dense) and 0.02 (Implicit)

(c) Experiment 2 + seeds (d) Eigenvectors – ET: 1.27s (Dense) and 0.45s (Implicit)

Figure 5.2: Results for NCut penalized with seeds information. In (a) and (c), we show the
initial datasets with the selected seeds circled in red and blue. In (b) and (d), the computed
eigenvectors are shown: on left, for the generalized eigenvalue problem with dense matrices
and, on the right, the same problem but without the explicit computation of these matrices.
The elapsed time of each solver is also presented.

Experiments using the histogram disparity penalty

In order to explore the consequences of including the color histogram disparity cue explained

in Section 5.3.2, we assign a color out of two possible to each datapoint in our experiments’

datasets. In each set, the first 20% of its datapoints is assigned to a color and the remaining

80% to the other color. We have sets S1 and S3 be of different color majority color than

S2. Figures 5.3a and 5.3c mark the different pixel colors as red and blue. Clearly, in both

experiments, sets S1 and S3 should be assigned to a different cluster than that of S2 according

to the histogram disparity cue. For these experiments, note that the specific choice of pixel

colors is irrelevant, since their one-hot encoding is effectively the same for any selected pair

98

of colors.

In Figures 5.3b and 5.3d, the resulting penalized eigenvectors are shown along with the

computation runtime. Similarly to the seeds case, our algorithm is also able to differentiate

the desired clusters, despite their unbalance. Again, the increase of the dataset’s size is

also observed to improve the overall separation between the clusters and the usage of the

implicit computation of dense matrices also improves the algorithm’s runtime. On the other

hand, the initial 20 % pixels in each set have their corresponding eigenvector value closer to

zero than the rest of other pixels. This is expected since these pixels find more color-wise

similarity in the pixels from the other cluster.

(a) Experiment 1 (b) Eigenvectors – ET: 0.01s (Dense) and 0.02s (Implicit)

(c) Experiment 2 (d) Eigenvectors – ET: 1.20s (Dense) and 0.31s (Implicit)

Figure 5.3: Results for NCut penalized with the histogram disparity cue. In (a) and (c),
one color out of two possible is assigned to each datapoint. In (b) and (d), the generalized
eigenvectors computed using the histogram disparity cue are shown in the same manner as
described in Figure 5.2.

Experiments using the mean color disparity penalty

For the experiments making use of the mean color disparity cue, we assign a RGB color to

each datapoint. In order to choose each color, we initially set all points in S1 and S3 to red

(RGB vector [1, 0, 0]) and the point in S2 to blue (RGB vector [1, 0, 1]). Then, for each

datapoint, we uniformly at random select a color in the RGB space and add it to its initially

assigned RGB value at the proportion of 2 to 1 for the new color. We then normalize it to

right RGB range. Figures 5.4a and 5.4c depict the resulting datasets.

Figures 5.4b and 5.4d show the resulting generalized eigenvectors from the problem setting

99

explained in Section 5.3.3. Here we observe phenomena that are similar to what was described

in prior sections, with a particular emphasis on the success of our algorithms to produce the

desired clustering according to the region’s mean color disparities, even on an unbalanced

setting.

(a) Experiment 1 (b) Eigenvectors – ET: 0.02s (Dense) and 0.01s (Implicit)

(c) Experiment 2 (d) Eigenvectors – ET: 1.15s (Dense) and 0.32s (Implicit)

Figure 5.4: Results for NCut penalized with the color disparity cue. In (a) and (c), a
random RGB color around blue or red is assigned to each datapoint. In (b) and (d), the
generalized eigenvectors computed using the mean color disparity cue are shown in the same
manner as described in Figure 5.2.

Experiments with appearance models

Finally, to investigate the influence of the usage of user-provided appearance models in our

framework, we assign to each datapoint the probability values of belonging to each of the

two possible clusters. We initially set the probability for sets S1 and S3 to belong to the

first cluster at 1 and to belong to the other cluster at 0. The opposite takes place for set S2.

The, we add a uniformly drawn sample in (0, 1) to each probability value and normalized

them accordingly. Figures 5.5a and 5.5c depict the log ratio of these probability values (the

vector t on Section 5.3.4) for all datapoints.

Figures 5.5b and 5.5d show the generalized eigenvectors computed from our framework

when it makes use of the provided appearance models. The same observations from the

previous sections can be drawn here, showing again an example of success and pointing to

the scalability of our method within this application.

100

(a) Experiment 1 (b) Eigenvectors – ET: 0.01s (Dense) and 0.02s (Implicit)

(c) Experiment 2 (d) Eigenvectors – ET: 1.16s (Dense) and 0.32s (Implicit)

Figure 5.5: Results for for NCut penalized with the appearance model data. In (a) and (c),
a appearance model probability value is assigned to each datapoint according to the set it
belongs to. On the image, their log-ratio values are depicted. In (b) and (d), the generalized
eigenvectors computed using the appearance model data are shown in the same manner as
described in Figure 5.2.

5.4.2 Real experiments

In this section we show the effect of using the seed data as a penalty for normalized cuts

when segmenting real scenes. We also present some preliminary result of the penalized

NCut for the histogram and mean color disparity cues and for the appearance model data

constraint on images.

In order to test the effect of image seeds in segmentation, we start by investigating its

behaviour on blank images, i.e., here defined as an image whose color data is discarded,

but the spatial relations between pixels are kept. In terms of graph Laplacian, in blank

images only the grid graph (explained in Section 4.2.1) is constructed and used for clustering

purposes. This scenario is important since we can understand how the seeds affect the final

segmentation “prior" to the usage of usage of the color data. In Figure 5.6, we visually

demonstrate the effect of the seed data in blank images under the penalized normalized cut

framework. The presence of seeds induce an eigenvector with “valleys" and “peaks" around

the locations of the seeds. This confirms the propensity of our method to assign foreground

and background seeds to distinct partitions, which is reflected on distant eigenvector values.

The unseeded locations also get values that interpolate those of the seeds, which is expected

101

(a) Seeds (b) Eigenvector (c) Segmentation

Figure 5.6: Segmentation results of a blank image when seeds are added to it. In (a) the
proposed seeds are shown in white (background seeds) and dark gray (foreground seeds).
The remaining black pixels are unseeded. In (b), we show the resulting penalized normalized
cut eigenvector when the seeds penalty is applied (α = 1). The resulting segmentation when
the eigenvector in (b) is clustered via K-means is depicted in (c). Image frames were added
for visibility. The seed images are from the Grabcut dataset [RKB04].

in seed-aided segmentation. Finally, the resulting segmentations observe the seed presence,

which is also expected in our applications. In that Figure, we set α = 1 and used K-means

for clustering the eigenvector values to compute the resulting segmentation.

Figure 5.7 shows the outputs of our methods when using both the spatial and color data

to compose the image’s Graph Laplacian L. In this case, we constructed the final graph as

a combination of Ggrid from Section 4.2.1 and Gdata from Section 4.2.2 with λ = 0.5 and

σ = 1. We again set α = 1 in our penalized framework. Figure 5.7 also presents the resulting

eigenvectors and segmentations when no penalty is added2. Our method is able to greatly

improve the segmentations generated by the “unaided” method. This is already reflected

on its eigenvectors, where the desired image regions and boundaries are more clear and

unequivocal than those in the non-penalized eigenvectors. Further experimentation, however,

2The segmentation results in Chapter 4 were achieved after some parameter tuning. Here we deliberately
chose simple parameters when constructing L in order to make the effect of the penalty more explicit.

102

(a) Image + Seeds (b) NCut (c) Penalized NCut

Figure 5.7: Segmentation results of a real image when seeds are added to it. In (a) the
proposed seeds are shown in blue (background seeds) and green (foreground seeds) on the
original image. In (b), on the left we show the normalized cut eigenvector without the use of
the seed information and on the right the final segmentation. In (c), on the left we show the
penalized normalized cut eigenvector when the seeds penalty is applied (α = 1) and on the
right we show the final segmentation. Images are from the Grabcut dataset [RKB04].

is necessary to understand the effect of α in this process.

For the quantitative results, we compare the penalized normalized cuts segmentation solutions

to the standard normalized cut on all the images of the Grabcut dataset [RKB04]. In both

cases, the base graph is such that its Laplacian matrix is again the convex combination of

the Laplacian matrices of Ggrid and Gdata, which requires setting the parameters λ and σ.

For each method, we set λ = 0.99 and σ = 1, as these were the parameters the methods

performed the best under according to the foreground detection Jaccard index. As always,

103

Table 5.2: Comparative Segmentation Performance on the Grabcut Dataset for the penalized
and the traditional normalized cuts algorithms.

Measure

Method Jaccard Fβ Precision Recall Acc

Penalized Normalized Cuts 0.4788 0.6442 0.6593 0.7289 0.2309

Normalized Cuts 0.3923 0.5113 0.5193 0.7064 0.3287

we allowed for a permutation of region labels when computing these measures. For the

Penalized NCut method, we kept α = 1 in all experiments. We also used the brush strokes

provided by [GRC+10] as our segmentation seeds. We resized all the image to half of their

original sizes for memory saving purposes.

In Table 5.2, we show a performance comparative of our the best choices for both aided and

unaided normalized cuts methods in terms of Fβ (Eq. 3.22), Precision/Recall (Eq. 3.23) and

the Jaccard index (Eq. 3.20) and the Segmentation Accuracy, Acc, defined as

Acc =
1

|Ω|
∑
i∈Ω

1S(i)=R(i)), (5.25)

where S and R are the estimated and ground-truth segmentations. The overall segmentation

algorithm performance, expressed in the Fβ , Jaccard and Acc measures, is improved by the

addition of the seeds. This is expected since the seeds improve the segmentation algorithm’s

ability to localize the foreground regions, increasing both Precision and Recall values and,

therefore, the overall F -score. The comparatively high value of Recall for NCut stems from

the many segmentations it produced with very small backgrounds (results similar to the

banana image in Figure 5.7). In those cases, the seeds helped locating the foreground and

also balancing the region sizes.

In Figure 5.8 we show some results of the penalized normalized cuts for the remaining

segmentation penalties. The images of size 200×200 pixels were generated from iid Gaussian

samples of different means according to GT2 and GT4 in Figure 3.8. In these experiments,

α = 1 and the base graph G consists only of the image’s grid graph, as done in Figure 5.6,

104

but we do use its color data in the penalties. The foreground region of each image is visible

in most resulting eigenvectors, even when its challenging to detect it on the original image.

This provides evidence that the penalty promotes an eigenvector that is biased towards the

desired segmentation outcome. Notice also that color disparity is more effective at detecting

the foreground than histogram disparity, specially when the noise level is high. This can

be used as evidence that the former performs better than the latter in images, which is

convenient since the color disparity cue requires a less computationally demanding matrix

multiplication in its eigenvector solver.

5.5 Conclusion

In this chapter we proposed a scheme to promote constrained spectral image segmentation

via a penalized version of the traditional Normalized Cut criteria. We showed the new cut

objective function can be approximately minimized via a generalized eigenvalue solver. In

its turn, the generalized eigenvectors can also be found efficiently without requiring the

computation and storage of large dense matrices. Our work demonstrated that at least four

different constraints and segmentation cues can be added to this penalty-based segmentation

framework: (1) seed data, (2) region histogram disparity cue, (3) mean region color disparity

cue and (4) user-provided appearance model data. These constraints can also be used together

as an all encompassing penalty. For all these methods, we presented synthetic experiments

that provided evidence for their performance in hard clustering scenarios. We showed that

the results were easily interpretable and scalable and that they visually improve as the

number of data points increased. Finally we compared the proposed algorithm’s performance

in some seed-based image segmentation problems to a non-penalized normalized cut solution.

The results indicated that the penalty addition was beneficial to the final segmentation

solution. Despite these results, a deeper investigation on the impact of different parameters

and the comparison of our proposed solvers to established segmentation algorithms is lacking.

Furthermore, the application of penalties of (2), (3) and (4) kinds on real images is missing,

which makes their usage performance in hard non-synthetic scenarios inconclusive. These

experimental deficiencies will be addressed in future work.

105

(a) Image (b) Histogram Disp. (c) Color Disp. (d) App. Models

Figure 5.8: Penalized Normalized Cut Eigenvectors from different segmentation
cues/penalties. In (a) we show the original images corrupted with Gaussian noise. The
eigenvectors computed from the histogram disparity, color disparity and appearance models
cues are shown in (b), (c) and (d), respectively.

Chapter 6
Conclusion

In this theses we proposed methods that advanced the understanding and improved the

performance of traditional approaches to graph-based image segmentation. In sum, we

advanced solutions to two problems faced in that community:

• Is it possible to estimate non-parametric appearance models directly from an image

without cumbersome user intervention?

• How does one make design an similarity graph for spectral image segmentation that

is both interpretable and whose cut performs texture segmentation well even when

constructed on raw pixel intensity values?

6.1 Contributions

6.1.1 Contributions to appearance modelling

The main results in our work in appearance modeling for image segmentation (Chapter 3)

are two fold:

• Departing from typical assumptions on image formation, we described a set of algebraic

expressions that correlate an image’s appearance models to higher order statistics of

the its pixel values.

• Two appearance estimators for images with two natural regions can be derived from

that set of expressions, making it possible to approach unsupervised non-parametric

appearance modeling and segmentation without iterative procedures. The first estima-

tion algorithm was based on solving a linear system of quadratic equations and the

106

107

second had a eigenvalue decomposition at its core.

• One appearance estimation algorithm for images with multiple regions was proposed.

It requires the estimation of third order statistics to be used in a method of moments

estimator, typical of document topic modeling problems. To our knowledge, it was the

first time this strategy was used in image appearance modeling.

Our experiments also demonstrate that the proposed algorithms work well in practice and

attain satisfactory segmentation in challenging scenarios. This was particularly noticeable

on images whose appearance models were random probability vectors. Our methods were

able to distinguish their constituent regions even when it was impossible to do so visually.

Furthermore, we showed that this approach was able to segment challenging textured images

without any filtering-based prepossessing. Finally, our experiments demonstrated that

the proposed methods were computationally efficient and fast compared to other related

algorithms. Overall, this work shed light to the benefit of second and third order color

statistics to segmentation algorithms based on appearance modeling, suggesting that their

use can great light improve their performance in challenging imaging scenarios.

6.1.2 Contributions to spectral image segmentation

The work developed in Chapters 4 and 5 advanced the following contributions the spectral

image segmentation:

• We developed a data structure that relies on two simple graphs constructed from the

original image without any preprocessing. Each graph corresponds to a grouping cue

and cuts on them are related to interpretable measures of segmentation quality. The

first graph, a sparse grid graph, assess the spatial coherence in the segmented regions

and the second graph, a dense graph computed on the image color space, capture the

appearance disparity between regions. Our method then searches for low conductivity

sets of a random walk composed of both graphs, where the walker is allowed to switch

between graphs with a certain probability. This highly interpretable graph construction

is, to the best of our knowledge, innovative with the spectral segmentation literature.

• In order to deal with the computationally inefficient dense graph, we suggested a graph

108

sparsification algorithm based on importance sampling of the edges from the original

graph. We also added a color partitioning step to the sparsification pipeline. The

overall method was able to efficiently process high resolution color images.

• Our method demonstrated that, contrary to the commonly held assumption, it is

possible to attain high quality segmentation results on textured images without any

filtering. In fact the proposed segmentation algorithm, which works directly on the

raw pixels, attains a very high texture segmentation performance when compared to

typical filtering based spectral solvers. The eigenvectors output by our algorithm are

able to better preserve segmentation borders, once they are not oversmoothed as in

filtering dependent techniques, without losing in region contrast.

• Additionally, we also proposed a graph sparsification algorithm based on importance

sampling for traditional Normalized Cuts weight graph. To our knowledge, it was

the first time such an approach was used to reduce the computational burden of the

spectral image segmentation on its classical formulation.

• Our methods were also shown to greatly outperform the traditional normalized cut

formulation, even in the setting where the sparsification procedures are not necessary.

This work suggested that long range interactions can capture the appearance of complex

regions and significantly improve the performance of spectral segmentation methods

and of graph-based segmentation methods, broadly speaking.

• We proposed a new generalization of Normalized Cuts to incorporate certain kinds of

penalties. This new framework, here named Penalized Normalized Cuts, also leads to a

simple generalized eigenvalue problem that can be made scalable through a clever usage

of typical power methods for eigenvector computation, such as the Lanczos algorithm.

• We presented four different ways to set the penalty for Penalized Normalized Cuts

leading to the embodiment of four important sources of expert knowledge about

segmentations:

– Seed data: User-provided pixel region assignments prior to the segmentation

estimation.

109

– Histogram disparity cue: the anticipation that different regions should have

dissimilar color distributions.

– Mean color disparity cue: the assumption that different regions should have

dissimilar mean colors.

– Appearance Model data: User-provided expected color distributions for each

region.

For each of the above penalties, we showed that their cut criteria lead to interpretable

objective functions in the context of image segmentation. We also provided preliminary

synthetic and real experiments demonstrating their efficiency and scalability for spectral

clustering and segmentation problems. To the best of our knowledge, these were the

first algorithms to attempt incorporating expert knowledge beyond seed data to spectral

segmentation algorithms.

6.2 Future Work

6.2.1 MRF based segmentation and appearance modeling

In Section 3.4, we proposed the use of a method initially developed for topic modeling

problems in natural language processing to an image segmentation setting. In our future

work, other methods from topic modeling will be explored to appearance estimation purposes.

Of particular interest could be the use of Non-negative Matrix Factorization (NMF) for its

simplicity and speed and Latent Dirichlet Allocation (LDA) for its generative aspect and its

long-standing application on topic modeling problems. On the other hand, it could be of

potential interest applying some methods in appearance estimation for image segmentation

to topic modeling, drawing more theoretical and practical connections between these two

fields.

A possible solution for the appearance estimation problem that was untapped in our work

and can be matter for future work is the use of mixtures of Markov chains in image

formation modelling. In few words, we can treat sequences of neighboring pixels in an

image with K regions as samples of a mixture of K Markov chains with transition matrices

110

{M1,M2, . . . ,MK}, appearances {θ1, θ2, . . . , θK} and weights {w1, w2, . . . , wK}. Here, we

assume that these pixel sequences are always contained withing a sole image region. Now

we generate a sequence of t pixels as follows: sample a chain s with probability ws, select

a starting pixel color i with probability θs(i), then perform a random walk according to

the transition matrix Ms and repeat it t− 2 times 1. In [GKV16], the authors showed that

having sample sequences of length three from this process is enough to learn the transition

matrices and the weighted appearances {w1θ1, w2θ2, . . . , wKθK}. Applied to our image

segmentation problem, this algorithms does not assume the independence of neighboring

pixels (Assumption 2), which is an advantage over our modeling in Chapter 3, and can be

used in multi region appearance estimation. Future work will study the practical applicability

of this algorithm on texture segmentation.

Finally, as discussed at the end of Chapter 3, some investigation of possible ways to adapt the

Method of Moments (MoM) estimator to the segmentation of broader and more realistic image

settings is still needed. Future work will focus on literature review on possible alternatives

to the method of moments for topic modeling within the NLP community, to be used within

the multi-region image segmentation setting. We will also attempt to derive new algebraic

expressions for the image moments in order to find ways to improve the base MoM estimator.

Moreover, some future work will convey a more thoroughly emprirical experimentation on

how the parameters in Method of Moments estimator behave and whether they could be

optimized to produce better segmentations on realistic images.

1To illustrate this generative process in our imaging problem, take β from Eq. 3.2, assume that the
probability that pixels x and y belong to different regions is negligible. The we have that, for two colors i
and j:

β(i, j) =

2∑
s=1

wsP (I(x) = i, I(y) = j |x, y ∈ Rs)

=

2∑
s=1

wsP (I(x) = i|x ∈ Rs)P (I(y) = j|I(x) = i;x, y ∈ Rs)

=
2∑

s=1

wsθs(i)Ms(j, i),

which is a mixture of Markov chains. Note that we didn’t need to make use of Assumption 2 (independence
at a distance) in this derivation.

111

6.2.2 Spectral image segmentation

A straightforward extension of the work developed in Chapter 4 is the study of kernel functions

other than the Gaussian, such as the Epanechnikov, Cosine, Tricube, etc. Conducting such

research and comparing the performance of these methods could also lead to new local

similarity functions that perform better than the traditional formulation in Eq. 2.39.

Furthermore, instead of varying the weight function on these graph, one could also try

different graph topologies. For instance, adding extra nodes to the graph, each representing

a color in the image, has been successfully tried in MRF and Random Walker segmentation

approaches [Gra05, TGVB13]. A study of the effect of this new graph construction in

spectral algorithms is still lacking. Our preliminary work on this theme suggests that such

an approach is computationally efficient in practice, since it does not require the creation

of a dense graph and its further sparsification, and leads to an interpretable optimization

problem.

As mentioned at the end of Chapter 5, a more complete experimentation on the proposed

methods for Penalized Normalized Cuts is lacking and will be pursued as a future work.

In particular, we will explore the effect of the penalty’s balancing factor, α, on the diverse

synthetic experiments we proposed. We will also add results of each method on real images

and do a throughout evaluation of their runtimes.

Finally, we will study new penalties that could be added to the penalized normalized cut

idea. One possible option arises from the observation that the one-hot matrices discussed

in Section 5.3.2 can be viewed as responses from each pixel to filters that only detect one

particular color. This notion could be broadened to general texture filters, such as Gabor for

example. We will also investigate how all these penalties can be added in a simple procedural

way to our framework. Finally, on a more theoretical perspective, how each J is connected

to the constraint/cue it entails.

References

[AFH+12] Anima Anandkumar, Dean P Foster, Daniel J Hsu, Sham M Kakade, and

Yi-Kai Liu. A spectral algorithm for latent dirichlet allocation. In Advances

in Neural Information Processing Systems, pages 917–925, 2012.

[AGBB11] Sharon Alpert, Meirav Galun, Achi Brandt, and Ronen Basri. Image seg-

mentation by probabilistic bottom-up aggregation and cue integration. IEEE

transactions on pattern analysis and machine intelligence, 34(2):315–327,

2011.

[AHK12] Animashree Anandkumar, Daniel Hsu, and Sham M Kakade. A method of

moments for mixture models and hidden markov models. In Conference on

Learning Theory, pages 33–1, 2012.

[AMCC18] Rossella Aversa, Mohammad Hadi Modarres, Stefano Cozzini, and Regina

Ciancio. NFFA-EUROPE - SEM dataset, 2018.

[AMFM10] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Con-

tour detection and hierarchical image segmentation. IEEE transactions on

pattern analysis and machine intelligence, 33(5):898–916, 2010.

[ASS+12] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal

Fua, and Sabine Süsstrunk. Slic superpixels compared to state-of-the-art

superpixel methods. IEEE transactions on pattern analysis and machine

intelligence, 34(11):2274–2282, 2012.

[BC06] Tijl De Bie and Nello Cristianini. Fast sdp relaxations of graph cut clustering,

transduction, and other combinatorial problems. Journal of Machine Learning

Research, 7(Jul):1409–1436, 2006.

112

113

[Ben10] Frank W Bentrem. A q-ising model application for linear-time image segmen-

tation. Central European Journal of Physics, 8(5):689–698, 2010.

[BFL06] Yuri Boykov and Gareth Funka-Lea. Graph cuts and efficient nd image

segmentation. International Journal of Computer Vision, 70(2):109–131,

2006.

[BJ01] Yuri Y Boykov and M-P Jolly. Interactive graph cuts for optimal boundary

& region segmentation of objects in nd images. In IEEE International

Conference on Computer Vision, volume 1, pages 105–112, 2001.

[BK03] Yuri Boykov and Vladimir Kolmogorov. Computing geodesics and minimal

surfaces via graph cuts. In IEEE International Conference on Computer

Vision, 2003.

[BMB16] Christos G Bampis, Petros Maragos, and Alan C Bovik. Projective non-

negative matrix factorization for unsupervised graph clustering. In 2016 IEEE

International Conference on Image Processing (ICIP), pages 1255–1258. IEEE,

2016.

[Bro66] Phil Brodatz. Textures: a photographic album for artists and designers. Dover

Pubns, 1966.

[BS04] Steffen Bickel and Tobias Scheffer. Multi-view clustering. In ICDM, pages

19–26, 2004.

[BVZ99] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy

minimization via graph cuts. In IEEE International Conference on Computer

Vision, volume 1, pages 377–384, 1999.

[CC15] Selene E Chew and Nathan D Cahill. Semi-supervised normalized cuts for

image segmentation. In Proceedings of the IEEE International Conference on

Computer Vision, pages 1716–1723, 2015.

[CCCD93] Vicent Caselles, Francine Catté, Tomeu Coll, and Françoise Dibos. A geomet-

ric model for active contours in image processing. Numerische mathematik,

114

66(1):1–31, 1993.

[CM02] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward

feature space analysis. IEEE Transactions on pattern analysis and machine

intelligence, 24(5):603–619, 2002.

[CMH+14] Ming-Ming Cheng, Niloy J Mitra, Xiaolei Huang, Philip HS Torr, and Shi-Min

Hu. Global contrast based salient region detection. IEEE transactions on

pattern analysis and machine intelligence, 37(3):569–582, 2014.

[CS96] Jean-François Cardoso and Antoine Souloumiac. Jacobi angles for simulta-

neous diagonalization. SIAM journal on matrix analysis and applications,

17(1):161–164, 1996.

[CV01] Tony F Chan and Luminita A Vese. Active contours without edges. IEEE

Transactions on Image Processing, 10(2):266–277, 2001.

[CYW+08] Jingyu Cui, Qiong Yang, Fang Wen, Qiying Wu, Changshui Zhang, Luc

Van Gool, and Xiaoou Tang. Transductive object cutout. In 2008 IEEE

Conference on Computer Vision and Pattern Recognition, pages 1–8. IEEE,

2008.

[DGK04] Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Kernel k-means: spectral

clustering and normalized cuts. In Proceedings of the tenth ACM SIGKDD

international conference on Knowledge discovery and data mining, pages

551–556, 2004.

[DMFU10] Paulo AV De Miranda, Alexandre X Falcão, and Jayaram K Udupa. Syner-

gistic arc-weight estimation for interactive image segmentation using graphs.

Computer Vision and Image Understanding, 114(1):85–99, 2010.

[DS05] Virginia R De Sa. Spectral clustering with two views. In ICML workshop on

learning with multiple views, pages 20–27, 2005.

[DSLW17] Soumyabrata Dev, Florian M Savoy, Yee Hui Lee, and Stefan Winkler. Night-

time sky/cloud image segmentation. In 2017 IEEE International Conference

115

on Image Processing (ICIP), pages 345–349. IEEE, 2017.

[EEVG+15] Mark Everingham, S.M. Ali Eslami, Luc Van Gool, Christopher K.I. Williams,

John Winn, and Andrew Zisserman. The pascal visual object classes challenge:

A retrospective. International Journal of Computer Vision, 111(1):98–136,

2015.

[EOK11] Anders Eriksson, Carl Olsson, and Fredrik Kahl. Normalized cuts revisited:

A reformulation for segmentation with linear grouping constraints. Journal

of Mathematical Imaging and Vision, 39(1):45–61, 2011.

[FBCM04] Charless Fowlkes, Serge Belongie, Fan Chung, and Jitendra Malik. Spectral

grouping using the nystrom method. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 26(2):214–225, 2004.

[GAL16] Glenn Franco Barroso Gacal, Carlo Antioquia, and Nofel Lagrosas. Ground-

based detection of nighttime clouds above manila observatory (14.64n, 121.07e)

using a digital camera. Applied Optics, 55:6040–6045, 2016.

[GG84] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions,

and the bayesian restoration of images. IEEE Transactions on pattern analysis

and machine intelligence, (6):721–741, 1984.

[GJJ+17] Thomas Mosgaard Giselsson, Rasmus Nyholm Jørgensen, Peter Kryger

Jensen, Mads Dyrmann, and Henrik Skov Midtiby. A public image database

for benchmark of plant seedling classification algorithms. arXiv preprint

arXiv:1711.05458, 2017.

[GKV16] Rishi Gupta, Ravi Kumar, and Sergei Vassilvitskii. On mixtures of markov

chains. In Proceedings of the 30th International Conference on Neural Infor-

mation Processing Systems, pages 3449–3457. Citeseer, 2016.

[GPS89] Dorothy M Greig, Bruce T Porteous, and Allan H Seheult. Exact maximum

a posteriori estimation for binary images. Journal of the Royal Statistical

Society: Series B (Methodological), 51(2):271–279, 1989.

116

[Gra05] Leo Grady. Multilabel random walker image segmentation using prior models.

In 2005 IEEE computer society conference on computer vision and pattern

recognition (CVPR’05), volume 1, pages 763–770. IEEE, 2005.

[Gra06] Leo Grady. Random walks for image segmentation. IEEE transactions on

pattern analysis and machine intelligence, 28(11):1768–1783, 2006.

[GRC+10] Varun Gulshan, Carsten Rother, Antonio Criminisi, Andrew Blake, and

Andrew Zisserman. Geodesic star convexity for interactive image segmentation.

In 2010 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, pages 3129–3136. IEEE, 2010.

[GSBB03] Meirav Galun, Eitan Sharon, Ronen Basri, and Achi Brandt. Texture seg-

mentation by multiscale aggregation of filter responses and shape elements.

In ICCV, volume 3, page 716, 2003.

[Gut46] Louis Guttman. Enlargement methods for computing the inverse matrix. The

annals of mathematical statistics, pages 336–343, 1946.

[GW+18] Rafael C Gonzalez, Richard E Woods, et al. Digital image processing, 2018.

[HC71] John M Hammersley and Peter Clifford. Markov fields on finite graphs and

lattices. Unpublished manuscript, 46, 1971.

[HYL08] Zhilan Hu, Hong Yan, and Xinggang Lin. Clothing segmentation using

foreground and background estimation based on the constrained delaunay

triangulation. Pattern Recognition, 41(5):1581–1592, 2008.

[Isi25] Ernst Ising. Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik,

31(1):253–258, 1925.

[JEPE05] Robert Jenssen, Deniz Erdogmus, Jose Principe, and Torbjorn Eltoft. The

laplacian PDF distance: A cost function for clustering in a kernel feature

space. In Advances in Neural Information Processing Systems, pages 625–632,

2005.

117

[KRD11] Abhishek Kumar, Piyush Rai, and Hal Daume. Co-regularized multi-view

spectral clustering. In Advances in neural information processing systems,

pages 1413–1421, 2011.

[LC10] Frank Lin and William W Cohen. Power iteration clustering. In ICML, 2010.

[Li09] Stan Z Li. Markov random field modeling in image analysis. Springer Science

& Business Media, 2009.

[LY15] Guanbin Li and Yizhou Yu. Visual saliency based on multiscale deep fea-

tures. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 5455–5463, 2015.

[LY16] Guanbin Li and Yizhou Yu. Deep contrast learning for salient object detec-

tion. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 478–487, 2016.

[MBLS01] Jitendra Malik, Serge Belongie, Thomas Leung, and Jianbo Shi. Contour and

texture analysis for image segmentation. International journal of computer

vision, 43(1):7–27, 2001.

[MCPTVG18] Kevis-Kokitsi Maninis, Sergi Caelles, Jordi Pont-Tuset, and Luc Van Gool.

Deep extreme cut: From extreme points to object segmentation. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages

616–625, 2018.

[MFM04] David R Martin, Charless C Fowlkes, and Jitendra Malik. Learning to detect

natural image boundaries using local brightness, color, and texture cues.

IEEE transactions on pattern analysis and machine intelligence, 26(5):530–

549, 2004.

[MFTM01] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented

natural images and its application to evaluating segmentation algorithms and

measuring ecological statistics. In International Conference on Computer

Vision, volume 2, pages 416–423, July 2001.

118

[MGTH18] Pedro Mercado, Antoine Gautier, Francesco Tudisco, and Matthias Hein.

The power mean laplacian for multilayer graph clustering. In Proceedings

of the Twenty-First International Conference on Artificial Intelligence and

Statistics, volume 84, pages 1828–1838, 2018.

[MMF+14] Michael T McCann, Dustin G Mixon, Matthew C Fickus, Carlos A Castro,

John A Ozolek, and Jelena Kovacević. Images as occlusions of textures:

A framework for segmentation. IEEE transactions on image processing,

23(5):2033–2046, 2014.

[MOV12] Michael W Mahoney, Lorenzo Orecchia, and Nisheeth K Vishnoi. A local

spectral method for graphs: With applications to improving graph partitions

and exploring data graphs locally. The Journal of Machine Learning Research,

13(1):2339–2365, 2012.

[MS89a] David Mumford and Jayant Shah. Optimal approximations by piecewise

smooth functions and associated variational problems. Communications on

pure and applied mathematics, 42(5):577–685, 1989.

[MS89b] David Bryant Mumford and Jayant Shah. Optimal approximations by piece-

wise smooth functions and associated variational problems. Communications

on pure and applied mathematics, 1989.

[MS01] Marina Meila and Jianbo Shi. Learning segmentation by random walks. In

Advances in Neural Information Processing Systems, pages 873–879, 2001.

[MSV95] Ravi Malladi, James A Sethian, and Baba C Vemuri. Shape modeling with

front propagation: A level set approach. IEEE transactions on pattern

analysis and machine intelligence, 17(2):158–175, 1995.

[MVM11] Subhransu Maji, Nisheeth K Vishnoi, and Jitendra Malik. Biased normalized

cuts. In CVPR 2011, pages 2057–2064. IEEE, 2011.

[NBCE09] Kangyu Ni, Xavier Bresson, Tony Chan, and Selim Esedoglu. Local histogram

based segmentation using the wasserstein distance. International Journal of

Computer Vision, 84(1):97–111, 2009.

119

[NJW01] Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis

and an algorithm. Advances in neural information processing systems, 14:849–

856, 2001.

[NJW02] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering:

Analysis and an algorithm. In Advances in Neural Information Processing

Systems, pages 849–856, 2002.

[P+98] Patrick Perez et al. Markov random fields and images. IRISA, 1998.

[PF98] Pietro Perona and William Freeman. A factorization approach to grouping.

In European Conference on Computer Vision, pages 655–670. Springer, 1998.

[Por05] Fatih Porikli. Integral histogram: A fast way to extract histograms in cartesian

spaces. In 2005 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR’05), volume 1, pages 829–836. IEEE, 2005.

[RKB04] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. "Grabcut" inter-

active foreground extraction using iterated graph cuts. ACM transactions on

graphics (TOG), 23(3):309–314, 2004.

[RRB17] Matteo Ruffini, Guillaume Rabusseau, and Borja Balle. Hierarchical methods

of moments. In Advances in Neural Information Processing Systems, pages

1901–1911, 2017.

[Set99] James Albert Sethian. Level set methods and fast marching methods: evolving

interfaces in computational geometry, fluid mechanics, computer vision, and

materials science, volume 3. Cambridge university press, 1999.

[SM00] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–

905, 2000.

[SWCX17] Cunzhao Shi, Yu Wang, Wang Chunheng, and Baihua Xiao. Ground-based

cloud detection using graph model built upon superpixels. IEEE Geoscience

and Remote Sensing Letters, 14(5):719–723, 2017.

120

[TAB14] Meng Tang, Ismail Ben Ayed, and Yuri Boykov. Pseudo-bound optimization

for binary energies. In European Conference on Computer Vision, pages

691–707, 2014.

[TBAMB15] Meng Tang, Ismail Ben Ayed, Dmitrii Marin, and Yuri Boykov. Secrets

of grabcut and kernel k-means. In Proceedings of the IEEE International

Conference on Computer Vision, pages 1555–1563, 2015.

[TDP+18] Meng Tang, Abdelaziz Djelouah, Federico Perazzi, Yuri Boykov, and Christo-

pher Schroers. Normalized cut loss for weakly-supervised cnn segmentation.

In Proceedings of the IEEE conference on computer vision and pattern recog-

nition, pages 1818–1827, 2018.

[TGVB13] Meng Tang, Lena Gorelick, Olga Veksler, and Yuri Boykov. Grabcut in one

cut. In IEEE International Conference on Computer Vision, pages 1769–1776,

2013.

[TLRY15] Na Tong, Huchuan Lu, Xiang Ruan, and Ming-Hsuan Yang. Salient object

detection via bootstrap learning. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1884–1892, 2015.

[TM98] Carlo Tomasi and Roberto Manduchi. Bilateral filtering for gray and color

images. In Sixth international conference on computer vision (IEEE Cat. No.

98CH36271), pages 839–846. IEEE, 1998.

[TMAB16] Meng Tang, Dmitrii Marin, Ismail Ben Ayed, and Yuri Boykov. Normalized

cut meets mrf. In European Conference on Computer Vision, pages 748–765.

Springer, 2016.

[VKR09] Sara Vicente, Vladimir Kolmogorov, and Carsten Rother. Joint optimization

of segmentation and appearance models. In IEEE International Conference

on Computer Vision, pages 755–762, 2009.

[vR79] CJ van Rijsbergen. Information retrieval, 2nd edbutterworths, 1979.

121

[WS01] Song Wang and Jeffrey Mark Siskind. Image segmentation with minimum

mean cut. In Proceedings Eighth IEEE International Conference on Computer

Vision. ICCV 2001, volume 1, pages 517–524. IEEE, 2001.

[WS03] Song Wang and Jeffrey Mark Siskind. Image segmentation with ratio cut.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(6):675–

690, 2003.

[WS11] David P Williamson and David B Shmoys. The design of approximation

algorithms. Cambridge University press, 2011.

[WWL+18] Linzhao Wang, Lijun Wang, Huchuan Lu, Pingping Zhang, and Xiang Ruan.

Salient object detection with recurrent fully convolutional networks. IEEE

transactions on pattern analysis and machine intelligence, 41(7):1734–1746,

2018.

[XPC+16] Ning Xu, Brian Price, Scott Cohen, Jimei Yang, and Thomas S Huang.

Deep interactive object selection. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 373–381, 2016.

[XPC+17] Ning Xu, Brian Price, Scott Cohen, Jimei Yang, and Thomas Huang. Deep

grabcut for object selection. arXiv preprint arXiv:1707.00243, 2017.

[YLM+09] J. Yang, W. Lu, Y. Ma, W. Yao, and Q. Li. An automatic ground based

cloud detection method based on adaptive threshold. Journal of Applied

Meteorological Science, 20:713–721, 2009.

[YLM+10] J. Yang, W. Lu, Y. Ma, W. Yao, and Q. Li. An automatic ground-based

cloud detection method based on the local threshold interpolation. Acta

Meteorologica Sinica, 68:1007–1017, 2010.

[YS01] Stella X Yu and Jianbo Shi. Grouping with bias. In NIPS, pages 1327–1334,

2001.

[YS03] Stella X Yu and Jianbo Shi. Multiclass spectral clustering. In ICCV, pages

313–319, 2003.

122

[YWC15] Jiangye Yuan, Deliang Wang, and Anil M Cheriyadat. Factorization-based

texture segmentation. IEEE Transactions on Image Processing, 24(11):3488–

3497, 2015.

[YXSJ13] Qiong Yan, Li Xu, Jianping Shi, and Jiaya Jia. Hierarchical saliency detec-

tion. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 1155–1162, 2013.

[ZB07] Dengyong Zhou and Christopher JC Burges. Spectral clustering and trans-

ductive learning with multiple views. In Proceedings of the 24th international

conference on Machine learning, pages 1159–1166, 2007.

[ZLWS14] Wangjiang Zhu, Shuang Liang, Yichen Wei, and Jian Sun. Saliency optimiza-

tion from robust background detection. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 2814–2821, 2014.

[ZZLY18] Linlin Zong, Xianchao Zhang, Xinyue Liu, and Hong Yu. Weighted multi-

view spectral clustering based on spectral perturbation. In Proceedings of the

AAAI Conference on Artificial Intelligence, 2018.

	List of Figures
	List of Tables
	Introduction
	Motivation
	Applications
	Challenges

	Organization of this thesis

	Graph-based Image Segmentation and Spectral Clustering
	Graph-based Methods for Image Segmentation
	Bayesian Formulation
	Markov Random Fields and the Gibbs Formalism
	Graph Cuts

	Appearance Modeling
	User interaction
	Iterative Methods
	Variational Approaches
	Implicit Modeling
	Factorization-Based Methods

	Spectral Solvers
	Normalized Cuts
	Weight choice
	Spectral clustering and random walks
	Practical Considerations
	Adding constraints to Normalized cuts
	Multiview Spectral Clustering

	Direct Estimation of Appearance Models
	Appearance Models and Image Segmentation
	Image Statistics
	Appearance Estimation
	Algebraic Method
	Spectral Method
	Estimating w0, w1 and r

	Multi-region case
	Estimation when r is small
	Estimation when r is large

	Examples
	Numerical Experiments
	Evaluation Measures
	Synthetic Data
	Evaluating the effect of
	Appearance Model Evaluation on Synthetic Images
	Segmentation Evaluation on Synthetic Images
	Real Images
	Experiments using the tensorial method and on multi-region images

	Conclusion

	Spectral Image Segmentation with Global Appearance Modeling
	Drawbacks of the Traditional Graph Construction
	New Criteria for Image Segmentation
	Spatial Information:
	Global Appearance Information:
	Combining Spatial and Appearance information

	Segmentation Algorithm
	Spectral Method
	Graph Sparsification

	Numerical Experiments
	Segmentation accuracy measure and hardware setting
	Sparsification algorithm for
	Evaluation of and without sparsification
	Impact of edge sampling on
	The role of on
	Experiments in Real Images
	Experiments in Synthetic Images

	Conclusion

	Penalized Normalized Cuts
	Prior work and its limitations
	Adding the Penalty
	Possible Penalties and Related Segmentation Cues
	Seeds
	Region Color Histograms
	Region Mean Colors
	Global Appearance Models
	Combining Cues and Summary

	Preliminary Results
	Synthetic Experiments
	Real experiments

	Conclusion

	Conclusion
	Contributions
	Contributions to appearance modelling
	Contributions to spectral image segmentation

	Future Work
	MRF based segmentation and appearance modeling
	Spectral image segmentation

	References

