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Abstract of

Modeling and Optimization of Classifiers with Latent Variables

by Sobhan Naderi Parizi, Ph.D.

Brown University, May 2016.

Many applications in Computer Vision and Machine Learning entail learning from

partially annotated data. A popular family of models that can capture unobserved

variables in the input is the family of latent variable models (LVMs). A big challenge

in training LVMs, however, is that their training objective is often highly non-convex

leading to problems such as sensitivity to initialization, and convergence to subopti-

mal solutions. In this thesis, we develop new LVMs for different weakly supervised

learning tasks; and propose new optimization frameworks that improve training of

latent variable models as well as optimization of other non-convex objectives.

We propose part based models that use latent variables to capture the unknown

location of parts in images. We also introduce the notion of “negative parts”, as parts

whose detection scores are negatively correlated with the classification score of a class

when compared to others. Negative parts are particularly useful in disambiguating

similar categories (e.g. “cow” and “horse”). We present part based models that can

be seen as 3-layer neural networks (ConvNets) with a convolutional layer, followed

by a pooling layer, and a fully connected layer. However, we train our models using

sequential convex optimization whereas ConvNets use back-propagation for training.

We also introduce a new optimization framework, called Generalized Majorization-

Minimization (G-MM), that extends existing approaches to non-convex optimization

such as Expectation Maximization (EM) and Concave Convex Procedure (CCCP).

EM and CCCP iteratively construct and optimize tight bounds on the objective. G-

MM, on the contrary, does not require bounds to be tight, making it very flexible.

For instance, G-MM can incorporate application-specific biases into the optimization

procedure without changing the objective function. We derive G-MM algorithms for

several latent variable models and show that they consistently outperform their MM

counterparts; in particular, G-MM algorithms are less sensitive to initialization.





Contents

1 Introduction 1

1.1 Classification Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Generative Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Discriminative Models . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Training and Task Loss . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Training SVMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5.1 Gradient Based Approaches . . . . . . . . . . . . . . . . . . . 9

1.5.2 Quadratic Programming Solvers . . . . . . . . . . . . . . . . . 10

1.6 Weakly Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . 15

1.7 Latent Variable Models . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.7.1 Generative Approach . . . . . . . . . . . . . . . . . . . . . . . 16

1.7.2 Discriminative Approach . . . . . . . . . . . . . . . . . . . . . 17

1.8 Training Latent Structural SVMs . . . . . . . . . . . . . . . . . . . . 17

2 Reconfigurable Models for Capturing Spatial Layout of Scenes 21

2.1 Bag of Words (BoW) Model . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Generative Approach . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.2 Discriminative Approach . . . . . . . . . . . . . . . . . . . . . 23

2.1.3 How Are the Two Approaches Related? . . . . . . . . . . . . . 23

2.2 Spatial bag of words (SBoW) Model . . . . . . . . . . . . . . . . . . . 24

2.3 Reconfigurable Bag of Words Model . . . . . . . . . . . . . . . . . . . 25

vii



2.4 Training Reconfigurable Bag of Words Models . . . . . . . . . . . . . 27

2.4.1 Generative Approach . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.2 Discriminative Approach . . . . . . . . . . . . . . . . . . . . . 30

2.5 Adding Higher-Order Terms . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.1 Inference with Graph-Cuts . . . . . . . . . . . . . . . . . . . . 34

2.5.2 Regular Pairwise Functions . . . . . . . . . . . . . . . . . . . 35

2.5.3 Reformulating the Regularity Constraints . . . . . . . . . . . . 37

2.6 Experimental Results on Scene Classification . . . . . . . . . . . . . . 38

2.6.1 15 Scene Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.2 MIT 67 Indoor Scenes . . . . . . . . . . . . . . . . . . . . . . 39

2.6.3 Synthetic Scene Dataset . . . . . . . . . . . . . . . . . . . . . 42

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Automatic Part Discovery from Image Collections 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Part-Based Models for Image Classification . . . . . . . . . . . . . . . 53

3.3 Negative Parts in Binary Classifiers . . . . . . . . . . . . . . . . . . . 54

3.4 Negative Parts in Multi-Class Classifiers . . . . . . . . . . . . . . . . 55

3.5 Joint Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5.1 Caching Hard Examples . . . . . . . . . . . . . . . . . . . . . 58

3.6 Random Part Generation (1st Step of the Pipeline) . . . . . . . . . . 62

3.7 Part Selection (2nd Step of the Pipeline) . . . . . . . . . . . . . . . . 63

3.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.8.1 Visualizing the Model Trained with CNN Features . . . . . . . 68

3.8.2 Visualizing the Model Trained with HOG Features . . . . . . 72

3.9 Processing Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.10 Connection to Convolutional Neural Networks . . . . . . . . . . . . . 79

3.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 Generalized Latent Variable Models 81

4.1 Generalized Latent Variable Models (GLVMs) . . . . . . . . . . . . . 81

viii



4.2 Training GLVMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.1 Convex Upper Bound and Concave Lower Bound . . . . . . . 84

4.3 Adding Negative Parts to DPMs . . . . . . . . . . . . . . . . . . . . . 85

4.3.1 Training DPMs without Negative Parts . . . . . . . . . . . . . 86

4.3.2 Training DPMs with Negative Parts . . . . . . . . . . . . . . . 88

4.3.3 Initializing Negative Parts . . . . . . . . . . . . . . . . . . . . 90

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5 Generalized Majorization-Minimization 93

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 General Optimization Framework . . . . . . . . . . . . . . . . . . . . 97

5.2.1 Progress Measure . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.2 Bound Construction . . . . . . . . . . . . . . . . . . . . . . . 99

5.3 Convergence Proof of G-MM . . . . . . . . . . . . . . . . . . . . . . . 101

5.4 Examples of Derived G-MM Algorithms . . . . . . . . . . . . . . . . 106

5.4.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4.2 Detection and Classification with Latent Structural SVM . . . 108

5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5.1 Clustering with G-MMs . . . . . . . . . . . . . . . . . . . . . 111

5.5.2 Object Detection with G-MMs . . . . . . . . . . . . . . . . . . 113

5.5.3 Image Classification with G-MMs . . . . . . . . . . . . . . . . 115

5.5.4 Run Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.6 G-MM in Expectation (G-MME) . . . . . . . . . . . . . . . . . . . . 119

5.6.1 Sampling Bounds from Maximum Entropy Distribution . . . . 120

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6 Conclusion 125

ix



x



List of Figures

1-1 Visualization of three different per-example losses as a function of the

difference between the inference score and the ground-truth score. . . 7

2-1 A Reconfigurable model for a class of outdoor scenes. We have 𝑀

region models (parts) that can be arranged in different ways to make

up an image. Each image region has a preference over the region models

that can be used to generate its content. In this example regions in the

top are formed by choosing between a cloud or sun region model, while

regions in the middle and bottom are formed by choosing between a

tree or grass region model. . . . . . . . . . . . . . . . . . . . . . . . . 26

2-2 Three sample images from mountain scene category and their semantic

labeling layout. Different instances of a scene category exhibit a large

range of variation in their semantic layout. . . . . . . . . . . . . . . . 26

2-3 Some interesting region models learned for different categories using a

discriminative RBoW model (Init-EM). Each row illustrates a region

model for a particular category. The first column shows the preferences

of different image regions for this region model (𝐴𝑦,𝑟,𝑗 for fixed 𝑦 and

𝑗). The other columns show image regions that were assigned to this

region model during classification (𝑧𝑟 = 𝑗). . . . . . . . . . . . . . . . 40

2-4 Sample images from the synthetic dataset. Each column shows three

images from one scene category. The semantic meaning of each label

together with the corresponding observation distribution is shown at

the bottom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xi



2-5 Confusion matrices corresponding to different models. The average of

the diagonal terms is shown in the parentheses. . . . . . . . . . . . . 46

3-1 Part filters before (left) and after joint training (right) and top scoring

detections for each. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3-2 Our pipeline. Part selection and joint training are driven by clas-

sification loss. Part selection is important because joint training is

computationally demanding. . . . . . . . . . . . . . . . . . . . . . . . 51

3-3 Effect of 𝜆 on part norms. Each plot shows sorted 𝜌𝑗 values for a

particular choice of 𝜆. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3-4 Performance of HOG features on 10-class subset (left) and full MIT-

indoor dataset (right). . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3-5 Performance of CNN features on the full MIT-indoor dataset. HP de-

notes the hybrid features from [73]. Left: the effect of dimensionality

reduction on performance of the CNN features extracted from the en-

tire image. Two approaches are compared; random selection over 5

trials (blue curve) and PCA (red curve). Right: part-based models

with random parts (blue curves), selected parts from 1K random parts

(red curve), and jointly trained parts (black curve). . . . . . . . . . . 68

3-6 Part weights after joint training a model with 52 parts on the full

dataset. Patches are represented using 60 PCA coefficients on CNN

features. Although the model uses 5 pooling regions (corresponding to

cells in 1×1 + 2×2 grids) here we show the part weights only for the

first pooling region corresponding to the entire image. . . . . . . . . . 69

3-7 Top detections of two parts are shown before and after joint training

on test images of the full MIT-indoor dataset. The numbers in the first

column match the part indices in Figure 3-6. . . . . . . . . . . . . . . 70

xii



3-8 Top detections of parts on test images of the full dataset. The numbers

in the first column match the part indices in Figure 3-6. Part detection

is done in a multi-scale sliding window fashion and using a 256×256

window. For visualization purposes images are stretched to have the

same size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3-9 Part filters (top) and part weights (bottom) after joint training a model

with 52 parts on the 10-class dataset. Here we use HOG features.

Although the model uses 5 pooling regions (corresponding to cells in

1×1 + 2×2 grids) here we show the part weights only for the first

pooling region corresponding the entire image. . . . . . . . . . . . . . 75

3-10 Top detections of three parts on test images of the 10-class dataset.

The numbers in the first column match the part indices in Figure 3-9.

Patches from bookstore, laundromat, and library images are highlighted

in red, green, and blue respectively (best viewed in color). . . . . . . 76

3-11 Our part-based model can be thought of as a 3-layer Neural Network.

The first layer is convolutional. Different channels correspond to differ-

ent parts. The second layer performs the max-pooling operation in 4

quadrants of the part response maps. The last layer is fully connected

and performs 67-way classification. . . . . . . . . . . . . . . . . . . . 78

4-1 PR-curve for the cow class. We show result for DPM with 8 parts

(blue), GDPM with 6 positive and 2 negative parts initialized (red),

and GDPM with 8 positive and 1 negative part initialized by horse

DPM model (green). . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5-1 Optimization of a function 𝐹 using MM (red) and G-MM (blue). In

MM the bound 𝑏2 has to touch 𝐹 at 𝑤1. In G-MM we only require

that 𝑏2 be below 𝑏1 at 𝑤1, leading to several choices ℬ2. . . . . . . . . 97

xiii



5-2 An example of a non-convex function 𝐹 on R𝑑. (a) shows the plot of

𝐹 ; the value of the function on the line that touches 𝐹 at the point

𝑝 = (0.3,−0.2) is marked by the black and white line. (b) shows 𝐹

from the top view; it also marks the point 𝑝 with the red circle and

shows the direction of the gradient vector at 𝑝. The length of the

vector is set arbitrarily for visualization purposes. (c) shows the value

of 𝐹 along the tangent line as a one dimensional function (see Equation

5.15); it also shows the gradient direction at 𝑧 = 0 (in red) and the

linear function of Equation 5.21 that lower bounds 𝐹 (in green). . . . 103

5-3 The quadratic function in the left hand side of (5.28). When 𝜖1 = 𝜖2 =

0, the quadratic function has two roots, 𝑧1 = 0 and 𝑧2 = 𝐴
2𝑀

> 0 (shown

in blue). When 𝜖1 and 𝜖2 are non-zero, but chosen so that (5.29) holds,

the quadratic function is shifted up but still has two distinct roots

(shown in red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5-4 The effect of the progress coefficient 𝜂 (x-axis) on the quality of the

solutions found by G-MM on three different clustering datasets. The

quality of the solutions is measured by the objective function in (5.30).

Lower values are better. The average (solid line), the best (dashed

line), and the variance (shaded area) over 50 trials are shown and

different initializations are coded with different colors. . . . . . . . . . 113

5-5 Visualization of the solution of 𝑘-means and G-MM on the D31 dataset [66]

from identical starting point. Random partition initialization scheme

is used. (a) color-coded ground-truth clusters. (b) solution of 𝑘-means.

(c) solution of G-MM. The white crosses indicate location of the cluster

centers. Color codes match up to a permutation. . . . . . . . . . . . . 113

xiv



5-6 Latent location changes after learning, in relative image coordinates,

for all five cross-validation folds, for the top-left initialization on the

mammals dataset. Left to right: CCCP, “G-MM random”, “G-MM

biased” (𝐾 = 10). Each cross represents a training image; cross-

validation folds are color coded differently. Averaged over five folds,

CCCP only alters 2.4% of all latent locations, leading to very bad per-

formance. “G-MM random” and “G-MM biased” alter 86.2% and 93.6%

on average, respectively, and perform much better. . . . . . . . . . . . 115

5-7 Example training images from the mammals dataset, shown with final

imputed latent object locations by three algorithms: CCCP (red), G-

MM random (blue), G-MM biased (green). Initialization: top-left. . . 116

xv



xvi



List of Tables

2.1 Average performance of different methods on the 15 scene dataset. We

used three different initialization methods for training a discriminative

RBoW model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Average performance of different methods on the MIT dataset. The

last column shows the final value of the LS-SVM objective function for

RBoW models with different initializations. . . . . . . . . . . . . . . . 41

2.3 Performance of our reconfigurable model and different baseline meth-

ods on the MIT dataset. The last column shows performance of DPM

method from [45]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Average Precision (AP) for animal classes of PASCAL VOC 2007 dataset,

comparing DPM with GDPM with different number of parts. Sub (su-

per) indices indicate the number of positive (negative) parts. . . . . . 91

4.2 Cat Head Detection: Results comparing DPM and GDPM with

different number of positive and negative parts. Sub (super) indices

show the number of positive (negative) parts. GDPM consistently

outperforms DPM variants. The average cat head images are taken

from [76]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

xvii



5.1 Comparison of G-MM and 𝑘-means (hard-EM) on multiple clustering

datasets. Three different initialization methods were compared; forgy

initializes cluster centers to random examples, random partition as-

signs each data point to a random cluster center, and 𝑘-means++

implements the algorithm from [1]. The mean, standard deviation,

and best objective values out of 50 random trials are reported. Both

𝑘-means and G-MM use the exact same initialization in each trial.

G-MM consistently converges to better solutions. . . . . . . . . . . . 112

5.2 LS-SVM results on the mammals dataset [27]. We report the mean

and standard deviation of the training objective (Equation 5.34) and

test error over five folds. Three strategies for initializing latent object

locations are tried: image center, top-left corner, and random location.

“G-MM random” uses random bounds, and “G-MM bias” uses a bias

function inspired by multi-fold MIL [11]. Both variants consistently

and significantly outperform the CCCP baseline. . . . . . . . . . . . . 114

5.3 Performance of LS-SVM trained with CCCP and G-MM on MIT-

Indoor dataset. We report classification accuracy (Acc.%) and the

training objective value (O.F.). Columns correspond to different ini-

tialization schemes. “Random” assigns random parts to regions. 𝜆

controls the coherency of the initial part assignments: 𝜆 = 1 (𝜆 = 0)

corresponds to the most (the least) coherent case. “G-MM random”

uses random bounds and “G-MM biased” uses the bias function of

Equation 5.39. 𝜂 = 0.1 in all the experiments. Coherent initializa-

tions lead to better models in general, but, they require discovering

good initial parts. “G-MM” outperforms CCCP, especially with ran-

dom initialization. “G-MM biased” performs the best. The value of

the progress coefficient is set to 𝜂 = 0.1 in these experiments. . . . . . 118

xviii



5.4 Comparison of the number of iterations it takes for MM and G-MM to

converge in the scene recognition and the data clustering experiment

with different initializations and/or datasets. The numbers reported

for the clustering experiment are the average and standard deviation

over 50 trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

xix





Chapter 1

Introduction

The landscape of machine learning has changed dramatically over recent years. Hun-

dreds of millions of images and millions of hours of video are uploaded onto the

Internet daily123. This data is viewed and processed in even larger quantities by In-

ternet users through comments, reviews, view/like-counts, etc. This information is

often incomplete, erroneous, ambiguous, and inconsistent. Annotating such a large

and ever growing stream of data, on the other hand, is futile. This massive flux of

data and lack of annotation creates demand for new applications that create a new

set of challenges for machine learning and artificial intelligence.

Traditionally, learning from partially annotated data is solved by weakly and

unsupervised training. For example, Latent Variable Models (a general family of

models that harnesses weakly supervised training) can capture unobserved variables

in the input such as the viewpoint of an image, the subcategory of an object, etc.

However, the biggest challenge in training such models is that the training objective

is often non-convex. This leads to problems such as sensitivity to initialization, and

convergence to suboptimal solutions. In this thesis, we (a) propose methods that

1Based on articles from digitaltrends.com and businessinsider.com, published on 18 September
2013, 350 million photos are uploaded on Facebook daily.

2Based on the information obtained from https://www.instagram.com/press/ in December 2015,
more than 80 million photos are uploaded on instagram.com daily.

3Several sources including reelseo.com and tubefilter.com report that 400 hours of video
gets uploaded on Youtube every minute. Also, based on the information obtained from
www.youtube.com/press in December 2015, every day hundreds of millions of hours of video is
watched on Youtube.
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automatically discover visual patterns that are shared across multiple categories using

only category-level annotations; (b) extend the family of latent variable models to

become more expressive; (c) improve the training of latent variable models.

We propose different generalizations to the existing family of latent variable mod-

els and show how different computer vision tasks can benefit from them. We applied

these generalizations to solve several computer vision problems including image clas-

sification, object detection, and semantic segmentation.

In Chapter 2, we proposed a part based model for scene classification. The model

uses latent variables to capture the semantic layout of the scene. So, although the

model is trained with only image category labels the model also outputs a semantic

segmentation of the input image. In Chapter 3 and 4, we introduce the notion of

“negative parts”, parts whose detection scores are negatively correlated with one or

more classes. Negative correlations turn out to be important in disambiguating similar

categories (e.g. “cow” and “horse” in object detection). This can also be thought of as

a 2-layer convolutional network that is trained using convex optimization as opposed

to back-propagation.

In Chapter 5 we propose new training procedures that extend the existing ap-

proaches to non-convex optimization such as expectation maximization (EM) and the

Concave Convex Procedure (CCCP). EM and CCCP iteratively construct and opti-

mize convex bounds on the original objective function. The bound at each iteration

is required to touch the objective function at the optimizer of the previous bound. In

Chapter 5 we show that this touching constraint is unnecessary and overly restrictive.

We propose a new optimization framework, Generalized Majorization-Minimization

(G-MM), that relaxes this constraint and is much more flexible than CCCP and EM.

For instance, G-MM can incorporate application-specific biases into the optimization

procedure without changing the objective function. We derive G-MM algorithms for

several latent variable models and show that they consistently outperform their MM

counterparts in optimizing non-convex objectives. Importantly, in practice, G-MM

algorithms are often less sensitive to initialization.
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1.1 Classification Problem

In a classification problem the goal is to identify an input as belonging to one of the

𝑁 pre-defined classes. This is done by a classifier which is a function 𝑦 : 𝒳 → 𝒴 that

maps an input 𝑥 ∈ 𝒳 to one of the 𝑁 possible categories in 𝒴 = {𝑦1, . . . , 𝑦𝑁}.
The classifier 𝑦 may perform the classification task in a number of different ways.

For example, Nearest Neighbor classifiers, Neural Networks, and Decision Trees each

use a different strategy to perform classification. A common approach, that is used

throughout this thesis, involves computing a classification score 𝑓(𝑥, 𝑦) for each cat-

egory, and then selecting the highest scoring category, as follows:

𝑦(𝑥) = arg max
𝑦∈𝒴

𝑓(𝑥, 𝑦). (1.1)

The maximization operation of Equation 1.1, a.k.a. inference, is done during test-

time. For training, we use a set of labeled training data 𝒟 = {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1 where

𝑥𝑖 ∈ 𝒳 is the input and 𝑦𝑖 ∈ 𝒴 is the ground-truth output label.

In this thesis, we consider parametric models, meaning that we assume the score

function 𝑓 is parameterized by a set of parameters 𝑤. This allows us to formulate

the problem of training a classifier as an optimization problem where the goal is to

find the model 𝑤 that optimizes a training objective function 𝑂(𝑤) that measures

the “goodness” of the classifier defined by 𝑤. The objective is typically written as

a weighted sum of two terms: 1) a regularization term, denoted by 𝑅(𝑤), that is

independent of the data and is usually used to penalize complex models, and 2) a

data-dependent term, denoted by ℒ(𝒟, 𝑤), that measures the loss (or the amount

of error that the classifier makes) on the training set 𝒟. The loss function is often

defined as the sum of losses on training examples ℒ(𝒟, 𝑤) =
∑︀𝑛

𝑖=1 𝐿(𝑥𝑖, 𝑦𝑖, 𝑤) and

the general form of the training objective is as follows:

𝑂(𝑤) = 𝑅(𝑤) + 𝐶ℒ(𝒟, 𝑤)

= 𝑅(𝑤) + 𝐶
𝑛∑︁

𝑖=1

𝐿(𝑥𝑖, 𝑦𝑖, 𝑤), (1.2)
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where 𝐶 is a hyper-parameter that balances the regularization penalty and the em-

pirical loss. Finally, the problem of training a classifier can be cast as the problem of

finding the minimizer of the training objective, and can be written as follows:

𝑤* = arg min
𝑤

𝑂(𝑤). (1.3)

1.2 Generative Models

Image classification with generative models involves modeling a prior probability over

classes, 𝑝(𝑦), and the probability of observing certain image features conditional on

the image class 𝑝(𝑥 | 𝑦). Using the Bayes law we can classify an image by selecting

the class 𝑦 with the maximum probability given the observed image features:

𝑦(𝑥) = arg max
𝑦

𝑝(𝑦 | 𝑥) = arg max
𝑦

𝑝(𝑦)𝑝(𝑥 | 𝑦). (1.4)

Note that this becomes the same as Equation 1.1 when we set 𝑓(𝑥, 𝑦) = 𝑝(𝑦 | 𝑥).

The parameters 𝑤 of the generative model can be estimated from a training set

𝒟 = {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1 using a maximum likelihood criteria. If the training examples are

independent samples from 𝑝𝑤(𝑥, 𝑦), this leads to the following optimization problem:

𝑤* = arg max
𝑤

𝑛∏︁

𝑖=1

𝑝𝑤(𝑦𝑖)𝑝𝑤(𝑥𝑖 | 𝑦𝑖)

= arg min
𝑤

−
𝑛∑︁

𝑖=1

(log 𝑝𝑤(𝑦𝑖) + log 𝑝𝑤(𝑥𝑖 | 𝑦𝑖)) . (1.5)

Let 𝑤 = {𝛾, 𝜃1, . . . , 𝜃𝑁} where 𝛾 defines a discrete distribution over categories i.e.

𝑝(𝑦) = 𝛾𝑦 and 𝜃𝑦 defines the parameters of the conditional distribution 𝑝𝑤(𝑥 | 𝑦) and

we have 𝑝𝑤(𝑥 | 𝑦) = 𝑝𝜃𝑦(𝑥). In this case, the maximum likelihood criteria amounts

to selecting 𝛾 based on the frequency of samples from different classes in the training
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set, and 𝜃𝑦 can be estimated using samples from category 𝑦 alone, as follows:

𝛾𝑦 =
𝑛∑︁

𝑖=1
𝑦𝑖=𝑦

1

𝑛
, 𝜃𝑦 = arg max

𝜃′𝑦

𝑛∏︁

𝑖=1
𝑦𝑖=𝑦

𝑝𝜃′𝑦(𝑥𝑖).

1.3 Discriminative Models

Unlike the generative setting, the discriminative approach does not rely on explicit

probabilistic models for the images in each class. Instead the parameters of a classifier

are selected to directly minimize mistakes on the training data, often with a regular-

ization bias to avoid overfitting. Motivated by the classification rule in (1.1), a score

function 𝑓𝑤(𝑥, 𝑦) is trained to score high if image 𝑥 is from class 𝑦, and low otherwise.

In particular, we would like to train 𝑤 such that 𝑓𝑤(𝑥𝑖, 𝑦𝑖) > 𝑓𝑤(𝑥𝑖, 𝑦),∀𝑦 ̸= 𝑦𝑖.

Finally we note that one important difference between discriminative and genera-

tive training is that discriminative training does not typically decompose into separate

training problems for each class. On the other hand, discriminative training methods

typically lead to better classification results due to the fact that they directly model

the decision boundary, as opposed to explicitly modeling the data.

1.3.1 Training and Task Loss

In this section we focus on the loss term of Equation 1.2. The training loss function

𝐿(𝑥𝑖, 𝑦𝑖, 𝑤) should match the test performance measure (a.k.a. the target loss). The

target loss in a classification problem typically measures the number of misclassified

training examples. This is called the 0/1 loss and can be written as follows:

𝐿0/1(𝑥𝑖, 𝑦𝑖, 𝑤) = ∆(𝑦𝑤(𝑥𝑖), 𝑦𝑖) = 1{𝑦𝑤(𝑥𝑖) ̸= 𝑦𝑖}. (1.6)

The 0/1 loss function is non-differentiable and discontinuous. In particular, the

derivative of the 0/1 loss is zero everywhere except for the discontinuity point where

it is undefined. Thus, optimizing training objectives that use 0/1 loss is hard, and,

in practice, we have to resort to surrogates such as hinge loss or ramp loss.
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Hinge loss is a continuous and convex upper bound to the 0/1 loss. Hinge loss

measures the difference between the best loss augmented score (computed via loss

augmented inference) and the score under the ground-truth label as follows:

𝐿hinge(𝑥𝑖, 𝑦𝑖, 𝑤) = max
𝑦∈𝒴

(𝑓𝑤(𝑥𝑖, 𝑦) + ∆(𝑦, 𝑦𝑖))− 𝑓𝑤(𝑥𝑖, 𝑦𝑖). (1.7)

Hinge loss assigns zero penalty to training examples for which the score of the correct

(i.e. ground-truth) category is higher than the classification score of all other cate-

gories by a margin of 1. Otherwise, the model gets penalized and the penalty grows

linearly with the difference between the score of the correct category and the top-

scoring incorrect category. Hinge loss is unbounded from above. This can potentially

be problematic in dealing with outliers and/or incorrectly labeled training samples.

Ramp loss is a compromise between 0/1 and hinge loss. It is a continuous non-

convex upper bound to the 0/1 loss and can be defined as a truncated hinge loss

(as in Equation 1.8) or simply as the difference between the score of loss augmented

inference and inference on the input image (as in Equation 1.9).

𝐿ramp(𝑥𝑖, 𝑦𝑖, 𝑤) = min

{︂
1,max

𝑦∈𝒴
(𝑓𝑤(𝑥𝑖, 𝑦) + ∆(𝑦, 𝑦𝑖))−max

𝑦∈𝒴
𝑓𝑤(𝑥𝑖, 𝑦)

}︂
(1.8)

= max
𝑦∈𝒴

(𝑓𝑤(𝑥𝑖, 𝑦) + ∆(𝑦, 𝑦𝑖))−max
𝑦∈𝒴

𝑓𝑤(𝑥𝑖, 𝑦) (1.9)

Ramp loss is easier than 0/1 loss to work with because it is continuous, but, harder

than hinge loss because it is non-convex.

Figure 1-1 illustrates the three loss functions that we discussed in this section.

1.3.2 Regularization

The term 𝑅(𝑤) in the training objective of Equation 1.2 is known as the regularization

term, and is used to control the complexity of the model and to prevent overfitting.

ℓ1 and ℓ2 regularization are examples of commonly used regularizers and are defined
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Figure 1-1: Visualization of three different per-example losses as a function of the
difference between the inference score and the ground-truth score.

as follows:

𝑅ℓ1(𝑤) = ||𝑤||1 =
𝑑∑︁

𝑖=1

|𝑤𝑖|, (1.10)

𝑅ℓ2(𝑤) = ||𝑤||22 =
𝑑∑︁

𝑖=1

𝑤2
𝑖 . (1.11)

where 𝑑 is the length of the parameter vector 𝑤. 𝑅ℓ1 induces sparsity on the learned

parameters whereas 𝑅ℓ2 leads to dense models. Another popular regularization func-

tion is ℓ1/ℓ2 (a.k.a. group lasso) that can enforce structured sparsity on the trained

model. Let ℐ = {1, . . . , |𝑤|} denote an index set. Also, let 𝐼𝑔 ⊆ ℐ,∀𝑔 ∈ {1, . . . , 𝐺}
denote 𝐺 different subsets of this index set. Finally, let 𝑤𝐼𝑔 denote the dimensions in

𝑤 that are indexed by 𝐼𝑔. Group lasso enforces structured sparsity patterns according

to the grouping defined by 𝐼1, . . . , 𝐼𝐺. It encourages all the parameters within a group

(e.g. 𝑤𝐼𝑔) to go to zero simultaneously (similar to ℓ1 regularization) while allowing

groups that have non-zero elements to be dense (similar to ℓ2 regularization). We
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denote the regularization function of group lasso by 𝑅𝑔 and define it as follows:

𝑅𝑔(𝑤) =
𝐺∑︁

𝑔=1

||𝑤𝐼𝑔 ||2. (1.12)

1.4 Support Vector Machines

Support Vector Machines (SVMs) [13] are a powerful family of discriminative classi-

fiers that have been extensively used in various problems in Machine Learning and

Computer Vision. SVM directly learns the decision boundary that separates train-

ing examples of different categories, and when multiple such decision functions are

available it chooses the one with the largest margin from examples each category.

SVM was originally designed for binary classification problems where 𝑦𝑖 ∈ 𝒴 =

{+1,−1}, ∀𝑖 ∈ {1, . . . , 𝑛}. Using the hinge loss and the ℓ2 regularization function,

the training objective of an SVM can be written as follows:

𝑂(𝑤) =
1

2
||𝑤||2 + 𝐶

𝑛∑︁

𝑖=1

max {0, 1− 𝑦𝑖𝑓𝑤(𝑥𝑖)} , (1.13)

where 𝑓𝑤(𝑥𝑖) denotes distance of sample 𝑥𝑖 from the decision boundary.

In many applications the set of possible outcomes has some structure to it. Struc-

tural SVMs (S-SVMs) are an extended version of support vector machines that are

used in problems with complex output structures. For example, in the case of multi-

class classification problem with 𝑁 categories 𝒴 = {1, 2, . . . , 𝑁}, and in the case of

part-of-speech tagging 𝒴 depends on the input sentence and comprises of all possible

parse trees of the input sentence. The training objective of S-SVMs is as follows:

𝑂(𝑤) =
1

2
||𝑤||2 + 𝐶

𝑛∑︁

𝑖=1

[︂
max
𝑦∈𝒴

(𝑓𝑤(𝑥𝑖, 𝑦) + ∆(𝑦, 𝑦𝑖))− 𝑓𝑤(𝑥𝑖, 𝑦𝑖)

]︂
. (1.14)

The objective functions of SVM (Equation 1.13) and S-SVM (Equation 1.14) are both

strongly convex and, hence, each has a unique local minimum.
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1.5 Training SVMs

Training SVMs requires minimizing the objective function of (1.13) which has a unique

local minimum due to its strong convexity property. There are two main strategies for

minimizing this objective function. One approach is to treat this as an unconstrained

optimization problem and search for the optimal 𝑤 in the entire space of possible

solutions, i.e. R𝑑. Although the form of the objective function in (1.14) is complicated

(it is piecewise quadratic when 𝑓𝑤 is linear in 𝑤), one can use gradient based methods

such as (stochastic) gradient descent [59, 7, 65] to optimize it. Such methods are easy

to implement because they only require computing the value of the gradient vector

at specific points. Another approach involves turning the complex objective function

of (1.14) into a simple (e.g. quadratic) optimization problem, as in the cutting-plane

method of [30]; but this comes at the price of introducing a large set of constraints

to the optimization problem. Fortunately, there are ways to reduce the size of the

constraint set and, therefore, make the second approach practical. In some cases, the

quadratic problem formulation of SVM training is much faster and easier to work

with than the gradient based approaches.

1.5.1 Gradient Based Approaches

Gradient based optimization methods work by taking small steps along the direction

of the gradient vector. This boils down to starting from an arbitrary point 𝑤, comput-

ing (or estimating) the gradient vector and updating 𝑤 in the appropriate direction

accordingly. The strong convexity property of SVM training objective (Equation

1.14) makes it possible to use gradient based methods, such as Stochastic Gradient

Descent (SGD) [65] or BFGS [58], to solve the training problem and to converge to

the global minimum of the training objective.

For the SVM training objective, each gradient step requires solving inference on

all training samples and convergence requires numerous gradient steps. This can be

prohibitively costly for large datasets. BFGS and SGD use two different strategies

to cope with this computational complexity bottleneck. In BFGS, the step sizes are
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chosen carefully by taking curvature (the 2nd derivative) of the objective function

into account, making it possible to reduce the number of gradient steps needed for

convergence by orders of magnitude compared to standard gradient descent. SGD,

on the other hand, computes an approximate gradient in each step, making gradient

computation orders of magnitude faster. In the following section we will describe

SGD optimization of SVMs in more details.

1.5.2 Quadratic Programming Solvers

Quadratic Programming (QP) is the problem of optimizing a quadratic function sub-

ject to linear (in)equality constraints. Let 𝑤 ∈ R𝑑 denote the vector of variables in

the objective function, 𝑏 ∈ R𝑚 denote a vector of constants, and 𝐺 denote a matrix

of size 𝑚× 𝑑. The general form of a QP with 𝑚 constraints can be stated as follows:

𝑤* = arg min
𝑤

𝐹 (𝑤)

s.t. 𝐺𝑤 ≥ 𝑏, (1.15)

where 𝐹 is a quadratic function and each row of 𝐺, together with the corresponding

element in 𝑏, specifies a linear constraint.

We show that when the classification score function is linear in 𝑤, that is when

𝑓𝑤(𝑥, 𝑦) = 𝑤 ·𝜑(𝑥, 𝑦), the SVM training objective of (1.13) can be stated as a QP. To

this end, we first rewrite the SVM training objective as follows:

𝑤* = arg min
𝑤

1

2
||𝑤||2 + 𝐶

𝑛∑︁

𝑖=1

max
(𝜓,𝛿)∈𝑆𝑖

𝑤 · 𝜓 + 𝛿, (1.16)

where 𝜓 is a vector of feature differences and 𝛿 is a 0/1 loss value and 𝑆𝑖 is a set of

(𝜓, 𝛿) pairs associated to the 𝑖th training example. Formally, we define 𝑆𝑖 as follows:

𝑆𝑖 = {(𝜓, 𝛿) ∈ R𝑑 × R | 𝜓 = 𝜑(𝑥𝑖, 𝑦)− 𝜑(𝑥𝑖, 𝑦𝑖), 𝛿 = ∆(𝑦, 𝑦𝑖), 𝑦 ∈ 𝒴}. (1.17)

We turn the optimization problem of Equation 1.16 into a quadratic program by
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introducing 𝑛 slack variables. Each slack variable, denoted by 𝜉𝑖, is associate with

the loss value of a training example (𝑥𝑖, 𝑦𝑖) ∈ 𝒟, and thus, is constrained to be

non-negative. The QP equivalent of (1.16) can be written as:

𝑤* = arg min
𝑤,𝜉≥0

1

2
||𝑤||2 + 𝐶

𝑛∑︁

𝑖=1

𝜉𝑖

s.t. 𝜉𝑖 − 𝑤 · 𝜓 ≥ 𝛿, (𝜓, 𝛿) ∈ 𝑆𝑖, 1 ≤ 𝑖 ≤ 𝑛. (1.18)

1-Slack Formulation

One practical problem with the QP equivalent of the SVM training objective that we

explained in the previous section is that the number of linear constraints can become

large. In particular, the size of the constraint set increases linearly with the size of

the training set as well as the number of categories. The issue becomes even more

problematic for classifiers with latent variables (which we will discuss in Section 1.7).

Note that the constraints in (1.18) are factorized over training examples, meaning

that each training example has its own set of 𝑁 constraints, denoted by 𝑆𝑖, associated

to it and the constraint sets are independent. Each constraint in (𝜓, 𝛿) ∈ 𝑆𝑖 is

associated with one of the 𝑁 possibilities for classification of the 𝑖th training example.

This results in a total of 𝑛 + 𝑛 × 𝑁 constraints; 𝑛 non-negativity constraints for 𝜉𝑖s

and 𝑛×𝑁 constraints for possible interpretations of the training data.

Joachims et al. [30] proposed to define constraints jointly over all training exam-

ples. This means that each constraint specifies a possible classification of all training

examples jointly, therefore, exponentially expanding the size of the constraint set to

𝑛 + 𝑁𝑛. Although, this counterintuitive idea seem to have worsened the issue with

the size of the constraint set drastically, it turns out that only a very small fraction of

these joint constraints are active at the solution of the optimization problem. More

importantly, the number of active joint constraints is affected only by the desired

precision of the solution and is independent of the number of training examples. We

will discuss this in greater detail in the next section.

When working with joint constraints, the QP has only one slack variable which
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represents the total sum of the losses of all training examples, hence the name “1-

slack” formulation. Let 𝒮 = {𝑒 = (𝑒1, 𝑒2, . . . , 𝑒𝑛) : 𝑒𝑖 = (𝑖, 𝜓, 𝛿), (𝜓, 𝛿) ∈ 𝑆𝑖} be the set
of all possible joint constraints. In other words, 𝒮 = 𝑆1 × · · · × 𝑆𝑛. Each constraint

in 𝒮 is an 𝑛-tuple whose 𝑖th element 𝑒𝑖 = (𝑖, 𝜓, 𝛿) corresponds to the classification

of the 𝑖th training example into one of the 𝑁 possible categories. Note that each

joint constraint specifies a complete classification of the training set. There is a total

training loss value associated to each joint constraint 𝑒 = (𝑒1, . . . , 𝑒𝑛) ∈ 𝒮, which we

denote by loss(𝑒, 𝑤) and define it as follows:

loss(𝑒, 𝑤) =
𝑛∑︁

𝑖=1

𝑤 · 𝜓𝑖 + 𝛿𝑖, (1.19)

where 𝜓𝑖 and 𝛿𝑖 are obtained from 𝑒𝑖. The 1-slack formulation of the QP of Equation

1.18 can be written as follows:

𝑤* = arg min
𝑤,𝜉≥0

1

2
||𝑤||2 + 𝐶𝜉

s.t. loss(𝑒, 𝑤) ≤ 𝜉, ∀𝑒 ∈ 𝒮. (1.20)

Maintaining a Working Set of Active Constraints

In practice, we cannot optimize (1.20) since the size of the constraint set 𝒮 is too

large. However, it turns out that the dual of the QP in (1.20) has an extremely sparse

solution in the sense that most of the dual variables turn out to be zero [30]. Since

dual variables correspond to constraints in the primal form the observation implies

that only a tiny fraction of the primal constraints will be active. This is the key

behind conception of an efficient algorithm, which we will explain in the rest of this

section, that can solve the QP formulation of SVM training problem in practice.

As we discussed, almost all of the constraints in (1.20) will be “inactive” at the

solution of the optimization problem except for a manageable small subset, 𝑊 ⊆ 𝒮.
This observation suggests that one can take an iterative approach to solve the opti-

mization problem of (1.20) in practice. In each round we alternatively optimize the

quadratic objective subject to the constraints in 𝑊 and add some of the violated
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constraints from 𝒮 ∖𝑊 to 𝑊 . This is also known as the cutting-plane method in opti-

mization literature. This iterative process is repeated until the algorithm converges to

the solution of the original optimization problem. Convergence is declared if the gap

between the value of the dual and the primal objective at the current solution gets

smaller than a desired tolerance 𝜖. Joachims et al. [30] showed that if the most vio-

lated constraint4 is added to 𝑊 in each round the number of steps that the algorithm

requires to converge is linear in the desired precision of the solution. In particular,

the number of iterations is inversely proportional to 𝜖 and does not depend on the

size of the training set. This leads to an optimization algorithm for training SVMs

that is linear in the number of training examples, because finding the most violated

constraint in each round requires doing inference on all the training examples.

Dual Formulation

Motivated by the observation made in [30] regarding the extreme sparsity of the

solution of the dual of (1.20), it may be faster to work with the dual form.

Let Ψ(𝑒) =
∑︀𝑛

𝑖=1 𝜓𝑖 where 𝑒 = (𝑒1, . . . , 𝑒𝑛) ∈ 𝑊 and 𝑒𝑖 = (𝑖, 𝜓𝑖, 𝛿𝑖). Also, let

𝑒(𝑗) denote the 𝑗-th element in 𝑊 (here we are assuming 𝑊 is an ordered set). We

define 𝑀 to be a |𝑊 |×|𝑊 | kernel matrix for the feature function Ψ. So, we have

𝑀𝑗,𝑘 = Ψ(𝑒(𝑗)) ·Ψ(𝑒(𝑘)). Also, let 𝑏 be a vector of length |𝑊 | where for any 𝑒 ∈ 𝑊 , 𝑏𝑒

is defined as 𝑏𝑒 = −∑︀𝑛
𝑖=1 𝛿𝑖. The dual of (1.20) subject to constraints in 𝑊 ⊆ 𝒮 can

be written in the following simple form:

𝛼* = arg min
𝛼≥0

1

2
𝛼𝑇𝑀𝛼 + 𝛼𝑇 𝑏

s.t.
∑︁

𝑒∈𝑊

𝛼𝑒 ≤ 𝐶, (1.21)

where 𝛼 = (𝛼1, . . . , 𝛼|𝑊 |) is the vector of dual variables. The solution of the dual and

4The most violated constraint is the one with the highest loss value i.e. argmax𝑒∈𝒮 loss(𝑒, 𝑤).
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Algorithm 1 Fast QP solver for optimizing SVM training objective.

Input: convergence precision 𝜖
1: 𝑊 := ∅
2: repeat
3: 𝑀 [𝑒, 𝑒′] := Ψ(𝑒) ·Ψ(𝑒′),∀𝑒, 𝑒′ ∈ 𝑊
4: 𝑏[𝑒] := −∑︀𝑛

𝑖=1 𝛿𝑖,∀𝑒 ∈ 𝑊 ◁ 𝑒 = (𝑒1, . . . , 𝑒𝑛), 𝑒𝑖 = (𝑖, 𝜓𝑖, 𝛿𝑖)
5: 𝛼* := the solution of the QP (Equation1.21)
6: 𝑤* := −∑︀

𝑒∈𝑊 𝛼*
𝑒Ψ(𝑒)

7: prune 𝑊
8: 𝑒* := arg max𝑒∈𝑊 loss(𝑒, 𝑤*) ◁ most violated constraint
9: 𝑊 := 𝑊

⋃︀
{𝑒*}

10: 𝜉* := −1
𝐶

(𝛼*𝑇𝑀𝛼* + 𝛼*𝑇 𝑏)
11: until loss(𝑒*, 𝑤) ≤ 𝜉* + 𝜖
Output: 𝑤

the primal are related through the following equation:

𝑤* = −
∑︁

𝑒∈𝑊

𝛼*
𝑒Ψ(𝑒). (1.22)

We start from an empty set of constraints𝑊 = ∅ and gradually add constraints to𝑊 .

After enough iterations, many of the 𝛼𝑒’s become (and remain) zero for the rest of the

optimization process. This happens in particular for the constraints that were added

in the earlier rounds of growing 𝑊 . This observation suggests that we can prune

the constraint set 𝑊 in each iteration by discarding 𝑒’s for which 𝛼𝑒 has remained

zero for a certain number of consecutive iterations. We use Algorithm 1 to solve the

optimization problem of Equation 1.20 in practice. Line 10 of the algorithm computes

the value of the slack variable of the primal form (Equation 1.20) by setting the value

of the solution of the primal to that of the dual. The duality gap is zero because the

optimization problem is quadratic and convex (the matrix𝑀 is positive semi definite).

Note, however, that the dual problem was originally a maximization problem and we

stealthily changed it to a minimization problem by negating the objective function.

Thus, the solution of (1.20) is equal to the negative of the solution of (1.21) and 𝜉
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can be computed as follows:

1

2
||𝑤*||2 + 𝐶𝜉* = −1

2
𝛼*𝑇𝑀𝛼* − 𝛼*𝑇 𝑏, 𝛼*𝑇𝑀𝛼* = 𝑤*2 (1.23)

⇒𝜉* =
−1

𝐶
(𝛼*𝑇𝑀𝛼* + 𝛼*𝑇 𝑏). (1.24)

Improving Runtime using Sub-Optimal Cutting-Planes

Finding the most violated constraint (line 8 in Algorithm 1) is linear in the num-

ber of training examples. This makes the algorithm slow for training SVMs on very

large training sets. Finding the most violated constraint requires running loss aug-

mented inference on all training examples. The training algorithm, however, should

still make improvement if any violating constraint is added to the working set 𝑊 .

Although adding sub-optimal cutting-planes (or constraints) delays the convergence

of the algorithm in terms of the number of iteration, but, it can significantly reduce

the time spent on updating 𝑊 . We observed up to 4x speedup in total training time

by running loss augmented inference on only a fraction of the training data when

updating 𝑊 . When finding a new cutting-plane, we randomly choose 20% of the

training data and only update the loss augmented inference result for those selected

examples. For all the other training examples we use the classification result of the

last cutting-plane. We reserve a small chance (5%) to do a normal full update (i.e.

run loss augmented inference on all training examples) in each round.

1.6 Weakly Supervised Learning

Many interesting models capture aspects of the data that is not labeled in the training

data. For example, consider a scene classification problem where we would like the

classifier to determine the class based on an intermediate representation of the input

for which we do not have annotation information. The intermediate representation

can be a set of attributes (e.g. indoor, outdoor, natural, man-made, open area, round,

rugged, etc.) or the output of a set of object detector (e.g. has human, has car,

has chair, has animal, etc.). We can design the model so that it has the ability to
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capture such information and yet train it only with the class-level annotation. This

is called weakly supervised learning problem. Often the category label annotation

provides enough signal to drive the weakly supervised learning towards discovering

good intermediate representations.

1.7 Latent Variable Models

Output variables are those variables in the model that denote the prediction of the

model. The ground-truth value of the output variables is typically known for all the

examples in the training set. Latent variables can be used to capture unobserved

structures present in the data; that is the structures for which we do not have access

to the ground-truth values during training. Latent variables are usually treated as

auxiliary variables that are either marginalized out (Equation 1.25a) or maximized

over (Equation 1.25b) during inference.

𝑓𝑤(𝑥, 𝑦) =

⎧
⎪⎨
⎪⎩

∑︁

𝑧

𝑓𝑤(𝑥, 𝑦, 𝑧) (marginalized) (1.25a)

max
𝑧
𝑓𝑤(𝑥, 𝑦, 𝑧) (maximized) (1.25b)

1.7.1 Generative Approach

To augment generative models with latent variable we define 𝑝(𝑥 | 𝑦) in terms of a

distribution 𝑝(𝑧 | 𝑦) over latent values conditional on the class of the image, and the

probability of observing certain image features conditional both on the image class

and the latent values 𝑝(𝑥 | 𝑧, 𝑦). Then 𝑝(𝑥 | 𝑦) is obtained by integrating over the

latent variables, similar to Equation 1.25a,

𝑝(𝑥 | 𝑦) =
∑︁

𝑧

𝑝(𝑥 | 𝑧, 𝑦)𝑝(𝑧 | 𝑦). (1.26)

Maximum likelihood parameter estimation (Equation 1.5) with latent variable models

typically leads to non-convex optimization problems. The Expectation-Maximization

(EM) algorithm is a general tool for dealing with such problems.
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1.7.2 Discriminative Approach

We focus on score functions that are linear in 𝑤 given the output structure 𝑦 and

the latent configuration 𝑧, that is 𝑓𝑤(𝑥, 𝑦, 𝑧) = 𝑤 · 𝜑(𝑥, 𝑦, 𝑧). Moreover, we consider

the case where the latent variables are maximized over. Such models have been

successfully used in many vision applications such as [20, 47, 62]. Let 𝑍(𝑥) denote

the space of all possible latent configurations for the input 𝑥. We can write the

classification score function and the inference rule as follows:

𝑓𝑤(𝑥, 𝑦) = max
𝑧∈𝑍(𝑥)

𝑤 · 𝜑(𝑥, 𝑦, 𝑧), (1.27)

𝑦(𝑥) = arg max
𝑦∈𝒴

𝑓𝑤(𝑥, 𝑦) = arg max
𝑦∈𝒴

max
𝑧∈𝑍(𝑥)

𝑤 · 𝜑(𝑥, 𝑦, 𝑧). (1.28)

We can replace this in the SVM training objective of (1.14) to get the training ob-

jective for Latent Structural SVM (LS-SVM) [20, 71], described in Equation 1.29. A

popular example in computer vision is the deformable part model (DPM) for object

detection described in [20]. The work in [20] considered the special case of a latent

variable binary classifier (the object is present or not at each position in the image).

𝑂(𝑤) =
1

2
||𝑤||2+𝐶

𝑛∑︁

𝑖=1

⎡
⎣ max

𝑦∈𝒴
𝑧∈𝑍(𝑥𝑖)

(𝑤·𝜑(𝑥𝑖, 𝑦, 𝑧)+∆(𝑦, 𝑦𝑖))− max
𝑧∈𝑍(𝑥𝑖)

𝑤·𝜑(𝑥𝑖, 𝑦𝑖, 𝑧)

⎤
⎦ (1.29)

1.8 Training Latent Structural SVMs

Unfortunately, the LS-SVM training objective in (1.29) is non-convex. This is due

to the last max operation in Equation 1.29. In [71], the LS-SVM training objective

is optimized using the Concave-Convex Procedure (CCCP) algorithm [72], while [20]

uses a coordinate descent method designed for the binary case. While these methods

have been shown to work well in some applications there is increasing evidence that

they can be quite sensitive to initialization. Our experiments confirm this is a signif-

icant problem for various latent variable models. In contrast, the EM algorithm for

generative models with latent variables seems to be less sensitive to initialization.
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CCCP provides an algorithm for minimizing objective functions that can be writ-

ten as sum of a convex and a concave function; or, equivalently, difference of two

convex functions. CCCP alternates between replacing the concave part with a linear

function that is tangent to the objective function at the current solution and opti-

mizing the resulting function. The resulting function is convex, upper bounds the

true objective function, and touches it at the current solution. These three properties

guarantee that the CCCP algorithm makes progress in each round and converges to

an extremum or a saddle point of the original (non-convex) objective function.

The concave part of Equation 1.29 can be linearized by fixing the latent variables

in the last term in the equation. In order to ensure that the resulting function touches

the original function at the solution of the 𝑡-th iteration (denoted by 𝑤(𝑡)), we fix the

latent variables as follows:

𝑧𝑖(𝑤
(𝑡)) = arg max

𝑧∈𝑍(𝑥𝑖)
𝑤(𝑡) · 𝜑(𝑥𝑖, 𝑦𝑖, 𝑧). (1.30)

Let z(𝑡) =
(︀
𝑧1(𝑤

(𝑡)), . . . , 𝑧𝑛(𝑤(𝑡))
)︀
denote the fixed values of the latent variables for

all training examples. We denote the upper bound that CCCP uses in iteration 𝑡 by

𝐵(𝑤; z(𝑡)) and define it in (1.31).

𝐵(𝑤; z(𝑡)) =
1

2
||𝑤||2+𝐶

𝑛∑︁

𝑖=1

⎡
⎣ max

𝑦∈𝒴
𝑧∈𝑍(𝑥𝑖)

(𝑤·𝜑(𝑥𝑖, 𝑦, 𝑧)+∆(𝑦, 𝑦𝑖))−𝑤·𝜑
(︁
𝑥𝑖, 𝑦𝑖, z

(𝑡)
𝑖

)︁
⎤
⎦ (1.31)

Note that 𝑂(𝑤(𝑡)) = 𝐵(𝑤(𝑡); z(𝑡)), and therefore, 𝐵 touches 𝑂 at 𝑤(𝑡).

Algorithm 2 explains the CCCP algorithm for training LS-SVMs. The algorithm

alternates between relabeling the latent variables of all training examples to construct

a new convex bound (line 6) and updating the model to minimize the bound (line 7).

The algorithm converges when the update step does not change the latent values;

that is when z(𝑡+1) = z(𝑡). In practice, however, convergence is declared when 𝑂(𝑤(𝑡))

changes by less than 𝜖 in several (e.g. 5) consecutive iterations.

The bound function 𝐵 of (1.31) is convex, and hence, can be minimized using

gradient based approaches, including the ones discussed in Section 1.5.1. Also, the
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Algorithm 2 CCCP algorithm for training Latent Structural SVMs.

Input: initial model 𝑤(0) or initial fixed latent variables z(0) = (𝑧1, . . . , 𝑧𝑛)
1: if initial latent variables (𝑧1, . . . , 𝑧𝑛) are provided then
2: 𝑤(0) := arg min𝑤 𝐵(𝑤; z(0)), from (1.31)
3: end if
4: 𝑡 := 0
5: repeat
6: z(𝑡+1) :=

(︀
𝑧1(𝑤

(𝑡)), . . . , 𝑧𝑛(𝑤(𝑡))
)︀
, from (1.30) ◁ Relabeling step

7: 𝑤(𝑡+1) := arg min𝑤 𝐵(𝑤; z(𝑡+1)), from (1.31) ◁ Update step
8: 𝑡 := 𝑡+ 1
9: until convergence
Output: 𝑤(𝑡)

bound can be written in the form of the objective function of (1.16), and hence, can

be minimized using QP solvers and the techniques that we discussed in Section 1.5.2.

Recall the observation regarding the extreme sparsity of the solution of the QP in

(1.21). This may become particularly useful for training LS-SVMs because the maxi-

mization over the latent variables in 𝐵 (Equation 1.31) may make the loss augmented

inference very costly, making gradient based methods prohibitively slow. Sparsity of

the solution of the QP suggests that the QP solver method of Algorithm 1 may take

only a modest number of iterations to converge.
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Chapter 2

Reconfigurable Models for Capturing

Spatial Layout of Scenes

In this chapter we propose a new latent variable model for image classification and

scene recognition. Our approach represents a scene as a collection of region models

(“parts”) arranged in a reconfigurable pattern. We partition an image into a pre-

defined set of regions and use a latent variable to specify which part is assigned to

each image region. We use a bag of words representation to capture the appearance

of an image region. The resulting method generalizes a spatial bag of words approach

that relies on a fixed model for the bag of words in each image region.

Our models can be trained using both generative and discriminative methods.

In the generative setting we use the Expectation-Maximization (EM) algorithm to

estimate model parameters from a collection of images with category labels. In the

discriminative setting we use a Latent Structural SVM (LS-SVM). We note that LS-

SVMs can be very sensitive to initialization and demonstrate that generative training

with EM provides a good initialization for discriminative training with LS-SVM.

2.1 Bag of Words (BoW) Model

A bag of words (BoW) model represents an image 𝑥 by an unordered collection of

visual words. Suppose we have a dictionary with 𝐾 visual words. A bag of words 𝑏
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is defined by a vector [𝑏1, . . . , 𝑏𝐾 ] where 𝑏𝑘 is the multiplicity of word 𝑘 in 𝑏. We use

|𝑏| = ∑︀𝐾
𝑘=1 𝑏𝑘 to denote the total number of words in 𝑏.

2.1.1 Generative Approach

A generative BoW classifier assumes that the visual words in an image are independent

samples from a multinomial distribution conditioned on the image class.

A multinomial distribution is defined by a discrete distribution with parameters

𝑣 = {𝑣1, . . . , 𝑣𝐾} specifying the probability of each outcome in a trial. In the multi-

nomial model each word in a bag is generated independently. The probability of a

bag 𝑏 (conditional on |𝑏|) is given by

mult(𝑏, 𝑣) =
|𝑏|!

𝑏1! · · · 𝑏𝐾 !

𝐾∏︁

𝑘=1

𝑣𝑏𝑘𝑘 . (2.1)

To define a BoW classifier, let 𝜃𝑦 specify a discrete distribution over visual words

associated with class 𝑦. Then

𝑝𝜃(𝑥|𝑦) = mult(𝑥, 𝜃𝑦). (2.2)

We can estimate the model parameters 𝜃 from a set of training examples using a

maximum likelihood criteria. The parameters 𝜃𝑦 simply depend on the frequencies

of different visual words observed in images from class 𝑦. If we assume the training

examples in 𝒟 = {(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)} were generated independently from 𝑝(𝑥, 𝑦)

the maximum likelihood parameters are given by

𝜃𝑦,𝑘 =
𝑐𝑦,𝑘∑︀𝐾
𝑘′=1 𝑐𝑦,𝑘′

, and 𝑐𝑦,𝑘 =
𝑛∑︁

𝑖=1
𝑦𝑖=𝑦

𝑥𝑖,𝑘, (2.3)

where 𝑐𝑦,𝑘 is the number of times the 𝑘th visual word was seen in images from class 𝑦.

To classify an image we combine the generative model associated with each class

𝑝(𝑥|𝑦) with the prior probability of each class 𝑝(𝑦) as specified by Equation (1.4).
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2.1.2 Discriminative Approach

We define a discriminative BoW classifier using a discriminant function of the form

𝑓𝑤(𝑥, 𝑦) = 𝑤𝑦 · 𝜑(𝑥). (2.4)

Here 𝑤 = [𝑤1; . . . ;𝑤𝑁 ] denotes a vector of model parameters where 𝑤𝑦 are parameters

associated with class 𝑦. The function 𝜑(𝑥) is a (possibly non-linear) feature map of

the bag of words in image 𝑥.

Since 𝑓𝑤(𝑥, 𝑦) is linear in 𝑤 this leads to a Structural SVM and we can train 𝑤 by

minimizing the objective function of (1.14). As mentioned before, the optimization

problem defined by Structural SVMs is convex and can be solved using a variety

of techniques, including stochastic gradient descent (Section 1.5.1) and quadratic

programming (section 1.5.2).

2.1.3 How Are the Two Approaches Related?

We note that the classification rule obtained with the generative BoW model with

parameters 𝜃 can be written similar to that of a discriminative model as follows:

𝑦(𝑥) = arg max
𝑦

𝑤𝑦 · 𝜑(𝑥) (2.5)

𝜑(𝑥) = [𝜓(𝑥); 1], 𝜓(𝑥) is the BoW representation of 𝑥, (2.6)

𝑤𝑦 = [log 𝜃𝑦,1; . . . ; log 𝜃𝑦,𝐾 ; log 𝛾𝑦], 𝛾𝑦 = 𝑝𝜃(𝑦). (2.7)

Therefore, the discriminative model can be seen as “more general” than the generative

model. In particular, the classification rule defined by the generative model is in

the space of classification rules considered by discriminative training if we choose

𝜑(𝑥) properly. Discriminative training is more agnostic in the sense that it selects a

classification rule by directly minimizing a regularized risk on the training set, instead

of making assumptions about how the data was generated. Moreover, we can train a

discriminative classifier using any arbitrary feature map 𝜑(𝑥).
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2.2 Spatial bag of words (SBoW) Model

Following [35] we can take spatial information into account by using a different model

for the features in different regions of an image. This leads to Spatial BoW (SBoW)

models. Here we consider the case where the image is partitioned into a fixed grid

with 𝑅 regions. We use 𝑟 to denote an image region and 𝑥𝑟 to denote the bag of

words in region 𝑟 of an image 𝑥.

In a generative SBoW model we capture spatial information by allowing the prob-

ability of observing a particular visual word to depend on the region where the word

is observed. Let 𝜃𝑦,𝑟 denote a discrete distribution over visual words associated with

region 𝑟 and class 𝑦. Under the SBoW model we have

𝑝𝜃(𝑥|𝑦) =
𝑅∏︁

𝑟=1

mult(𝑥𝑟, 𝜃𝑦,𝑟). (2.8)

As in the case of a BoW model we can estimate the model parameters from a set of

training examples using a maximum likelihood criteria. The parameters 𝜃𝑦,𝑟 simply

depend on the frequencies of different visual words observed in region 𝑟 taken over

images in class 𝑦 and 𝜃𝑦,𝑟,𝑘 is estimated similar to Equation 2.3.

We define a discriminative SBoW model using a discriminant function of the form

𝑓𝑤(𝑥, 𝑦) = 𝑤𝑦 · [𝜓(𝑥1); · · · ;𝜓(𝑥𝑅); 1]. (2.9)

As in the discriminative BoW model, 𝑤𝑦 denotes the parameters of class 𝑦, but now

𝑤𝑦 has different parameters for modeling the visual words in each image region; i.e.

𝑤𝑦 = [𝑤𝑦,1; . . . ;𝑤𝑦,𝑅;𝑤𝑦,𝑏], where 𝑤𝑦,𝑏 denotes the bias term associated with category

𝑦. Since 𝑓𝑤 is still linear in 𝑤, we can once again train 𝑤 using a S-SVM.

Like in the case of BoW models, the discriminative SBoW model is “more general”

than the generative SBoW model because it can represent the same decision functions

while being more agnostic and allows for using any feature map.
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2.3 Reconfigurable Bag of Words Model

Consider an image of a beach scene. We expect to see sky, water and sand in the

image. Moreover, we expect to see sky at the top of the image, water somewhere

in the middle and sand in the bottom. One approach for capturing this information

involves using a different bag of words model for different regions in the image. This

structure can be modeled by spatial pyramid matching [35]. Note however that a

region in the middle of the image could contain water or sand. Similarly a region

at the top of the image could contain a cloud, the sun or blue sky alone. Therefore

the features observed in each region depend on a latent variable specifying which of

several possible region models should be used to capture the content of the region.

We propose to model a scene as a collection of region models (“parts”) arranged

in a reconfigurable pattern. An image is divided into a set of pre-defined regions and

we have latent variables specifying which region model should be used for each image

region. The model includes parameters so that each image region has a preference

over the region models that can be assigned to it. In practice we divide an image

into a grid of regions and use a bag of words (BoW) representation to capture the

appearance of a region. We call the resulting models Reconfigurable BoW models.

Figure 2-1 illustrates a model for a class of outdoor scenes composed of sky, grass

and trees. We can think of the model as being defined by parts that model image

regions with specific content. The latent variables specify which part should be used

to capture the appearance of each region in the grid. Figure 2-2 demonstrates three

sample images from the same scene category along with the color-coded ground-truth

part assignments of image regions. The figure shows the extent of reconfiguration in

scene layouts.

Related Work

We compare reconfigurable BoW models to spatial BoW models that use a fixed

model for the bag of words in each image region and show that reconfigurable models

lead to superior results on two datasets.
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...

Region models ("parts")

Images

...

Figure 2-1: A Reconfigurable model for a class of outdoor scenes. We have 𝑀 region
models (parts) that can be arranged in different ways to make up an image. Each
image region has a preference over the region models that can be used to generate its
content. In this example regions in the top are formed by choosing between a cloud
or sun region model, while regions in the middle and bottom are formed by choosing
between a tree or grass region model.

sky mountain tree water ground

Figure 2-2: Three sample images from mountain scene category and their seman-
tic labeling layout. Different instances of a scene category exhibit a large range of
variation in their semantic layout.

The idea of modeling a scene in terms of a configuration of regions with specific

properties goes back to the work in [39]. This notion has also been used recently

for recognizing indoor scenes in [52] and [45]. These methods represent scenes using

different kinds of deformable part models. Reconfigurable models are different from

deformable models because they explicitly model the whole image. Reconfigurable

models also allow the same part (region model) to be used multiple times in an image.

For example, a grass region model can be instantiated at multiple locations to explain

a large patch of grass in an image.

Latent variable models have become very popular in the context of object detec-
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tion following the work in [20]. One of our goals is to understand how to define latent

variable models for scene recognition. [45] used the deformable part models (DPM)

from [20] and obtained good scene recognition results after combining DPMs with sev-

eral global image descriptors. Our latent variable models can be seen as an alternative

to DPMs that is more closely related to methods based on global descriptors.

Another kind of latent variable model that has been used for scene recognition

involves hierarchical “topic” models [19, 6]. These models represent the features in an

image using a mixture of topics associated with an image category. They are related

to Reconfigurable models if we think of a region model as a topic. In the case of a

reconfigurable model we assume there is a single topic in each image region. Here we

train different region models for each image category but we could also share a set of

region models over all categories as is often done with topic models.

The approach in [69] is closely related to ours from a technical point of view but

they use only two region models for “foreground” and “background” regions while we

use many different region models to model a scene.

Recently, tangram models [75] and HST (hierarchical space tiling) models [67] were

proposed that offer a compact and reconfigurable representation for scene categories.

These models use training data to learn a mixture of templates for each category. A

template is defined in terms of a tiling of the image and an assignment of a feature

type (e.g. texture, color, etc.) to each tile. Although tangram models provide some

degree of reconfigurability by learning a few templates for each category, however, we

believe that it is not enough to capture all possible variations in the layout of a scene.

We believe that reconfiguration should be considered in the instance (image) level.

2.4 Training Reconfigurable Bag of Words Models

Our latent variable model builds on the SBoW model. We can think of an SBoW

model as a part-based approach with one part per image region. Here we augment

the SBoW model to allow for reconfiguration of the parts that make up a scene. This

leads to a class of reconfigurable bag of words (RBoW) models.
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For example, an RBoW model for beach scenes might have a part modeling an

image region that contains the sun and another part modeling an image region that

contains a cloud. The regions at the top of a beach image could all contain the sun

or a cloud. In the RBoW model we have a latent variable indicating which region

model (part) should be used to explain each image region.

As in an SBoW model we assume images are partitioned into 𝑅 predefined regions

and 𝑥𝑟 specifies the bag of words observed in region 𝑟 within the image 𝑥. In a

reconfigurable BoW model we have 𝑀 BoW region models. A latent value 𝑧𝑟 assigns

a particular region model to region 𝑟.

We describe both generative and discriminative version of the reconfigurable BoW

model. For the generative models we use Expectation-Maximization (EM) [5] to train

model parameters. For the discriminative models we use a Latent Structural SVM

(LS-SVM) [71]. Discriminative training usually outperforms generative training but

we have found that LS-SVM training is much more sensitive to initialization when

compared to EM training. We show that a combined approach that initializes LS-

SVM training using the results of EM training gives the best performance.

2.4.1 Generative Approach

In the RBoW model we assume the visual words in image region 𝑟 are generated

independently conditional on the class label and latent value 𝑧𝑟 assigning a region

model to region 𝑟.

Let 𝑊𝑦,𝑗 be a discrete distribution over visual words associated with the 𝑗-th

region model for class 𝑦. Under the RBoW model we have

𝑝𝜃(𝑥|𝑧, 𝑦) =
𝑅∏︁

𝑟=1

mult(𝑥𝑟,𝑊𝑦,𝑧𝑟) (2.10)

We assume the latent values 𝑧𝑟 are independent conditional on the class label 𝑦

but not identically distributed. There is a different categorical distribution capturing

which parts are likely to occur in each region of an image from a particular class. For

each class 𝑦 and region 𝑟 let 𝑎𝑦,𝑟 = {𝑎𝑦,𝑟,1, . . . 𝑎𝑦,𝑟,𝑀} where 𝑎𝑦,𝑟,𝑗 is the probability
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that 𝑧𝑟 = 𝑗 on an image from class 𝑦. This leads to the following distribution over

the latent values

𝑝𝜃(𝑧|𝑦) =
𝑅∏︁

𝑟=1

𝑎𝑦,𝑟,𝑧𝑟 . (2.11)

Now we can express the probability of observing the features in an image 𝑥 con-

ditional on an image class 𝑦 by integrating over the possible latent values

𝑝𝜃(𝑥|𝑦) =
∑︁

𝑧

𝑝𝜃(𝑥|𝑧, 𝑦)𝑝𝜃(𝑧|𝑦). (2.12)

Since the latent values are independent and the observations are independent condi-

tional on the latent values we can compute this probability efficiently (in 𝑂(𝑅𝐿𝐾)

time for a model with 𝑀 region models on an image with 𝑅 regions and a dictionary

with 𝐾 visual words) as

𝑝𝜃(𝑥|𝑦) =
𝑅∏︁

𝑟=1

∑︁

𝑧𝑟

mult(𝑥𝑟,𝑊𝑦,𝑧𝑟)𝑎𝑦,𝑟,𝑧𝑟 . (2.13)

The parameters 𝜃𝑦 associated with the model for class 𝑦 are given by 𝑀 BoW re-

gion models {𝑊𝑦,1, . . .𝑊𝑦,𝑀} and 𝑅 distributions over region models {𝑎𝑦,1, . . . , 𝑎𝑦,𝑅}.

Parameter estimation with EM Suppose we have 𝑛 training examples {(𝑥1, 𝑦1),
. . ., (𝑥𝑛, 𝑦𝑛)}. We can estimate the parameters of an RBoW model using a maxi-

mum likelihood criteria, but since the model has latent variables maximum likelihood

estimation leads to a non-convex optimization problem. We use the Expectation-

Maximization (EM) algorithm to address this problem [5].

EM computes a sequence of model parameters by repeatedly alternating between

two steps which are guaranteed to increase the likelihood of the data. In the E step we

use the current model 𝜃 to compute the posterior probability of the latent variables

in each training example. This gives us a tractable lower-bound on the likelihood

function which is tangent to the actual likelihood at the current 𝜃. In the M-step

we update the model parameters by maximizing the lower-bound on the likelihood
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function. In the case of an RBoW model we obtain the following algorithm.

Repeat until convergence

Step 1 (E): For each example 𝑖, region 𝑟 and latent value 𝑧𝑟 compute 𝑄𝑖,𝑟,𝑧𝑟 =

𝑝𝜃(𝑧𝑟|𝑥𝑖, 𝑦𝑖) using

𝑝𝜃(𝑧𝑟|𝑥𝑖, 𝑦𝑖) =
mult(𝑥𝑟,𝑊𝑦,𝑧𝑟)𝑎𝑦,𝑟,𝑧𝑟∑︀
𝑗 mult(𝑥𝑟,𝑊𝑦,𝑗)𝑎𝑦,𝑟,𝑗

(2.14)

Step 2 (M): Update 𝜃 by selecting

𝑎𝑦,𝑟,𝑗 ∝
∑︁

𝑖,𝑦𝑖=𝑦

𝑄𝑖,𝑟,𝑗 (2.15)

𝑊𝑦,𝑗,𝑘 ∝
∑︁

𝑖,𝑦𝑖=𝑦

∑︁

𝑟

𝑄𝑖,𝑟,𝑗𝑐𝑖,𝑟,𝑘, (2.16)

where 𝑐𝑖,𝑟,𝑘 is the number of times the 𝑘-th visual word was seen in region 𝑟 of 𝑥𝑖 and

the parameters are normalized so that
∑︀

𝑗 𝑎𝑦,𝑟,𝑗 = 1 and
∑︀

𝑘𝑊𝑦,𝑗,𝑘 = 1.

We initialize the algorithm by selecting a random latent value 𝑧𝑟 for each region

𝑟 within 𝑥𝑖 and setting 𝑄𝑖,𝑟,𝑧𝑟 = 1 while 𝑄𝑖,𝑟,𝑗 = 0 for 𝑗 ̸= 𝑧𝑟.

In practice we smooth the multinomial probabilities in (2.14) by raising them

to a power of 1/𝑇 . This attenuates the sharpness induced by the assumption that

visual words are generated independently within a region. This becomes particularly

important when using densely sampled features.

2.4.2 Discriminative Approach

We define a discriminative RBoW classifier using a discriminant function of the form

𝑓𝑤(𝑥, 𝑦) = max
𝑧

∑︁

𝑟

𝐴𝑦,𝑟,𝑧𝑟 +𝐵𝑦,𝑧𝑟 · 𝜓(𝑥𝑟). (2.17)

𝜓(𝑥𝑟) is a feature map that computes a representation (e.g. BoW) of the information

in region 𝑟 of the image (𝑥𝑟). The vector 𝐵𝑦,𝑗 specifies model parameters for the

𝑗-th region model in class 𝑦. The parameter 𝐴𝑦,𝑟,𝑗 specifies a score for assigning part
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𝑗 to region 𝑟 in an image of class 𝑦. Intuitively, for each class 𝑦, we attempt to

explain the image 𝑥 by finding the best assignment 𝑧 of parts to the regions in 𝑥.

Score of assignment 𝑧 comprises of two terms.
∑︀

𝑟 𝐴𝑦,𝑟,𝑧𝑟 computes a prior score that

is independent of the image data.
∑︀

𝑟 𝐵𝑦,𝑧𝑟 · 𝜓(𝑥𝑟) is a data dependent term that

measures, for each region 𝑟, how well part 𝑧𝑟 explains the content of 𝑥𝑟.

Latent Structural SVM Let 𝑤𝑦 denote the concatenation of the parameters 𝐴𝑦,𝑟,𝑧𝑟

and 𝐵𝑦,𝑧𝑟 . Also, let Φ(𝑥, 𝑧) be a sum of 𝑅 vectors Ψ(𝑥, 𝑟, 𝑧𝑟), one per image region.

The vector Ψ(𝑥, 𝑟, 𝑧𝑟) equals 𝜓(𝑥𝑟) in the dimensions corresponding to 𝐵𝑦,𝑧𝑟 within

𝑤𝑦 and 1 in the dimension corresponding to 𝐴𝑦,𝑟,𝑧𝑟 within 𝑤𝑦. The other entries in

Ψ(𝑥, 𝑟, 𝑧𝑟) are zero. The classification score function of (2.17) can be expressed simply

as a dot product of the following form:

𝑓𝑤(𝑥, 𝑦) = max
𝑧
𝑤𝑦 · Φ(𝑥, 𝑧). (2.18)

Let 𝑤 = [𝑤1; . . . ;𝑤𝑁 ] denote a vector with all model parameters from all classes.

Suppose we have 𝑛 training examples {(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)}. We can train a discrim-

inative RBoW model by minimizing the Latent Structural SVM training objective as

follows (see Section 1.8 for more details):

𝑤* = arg min
𝑤

1

2
||𝑤||2+𝐶

𝑛∑︁

𝑖=1

max
𝑦,𝑧

(𝑤𝑦·Φ(𝑥𝑖, 𝑧)+∆(𝑦, 𝑦𝑖))−max
𝑧
𝑤𝑦𝑖·Φ(𝑥𝑖, 𝑧). (2.19)

Similar to a Structural SVM, in a Latent Structural SVM the training objective

encourages the score of the correct class to be above the highest score of an incorrect

class by a margin of one. The only difference is that the score is no longer linear, and

instead involves a maximization over 𝑧.

Unfortunately the optimization problem defined by an LS-SVM is not convex, but,

we can use Algorithm 2 from Chapter 1 to find a solution that is locally optimum. The

algorithm implements the CCCP method of [72] by repeatedly alternating between

two steps. The first step picks the best latent values for each training example under

the current model 𝑤(𝑡). We denote the fixed latent values for the 𝑖-th training example
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by 𝑧𝑖(𝑤(𝑡)) and compute them as follows:

𝑧𝑖(𝑤
(𝑡)) = arg max

𝑧
𝑤𝑦𝑖 · Φ(𝑥𝑖, 𝑧).

The second step defines a convex upper bound on the training objective and minimizes

the bound. The bound is denoted by 𝐵(𝑤; z(𝑡)) where z(𝑡) =
(︀
𝑧1(𝑤

(𝑡)), . . . , 𝑧𝑛(𝑤(𝑡))
)︀
.

For the training objective of (2.19) the bound is defined as follows:

𝐵(𝑤; z(𝑡)) = arg min
𝑤

1

2
||𝑤||2+𝐶

𝑛∑︁

𝑖=1

max
𝑦,𝑧

(𝑤𝑦·Φ(𝑥𝑖, 𝑧)+∆(𝑦, 𝑦𝑖))−𝑤𝑦𝑖 ·Φ(𝑥𝑖, 𝑧𝑖(𝑤
(𝑡))).

𝐵(𝑤; z(𝑡)) is convex and can be minimized using standard approaches such as gradient

based methods (see Section 1.5.1) or quadratic programming (see Section 1.5.2).

The CCCP optimization for LS-SVM is similar to EM in the way that it alternates

estimating latent values and estimating model parameters. One important difference

is that in step 1 of EM we obtain a distribution over latent values for each example

while here we pick a single latent value for each example. This seems to make LS-

SVM optimization with CCCP much more sensitive to initialization. In practice we

find that most imputed latent values, i.e. the elements of z(𝑡), never change.

The optimization requires either an initial weight vector 𝑤 or initial latent values

𝑧𝑖, in which case training starts in step 2. We experimented with three different

methods for selecting initial latent values. One method simply picks a random region

model for each region in each image. Another method picks a particular region model

for each region. In particular, we train models with 16 regions and 16 region models

and assign a different initial region model for each image region. Finally, we tried

using the result of EM training of a generative RBoW model to select the initial latent

values. In this case we set the initial 𝑧𝑖 to be the most probable latent values under

the model trained by EM.
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2.5 Adding Higher-Order Terms

In an RBoW model image regions are treated as being independent. One consequence

of this assumption is that RBoW cannot handle fine-grained image regions very well.

In this case it is important to use pairwise spatial constraints to ensure coherency

and/or capture correlations between labels. In this section we extend RBoW by

introducing pairwise dependencies between image regions, making it possible to train

models on a fine grid of image regions e.g. labeling “at the pixel level”. We propose

two variants to RBoW and refer to them as RBoW+ and RBoW++. The former

variant uses a Potts model to encourage homogeneous labelings of image regions,

whereas the latter variant can capture any arbitrary regular pairwise function.

We denote the pairwise score function by 𝑆𝑤(𝑧, 𝑦) and use it to evaluate the

goodness of latent configuration 𝑧 under class 𝑦. Note that 𝑆𝑤(𝑧, 𝑦) does not depend

on the image data 𝑥 and can be considered as a class conditional prior over latent

configurations. This leads to the following score function

𝑓𝑤(𝑥, 𝑦) = max
𝑧

∑︁

𝑟

𝐴𝑦,𝑟,𝑧𝑟 +𝐵𝑦,𝑧𝑟 · 𝜓(𝑥𝑟) + 𝑆𝑤(𝑧, 𝑦). (2.20)

Note that 𝐴 also does not depend on the image data 𝑥 and can be absorbed in 𝑆𝑤.

However, we chose not to merge them to make the distinction between RBoW and

the proposed extensions clear.

The score function of RBoW, RBoW+, and RBoW++ can all be expressed in the

general form of (2.20). RBoW does not capture pairwise relationships and we can set

𝑆𝑤(𝑧, 𝑦) = 0 to get the score function of RBoW (see Equation 2.17). In RBoW+ the

pairwise terms are used to encourage coherent labelings and 𝑆𝑤 is defined as follows:

𝑆𝑤(𝑧, 𝑦) =
∑︁

𝑟

∑︁

𝑠∈𝒩 (𝑟)

𝑇𝑧𝑟1{𝑧𝑟 = 𝑧𝑠}, (for RBoW+) (2.21)

where 𝒩 (𝑟) denotes the set regions that are neighbor to region 𝑟, and 𝑇𝑗 ≥ 0 is a

parameter of the model that reflects the tendency of the model to keep regions with

label 𝑗 together. We use a regular grid to define image regions and use a 4-connected
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neighborhood system to define 𝒩 . RBoW++ is more general than RBoW+ and can

learn any arbitrary sobmodular pairwise relationship between labels as follows:

𝑆𝑤(𝑧, 𝑦) =
∑︁

𝑟

∑︁

𝑠∈𝒩 (𝑟)

𝐶𝑦,𝑧𝑟,𝑧𝑠 , (for RBoW++) (2.22)

where 𝐶𝑦 is a 𝑀 ×𝑀 matrix that parameterizes a regular pairwise relationship (see

(2.27) for definition of regularity). In theory, 𝐶𝑦 can vary spatially and we can define

a different pairwise relationship matrix for each pair of neighboring regions (𝑟, 𝑠). In

practice, however, we use two homogeneous pairwise relationship matrices 𝐶(𝐻) and

𝐶(𝑉 ) for horizontal and vertical neighbors and define 𝑆𝑤 for RBoW++ as

𝑆𝑤(𝑧, 𝑦) =
∑︁

𝑟

∑︁

𝑠∈𝒩 (𝐻)(𝑟)

𝐶(𝐻)
𝑦,𝑧𝑟,𝑧𝑠 +

∑︁

𝑟

∑︁

𝑠∈𝒩 (𝑉 )(𝑟)

𝐶(𝑉 )
𝑦,𝑧𝑟,𝑧𝑠 , (2.23)

where 𝒩 (𝐻) and 𝒩 (𝑉 ) are the set of horizontal and vertical edges in a 4-connected

neighborhood system respectively.

2.5.1 Inference with Graph-Cuts

Inference in the family of RBoW models (including its extended versions) involves

finding a labeling 𝑧 = (𝑧1, . . . , 𝑧𝑅) that maximizes the score function 𝑓𝑤(𝑥, 𝑦) for a

given image 𝑥 and category 𝑦. The time complexity of finding the optimal labeling

in RBoW is linear in the number of image regions 𝑅 and in the number of model

parts 𝑀 . However, the task is NP-hard in the case of RBoW+ and RBoW++, and

therefore, we resort to approximate solutions.

Inference in RBoW+ and RBoW++ can be seen as MAP inference in a pairwise

MRF with respect to a graph 𝒢 = (𝒱 , ℰ). Each region 𝑟 in the image is associated

to a node 𝑣𝑟 ∈ 𝒱 . ℰ includes the set of edges in a grid graph with 4-connected

neighborhood system. In an MRF the energy of a configuration 𝑧 is defined as follows:

𝐸(𝑧) = 𝐸data(𝑧) + 𝐸prior(𝑧). (2.24)
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MAP inference finds the configuration 𝑧 that minimizes the energy function 𝐸. For

pairwise MRFs we have that

𝐸data(𝑧) =
∑︁

𝑟∈𝒱

𝐷𝑟(𝑧𝑟) (2.25)

𝐸prior(𝑧) =
∑︁

(𝑟,𝑠)∈ℰ

𝑉𝑟,𝑠(𝑧𝑟, 𝑧𝑠) (2.26)

If the pairwise term 𝑉𝑟,𝑠 satisfies certain properties (see Section 2.5.2 for details)

the 𝛼/𝛽-swap algorithm of [9] can be used to approximately minimize the energy

function. The 𝛼/𝛽-swap is an iterative algorithm that runs in polynomial time. In

each round, it reduces a multi-label labeling problem to a binary labeling problem and

uses graph-cuts to find the global minimum of the reduced binary labeling problem.

In each iteration the algorithm chooses a pair of labels (𝛼, 𝛽) and updates labels of

all nodes that are labeled either 𝛼 or 𝛽 in the graph. The update step (a.k.a. swap

move) can only change a label 𝛼 to 𝛽 or vice versa. Any label 𝛾 /∈ {𝛼, 𝛽} remains

unchanged during an 𝛼/𝛽-swap move. The algorithm stops when there exists no swap

move that changes the solution.

For a given category 𝑦 we define 𝐷𝑟(𝑧𝑟) = −𝐴𝑦,𝑟,𝑧𝑟−𝐵𝑦,𝑧𝑟 ·𝜓(𝑥𝑟) and 𝑉𝑟,𝑠(𝑧𝑟, 𝑧𝑠) =

−𝐶𝑦,𝑧𝑟,𝑧𝑠 and use the 𝛼/𝛽-swap algorithm to do inference in RBoW++. For RBoW+

every thing is the same except that 𝑉𝑟,𝑠(𝑧𝑟, 𝑧𝑠) = −𝑇𝑧𝑟1{𝑧𝑟 = 𝑧𝑠}.

2.5.2 Regular Pairwise Functions

Recall that the 𝛼/𝛽-swap algorithm solves an energy minimization problem on binary

variables in each iteration. The algorithm can be used to solve energy functions of

the form (2.26) only if the pairwise terms 𝑉𝑟,𝑠 satisfy the following property:

𝑉𝑟,𝑠(𝛼, 𝛼) + 𝑉𝑟,𝑠(𝛽, 𝛽) ≤ 𝑉𝑟,𝑠(𝛼, 𝛽) + 𝑉𝑟,𝑠(𝛽, 𝛼), ∀𝛼, 𝛽 ∈ {1, . . . ,𝑀}, (2.27)

where𝑀 denote the size of the label set. In other words, the 𝛼/𝛽-swap algorithm can

be used only when the pairwise function 𝑉𝑟,𝑠 yields a regular binary energy function
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for any choice of (𝛼, 𝛽) [32]. For RBoW+ regularity boils down to constraining

𝑇𝑗’s to be non-negative i.e. 𝑇𝑗 ≥ 0,∀𝑗 ∈ {1, . . . ,𝑀}. For RBoW++, however,

regularity requires enforcing several linear constraints on the model parameters 𝐶𝑦,𝑗,𝑘.

More precisely, (2.27) has to hold for all neighboring regions (𝑟, 𝑠) ∈ ℰ . Note that

each constraint in (2.27) involves multiple parameters. While satisfying constraints

on combination of multiple parameters may be hard, bounding the values of each

parameter individually is relatively easier. In this section we show that we can convert

these joint constraints to bounding constraints on single variables. To this end, we

write the pairwise function 𝑉𝑟,𝑠 in the following parametric form:

𝑉𝑟,𝑠(𝑗, 𝑘) = 𝛽𝑟,𝑠(𝑗, 𝑘) + 𝛼𝑟,𝑠(𝑗, 𝑘) +
𝛾𝑟,𝑠(𝑗) + 𝛾𝑟,𝑠(𝑘)

2
. (2.28)

This particular form parametrization makes it possible to isolate various types of

pairwise label-interactions. 𝛽𝑟,𝑠 captures relative geometric relationship between two

neighboring regions 𝑟 and 𝑠. It is natural to assume that 𝛽𝑟,𝑠(𝑗, 𝑘) = 𝛽𝑠,𝑟(𝑘, 𝑗) =

−𝛽𝑟,𝑠(𝑘, 𝑗). For example, if region 𝑟 is on top of region 𝑠, the reward for labeling 𝑟 as

sky and 𝑠 as 𝑔𝑟𝑎𝑠𝑠 should be the same as the penalty for switching their labels. This

requires that 𝛽𝑟,𝑠(𝑗, 𝑗) = 0,∀(𝑟, 𝑠) ∈ ℰ ,∀𝑗 ∈ {1, . . . ,𝑀}. 𝛼𝑟,𝑠 captures co-occurrence
of two labels regardless of the relative geometric configuration of their corresponding

regions, thus, 𝛼𝑟,𝑠(𝑗, 𝑘) = 𝛼𝑟,𝑠(𝑘, 𝑗). One can represent 𝛼𝑟,𝑠 as an 𝑀 ×𝑀 matrix.

There is a subtle distinction between the diagonal and off-diagonal entries in this

matrix. The off-diagonal entries capture boundary properties of a region label (part).

The diagonal entries, however, capture a measure of integrity of each region label and,

thus, can be used to encourage coherent labelings. We set the diagonal entries of 𝛼

to zero and use 𝛾𝑟,𝑠(𝑎) to capture the integrity properties of region labels instead.

To summarize, 𝛽 and 𝛼 are 𝑀 ×𝑀 matrices and 𝛾 is a vector of length 𝑀 . 𝛽 is

antisymmetric and 𝛼 is symmetric with zero diagonal. In practice, we use homoge-

neous pairwise relations in the horizontal and in the vertical direction parameterized
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by (𝛼(𝐻), 𝛽(𝐻), 𝛾(𝐻)) and (𝛼(𝑉 ), 𝛽(𝑉 ), 𝛾(𝑉 )) respectively:

𝑉𝑟,𝑠(𝑗, 𝑘) =

⎧
⎪⎨
⎪⎩
𝛽
(𝐻)
𝑗,𝑘 + 𝛼

(𝐻)
𝑗,𝑘 +

𝛾
(𝐻)
𝑗 +𝛾

(𝐻)
𝑘

2
if (𝑟, 𝑠) ∈ ℰ𝐻

𝛽
(𝑉 )
𝑗,𝑘 + 𝛼

(𝑉 )
𝑗,𝑘 +

𝛾
(𝑉 )
𝑗 +𝛾

(𝑉 )
𝑘

2
if (𝑟, 𝑠) ∈ ℰ𝑉

(2.29)

To enforce regularity we need to substitute 𝑉𝑟,𝑠 from the previous equation in the

regularity condition of Equation 2.27, leading to

𝛽𝑗,𝑗 + 𝛼𝑗,𝑗 +
2𝛾𝑗
2

+ 𝛽𝑘,𝑘 + 𝛼𝑘,𝑘 +
2𝛾𝑘
2
≤

𝛽𝑗,𝑘 + 𝛼𝑗,𝑘 +
𝛾𝑗 + 𝛾𝑘

2
+ 𝛽𝑘,𝑗 + 𝛼𝑘,𝑗 +

𝛾𝑗 + 𝛾𝑘
2

(2.30)

⇐⇒ 𝛼𝑗,𝑘 ≥ 0 (2.31)

Thus, to enforce regularity for a pairwise label function of the above form it suffices

to constraint 𝛼’s to be non-negative. In the next section we show that any regular

pairwise function can be decomposed in this form proving that RBoW++ can learn

any arbitrary regular function.

2.5.3 Reformulating the Regularity Constraints

In Section 2.5.2 we showed that pairwise functions 𝑉 that can be decomposed as

𝑉 (𝑗, 𝑘) = 𝐵(𝑗, 𝑘)+𝐴(𝑗, 𝑘)+0.5(𝐷(𝑗)+𝐷(𝑘)) are regular where 𝐵 is an antisymmetric

matrix and 𝐴 is a non-negative symmetric matrix with zero diagonal. Here we prove

that any arbitrary regular function can be written in this form. This proves the

equivalence of regularity and this decomposition.

Theorem 2.1. Any arbitrary regular function 𝑉 can be written as

𝑉 (𝑗, 𝑘) = 𝐵(𝑗, 𝑘) + 𝐴(𝑗, 𝑘) +
𝐷(𝑗) +𝐷(𝑘)

2
, (2.32)

where 𝐵 is antisymmetric and 𝐴 is non-negative and symmetric with zero diagonal.

Proof. Any arbitrary matrix 𝑉 can be written as the sum of an antisymmetric matrix
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𝐵 and a symmetric matrix 𝐴′ as follows:

𝑉 =
𝑉 − 𝑉 𝑇

2
+
𝑉 + 𝑉 𝑇

2
(2.33)

= 𝐵 + 𝐴′. (2.34)

Let 𝐷 = diag(𝐴′) be the diagonal of matrix 𝐴′. We can write 𝐴′ as

𝐴′(𝑗, 𝑘) =
𝐷(𝑗) +𝐷(𝑘)

2
+ 𝐴(𝑗, 𝑘) (2.35)

Note that 𝐴 is symmetric (since 𝐴′ was symmetric) and 𝐴(𝑗, 𝑗) = 𝐴′(𝑗, 𝑗)− 2𝐷(𝑗)
2

= 0.

In summary:

𝐵 =
𝑉 − 𝑉 𝑇

2
antisymmetric (2.36)

𝐷 = diag(
𝑉 + 𝑉 𝑇

2
) (2.37)

𝐴 =
𝑉 + 𝑉 𝑇

2
− 𝐷1𝑇𝑀 + 1𝑀𝐷

𝑇

2
symmetric with zero diagonal (2.38)

where 1𝑀 is the column vector of all ones of length 𝑀 .

2.6 Experimental Results on Scene Classification

We evaluate the RBoW model on the 15 Scene dataset from [35] and on the MIT 67

Indoor Scenes dataset from [52]. We measured the performance of different models

using the average of the diagonal entries of their confusion matrix.

We extract densely sampled SIFT features [41] as local descriptors, and create a

visual vocabulary using 𝑘-means clustering on a subset of the SIFT features randomly

sampled from training images. We set the size of the visual vocabulary to be 𝐾 = 200

in all of our experiments.

For discriminative training we used a feature map 𝜓(𝑏) that normalizes the bag of

words vector 𝑏 to have unit norm and then computes the square root of each entry.

All of the experiments with SBoW and RBoW models used a 4×4 regular grid to
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15
BoW SBoW

RBoW

Scenes Init-rand Init-fixed Init-EM

Disc. 71.7± 0.2 77.7± 0.9 74.5± 0.4 78.5± 1.1 78.6± 0.7
Gen. 62.1± 2.4 74.3± 0.5 76.1± 0.5

Table 2.1: Average performance of different methods on the 15 scene dataset. We
used three different initialization methods for training a discriminative RBoW model.

partition the image into 𝑅 = 16 rectangular regions. For the RBoW models we used

𝑀 = 16 region models for each image category. Taking 𝑀 = 𝑅 makes it possible to

initialize an RBoW model with a fixed assignment of region models to image regions,

with one region model for each image region.

2.6.1 15 Scene Dataset

The 15 Scene dataset contains 4485 images of 15 different scenes. It includes both

indoor scenes (office, bedroom, kitchen, living-room, store) and outdoor scenes (sub-

urb, coast, forest, highway, inside-city, mountain, open-country, street, tall-building,

industrial). The dataset does not provide separate training and test sets, so we use

5 random splits and compute the mean and standard deviation of the classification

performance across splits. In each split we use 100 training images for each category.

Table 2.1 compares the overall performance of RBoW to the SBoW and BoW

baselines. Again we see that careful initialization is important for LS-SVM training.

Initialization of CCCP using a generative model trained with EM leads to the best

performance, while random initialization leads to the worst performance.

2.6.2 MIT 67 Indoor Scenes

The MIT dataset contains images from 67 different categories of indoor scenes. There

is a fixed training and test set containing approximately 80 and 20 images from each

category respectively.

Table 2.2 summarizes the performance of our models and some previously pub-

lished methods. In [45] classification scores from a deformable part model (DPM)

[20] for each category are combined with that of color GIST descriptors [44], together
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movietheater part 2

movietheater part 5

classroom part 2

classroom part 4

buffet part 8

nursery part 7

bus part 11

Figure 2-3: Some interesting region models learned for different categories using a
discriminative RBoW model (Init-EM). Each row illustrates a region model for a
particular category. The first column shows the preferences of different image regions
for this region model (𝐴𝑦,𝑟,𝑗 for fixed 𝑦 and 𝑗). The other columns show image regions
that were assigned to this region model during classification (𝑧𝑟 = 𝑗).
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MIT 67
Method Rate

LS-SVM
Indoor Scenes Objec.

Prev. Works

ROI+GIST [52] 26.5
MM-scene [74] 28.0
CENTRIST [68] 36.9
Object Bank [37] 37.6
DPM [45] 30.4
DPM+GIST-color+SP [45] 43.1

BoW
Generative 12.80
Discriminative 25.17

SBoW
Generative 19.46
Discriminative 33.99

RBoW

Generative 27.66
Discriminative Init-rand 31.63 91.08
Discriminative Init-fixed 34.99 83.50
Discriminative Init-EM 37.93 80.30

Table 2.2: Average performance of different methods on the MIT dataset. The last
column shows the final value of the LS-SVM objective function for RBoW models
with different initializations.

with spatial pyramid matching [35]. To compare reconfigurable models to deformable

models we also include the performance obtained in [45] using DPMs alone. Table 2.2

also shows the performance of our BoW and SBoW baselines. The performance gap

between the BoW and SBoW approaches proves a considerable point regarding the

importance of spatial information for image classification.

Table 2.2 includes the results of discriminative RBoW models trained with differ-

ent initialization methods. As discussed in Section 2.4.2, CCCP requires initial latent

values for each training example. Init-rand selects random initial region models for

each image region. Init-fixed selects a fixed initial region model for each image re-

gion. Init-EM uses a generative RBoW model trained with EM, and selects the most

probable latent values under the generative model to initialize LS-SVM training. We

have found that Init-EM gives consistently better results. This shows the importance

of initialization for LS-SVM training. It also shows that while generative models typ-

ically don’t perform as well as discriminative models, EM training seems to be less

susceptible to local optima when compared to LS-SVM.

Last column of Table 2.2 shows the final value of LS-SVM objective under each
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initialization method. Note that the value of the objective is consistent with the

performance of the model, suggesting that developing better optimization algorithms

for LS-SVM should lead to better models.

Table 2.3 shows per-category performance of the discriminative RBoW model

(initialized with EM), the discriminative baseline approaches and the DPM method

from [45]. Note that although SBoW has a better overall accuracy than BoW, it

does worse in 12 classes. RBoW is able to recover the performance lost by SBoW in

several classes, including florist, gameroom and videostore. RBoW model performs

significantly better than our baselines and the DPM method of [45] on several classes.

Figure 2-3 illustrates some interesting region models that were learned for different

categories. For example, in the buffet class there is a model for food regions, in the

nursery class there is a model for crib regions, while in the classroom class there is a

model for regions with desks and another for the ceiling.

Training RBoW models is reasonably fast. Training a generative RBoW model

with EM (with 16 parts and 16 image regions) on the MIT dataset takes about 10

minutes on a 2.8GHz computer with an i7 multi-core processor. Training a similar

discriminative model with LS-SVM on the MIT dataset takes about 10 hours. Dis-

criminative training takes much longer than EM because step 2 of CCCP involves a

large convex optimization problem. At test time our implementation can classify more

than 180 images per second for the MIT dataset. The running time for classification

scales linearly with the number of classes.

2.6.3 Synthetic Scene Dataset

Although RBoW can only capture absolute spatial properties, such as sky tends to

appear on the top of image in beach scenes, RBoW++ models can capture relative

geometric relationships between parts (e.g. sky tends to appear on top of sea in beach

scene). It can also learn relations between composite objects [57] such as person on top

of horse. In order to demonstrate the strength of our model and showcase the types of

properties it can capture we test it on a synthetic dataset. We compare performance

of RBoW++, RBoW+, RBoW, SBoW, and BoW models on this synthetic dataset.
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Category RBoW SBoW BoW DPM Category RBoW SBoW BoW DPM

bowling 85 85 55 35 dentaloffice 48 29 19 24
florist 84 63 74 79 casino 47 47 63 32
ins. subway 81 62 57 62 gameroom 45 10 40 40
cloister 80 85 55 90 prisoncell 45 40 35 40
inside bus 78 61 9 43 trainstation 45 70 35 35
greenhouse 75 80 80 65 auditorium 44 39 22 11
church ins. 74 79 53 63 bar 44 39 33 11
classroom 72 56 44 67 clothingstore 44 33 11 33
buffet 65 60 55 75 garage 44 39 39 56
concert hall 65 60 55 65 corridor 43 62 33 57
elevator 62 62 57 52 meetingroom 41 55 27 75
closet 61 56 56 44 videostore 41 18 23 18
comp. room 56 33 6 22 hospitalroom 40 30 5 5
movietheater 55 65 50 45 kindergarden 40 40 25 15
nursery 55 50 75 60 museum 39 26 0 13
pantry 55 50 30 75 kitchen 38 43 14 29
library 50 45 40 0 studiomusic 37 37 11 32

Category RBoW SBoW BoW DPM Category RBoW SBoW BoW DPM

laundromat 36 41 9 45 airport ins. 20 15 15 5
stairscase 35 35 45 35 bedroom 19 14 0 5
bathroom 33 22 6 50 hairsalon 19 24 5 43
grocerystore 33 29 38 19 locker room 19 14 14 19
subway 33 33 14 38 warehouse 19 19 10 24
bookstore 30 20 30 45 artstudio 15 5 0 5
winecellar 29 29 29 14 toystore 14 5 0 9
child. room 28 28 11 6 lobby 10 10 5 30
dining room 28 22 11 28 poolinside 10 5 5 0
gym 28 6 0 22 restaurant 10 10 10 5
lab. wet 27 18 0 5 office 10 10 10 10
rstrnt kitchen 26 26 0 4 bakery 5 5 0 11
mall 25 15 10 25 operat. room 5 0 32 5
waitingroom 24 14 5 5 livingroom 5 5 10 20
fastfoodrstrnt 24 6 35 12 deli 0 0 5 5
tv studio 22 44 17 6 jewel. shop 0 9 0 5
shoeshop 21 32 21 16

Table 2.3: Performance of our reconfigurable model and different baseline methods
on the MIT dataset. The last column shows performance of DPM method from [45].
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noise beach shore desert1 desert2 field riding

sky sea rock veg. sand moon person horse

Figure 2-4: Sample images from the synthetic dataset. Each column shows three
images from one scene category. The semantic meaning of each label together with
the corresponding observation distribution is shown at the bottom.

This comparison helps us understand the differences between these models and the

types of properties they can capture and the cases where they fail.

The synthetic dataset consists of 7 hypothetical scene categories: noise, beach,

shore, desert1, desert2, field, and (horseback-)riding. Each image in the synthetic

dataset is made of a grid of 32 × 32 regions. Each region is labeled by one of 8

parts: sky, sea, rock, vegetation, sand, star/moon, person, and horse. An image is

represented as an ordered set of 32× 32 feature vectors (one for each image region).

The feature vector associated to a region is a bag of words histogram computed from

1000 discrete observations. The observations within a region are generated from a

multinomial distribution defined by the type of the region (identified by the label given

to it). We define the multinomial distributions associated to each one of the 8 parts

(except for sand) to be slightly peaked at a unique observation and uniform otherwise

(see Figure 2-4-bottom). The observation distribution for sand is the average of the

observation distributions for vegetation and rock. The reason for this choice is to

demonstrate strength of RBoW models (and their extended versions) over BoW and

SBoW in learning mixtures of parts (see Figure 2-5 for a quantitative comparison).

There are 1400 training and 1400 test images (200 per category) in the dataset.

Images are generated by randomly labeling each region in a 32 × 32 grid according
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to the category of the image. Each category has a particular labeling process which

defines the signature layout of the category. For example, the labeling process of

the beach category starts by setting the ocean’s horizon as a horizontal line located,

uniformly at random, along rows 8-18 of the grid. Then a curved shoreline is chosen at

random below the horizon. Finally, all regions on and above the horizon are labeled as

sky, regions below horizon and above (or on) the shoreline are labeled as sea, and the

regions below the shoreline are labeled as sand (see exemplar images in the second

column in Figure 2-4). Given a labeling for all image regions we generate local

observations within each region by drawing random samples from the multinomial

distribution corresponding to the part assigned to the image region. Finally, we

compute a feature vector (BoW histogram) for each region in the image.

In the following we briefly explain the labeling process of each of the 7 categories

that constitutes the layout of the scene categories in the dataset. Three sample images

from each category are shown in Figure 2-4.

Recall that each image is made of a grid of 32×32 regions. We explained signature

layout of the beach category before. In the noise category image regions are labeled

randomly from the set of three labels sky, sea, sand. We make sure that the average

frequency of each part in the images of noise category is the same as that of the beach

scene. Due to the absence of spatial information in the BoW model we expect it to

fail in discriminating between noise and beach.

shore is similar to beach in all aspects except that there are no sand regions in

shore; sand regions are replaced with rock in some images and vegetation in some

others. In other words, the land in the shore scene is a mixture of rock and vegetation.

We expect SBoW to fail in discriminating between beach and shore. In order to

intensify the confusion between the two categories we set the observation distribution

associated to sand to be the average of the observation distributions of rock and

vegetation (see Figure 2-4-bottom).

In desert1 a curved line (indicating sandhills) splits the image into two areas; sky

on the top and sand on the bottom. There is a fixed size rectangle, representing the

moon in a random location in the sky in all images of this category. The desert2
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BoW (51%) SBoW (64%) RBoW (73%) RBoW+ (90%)RBoW++ (99%)

Figure 2-5: Confusion matrices corresponding to different models. The average of the
diagonal terms is shown in the parentheses.

category is similar to desert1 in all aspects except that the moon is replaced with

little stars scattered randomly in the sky. We have that the moon and star both

share the same observation distribution. We expect RBoW to fail in discriminating

between desert1 and desert2 because it assumes that regions are independent, and

thus, cannot tell a coherent labeling apart from a non-coherent one.

In the field category a horizon line (located at row 6 to 14 of the grid uniformly

at random) separates sky from the ground which is labeled as vegetation. Two horses

and two persons with various sizes are placed at random locations on the ground.

The riding category is the same as the field category except that the persons are on

top of the horses in the riding category. RBoW+ fails to discriminate between these

two categories because it cannot capture relative geometric relations between parts.

We compare performance of BoW, SBoW, RBoW, RBoW+, and RBoW++ mod-

els on the synthetic dataset in Figure 2-5. BoW classifies images into three subsets

namely {noise, beach, shore}, {desert1, desert2}, {field, riding}, and cannot disam-

biguate the categories within each set. In SBoW, beach is confused with shore, desert1

is confused with desert2, and field is confused with riding. RBoW does better than

SBoW by successfully telling apart beach and shore. RBoW+ only confuses field and

𝑟𝑖𝑑𝑖𝑛𝑔 categories. Finally, RBoW++ distinguishes all categories almost perfectly.

Recall from Section 2.4.2 that the training objective of RBoW and its extensions

(i.e. RBoW+ and RBoW++) are non-convex, and since we use Algorithm 2 from

Chapter 1 for training, the quality of the trained models depends on how the training

is initialized. In all our experiments we initialized the model by setting z(0) so that

all image regions get the ground-truth part assigned to them.
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2.7 Conclusion

Reconfigurable models represent images by a collection of regions with specific con-

tent. For each scene category we have a set of region models. The content of an

image is defined by latent variables that assign a region model to each image region.

We introduce different versions of the reconfigurable model. The most basic version,

called RBoW, assumes the latent variables are independent conditional on the im-

age category. The most powerful version, called RBoW++, breaks this assumption

and can capture any regular pairwise relationship between region labels (parts). For

example, RBoW++ can avoid regions on top of sky to be labeled as water.

Our current models rely on a pre-defined partition of an image into a grid of

regions. We would like to relax this assumption so that we can better capture the

content of an image.

Latent variable models lead to challenging training problems, especially in the

discriminative setting. Our experiments demonstrate that EM can be used as an

effective method for initializing LS-SVM training.

47



48



Chapter 3

Automatic Part Discovery from

Image Collections

Part-based representations have been shown to be very useful for image classification.

Learning part-based models is often viewed as a two-stage problem. First, a collection

of informative parts is discovered, using heuristics that promote part distinctiveness

and diversity, and then classifiers are trained on the vector of part responses. We unify

the two stages and learn the image classifiers and a set of shared parts jointly. Initially

we generate a pool of parts by randomly sampling part candidates and selecting a good

subset using ℓ1/ℓ2 regularization. All steps are driven directly by the same objective

namely the classification loss on a training set. This lets us do away with engineered

heuristics. We also introduce the notion of negative parts, intended as parts that are

negatively correlated with one or more classes. Negative parts are complementary to

the parts discovered by other methods, which look only for positive correlations.

3.1 Introduction

Computer vision makes abundant use of the concept of “part”. There are at least three

key reasons why parts are useful for representing objects or scenes. One reason is the

existence of non-linear and non-invertible nuisance factors in the generation of images,

including occlusions. By breaking an object or image into parts, unoccluded regions
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become recognizable. A second reason is that parts can be recombined in a model to

express a combinatorial number of variants of an object or scene. For example parts

corresponding to objects (e.g. a laundromat and a desk) can be rearranged in a scene,

and parts of objects (e.g. the face and the clothes of a person) can be replaced by other

parts. A third reason is that parts are often distinctive of a particular (sub)category

of objects (e.g. cat faces usually belong to cats).

Discovering good parts is a difficult problem that has recently raised considerable

interest [31, 17, 63]. The quality of a part can be defined in different ways. Meth-

ods such as [31, 17] decouple learning parts and image classifiers by optimizing an

intermediate objective that is only heuristically related to classification. Our first

contribution is to learn a system of discriminative parts jointly with the image classi-

fiers, optimizing the overall classification performance on a training set. We propose

a unified framework to train all the model parameters jointly (Section 3.5), and show

that joint training can substantially improve the quality of the models (Section 3.8).

A fundamental challenge in part learning is a chicken-and-egg problem: without an

appearance model, examples of a part cannot be found, and without having examples

an appearance model cannot be learned. To address this methods such as [31, 18]

start from a single random example to initialize a part model, and alternate between

finding more examples and retraining the part model. As the quality of the learned

part depends on the initial random seed, thousands of parts are generated and a

distinctive and diverse subset is extracted by means of some heuristic. Our second

contribution is to propose a simple and effective alternative (Section 3.6). We still

initialize a large pool of parts from random examples; we use these initial part models,

Figure 3-1: Part filters before (left) and after joint training (right) and top scoring
detections for each.
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Random Part
Initialization

1. Extract feature from a patch
at random image and location.

2. Whiten the feature.

3. Repeat to construct a pool of
candidate parts.

Part Selection

1. Train part weights 𝑢 with
ℓ1/ℓ2 regularization.

2. Discard parts that are not
used according to 𝑢.

Joint Training

1. Train part weights 𝑢
keeping part filters 𝑤 fixed.

2. Train part filters 𝑤 keeping
part weights 𝑢 fixed.

3. Repeat until convergence.

Figure 3-2: Our pipeline. Part selection and joint training are driven by classification
loss. Part selection is important because joint training is computationally demanding.

each trained from a single example, to train image classifiers using ℓ1/ℓ2 regularization

as in [63]. This removes uninformative and redundant parts through group sparsity.

This simple method produces better parts than more elaborate alternatives. Joint

training (Section 3.8) improve the quality of the parts further.

Our pipeline, comprising random part initialization, part selection, and joint train-

ing is summarized in Figure 3-2. In Section 3.8 we show empirically that, although our

part detectors have the same form as the models in [31, 63], they can reach a higher

level of performance using a fraction of the number of parts. This translates directly

to test time speedup. We also demonstrate importance of flip-invariant representation

for image classification obtained by averaging features extracted from an image and

its right-to-left flip as done in [17]. We present experiments with both HOG [14] and

CNN [33] features and improve the state-of-the-art results on the MIT-indoor dataset

[52] using CNN features.

A final contribution of our work is the introduction of the concept of negative parts,

i.e. parts that are negatively correlated with respect to a class (Section 3.2). These

parts are still informative as “counter-evidence” for the class. In certain formulations,

negative parts are associated to negative weights in the model and in others with

negative weight differences.

Related Work

Related ideas in part learning have been recently explored in [60, 31, 63, 17]. The

general pipeline in all of these approaches is a two-stage procedure that involves pre-
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training a set of discriminative parts followed by training a classifier on top of the

vector of the part responses. The differences in these methods lay in the details of

how parts are discovered. Each approach uses a different heuristic to find a collection

of parts such that each part scores high on a subset of categories (and therefore is

discriminative) and, collectively, they cover a large area of an image after max-pooling

(and therefore are descriptive). Our goal is similar, but we achieve part diversity, dis-

tinctiveness, and coverage as natural byproducts of optimizing the “correct” objective

function, i.e. the final image classification performance.

Reconfigurable Bag of Words (RBoW) model [47] is another part-based model

used for image classification. RBoW uses latent variables to assign part models to

image regions. In contrast, the latent variables in our model assign image regions to

parts via max-pooling.

It has been shown before [25] that joint training is important for the success of

part-based models in object detection. Differently from them, however, we share parts

among multiple classes and define a joint optimization in which multiple classifiers

are learned concurrently. In particular, the same part can vote strongly for a subset

of the classes and against another subset.

The most closely related work to ours is [40]. Their model has two sets of pa-

rameters; a dictionary of visual words 𝜃 and a set of weights 𝑢 that specifies the

importance the visual words in each category. Similar to what we do here, [40] trains

𝑢 and 𝜃 jointly (visual words would be the equivalent of part filters in our terminol-

ogy). However, they assume that 𝑢 is non-negative. This assumption does not allow

for “negative parts” as we describe in Section 3.2. Our method and [40]’s both re-

quire recomputing maximum part responses on training images multiple times during

training which is computationally very expensive. We use a caching mechanism to

considerably reduce the amount of this computation. We also prove that the caching

mechanism leads to an exact solution.

The concept of negative parts and relative attributes [46] are related in that both

quantify the relative strength of visual patterns. Our parts are trained jointly using

using image category labels as the only form of suppervision, whereas the relative
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attributes in [46] were trained independently using labeled information about the

strength of hand picked attributes in training images. More importantly, we train

negative parts jointly with image classifiers whereas the relative attributes in [46] are

pre-trained.

3.2 Part-Based Models for Image Classification

We model an image class using a collection of parts. A part may capture the ap-

pearance of an entire object (e.g. bed in a bedroom scene), a part of an object (e.g.

drum in the laundromat scene), a rigid composition of multiple objects (e.g. rack of

clothes in a closet scene), or a region type (e.g. ocean in a beach scene).

Let 𝑥 be an image. We use 𝐻(𝑥) to denote the space of latent values for a part. In

our experiments 𝐻(𝑥) is a set of positions and scales in a scale pyramid. To test if the

image 𝑥 contains part 𝑗 at location 𝑧𝑗 ∈ 𝐻(𝑥), we extract features 𝜓(𝑥, 𝑧𝑗) and take

the dot product of this feature vector with a part filter 𝑤𝑗. Let 𝑠(𝑥, 𝑧𝑗, 𝑤𝑗) denote

the response of part 𝑗 at location 𝑧𝑗 in 𝑥. Since the location of a part is unknown,

it is treated as a latent variable which is maximized over. This defines the response

𝑟(𝑥,𝑤𝑗) of a part in an image,

𝑠(𝑥, 𝑧𝑗, 𝑤𝑗) = 𝑤𝑗 · 𝜓(𝑥, 𝑧𝑗), 𝑟(𝑥,𝑤𝑗) = max
𝑧𝑗∈𝐻(𝑥)

𝑠(𝑥, 𝑧𝑗, 𝑤𝑗). (3.1)

Given a collection of 𝑚 parts 𝑤 = (𝑤1, . . . , 𝑤𝑚), their responses are collected in

an 𝑚-dimensional vector of part responses 𝑟(𝑥,𝑤) = (𝑟(𝑥,𝑤1); . . . ; 𝑟(𝑥,𝑤𝑚)). In

practice, filter responses are pooled within several distinct spatial subdivisions [35]

to encode weak geometry. In this case we have 𝑅 pooling regions and 𝑟(𝑥,𝑤) is an

𝑚𝑅-dimensional vector maximizing part responses in each pooling region. For the

rest of this chapter we assume a single pooling region to simplify notation.

Part responses can be used to predict the class of an image. For example, high

response for “bed” and “ lamp” would suggest the image is of a “bedroom” scene.
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3.3 Negative Parts in Binary Classifiers

In binary classification the goal is to predict if an image belongs to a foreground

class 𝑦 = +1 (“bedroom”) or a background class 𝑦 = −1 (“everything else”). Binary

classifiers are often used for multi-class classification with a one-vs-all setup. DPMs

[20] also use binary classifiers to detect objects of each class. For a binary classifier we

can define a score function 𝑓𝛽(𝑥) for the foreground hypothesis. The score combines

part responses using a vector of part weights 𝑢,

𝑓𝛽(𝑥) = 𝑢 · 𝑟(𝑥,𝑤), 𝛽 = (𝑢,𝑤). (3.2)

The binary classifier predicts 𝑦 = +1 if 𝑓𝛽(𝑥) ≥ 0, and 𝑦 = −1 otherwise.

Definition 3.1. If 𝑢𝑗 > 0 we say part 𝑗 is a positive part for the foreground class

and if 𝑢𝑗 < 0 we say part 𝑗 is a negative part for the foreground class.

Intuitively, a negative part provides counter-evidence for the foreground class; i.e.

𝑟(𝑥,𝑤𝑗) is negatively correlated with 𝑓𝛽(𝑥). For example, since cows are not usually in

offices a high response from a cow filter should penalize the score of a office classifier.

Let 𝛽 = (𝑢,𝑤) be the parameters of a binary classifier. We can multiply 𝑤𝑗 and

divide 𝑢𝑗 by a positive value 𝛼 to obtain an equivalent model. If we use 𝛼 = |𝑢𝑗|
we obtain a model where 𝑢 ∈ {−1,+1}𝑚. However, in general it is not possible to

transform a model where 𝑢𝑗 is negative into a model where 𝑢𝑗 is positive because of

the max in (3.1). Moreover, allowing real valued 𝑢 matrix has the advantage that it

simplifies part sharing when we turn to multi-class classifiers. It allows two classes to

share a part filter with different levels of importance (or weight).

We note that, when 𝑢𝑗 ≥ 0,∀𝑗 the score function 𝑓𝛽(𝑥) is convex in 𝑤, and (3.2)

reduces to a latent SVM score function, and a special case of a DPM [20]. Otherwise,

i.e. if there are negative parts, 𝑓𝛽(𝑥) is no longer convex in 𝑤. In particular, when 𝑢

is non-negative we can assume 𝑢 = 1 and (3.2) reduces to

𝑓𝛽(𝑥) =
𝑚∑︁

𝑗=1

max
𝑧𝑗∈𝐻(𝑥)

𝑤𝑗 · 𝜓(𝑥, 𝑧𝑗) = max
𝑧∈𝑍(𝑥)

𝑤 ·Ψ(𝑥, 𝑧), (3.3)
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where 𝑍(𝑥) = 𝐻(𝑥)𝑚, and Ψ(𝑥, 𝑧) = (𝜓(𝑥, 𝑧1); . . . ;𝜓(𝑥, 𝑧𝑚)). In the case of a DPM,

the feature vector Ψ(𝑥, 𝑧) and the model parameters contain additional terms cap-

turing spatial relationships between parts. In a DPM all part responses are positively

correlated with the score of a detection. Therefore DPMs do not use negative parts.

3.4 Negative Parts in Multi-Class Classifiers

In the previous section we showed that certain one-vs-all part-based classifiers, includ-

ing DPMs, cannot capture counter-evidence from negative parts. This limitation can

be addressed by using more general models with two sets of parameters 𝛽 = (𝑢,𝑤)

and a score function 𝑓𝛽(𝑥) = 𝑢 ·𝑟(𝑥,𝑤), as long as we allow 𝑢 to have negative entries.

Now we consider the case of a multi-class classifier where part responses are

weighted differently for each category but all categories share the same set of part

filters. A natural consequence of part sharing is that a positive part for one class can

be used as a negative part for another class.

Let 𝒴 = {1, . . . , 𝑛} be a set of 𝑛 categories. A multi-class part-based model

𝛽 = (𝑤, 𝑢) is defined by 𝑚 part filters 𝑤 = (𝑤1, . . . , 𝑤𝑚) and 𝑛 vectors of part weights

𝑢 = (𝑢1, . . . , 𝑢𝑛) with 𝑢𝑦 ∈ R𝑚. The shared filters 𝑤 and the weight vector 𝑢𝑦 define

parameters 𝛽𝑦 = (𝑤, 𝑢𝑦) for a score function for class 𝑦. For an input 𝑥 the multi-class

classifier selects the class with highest score

𝑦𝛽(𝑥) = arg max
𝑦∈𝒴

𝑓𝛽𝑦(𝑥) = arg max
𝑦∈𝒴

𝑢𝑦 · 𝑟(𝑥,𝑤) (3.4)

We can see 𝑢 as an 𝑛×𝑚 matrix. Adding a constant to a column of 𝑢 does not change

the differences between scores of two classes 𝑓𝛽𝑎(𝑥)−𝑓𝛽𝑏(𝑥). This implies the function

𝑦 is invariant to such transformations. We can use a series of such transformations

to make all entries in 𝑢 non-negative, without changing the classifier. Thus, in a

multi-class part-based model, unlike the binary case, it is not a significant restriction

to require the entries in 𝑢 to be non-negative. In particular the sign of an entry in 𝑢𝑦

does not determine the type of a part (positive or negative) for class 𝑦.
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Definition 3.2. If 𝑢𝑎,𝑗 > 𝑢𝑏,𝑗 we say part 𝑗 is a positive part for class 𝑎 relative to

𝑏. If 𝑢𝑎,𝑗 < 𝑢𝑏,𝑗 we say part 𝑗 is a negative part for class 𝑎 relative to 𝑏.

Although adding a constant to a column of 𝑢 does not affect 𝑦, it does impact the

norms of the part weight vectors 𝑢𝑦. For an ℓ2 regularized model the columns of 𝑢 will

sum to zero. Otherwise we can subtract the column sums from each column of 𝑢 to

decrease the ℓ2 regularization cost without changing 𝑦 and therefore the classification

loss. We see that in the multi-class part-based model constraining 𝑢 to have non-

negative entries only affects the regularization of the model.

3.5 Joint Training

In this section we propose an approach for joint training of all parameters 𝛽 = (𝑤, 𝑢)

of a multi-class part-based model. Training is driven directly by classification loss.

Note that a classification loss objective is sufficient to encourage diversity of parts.

In particular joint training encourages part filters to complement each other. We

have found that joint training leads to a substantial improvement in performance

(see Section 3.8). The use of classification loss to train all model parameters also

leads to a simple framework that does not rely on multiple heuristics.

Let 𝒟 = {(𝑥𝑖, 𝑦𝑖)}𝑘𝑖=1 denote a training set of labeled examples. We train 𝛽 using

ℓ2 regularization for both the part filters 𝑤 and the part weights 𝑢 (we think of each

as a single vector) and the multi-class hinge loss, resulting in the objective function:

𝑂(𝑢,𝑤) = 𝜆𝑤||𝑤||2+𝜆𝑢||𝑢||2+
𝑘∑︁

𝑖=1

max

{︂
0, 1+(max

𝑦 ̸=𝑦𝑖
𝑢𝑦·𝑟(𝑥𝑖, 𝑤))−𝑢𝑦𝑖·𝑟(𝑥𝑖, 𝑤)

}︂
(3.5)

= 𝜆𝑤||𝑤||2 + 𝜆𝑢||𝑢||2 +
𝑘∑︁

𝑖=1

max

{︂
0, 1 + max

𝑦 ̸=𝑦𝑖
(𝑢𝑦 − 𝑢𝑦𝑖) · 𝑟(𝑥𝑖, 𝑤)

}︂
(3.6)

We use block coordinate descent for training, as summarized in Algorithm 3. This

alternates between (Step 1) optimizing 𝑢 while 𝑤 is fixed, and (Step 2) optimizing 𝑤

while 𝑢 is fixed. The first step reduces to a convex structural SVM problem (line 3 of

Algorithm 3). If 𝑢 is non-negative the second step also reduces to a latent structural
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Algorithm 3 Joint training of model parameters by optimizing 𝑂(𝑢,𝑤) in Equa-
tion 3.6.
Input: 𝒟 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑘, 𝑦𝑘)}
1: initialize the part filters 𝑤 = (𝑤1, . . . , 𝑤𝑚)
2: repeat
3: 𝑢 := arg min𝑢′ 𝑂(𝑢′, 𝑤) (defined in Equation 3.6)
4: repeat
5: 𝑤old := 𝑤
6: 𝑤 := arg min𝑤′ 𝐵𝑢(𝑤

′, 𝑤old) (defined in Equation 3.8)
7: until convergence
8: until convergence
Output: 𝛽 = (𝑢,𝑤)

SVM problem defined by (3.5). We use a novel approach that allows 𝑢 to be negative

and uses an equivalent interpretation of the objective function defined by (3.6).

Step 1: Learning Part Weights (line 3 of Algorithm 3)

This involves computing arg min𝑢′ 𝑂(𝑢′, 𝑤). Since 𝑤 is fixed 𝜆𝑤||𝑤||2 and 𝑟(𝑥𝑖, 𝑤) are

constant and, therefore, can be ignored in optimization of classifiers. This makes

the learning of the part weights equivalent to training a multi-class SVM where the

𝑖-th training example is represented by an 𝑚-dimensional vector of part responses

𝑟(𝑥𝑖, 𝑤). This is a convex problem that can be solved efficiently using standard

methods, including the ones discussed in Section 1.5.

Step 2: Learning Part Filters (lines 4-7 of Algorithm 3)

This involves solving the following optimization problem while 𝑢 is kept fixed:

arg min
𝑤

𝑂(𝑢,𝑤)

= arg min
𝑤

𝜆𝑤||𝑤||2 + 𝜆𝑢||𝑢||2 +
𝑘∑︁

𝑖=1

max

{︂
0, 1 + max

𝑦 ̸=𝑦𝑖
(𝑢𝑦 − 𝑢𝑦𝑖) · 𝑟(𝑥𝑖, 𝑤)

}︂

= arg min
𝑤

𝜆𝑤||𝑤||2 +
𝑘∑︁

𝑖=1

max

{︂
0, 1 + max

𝑦 ̸=𝑦𝑖
(𝑢𝑦 − 𝑢𝑦𝑖) · 𝑟(𝑥𝑖, 𝑤)

}︂
. (3.7)

The last step uses the fact that 𝑢 is kept fixed during the optimization of 𝑤.
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While 𝑟(𝑥𝑖, 𝑤𝑗) is convex in 𝑤 (it is a maximum of linear functions) the coefficients

𝑢𝑦,𝑗 − 𝑢𝑦𝑖,𝑗 may be negative, making the objective function of (3.7) non-convex. We

solve (3.7) via sequential convex bound optimization; which is implemented in lines

4-7 of Algorithm 3. In each iteration we construct a convex upper bound to the

objective function of (3.7) using the current estimate of 𝑤 and update 𝑤 to minimize

the bound. The key to convergence of this iterative procedure is that the value of the

objective function is guaranteed to decrease after each iteration.

Let 𝑤old denote the current estimate of the part filters. We denote the bound

by 𝐵𝑢(𝑤,𝑤
old) and introduce the following notation to define it. Let 𝑠(𝑥𝑖, 𝑧𝑖, 𝑤) =

(𝑠(𝑥𝑖, 𝑧𝑖,1, 𝑤1); . . . ; 𝑠(𝑥𝑖, 𝑧𝑖,𝑚, 𝑤𝑚)) be the vector of part responses in image 𝑥 when the

latent variables are fixed to 𝑧𝑖 = (𝑧𝑖,1, . . . , 𝑧𝑖,𝑚). We replace 𝑟(𝑥𝑖, 𝑤𝑗) with 𝑠(𝑥𝑖, 𝑧𝑖,𝑗, 𝑤𝑗)

in (3.7) when 𝑢𝑦,𝑗 − 𝑢𝑦𝑖,𝑗 < 0 and make the bound tight at 𝑤old by selecting 𝑧𝑖,𝑗 =

arg max𝑧𝑗∈𝐻(𝑥𝑖)
𝑠(𝑥𝑖, 𝑧𝑗, 𝑤

old
𝑗 ). Finally, we define the bound as follows:

𝐵𝑢(𝑤,𝑤
old) = 𝜆𝑤||𝑤||2+

𝑘∑︁

𝑖=1

max

{︂
0, 1+max

𝑦 ̸=𝑦𝑖
(𝑢𝑦−𝑢𝑦𝑖)·

[︀
𝑆𝑦,𝑦𝑖𝑟(𝑥𝑖, 𝑤)+𝑆𝑦,𝑦𝑖𝑠(𝑥𝑖, 𝑧𝑖, 𝑤)

]︀}︂
,

(3.8)

where, for a pair of categories (𝑦, 𝑦′), 𝑆𝑦,𝑦′ and 𝑆𝑦,𝑦′ are 𝑚×𝑚 diagonal 0-1 matrices

that select 𝑟(𝑥𝑖, 𝑤𝑗) when 𝑢𝑦,𝑗 − 𝑢𝑦𝑖,𝑗 ≥ 0 and 𝑠(𝑥𝑖, 𝑧𝑖,𝑗, 𝑤𝑗) when 𝑢𝑦,𝑗 − 𝑢𝑦𝑖,𝑗 < 0.

Specifically, 𝑆𝑦,𝑦′(𝑗, 𝑗) = 1 if and only if 𝑢𝑦,𝑗−𝑢𝑦′,𝑗 ≥ 0 and 𝑆𝑦,𝑦′(𝑗, 𝑗) = 1−𝑆𝑦,𝑦′(𝑗, 𝑗).

One can verify that 𝐵𝑢(𝑤,𝑤
old) is convex, upper bounds the objective function of

(3.7), and touches the objective function of (3.7) at 𝑤 = 𝑤old.

Optimization of the bound 𝐵𝑢 (which is done in line 6 of Algorithm 3) requires

significant computational and memory resources. In the next section we describe how

we solve this optimization problem in practice.

3.5.1 Caching Hard Examples

Optimizing the bound function 𝐵𝑢(𝑤,𝑤
old) is computationally expensive because of

two reasons. Firstly, the number of shared parts filters is large. Secondly, it requires
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convolving the part filters with the training images repeatedly which is a slow process.

We speed up the optimization of 𝐵𝑢 by bypassing the convolution process. More

specifically, we use a caching mechanism that makes it sufficient to compute the score

of the part filters on a very small subset of locations in the scale pyramid of the

training images. This is very similar to the caching technique used in training DPMs

[20]. Note that here, unlike [20], there is no notion of hard negatives because we

use a multi-class classification objective. Instead we have hard examples. A hard

example is a training example along with the best assignment of its latent variables

(with respect to a given model) that either has non-zero loss or lies on the decision

boundary. In the following we explain our caching mechanism and prove it converges

to the unique global minimum of the bound.

The caching mechanism is iterative where we alternative between 1) finding the

optimal part filters subject to the data in the cache, and 2) updating the content

of the cache. This procedure is guaranteed to converge to the global minimum of

𝐵𝑢(𝑤,𝑤
𝑜𝑙𝑑). Initially, we start from an empty cache. To update the cache, we remove

all the “easy” entries from the cache and add new “hard” entries to it.

In each iteration, the cache stores a small number of active locations from the

scale hierarchy of each image for each part. Thus, finding the highest responding

location of each part among the active entries in the cache requires only a modest

amount of computation. Although the caching mechanism requires multiple rounds

of optimization, however, each optimization problems is rather simple and, overall,

the problem of optimizing 𝐵𝑢 becomes tractable.

Let 𝑍𝑖 = {(𝑦, 𝑧) : 𝑦 ∈ 𝒴 , 𝑧 ∈ 𝐻(𝑥𝑖)
𝑚} be the set of all possible latent configura-

tions of 𝑚 parts on image 𝑥𝑖. Also, let 𝑧, 𝑧 ∈ 𝐻(𝑥)𝑚 denote two arbitrary place-

ments of all the parts. Also, let 𝑎, 𝑎̄ ∈ R𝑚 denote two part weight vectors such that

𝑎𝑗 𝑎̄𝑗 = 0,∀𝑗 ∈ {1, . . . ,𝑚}; that is, if 𝑎𝑗 ̸= 0 then 𝑎̄𝑗 = 0, and vice versa. We use

Φ(𝑥, 𝑧, 𝑧, 𝑎, 𝑎̄) to denote the feature function that chooses a placement for part 𝑗 be-

tween 𝑧𝑗 and 𝑧𝑗 and concatenates features extracted from placing all of the 𝑚 parts

on image 𝑥. The feature function outputs an 𝑚𝑑-dimensional feature vector and is
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defined as follows

Φ(𝑥, 𝑧, 𝑧, 𝑎, 𝑎̄) = (𝑎1𝜓(𝑥, 𝑧1) + 𝑎̄1𝜓(𝑥, 𝑧1); . . . ; 𝑎𝑚𝜓(𝑥, 𝑧𝑚) + 𝑎̄𝑚𝜓(𝑥, 𝑧𝑚)).

We use the notation used in the previous section and define two part weight vectors

𝑎𝑦,𝑦𝑖 and 𝑎̄𝑦,𝑦𝑖 as follows

𝑎𝑦,𝑦𝑖 = (𝑢𝑦 − 𝑢𝑦𝑖)𝑇𝑆𝑦,𝑦𝑖

𝑎̄𝑦,𝑦𝑖 = (𝑢𝑦 − 𝑢𝑦𝑖)𝑇𝑆𝑦,𝑦𝑖 .

Finally, we define 𝑧(𝑖,𝑤𝑗)
𝑗 = arg max𝑧𝑗∈𝐻(𝑥𝑖)

𝑠(𝑥𝑖, 𝑧𝑗, 𝑤𝑗) to be the best placement of part

𝑗 on image 𝑥𝑖 using the part filter 𝑤𝑗. We use this notation and rewrite 𝐵𝑢(𝑤,𝑤
𝑜𝑙𝑑)

in the following simple form:

𝐵𝑢(𝑤,𝑤
𝑜𝑙𝑑) = 𝜆𝑤||𝑤||2 +

𝑘∑︁

𝑖=1

max
(𝑦,𝑧)∈𝑍𝑖

𝑤𝑇Φ(𝑥𝑖, 𝑧, 𝑧
(𝑖,𝑤𝑜𝑙𝑑), 𝑎𝑦,𝑦𝑖 , 𝑎̄𝑦,𝑦𝑖)) + ∆(𝑦𝑖, 𝑦). (3.9)

We define a cache 𝐶 to be a set of triplets (𝑖, 𝑓, 𝛿) where 𝑖 indicates the 𝑖-th training

example and 𝑓 and 𝛿 indicate the feature vector Φ(𝑥𝑖, 𝑧, 𝑧
(𝑖,𝑤𝑜𝑙𝑑), 𝑎𝑦,𝑦𝑖 , 𝑎̄𝑦,𝑦𝑖) and the

loss value ∆(𝑦𝑖, 𝑦) associated to a particular (𝑦, 𝑧) ∈ 𝑍𝑖 respectively.

We denote the bound 𝐵𝑢 subject to a cache 𝐶 by ℬ𝐶 and define it as follows:

ℬ𝐶(𝑤) = ℬ𝐶(𝑤;𝑢,𝑤𝑜𝑙𝑑) = 𝜆𝑤||𝑤||2 +
𝑘∑︁

𝑖=1

max
(𝑖,𝑓,𝛿)∈𝐶

𝑤𝑇𝑓 + 𝛿. (3.10)

ℬ𝐶𝐴
(𝑤) = 𝐵𝑢(𝑤,𝑤

𝑜𝑙𝑑) when 𝐶𝐴 includes all possible latent configurations; that is

𝐶𝐴 = {(𝑖, 𝑓, 𝛿)|𝑖 ∈ {1, . . . , 𝑘}, 𝑓 = Φ(𝑥𝑖, 𝑧, 𝑧
(𝑖,𝑤𝑜𝑙𝑑), 𝑎𝑦,𝑦𝑖 , 𝑎̄𝑦,𝑦𝑖), 𝛿 = ∆(𝑦𝑖, 𝑦), (𝑦, 𝑧) ∈ 𝑍𝑖}.

We denote the set of hard and easy examples of a dataset 𝒟 with respect to 𝑤

60



Algorithm 4 Fast optimization of 𝐵𝑢(𝑤,𝑤
𝑜𝑙𝑑) using hard example mining

Input: : 𝑤𝑜𝑙𝑑

1: 𝐶0 := {(𝑖,0, 0)|1 ≤ 𝑖 ≤ 𝑘}
2: 𝑡 := 0
3: while ℋ(𝑤𝑡, 𝑤𝑜𝑙𝑑,𝒟) ̸⊆ 𝐶𝑡 do
4: 𝐶𝑡 := 𝐶𝑡 ∖ ℰ(𝑤𝑡, 𝑤𝑜𝑙𝑑,𝒟)
5: 𝐶𝑡 := 𝐶𝑡 ∪ℋ(𝑤𝑡, 𝑤𝑜𝑙𝑑,𝒟)
6: 𝑤𝑡+1 := arg min𝑤 ℬ𝐶𝑡(𝑤) ◁ ℬ𝐶𝑡 defined as in Equation 3.10
7: 𝑡 := 𝑡+ 1
8: end while
Output: 𝑤𝑡

and 𝑤𝑜𝑙𝑑 by ℋ(𝑤,𝑤𝑜𝑙𝑑,𝒟) and ℰ(𝑤,𝑤𝑜𝑙𝑑,𝒟), respectively, and define them as follows:

ℋ(𝑤,𝑤𝑜𝑙𝑑,𝒟) ={(𝑖,Φ(𝑥𝑖, 𝑧, 𝑧
(𝑖,𝑤𝑜𝑙𝑑), 𝑎𝑦,𝑦𝑖 , 𝑎̄𝑦,𝑦𝑖),∆(𝑦𝑖, 𝑦))|1 ≤ 𝑖 ≤ 𝑘,

(𝑦, 𝑧) = arg max
(𝑦,𝑧)∈𝑍𝑖

𝑤𝑇Φ(𝑥𝑖, 𝑧, 𝑧
(𝑖,𝑤𝑜𝑙𝑑), 𝑎𝑦,𝑦𝑖 , 𝑎̄𝑦,𝑦𝑖) + ∆(𝑦𝑖, 𝑦)} (3.11)

ℰ(𝑤,𝑤𝑜𝑙𝑑,𝒟) ={(𝑖,Φ(𝑥𝑖, 𝑧, 𝑧
(𝑖,𝑤𝑜𝑙𝑑), 𝑎𝑦,𝑦𝑖 , 𝑎̄𝑦,𝑦𝑖),∆(𝑦𝑖, 𝑦))|1 ≤ 𝑖 ≤ 𝑘, (𝑦, 𝑧) ∈ 𝑍𝑖,

𝑤𝑇Φ(𝑥𝑖, 𝑧, 𝑧
(𝑖,𝑤𝑜𝑙𝑑), 𝑎𝑦,𝑦𝑖 , 𝑎̄𝑦,𝑦𝑖) + ∆(𝑦𝑖, 𝑦) < 0} (3.12)

We use the caching procedure outlined in Algorithm 4 to optimize the bound 𝐵𝑢.

The algorithm starts with the initial cache 𝐶0 = {(𝑖,0, 0)|1 ≤ 𝑖 ≤ 𝑘} where 0 is the

all-zero vector. This corresponds to the set of correct classification hypotheses; one for

each training image. It then alternates between updating the cache and finding the

part filters 𝑤* that minimize ℬ𝐶 . This is repeated until the cache remains unchanged.

To update the cache we remove all the easy examples and add new hard examples to

it (lines 4 and 5 of Algorithm 4). Note that 𝐶0 ⊆ 𝐶 at all times.

Algorithm 4 may take up to 10 iterations to converge in practice, depending

on the value of 𝜆𝑤. However, one can save most of these cache-update rounds by

retaining the cache content after convergence and using it to warm-start the next call

to the algorithm. With this trick, except for the first call, Algorithm 4 takes only 2-3

rounds to converge. This is because many cache entries remain active even after 𝑤𝑜𝑙𝑑

is updated; this happens, in particular, as we get close to the last iterations of the

joint training loop (lines 2-8 of Algorithm 3). Note that to employ this trick one has
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to modify the feature values (i.e. the 𝑓 field in the triplets (𝑖, 𝑓, 𝛿)) of the entries in

the retained cache according to the updated value of 𝑤𝑜𝑙𝑑.

The following theorem shows that the caching mechanism of Algorithm 4 works;

meaning that it converges to 𝑤* = arg min𝑤′ 𝐵𝑢(𝑤
′, 𝑤𝑜𝑙𝑑) for any value of 𝑢,𝑤𝑜𝑙𝑑.

Theorem 3.1. The caching mechanism converges to 𝑤* = arg min𝑤′ 𝐵𝑢(𝑤
′, 𝑤𝑜𝑙𝑑).

Proof. Let 𝐶𝐴 be the cache that contains all possible latent configurations on 𝒟. As-
sume that Algorithm 4 converges to 𝑤† after 𝑇 iterations i.e. 𝑤† = arg min𝑤 ℬ𝐶𝑇

(𝑤).

Since the algorithm converged 𝐶𝐴∖𝐶𝑇 ⊆ ℰ(𝑤†, 𝑤𝑜𝑙𝑑,𝒟). Consider a small ball around

𝑤† such that for any 𝑤 in this ball ℋ(𝑤,𝑤𝑜𝑙𝑑,𝒟) ⊆ 𝐶𝑇 . The two functions ℬ𝐶𝐴
(𝑤)

and 𝐵𝑢(𝑤,𝑤
𝑜𝑙𝑑) are equal in this ball and 𝑤† is a local minimum inside this region.

𝐵𝑢(𝑤,𝑤
𝑜𝑙𝑑) is strictly convex, thus, 𝑤† is the global minimum of 𝐵𝑢(𝑤,𝑤

𝑜𝑙𝑑).

To complete the proof we need to show that the algorithm does in fact converge.

The number of possible caches is finite and the algorithm does not visit the same

cache more than once, thus, it has to converge in a finite number of iterations.

Line 6 of Algorithm 4 is a convex optimization problem and can be solved using

gradient based approaches or quadratic programming. We use the latter approach for

the reasons mentioned in Section 1.5. This optimization problem becomes equivalent

to that of (1.16) if we set 𝑆𝑖 = {(𝜓, 𝛿)|(𝑖, 𝑓, 𝛿) ∈ 𝐶𝑡, 𝜓 = 𝑓}.

3.6 Random Part Generation (1st Step of the Pipeline)

The joint training objective in (3.6) is non-convex making Algorithm 3 sensitive to

initialization. Thus, the choice of initial parts can be crucial in training models that

perform well in practice. We devote the first two steps of our pipeline to finding

good initial parts (Figure 3-2). We then use those parts to initialize the joint training

procedure of Section 3.5.

In the first step of our pipeline we randomly generate a large pool of initial parts.

Generating a part involves picking a random training image (regardless of the image

category labels) and extracting features from a random sub-window of the image
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followed by whitening [26]. To whiten a feature vector 𝑓 we use Σ−1(𝑓 − 𝜇) where 𝜇

and Σ are the mean and covariance of all patches in all training images. We estimate

𝜇 and Σ from 300,000 random patches. We use the norm of the whitened features

to estimate discriminability of a patch. Patches with large whitened feature norm

are farther from the mean of the background distribution in the whitened space and,

hence, are expected to be more discriminative. Similar to [2] we discard the 50% least

discriminant patches from each image prior to generating random parts.

Our experimental results with HOG features (Figure 3-4) show that randomly

generated parts using the procedure described here perform better than or comparable

to previous methods that are much more involved [31, 17, 63]. When using CNN

features we get very good results using random parts alone, even before part-selection

and training of the part filters (Figure 3-5).

3.7 Part Selection (2nd Step of the Pipeline)

Random part generation may produce redundant or useless parts. In the second step

of our pipeline we train classifiers 𝑢 using ℓ1/ℓ2 regularization (a.k.a. group lasso) to

select a subset of parts from the initial random pool. This is similar to the procedure

used in [63]. We group entries in each column of 𝑢. Let 𝜌𝑗 denote the ℓ2-norm of the

𝑗-th column of 𝑢. The ℓ1/ℓ2 regularization is defined by 𝑅𝑔(𝑢) = 𝜆
∑︀𝑚

𝑗=1 𝜌𝑗 where

𝜌𝑗 =
√︁∑︀

𝑦 𝑢
2
𝑦,𝑗 is the ℓ2-norm of the column of 𝑢 that corresponds to part 𝑗.

If part 𝑗 is not uninformative or redundant 𝜌𝑗 (and therefore all entries in the

𝑗-th column of 𝑢) will be driven to zero by the regularizer. We train models using

different values for 𝜆 to generate a target number of parts. The number of selected

parts decreases monotonically as 𝜆 increases. Figure 3-3 in the supplement shows

this. We found it important to retrain 𝑢 after part selection using ℓ2 regularization

to obtain good classification performance.
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Part selection is done by optimizing the following objective function:

𝜆

𝑚∑︁

𝑗=1

𝜌𝑗 +
𝑘∑︁

𝑖=1

max{0,max
𝑦 ̸=𝑦𝑖

(𝑢𝑦 − 𝑢𝑦𝑖) · 𝑟(𝑥𝑖, 𝑤) + 1}. (3.13)

This objective function is convex. We minimize it using stochastic gradient descent.

This requires repeatedly taking a small step in the opposite direction of a sub-gradient

of the function. Let 𝑅𝑔(𝑢) = 𝜆
∑︀𝑚

𝑗=1 𝜌𝑗. The partial derivative 𝜕𝑅𝑔

𝜕𝑢𝑦
= 𝑢𝑦

𝜌𝑗
explodes

as 𝜌𝑗 goes to zero. Thus, we round the 𝜌𝑗’s as they approach zero. We denote the

rounded version by 𝜏𝑗 and define them as follows:

𝜏𝑗 =

⎧
⎨
⎩

𝜌𝑗 if 𝜌𝑗 > 𝜖
𝜌2𝑗
2𝜖

+ 𝜖
2

if 𝜌𝑗 ≤ 𝜖
.

The constants in the second case are set so that 𝜏𝑗 is continuous; that is
𝜌2𝑗
2𝜖

+

𝜖
2

= 𝜌𝑗 when 𝜌𝑗 = 𝜖. In summary, part selection from an initial pool of parts

𝑤 = (𝑤1, . . . , 𝑤𝑚) involves optimizing the following objective function:

𝜆
𝑚∑︁

𝑗=1

𝜏𝑗 +
𝑘∑︁

𝑖=1

max{0,max
𝑦 ̸=𝑦𝑖

(𝑢𝑦 − 𝑢𝑦𝑖) · 𝑟(𝑥𝑖, 𝑤) + 1} (3.14)

We can control the sparsity of the solution to this optimization problem by changing

the value of 𝜆. In Figure 3-3 we plot 𝜌𝑗 for all parts in decreasing order. Each

curve corresponds to the result obtained with a different 𝜆 value. These plots suggest

that the number of selected parts (i.e. parts whose 𝜌𝑗 is larger than a threshold that

depends on 𝜖) decreases monotonically as 𝜆 increases. We adjust 𝜆 to obtain a target

number of selected parts.

3.8 Experiments

We evaluate our methods on the MIT-indoor dataset [52]. We compare performance

of models with randomly generated parts, selected parts, and jointly trained parts.
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Figure 3-3: Effect of 𝜆 on part
norms. Each plot shows sorted 𝜌𝑗
values for a particular choice of 𝜆.

We also compare performance of HOG and CNN features. The dataset has 67 indoor

scene classes. There are about 80 training and 20 test images per class. Recent part-

based methods that do well on this dataset [31, 17, 63] use a large number of parts

(between 3350 and 13400).

HOG features: We resize images (maintaining aspect ratio) to have about 2.5𝑀

pixels, and extract 32-dimensional HOG features [14, 20] at multiple scales. Our HOG

pyramid has 3 scales per octave. This yields about 11,000 patches per image. Each

part filter 𝑤𝑗 models a 6×6 grid of HOG features, so 𝑤𝑗 and 𝜓(𝑥, 𝑧𝑗) are both 1152-

dimensional.

CNN features: We extract CNN features at multiple scales from overlapping

patches of fixed size 256×256 and with stride value 256/3 = 85. We resize images

(maintaining aspect ratio) to have about 5𝑀 pixels in the largest scale. We use a

scale pyramid with 2 scales per octave. This yields about 1200 patches per image.

We extract CNN features using Caffe [29] and the hybrid neural network from [73].

The hybrid network is pre-trained on images from ImageNet [16] and PLACES [73]

datasets. We use the output of the 4096 units in the penultimate fully connected

layer of the network (fc7). We denote these features by HP in our plots.

Part-based representation: Our final image representation is an𝑚𝑅-dimensional

vector of part responses where 𝑚 is the number of shared parts and 𝑅 is the number

of spatial pooling regions. We use 𝑅 = 5 pooling regions arranged in a 1×1 + 2×2

grid. To make the final representation invariant to horizontal image flips we average

the 𝑚𝑅-dimensional vector of part responses for image 𝑥 and its right-to-left mirror

65



10
1

10
2

10
3

35

40

45

50

55

60

65

70

75

80

# parts

P
e

rf
o

rm
a

n
c
e

 %

 

 

Random parts (no flipping)

Random parts (flip invariant)

Selected parts (from 10K)

Jointly trained parts

10
2

10
3

10
4

20

30

40

50

60

# parts

P
e

rf
o

rm
a

n
c
e

 %

 

 

Random parts (no flipping)

Random parts (flip invariant)

Selected parts (from 5K)

Jointly trained parts

Juneja et al.

Doersch et al.

Sun et al.

Figure 3-4: Performance of HOG features on 10-class subset (left) and full MIT-indoor
dataset (right).

image 𝑥′ to get [𝑟(𝑥,𝑤) + 𝑟(𝑥′, 𝑤)] /2 as in [17].

We first evaluate the performance of random parts. Given a pool of randomly ini-

tialized parts (Section 3.6), we train the part weights 𝑢 using a standard ℓ2-regularized

linear SVM; we then repeat the experiment by selecting few parts from a large pool

using ℓ1/ℓ2 regularization (Section 3.6). Finally, we evaluate jointly trained parts

(Section 3.5). While joint training significantly improves performance, it comes at a

significantly increased computational cost making it impossible to do joint training

on models with more than a few hundred shared parts.

Figure 3-4 shows performance of HOG features on the MIT-indoor dataset. HOG

features are high dimensional (1152) and the number of potential placements in a

HOG pyramid is huge (tens of thousands). This makes it prohibitively slow to do

joint training with HOG features. To make it tractable, we consider training on a 10-

class subset of the dataset for experiments with HOG features. The subset comprises

bookstore, bowling, closet, corridor, laundromat, library, nursery, shoeshop, staircase,

and winecellar. Performance of random parts increases as we use more parts. Flip

invariance and part selection consistently improve results. Joint training improves the

performance even further by a large margin achieving the same level of performance as

the selected parts using much fewer parts. On the full dataset, random parts already

outperform the results from [31], flip invariance boosts the performance beyond [63].
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Joint training dominates other methods. However, we could not directly compare

with the best performance of [17] due to the very large number of parts they use.

Figure 3-5 shows performance of CNN features on MIT-indoor dataset. As a

baseline we extract CNN features from the entire image (after resizing to 256×256

pixels) and train a multi-class linear SVM. This obtains 72.3% average performance.

This is a strong baseline. [55] get 58.4% using CNN trained on ImageNet. They

improve the result to 69% after data augmentation.

We applied PCA on the 4096 dimensional CNN features to make them compact.

This is necessary for making the joint training tractable both in terms of running

time and memory footprint. Figure 3-5-left shows the effect of PCA dimensionality

reduction. Surprisingly, we lose only 1% in accuracy with 160 PCA coefficients and

only 3.5% with 60 PCA coefficients. We also show how performance changes when a

random subset of dimensions is used. For joint training we use 60 PCA coefficients.

Figure 3-5-right shows performance of our part-based models using CNN features.

For comparison with HOG features we also plot result of [17]. Note that part-based

representation improves over the CNN extracted on the entire image. With 13400

random parts we get 77.1% (vs 72.3% for CNN on the entire image). The improvement

is from 68.2% to 72.4% when we use 60 PCA coefficients. Interestingly, the 60 PCA

coefficients perform better than the full CNN features when only a few parts are used

(up to 1000). The gap increases as the number of parts decreases.

We do part selection and joint training using 60 PCA coefficients of the CNN

features. We select parts from an initial pool of 1000 random parts. Part selection

is most effective when a few parts are used. Joint training improves the quality of

the selected parts. With only 372 jointly trained parts we obtain 73.3% classification

performance which is even better than 13400 random parts (72.4%).

The significance of our results is two fold: 1) we demonstrate a very simple and fast

to train pipeline for image classification using randomly generated parts; 2) we show

that using part selection and joint training we can obtain similar or higher perfor-

mance using much fewer parts. The gain is largest for CNN features (13400/372 ≈ 36

times). This translates to 36x speed up in test time. See Section 3.9 for detailed

67



10
2

10
3

20

30

40

50

60

70

Feature dimension (log scale)

P
e

rf
o

rm
a

n
c
e

 %

 

 

HP random dimensions

HP PCA coefficients

HP full

10
1

10
2

10
3

10
4

20

30

40

50

60

70

80

# parts

P
e
rf

o
rm

a
n
c
e
 %

 

 

Doersch et al.

Random parts on HP full

Random parts on HP PCA 60

Selected parts on HP PCA (from 1K)

Jointly trained parts on HP PCA 60

Figure 3-5: Performance of CNN features on the full MIT-indoor dataset. HP denotes
the hybrid features from [73]. Left: the effect of dimensionality reduction on per-
formance of the CNN features extracted from the entire image. Two approaches are
compared; random selection over 5 trials (blue curve) and PCA (red curve). Right:
part-based models with random parts (blue curves), selected parts from 1K random
parts (red curve), and jointly trained parts (black curve).

run-time analysis of our method.

In Figure 3-4-left random parts (the blue curve) reach 73.9% using 500 parts while

jointly trained parts (the black curve) reach 73.5% using 52 parts. In Figure 3-4-right

random parts (the blue curve) reach 47.0% using 672 parts while jointly trained parts

(the black curve) reach 45.4% using 120 parts.

3.8.1 Visualizing the Model Trained with CNN Features

Figure 3-6 shows the part weight matrix after joint training a model with 52 parts on

the full MIT-indoor dataset. This model uses 60 PCA coefficients from the HP CNN

features. Figure 3-7 shows top scoring patches for a few parts before and after joint

training. The parts correspond to the model illustrated in Figure 3-6. The benefit

of joint training is clear. The part detections are more consistent and “clean” after

joint training. Part 17 seem to be detecting cribs initially but after joint training it

becomes a more accurate bed detector while still firing on cribs.

Before joint training, majority of the detections of part 25 are seats. Joint training

filters out the noise coming from bed and sofa. Part 46 consistently fires on faces even
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Figure 3-7: Top detections of two parts are shown before and after joint training on
test images of the full MIT-indoor dataset. The numbers in the first column match
the part indices in Figure 3-6.
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before joint training. After joint training, however, the part becomes more selective

to a single face and the detections become more localized.

Figure 3-8 illustrates selectivity of a few parts. Each row shows the highest scoring

detections of a particular part on test images. The part indices in the first column

match those of Figure 3-6. Even though most detections look consistently similar

the images usually belong to multiple classes demonstrating part sharing across cat-

egories. For example, while part 17 appears to capture bed the images belong to

hospitalroom, childrensroom, and bedroom classes. While part 25 appears to capture

seats the images belong to waitingroom, library, auditorium, and insidebus. Con-

versely, multiple parts may capture the same semantic concept. For example, parts 3,

16, and 35 appear to capture shelves but they seem to be tuned specifically to shelves

in pantry, store, and book-shelves respectively. Part 1 fires on clothing-rack, part 22

appear to find container, and part 33 detects table-top. Some parts respond to a part

of an object; e.g. part 40 and 46 respond to leg and face. Others find entire objects or

even composition of multiple objects. For example, parts 6, 17, 37, 43 detect laundro-

mats, beds, cabinets, and monitor. Part 29 detects composition of seats-and-screen.

There are also parts that capture low-level features such as the mesh pattern of part

31 and the high-frequency horizontal stripes of part 41. Also, there are parts that are

selective for certain colors. For example, part 9 appears to be capturing specific red

patterns (in particular fruits and flowers). Part 48 is very well tuned to finding text.

The part weight matrix 𝑢 (Figure 3-6) helps us better understand how parts

assists classification. Part 6 has significantly high weight for class laundromat and it

appears to be a good detector thereof. Part 27 fires strongly on game/sports-related

scenes. The weight matrix reveals that this part is strongly correlated with gameroom,

casino, and poolinside. Part 17 fires strongly on bed and it has the highest weight for

hospitalroom, children_room, bedroom, and operating_room.

The weight matrix also identifies negative parts. An interesting example is part

46 (the face detector). One would expect this part to be positive for most classes,

reflecting presence of humans in indoor scenes. Part 46 has the lowest weight for

buffet, classroom, computerroom, and garage, suggesting that it is a negative part for
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these classes relative to others. This is surprising because one would expect to find

people in scenes such as classroom and computerroom. We examined all training

images of these classes and found no visible faces in them except for 1 image in

classroom and 3 images in computerroom with hardly visible faces and 1 image in

garage with a clear face in it.

Part 21 is highly weighted for laundromat, library, and cloister and it appears to

respond strongly to arch. Also note that part 21 is a strong negative part for bookstore

relative to library. Presence of an arch, in fact, is a very sensible differentiating pattern

that could tell library apart from bookstore.

3.8.2 Visualizing the Model Trained with HOG Features

In this section we visualize models trained using HOG features [14]. Figure 3-9 shows

the part filters and the weight matrix after joint training a model with 52 parts on the

10-class subset of MIT-indoor dataset. The part weight matrix illustrates whether

a part is positive or negative with respect to two categories. For example, part 42

is positive for bookstore and library relative to laundromat. Part 29 is positive for

laundromat relative to bookstore and library. Part 37 is positive for library relative

to bookstore so it can be used in combination with the other two parts to distinguish

between all three categories bookstore, library, and laundromat. Figure 3-10 illustrates

the top scoring patches for these three parts.

3.9 Processing Time

Test time: the test procedure of our models involves three simple steps: 1) con-

volving part filters with the test image, 2) computing the part-based representation

3) finding the class with the highest classification score. Step 1 takes 𝑂(𝑚ℎ𝑑) time

where 𝑚, ℎ, and 𝑑 are the number of parts, latent locations, and dimensionality of the

patch features. Step 2 takes 𝑂(ℎ𝑅) time where 𝑅 is the number of pooling regions.

Step 3 takes 𝑂(𝑛𝑚𝑅) time where 𝑛 is the number of classes. The bottleneck in test

time is step 1 and 3 both of which depend on the number of parts 𝑚. So, a decrease in
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Figure 3-8: Top detections of parts on test images of the full dataset. The numbers
in the first column match the part indices in Figure 3-6. Part detection is done in
a multi-scale sliding window fashion and using a 256×256 window. For visualization
purposes images are stretched to have the same size.
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Figure 3-9: Part filters (top) and part weights (bottom) after joint training a model
with 52 parts on the 10-class dataset. Here we use HOG features. Although the model
uses 5 pooling regions (corresponding to cells in 1×1 + 2×2 grids) here we show the
part weights only for the first pooling region corresponding the entire image.
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Figure 3-10: Top detections of three parts on test images of the 10-class dataset.
The numbers in the first column match the part indices in Figure 3-9. Patches from
bookstore, laundromat, and library images are highlighted in red, green, and blue
respectively (best viewed in color).
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𝑚 directly affects the test time. Note that both of these two steps are embarrassingly

parallel processes.

Training time: the training procedure involves two main steps: 1) learning part

weights (line 3 in Algorithm 3) and 2) learning part filters (lines 4-7 in Algorithm 3).

The first step is a standard multi- class SVM problem and is relatively fast to train.

The bottleneck in training is the second step.

Learning part filters involves multiple nested loops: 1) joint training loop (lines

2-8 in Algorithm 3), 2) relabeling loop (lines 4-7 in Algorithm 3), 3) cache update

loop (lines 4-9 in Algorithm 4), and 4) the constraint generation loop of the QP solver

(lines 3-10 in Algorithm 1). The number of iterations each loop takes depends on the

training data and the hyper parameters of the model (i.e. 𝜆𝑤 and 𝜆𝑢).

We report the running time of our joint training algorithm separately for one

experiment that uses HOG features and one that uses CNN features as the dimen-

sionality of the features and the number of latent locations they consider is different.

In our current implementation it takes 5 days to do joint training with 120 shared

parts on the full MIT-indoor dataset on a 16-core machine using HOG features. It

takes 2.5 days to do joint training with 372 parts on the full dataset on a 8 core

machine using 60-dimensional PCA-reduced CNN features. Note that these time

include learning all shared part filters and all 67 class-specific part weight vectors on

a single machine. In both experiments finding the most violated constraint (line 8 in

Algorithm 1) takes more than half of the total running time. The second bottleneck for

HOG features is growing the caches (line 6 in Algorithm 4). This involves convolving

the part filters (1152 dimensional HOG templates) with all training images (each

containing 11000 candidate locations). With the CNN features, however, the second

bottleneck becomes the QP solver (line 7 in Algorithm 4). The QP solver that we

use only uses a single core. In both cases the ratio of the time taken by the first

bottleneck to the second one is 4 to 1.

The pipeline in previous methods such as [31, 63, 17] has several steps. For

example, to discover parts, [31] applies multiple superpixel segmentations on the

image to find initial seeds, trains exemplar LDA for each seed, enhances the candidate
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Figure 3-11: Our part-based model can be thought of as a 3-layer Neural Network.
The first layer is convolutional. Different channels correspond to different parts. The
second layer performs the max-pooling operation in 4 quadrants of the part response
maps. The last layer is fully connected and performs 67-way classification.

parts by harvesting similar patches in the dataset, and computes the entropy of the

top-50 detections of each part over categories. They discard parts with high entropy

as well as duplicates. Besides using several heuristics, these methods are also slow; [17]

do not comment on the processing time of their method but we know from personal

correspondence that their code takes a long time to run. However, most of the steps

in their method are independent; e.g. they start their method from multiple initial

points to find the discriminative modes, they train 1-vs-all classifiers, etc. So, they

distribute the processing load on a big cluster in order to run their experiments.

Our experimental results showed that we can obtain better performance than [31]

and [63] using a pool of randomly initialized parts (see Figure 3-4). Note that creating

a pool of random parts is very straightforward and fast. It only takes extracting

features from random sub-window of a random image and applying a simple feature

transformation on them (see Section 3.6).
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3.10 Connection to Convolutional Neural Networks

The part-based model that we presented in this chapter can be implemented as a

convolution neural network with three layers. This is illustrated in Figure 3-11. The

first layer convolves part filters with the input image (or some features extracted

from it). Each part produces a response map independently from the others. The

second layer performs the max-pooling operation. And the third (fully connected)

layer performs the classification.

Convolutional Neural networks are typically trained using the back-propagation

algorithm. Success of back-propagation hinges upon the selection of a good learning

rate schedule. The learning rate schedules, however, are application dependent and

hard to tune. Moreover, in practice, a stochastic version of the back-propagation

algorithm is used which makes the training even less reliable and predictable.

We, on the other hand use sequential convex optimization for training which is

more predictable, robust, and reliable than back-propagation. More specifically, our

optimization algorithm is guaranteed to (1) improve the training objective in each

step, and (2) converge to a local minimum or saddle point of the objective function.

3.11 Conclusion

We presented a simple pipeline to train part-based models for image classification.

All model parameters are trained jointly in our framework; this includes shared part

filters and class-specific part weights. All stages of our training pipeline are driven

directly by the same objective namely the classification performance on a training

set. In particular, our framework does not rely on ad-hoc heuristics for selecting

discriminative and/or diverse parts. We also introduced the concept of “negative

parts”for part-based models.

Models based on our randomly generated parts perform better than almost all

previously published work despite the profound simplicity of the method. Using CNN

features and random parts we obtain 77.1% accuracy on the MIT-indoor dataset,
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improving the state-of-the-art. We also showed that part selection and joint training

can be used to train a model that achieves better or the same level of performance

as a system with randomly generated parts while using much fewer parts.

Joint training alternates between training part weights and updating part filters.

This process can be initiated before the first or the second step leading to two different

initialization schemes. Currently we use random examples to initialize the part filters.

It would also be possible to initialize the entries in 𝑢 based on how a hypothetical

part is correlated with a class; negatively, irrelevant, or positively. Training the part

filters would then learn part models that fit this description.

Our part-based models can be seen as 3-layer convolutional neural networks. Con-

vNets are typically trained using stochastic back-propagation which is hard to tune

in practice. Our training algorithm, on the other hand, uses sequential convex opti-

mization instead which is more robust and reliable in practice.
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Chapter 4

Generalized Latent Variable Models

Discriminative latent variable models (LVM) are frequently and successfully applied to

various visual recognition tasks [20, 24, 70, 54, 62, 47, 48]. Latent variables provide a

formalism for modeling structured variation of visual features. Conventionally, latent

variables are defined on the variation of the foreground (positive) class. We augment

LVMs to include negative latent variables corresponding to the background class.

Negative latent variables can, for instance, learn mutual exclusion constraints, model

scene subcategories where the positive object class is unlikely to be found, or capture

specific parts that indicate the presence of an object of a similar but different class.

We formulate the family of Generalized Latent Variable Models (GLVMs) in Sec-

tion 4.1. We propose a procedure for learning parameters in GLVMs in Section 4.2.

In Section 4.3 we show how the training algorithm of the well known Deformable

Part Models of [20] changes when we add negative latent variables (or parts) to it.

Finally, in Section 4.4 we study the performance of such generalizations of DPMs and

demonstrate considerable improvement on two detection datasets.

4.1 Generalized Latent Variable Models (GLVMs)

In binary classification inputs are classified into foreground (𝑦 = +1) and background

(𝑦 = −1). In this chapter we focus on binary classification problems which suit many

real-world applications better, compared to multi-class classification. We generalize
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LVMs by equipping them with latent variables that look for “counter evidence” for the

foreground class. For example, for a cow detector, presence of saddle/ rider/aeroplane

counts as counter evidence whereas presence of meadow/stable counts as evidence.

We call the latent variables that collect evidence for the foreground class positive

latent variable and the latent variables that collect counter evidence for the foreground

class negative latent variable and denote them by 𝑎 and 𝑏 respectively throughout

this chapter. Note that this is related to the concept of positive and negative parts

that we discussed earlier in Chapter 3 (see Definition 3.1 in Section 3.3).

In binary classification we are interested in the relative score of the foreground

class compared to the background class. In particular, we only need to model the

score difference between foreground and background and classification can be done

by comparing the value of the difference to a fixed threshold. So, the score function

of a 2-class LVM can be written as follows (cf. Equation 1.27):

𝑓𝑤(𝑥𝑖) = max
𝑎∈𝑍

𝑤 · 𝜑(𝑥𝑖, 𝑎). (4.1)

We define the simplest form of a GLVM score function involving a positive latent

variable 𝑎 ∈ 𝑍+ and a negative latent variable 𝑏 ∈ 𝑍− as follows:

𝑓𝑤(𝑥𝑖) = max
𝑎∈𝑍+

𝑤 · 𝜑(𝑥𝑖, 𝑎) − max
𝑏∈𝑍−

𝑤 · 𝜑(𝑥𝑖, 𝑏) (4.2)

= max
𝑎∈𝑍+

𝑤 · 𝜑(𝑥𝑖, 𝑎) + min
𝑏∈𝑍−

−𝑤 · 𝜑(𝑥𝑖, 𝑏)

= max
𝑎∈𝑍+

min
𝑏∈𝑍−

𝑤 · 𝜑(𝑥𝑖, 𝑎)− 𝑤 · 𝜑(𝑥𝑖, 𝑏)

= max
𝑎∈𝑍+

min
𝑏∈𝑍−

𝑤 · 𝜑(𝑥𝑖, 𝑎, 𝑏), (4.3)

where 𝜑(𝑥𝑖, 𝑎, 𝑏) = 𝜑(𝑥𝑖, 𝑎)−𝜑(𝑥𝑖, 𝑏). Though this assumes that 𝑎 and 𝑏 are indepen-

dent, in general, 𝜑(𝑥𝑖, 𝑎, 𝑏) can be any function of the joint latent configuration (𝑎, 𝑏).

One can show that when 𝑎 and 𝑏 are independent the training objective that uses

(4.2) is equivalent to a 2-class LS-SVM. We also note that GLVM is more general

than LVM for binary classifiers, in particular, (4.2) reduces to (4.1) when 𝑍− = ∅.
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The score associated to a positive latent variable (i.e. max𝑎∈𝑍+ 𝑤 · 𝜑(𝑥𝑖, 𝑎)) is

positively correlated with the final classification score. The score associated to a

negative latent variable, however, is negatively correlated with the final classification

score. This is not to be confused with negative entries in the model vector 𝑤. In a

model with linear score function 𝑓𝑤(𝑥) = 𝑤 · 𝜑(𝑥) the value of the 𝑑-th dimension

of the feature vector (i.e. 𝜑(𝑥)𝑑) is negatively correlated with 𝑓𝑤(𝑥) when 𝑤𝑑 < 0.

Yet, negative latent variables are fundamentally different from this. In particular, a

negative latent variable is not equivalent to flipping the sign in some dimensions of

the parameter vector and using a positive latent variable instead.

We can extend the score function of Equation 4.3 by making a hierarchy of alter-

nating positive and negative latent variables recursively. This general formulation has

interesting ties to compositional models, like object grammar [21, 22], and high-level

scene understanding. For example, we can model scenes according to the presence of

some objects (positive latent variable) and the absence of some other objects (nega-

tive latent variable). Each of those objects themselves can be modeled according to

presence of some parts (positive) and absence of others (negative). We can continue

the recursion further. The GLVM score function, after being expanded recursively,

can be written in the following general form:

𝑓𝑤(𝑥𝑖) = max
𝑎1

min
𝑏1

max
𝑎2

min
𝑏2

... max
𝑎𝐾

min
𝑏𝐾

𝑤 · 𝜑
(︀
𝑥𝑖, (𝑎𝑘, 𝑏𝑘)

𝐾
𝑘=1

)︀
(4.4)

We call (4.4) the canonical form of a GLVM score function. Note that any other score

function that is a linear combination of 𝑚𝑎𝑥’s and 𝑚𝑖𝑛’s of linear functions can be

converted to this canonical form.

4.2 Training GLVMs

In this section we propose an algorithm for training GLVMs to do binary classification.

We focus on SVM training objective and use hinge loss. However, the same idea can be

used to optimize any training objective that involves a linear combination of convex
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and/or concave functions of GLVM scores. For the ease of notation we drop the

subscript 𝑤 in 𝑓𝑤 in the rest of this section.

Let 𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1 denote a set of 𝑛 labeled training examples. Each example

is a pair (𝑥𝑖, 𝑦𝑖) where 𝑥𝑖 is the input data and 𝑦𝑖 ∈ {+1,−1} is the ground-truth

label associated with it. The training objective for binary SVM can be written as:

𝑂(𝑤) =
1

2
||𝑤||2 + 𝐶

𝑛∑︁

𝑖=1

max {0, 1− 𝑦𝑖𝑓(𝑥𝑖)} . (4.5)

We train GLVMs using an iterative algorithm that is very similar to CCCP [72].

But, unlike CCCP, we do not linearize the concave part of the objective function.

Our training algorithm alternates between two steps: 1) constructing a convex upper

bound to the training objective 𝑂 and 2) minimizing the bound. Let 𝑏𝑡(𝑤) denote

the bound constructed at iteration 𝑡. Also, let 𝑤𝑡 = arg min𝑤 𝑏𝑡(𝑤) be the minimizer

of the bound. All bounds touch the objective function at the solution of the previous

bound; that is 𝑏𝑡(𝑤𝑡−1) = 𝑂(𝑤𝑡−1),∀𝑡. This process is guaranteed to converge to a

local minimum or a saddle point of the training objective 𝑂.

To construct bounds we only need to construct a concave lower bound 𝑓(𝑥𝑖) and

a convex upper bound 𝑓(𝑥𝑖) to the score function of (4.4). We define 𝑏𝑡 as follows:

𝑏𝑡(𝑤) =
1

2
||𝑤||2 + 𝐶

𝑛∑︁

𝑖=1
𝑦𝑖=−1

max
{︀

0, 1 + 𝑓𝑡(𝑥𝑖)
}︀

+ 𝐶
𝑛∑︁

𝑖=1
𝑦𝑖=+1

max
{︁

0, 1− 𝑓𝑡(𝑥𝑖)
}︁
. (4.6)

In the next section we will explain how 𝑓𝑡(𝑥𝑖) and 𝑓𝑡(𝑥𝑖) are constructed for GLVMs.

Algorithm 5 summarizes all steps in our training procedure.

4.2.1 Convex Upper Bound and Concave Lower Bound

To obtain a convex upper bound 𝑓𝑡(𝑥𝑖) and a concave lower bound 𝑓𝑡(𝑥𝑖) on the GLVM

score function of (4.4) we fix all the negative and all the positive latent variables in

𝑓(𝑥𝑖), respectively.

Let 𝑤𝑡 denote the model at iteration 𝑡, and 𝑎 = (𝑎1, . . . , 𝑎𝐾) be an arbitrary
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Algorithm 5 Training GLVM classifiers.

Input: 𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1, 𝑤0

1: 𝑡← 0
2: repeat
3: 𝑡← 𝑡+ 1
4: Construct 𝑓𝑡(𝑥) ◁ from Equation 4.9 and 𝑤𝑡
5: Construct 𝑓𝑡(𝑥) ◁ from Equation 4.10 and 𝑤𝑡
6: Construct 𝑏𝑡(𝑤) ◁ from Equation 4.6
7: 𝑤𝑡 ← arg min𝑤 𝑏𝑡(𝑤)
8: until 𝑤𝑡 does not change
Output: 𝑤𝑡

assignment of the positive latent variables. Given 𝑎, we denote the fixed values for

the negative latent variables on image 𝑥𝑖 by 𝑏(𝑡)(𝑥𝑖, 𝑎) = (𝑏
(𝑡)
1 (𝑥𝑖, 𝑎), . . . , 𝑏

(𝑡)
𝐾 (𝑥𝑖, 𝑎)) and

define it in (4.7). Similarly, we define 𝑎(𝑡)(𝑥𝑖, 𝑏) = (𝑎
(𝑡)
1 (𝑥𝑖, 𝑏), . . . , 𝑎

(𝑡)
𝐾 (𝑥𝑖, 𝑏)) in (4.8).

𝑏(𝑡)(𝑥𝑖, 𝑎) = arg min
𝑏1,...,𝑏𝐾

𝑤𝑡 · 𝜑
(︀
𝑥𝑖, (𝑎𝑘, 𝑏𝑘)

𝐾
𝑘=1

)︀
(4.7)

𝑎(𝑡)(𝑥𝑖, 𝑏) = arg max
𝑎1,...,𝑎𝐾

𝑤𝑡 · 𝜑
(︀
𝑥𝑖, (𝑎𝑘, 𝑏𝑘)

𝐾
𝑘=1

)︀
(4.8)

Note that (4.7) uses a min and (4.8) uses a max. Also, note that both equations use

𝑤𝑡 to compute the fixed assignments. Finally, we define 𝑓𝑡(𝑥𝑖) and 𝑓𝑡(𝑥𝑖) as follows:

𝑓𝑡(𝑥𝑖) = max
𝑎1

max
𝑎2

. . . max
𝑎𝐾

𝑤 · 𝜑
(︂
𝑥𝑖,

(︁
𝑎𝑘, 𝑏

(𝑡−1)
𝑘 (𝑥𝑖, 𝑎)

)︁𝐾
𝑘=1

)︂
, (4.9)

𝑓𝑡(𝑥𝑖) = min
𝑏1

min
𝑏2

. . . min
𝑏𝐾

𝑤 · 𝜑
(︂
𝑥𝑖,

(︁
𝑎
(𝑡−1)
𝑘 (𝑥𝑖, 𝑏), 𝑏𝑘

)︁𝐾
𝑘=1

)︂
. (4.10)

Equation 4.9 is convex because it is a max of linear functions and it is an upper

bound of 𝑓(𝑥) because the min functions are replaced with linear functions. Similarly,

Equation 4.10 is a concave lower bound of 𝑓(𝑥).

4.3 Adding Negative Parts to DPMs

Part based models have had a long and successful presence in the history of Computer

Vision [20, 12, 36, 8, 77]. The Deformable Part Models (DPMs) of [20], in particular,
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have been extensively used for object detection over the past decade. Despite their

incredible flexibility to object deformation and viewpoint changes, DPMs only look

for positive evidence in images and do not capture counter evidence. For example,

the knowledge that a saddle detector fires strongly on a detection window should

decrease the score of cow detector on that window. This is because cows tend not

to have saddles on their backs. Thus, if we find a saddle in the detection window

of a cow detector we, most likely, are confusing a horse for a cow. Counter evidence

is particularly important in discriminating between similar objects; like cow from

horse in the hypothetical example above. We obtain this behavior by augmenting

cow detector model with a negative part that fires on saddle.

A DPM is a mixture of multi-scale part-based detectors that model the appearance

of an object in different viewpoints. Each mixture component uses a root filter to

capture the global structure of the object in a coarse scale, and a set of deformable

part filters to capture the appearance of parts of the object in a higher resolution.

DPM is a latent variable model and, as such, uses a score function of the form

in (4.1) where the latent variable 𝑎 captures the choice of the mixture component

(which we denote by 𝑐), the location and scale of the root filter (which we denote by

𝑙0), and the location of the parts (which we denote by 𝑙1, . . . , 𝑙𝑚 for a model with 𝑚

parts), and we have 𝑎 = (𝑐, 𝑙0, 𝑙1, . . . , 𝑙𝑚).

4.3.1 Training DPMs without Negative Parts

Let 𝒟 = {(𝑥𝑖, 𝑦𝑖, 𝑏𝑜𝑥𝑖)}𝑛𝑖=1 denote a set of 𝑛 annotated training examples where 𝑥𝑖

is an image, 𝑦𝑖 ∈ {+1,−1} is a class label that determines whether the sample

belongs to the foreground class (𝑦𝑖 = +1) or the background class (𝑦𝑖 = −1), and

𝑏𝑜𝑥𝑖 specifies the coordinates of an annotated bounding box that circumscribes an

instance of the object in a foreground image. In background images any bounding box

is an independent negative example, and thus 𝑏𝑜𝑥𝑖 is irrelevant. DPM uses the root

filter as a detection window during training. Despite availability of 𝑏𝑜𝑥s on foreground

images, any placement of the root filter whose overlaps with an annotated bounding

box 𝑏𝑜𝑥𝑖 exceeds a certain threshold 𝜏 is considered as a potential true positive for
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𝑏𝑜𝑥𝑖. Let 𝐻(𝑥𝑖, 𝑏𝑜𝑥𝑖, 𝜏) denote the set of all valid detection windows for 𝑏𝑜𝑥𝑖. DPM

uses a latent variable to choose the true detection window from this set.

In order to train a DPM we first construct a training set 𝐷 from the annotated

examples in 𝒟. Each element in 𝐷 is a triplet (𝑥𝑖, 𝑦𝑖, 𝑅𝑖) where 𝑥𝑖 is an image, 𝑦𝑖

is the class label, and 𝑅𝑖 specifies a set of valid locations for placing the root filter

of the DPM. Each background example (𝑥, 𝑦 = −1, 𝑏𝑜𝑥) ∈ 𝒟 has multiple examples

(𝑥, 𝑦, {𝑟}) associated to it in 𝐷, one for each possible root placement 𝑟. Each fore-

ground example (𝑥, 𝑦 = +1, 𝑏𝑜𝑥) ∈ 𝒟 has exactly one example (𝑥, 𝑦, 𝑅) associated to

it in 𝐷 where 𝑅 = 𝐻(𝑥, 𝑏𝑜𝑥, 𝜏). In DPM, the value of 𝜏 is set to 0.7. The training

objective of DPM with 𝑘 mixture components can be written as follows:

𝑂(𝑤) =
1

2
||𝑤||2 + 𝐶

𝑁∑︁

𝑖=1

max

{︂
0, 1− 𝑦𝑖 max

𝑙0∈𝑅𝑖

𝑘
max
𝑐=1

max
𝑙1,...,𝑙𝑚

𝑤 · 𝜑(𝑥𝑖, 𝑐, 𝑙0, 𝑙1, . . . , 𝑙𝑚)

}︂
.

(4.11)

Note that 𝐷 is populated with numerous negative examples per each background

image of 𝒟 and therefore 𝑁 >> 𝑛, where 𝑁 denotes the size of 𝐷 and 𝑛 denotes

the size of 𝒟. This makes the direct optimization of the objective function of (4.11)

prohibitively slow. In practice, DPM uses a data mining procedure to minimize (4.11).

This involves maintaining a small subset of the training examples in 𝐷 together with

a few latent configurations for each example, and optimizing the training objective on

this reduced set, a.k.a. the cache. Each entry in the cache stores a latent configuration

𝑎 = (𝑐, 𝑙0, 𝑙1, . . . , 𝑙𝑚) and an image index 𝑖 from which one can compute the loss value

associated to the cache entry for a given 𝑤 as max {0, 1− 𝑦𝑖𝑤 · 𝜑(𝑥𝑖, 𝑐, 𝑙0, 𝑙1, . . . , 𝑙𝑚)}.
The loss value associated to an example 𝑥𝑖 with respect to the cache is the maximum

loss of all the entries in the cache whose image index is 𝑖.

DPM deploys CCCP for training. In each iteration of CCCP the latent variables

(i.e. 𝑐, 𝑙0, 𝑙1, . . . , 𝑙𝑚) for all positive examples in 𝐷 are fixed. Initially, none of the

entries in the cache correspond to negative examples, and the cache only contains one

entry for each positive training example corresponding to the latent configuration that

was fixed for it. The data mining procedure alternates between optimizing the training
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objective with respect to the current cache and then updating the content of the

cache. The cache-update step removes entries, corresponding to negative examples,

that score lower than −1 on the current model (a.k.a. easy negatives), and then adds

a new entry per negative example to the cache corresponding to the highest scoring

latent configurations of the negative example provided that it scores at least −1 on

the current model (a.k.a. hard negatives), while making sure there are no duplicate

entries in the cache. It is guaranteed that the data mining procedure stops after a

finite number of iterations and the minimizer of the cache converges to the minimizer

of the training objective of (4.11). In practice, the size of the cache remains small at

all times1, making the optimization of the objective function on the cache fast.

4.3.2 Training DPMs with Negative Parts

We extend DPMs by adding negative parts to them. We call the extended model

Generalized DPM (GDPM). The objective function of a GDPM with 𝑚 positive

parts and 𝑞 negative parts is as follows:

𝑂(𝑤) =
1

2
||𝑤||2 + 𝐶

𝑁∑︁

𝑖=1

max

{︂
0, 1− 𝑦𝑖 max

𝑙0∈𝑅𝑖

𝑘
max
𝑐=1

max
𝑙+

min
𝑙−

𝑤 · 𝜑(𝑥𝑖, 𝑐, 𝑙0, 𝑙
+, 𝑙−)

}︂
,

(4.12)

where the latent variables 𝑙+ = (𝑙+1 , . . . , 𝑙
+
𝑚) and 𝑙− = (𝑙−1 , . . . , 𝑙

−
𝑞 ) capture the location

of positive and negative parts respectively. Note that, we maximize over all latent

variables except for 𝑙−, which we minimize over.

To minimize the training objective of (4.12) we need to construct a concave lower

bound on the score of the positive samples and and a convex upper bound on the score

of the negative samples (see Section 4.2.1 for details). This can be done by fixing the

location of the negative parts for the negative samples (as in (4.9)), and the location

of the positive parts, the location of the root filter, and the mixture component for

1DPM stops growing the cache if the size of the cache reaches a pre-defined limit. This can
happen in the early stages of training, when the model is far from optimal. However, the limit is set
high enough that it never stalls converges of the cache.
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positive samples (as in (4.10)). A naive way of doing this is to store the location of the

fixed latent variables for any configuration of the free latent variables. For example,

for a negative image, this requires storing the location of the negative parts i.e. 𝑙−

for any given placement of the root filter 𝑙0, the positive parts 𝑙+, and selection of the

mixture component 𝑐. This requires a prohibitively large amount of memory. To do

this more efficiently, one can use the fact that the dependency structure in a DPM

follows a star model, and all parts become independent conditional on the root filter

location and the choice of the mixture component. This also requires an extremely

large amount of memory and is not practical.

We propose a memory-efficient way to construct convex upper bounds and concave

lower bounds to the score function by saving a copy of the model from the previous

iteration and inferring the value of the fixed latent variables using the stored model.

Although this entails an added computational cost of the inference process, but, has a

very small memory footprint (it only requires saving a copy of the model parameters).

More precisely, for a negative example, we use the stored model to infer the best

placement of the negative parts for any choice of (𝑙0, 𝑐). Similarly, for a positive

example, we use the stored model to infer the best placement of the positive parts

for any choice of (𝑙0, 𝑐). Once the latent variables are inferred, we compute the score

of the complete latent configuration with respect to the current model to decide

whether to add it to the cache cache (as a hard example), or to ignore it (as an easy

example). Despite the added computational burden, this works reasonably fast in

practice because we infer the value of the fixed latent variables only once per each

data mining iteration. The optimization of the cache is done the same as in DPM.

The data mining step in GDPM is different from that of DPM in two ways. The

first difference is in the way we add entries to the cache. Unlike DPM that stores

only one entry for each positive training sample in the cache, in GDPM we may have

multiple cache entries associated to a positive (as well as a negative) training sample.

The other difference is that, unlike DPM that only has hard negatives, in GDPM we

have hard examples that can be either positive or negative.
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4.3.3 Initializing Negative Parts

Similar to DPM [20], we initialized the location and appearance of parts by training a

detector without any parts; i.e. only a single root filter. We then select the sub-patch

of the root filter with the highest positive/negative energy. The positive/negative

energy of a sub-patch is measured by the sum of the squared values of the posi-

tive/negative weights in the sub-patch. The selected sub-patch is used to initialize a

positive/negative part. We then set the values in the selected sub-patch of the root

filter to zero and repeat the process to initialize the next positive/negative part.

We observed that negative parts in GDPM are particularly sensitive to initializa-

tion. This is due to the non-convexity of the optimization. Furthermore, while the

positive label corresponds to a single visual class the negative label encompasses more

classes and thus exhibits a multi-modal distribution.

Another approach to initialize negative parts is to use the positive parts from

models of other objects. For example, cow is visually similar to horse, and analyzing

the results of DPM also reveals that these two objects are often confused by DPM.

Our experiments show that while a DPM cow detector with 8 positive parts obtains

21.9 average precision, adding one negative part to the model and initializing it with

a part from the horse model improves the performance to 26.7 (see Figure 4-1).

4.4 Experimental Results

To demonstrate the efficacy of a GLVM we evaluate it on deformable part mod-

els (DPMs) by augmenting DPMs with negative parts. As discussed in Section 4.2

adding negative parts changes the optimization framework of DPMs. We conducted

experiments on two different datasets. Similar to [20], we use HOG [14] as feature

descriptor but the observed trends should be independent of this choice. We mea-

sure performance by the Average Precision of PR-curve. We use the PASCAL VOC

criterion of 50% intersection over union for recall.

PASCAL VOC 2007 Animals. We first evaluate GDPM on the animal cate-

gories of VOC 2007, i.e. bird, cat, cow, dog, and sheep. The training set of VOC 2007
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bird cat cow dog horse sheep

DPM8 10.9 16.6 21.9 12.5 56.0 18.0

GDPM
1
7 10.9 17.0 22.0 12.5 57.2 19.2

GDPM
2
6 9.5 18.6 23.2 12.2 56.0 19.8

GDPM
3
5 10.5 13.9 21.7 11.9 54.8 19.1

Table 4.1: Average Precision (AP) for
animal classes of PASCAL VOC 2007
dataset, comparing DPM with GDPM
with different number of parts. Sub (su-
per) indices indicate the number of posi-
tive (negative) parts.

Figure 4-1: PR-curve for the cow class.
We show result for DPM with 8 parts
(blue), GDPM with 6 positive and 2 neg-
ative parts initialized (red), and GDPM
with 8 positive and 1 negative part ini-
tialized by horse DPM model (green).

contains about 4500 negative images and a few hundreds (∼ 400) positive instances

per animal class. The same goes for the test set. We use the same hyper-parameters

as used for original DPM [20], namely 6 components (3 + 3 mirror components) and

8 parts per component. Our results slightly differ from those reported in [20] due to

the absence of post-processing (bounding box prediction and context re-scoring) and

slight differences in implementation. Table 4.1 summarizes the results for substitut-

ing some positive parts in DPM with negative parts. 4 out of the 6 tested classes

benefit from replacing positive parts with negative parts. Depending on the class

the optimal number of negative parts is different. Also, Figure 4-1 shows the Preci-

sion Recall curve for the cow class. Although GDPM performs better than DPM in

general, negative parts are particularly sensitive to initialization.

Cat Head. The second task is detection of heads of 12 breeds of cats in the Oxford

Pets dataset [49]. For each breed of cats the distractor set contains images of the other

11 breeds and 25 breeds of dogs. Each breed of cat has around 65 positive images

and 3500 negative images for training. Test set has the same number of images. This

task is particularly hard due to the low number of positive training images and the

high level of similarity between cats heads, making it a challenging tasks even for

humans. Table 4.2 compares performance of DPM and GDPM using various number
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Abyssinian Bengal Birman Bombay British Egyptian Maine Persian Ragdoll Russian Siamese Sphynx

Shorthair Mau Coon Blue

DPM4 21.3 12.8 34.5 23.3 32.2 15.8 21.6 28.0 19.4 24.0 29.4 22.7
DPM6 22.2 12.8 31.4 21.5 31.3 16.5 26.0 29.0 20.6 25.0 30.9 22.0
GDPM2

2 24.3 11.9 38.4 23.9 31.0 19.7 27.7 29.7 24.5 29.9 35.9 27.4
GDPM2

4 25.5 13.7 34.0 23.0 33.5 20.9 24.5 30.0 21.9 25.3 30.6 23.2

Table 4.2: Cat Head Detection: Results comparing DPM and GDPM with dif-
ferent number of positive and negative parts. Sub (super) indices show the number
of positive (negative) parts. GDPM consistently outperforms DPM variants. The
average cat head images are taken from [76].

of positive/negative parts. Because of the scarcity of positive samples in the training

set, we used one component per detector in this experiment. GDPM consistently

outperforms DPM while using the same total number of parts. The header images in

Table 4.2 are aligned average images generated by [76]. For a few classes (e.g. Bengal)

DPM with 4 positive parts outperforms GDPM with 2 positive and 2 negative parts,

but as we increase the number of parts to 6, replacing 2 positive parts with 2 negative

parts proves beneficial. We observed that adding more parts (beyond 6) degrades the

results. This can be due to over-fitting to the small number of positive images.

4.5 Conclusion

In this chapter we proposed a generalization of the family of latent variable models,

called GLVM, that explicitly captures the counter evidence associated with the nega-

tive latent variables along with the evidence captured by the positive latent variables.

We showed that GLVMs can model complex score functions that can be expressed as

arbitrarily interleaved maximizations and minimizations of latent variables.

We also described a general framework for training GLVMs and showed how DPMs

can benefit from the new perspective. Finally, we experimented on two object de-

tection tasks revealing the benefits of negative latent variables. We further observed

that expressive power of GLVM crucially depends on a careful initialization.
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Chapter 5

Generalized

Majorization-Minimization

Non-convex optimization is ubiquitous in computer vision and machine learning. The

Majorization-Minimization (MM) procedure systematically optimizes non-convex ob-

jectives through an iterative construction and optimization of upper bounds. The

bound at each iteration is required to touch the objective function at the optimizer of

the previous bound. We show that this touching constraint is unnecessary and overly

restrictive. We generalize MM by relaxing this constraint, and propose a new opti-

mization framework, named Generalized Majorization-Minimization (G-MM) that is

more flexible compared to MM. For instance, it can incorporate application-specific

biases into the optimization procedure without changing the objective function. We

derive G-MM algorithms for several latent variable models and show that they con-

sistently outperform their MM counterparts in optimizing non-convex objectives. In

particular, G-MM algorithms appear to be less sensitive to initialization.

5.1 Background

Many problem in computer vision and machine learning entail non-convex For exam-

ple, training object detectors from weakly labeled data [53, 61, 56], training classifiers

with latent variables [3, 51, 20, 38], low-level vision tasks [10], and data clustering
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[42, 1] all lead to non-convex optimization problems.

Majorization-Minimization (MM) [28] is a framework for designing algorithms

for optimizing non-convex functions. MM iteratively optimizes a sequence of easy-

to-optimize surrogate functions that bound the objective function, and guarantees

convergence to a local extremum or a saddle point of the function. Two of the most

successful instances of MM algorithms are Expectation Maximization (EM) [15] and

Concave-Convex Procedure (CCCP) [72]. Both methods, however, have a number

of drawbacks in practice, such as sensitivity to initialization and lack of uncertainty

modeling for latent variables. This has been noted in the past in [43, 20, 47, 34, 50].

We propose a new procedure, Generalized Majorization-Minimization (G-MM),

for optimizing non-convex objective functions. Our approach is inspired by MM, but

we generalize the bound construction process. Specifically, we relax the strict bound

construction method in MM to allow for a set of valid bounds to be used, while still

maintaining algorithmic convergence. This relaxation gives us more freedom in bound

selection and can be used to design better optimization algorithms. For example,

we can enforce certain constraints or encourage desired biases on the solution while

leaving the original objective function intact. We incorporate this information when

selecting the next bound from the set of valid bounds.

In training latent variable models and in clustering problems, MM algorithms

such as CCCP and 𝑘-means are known to be sensitive to the initial values of the

latent variables or cluster memberships. We refer to this problem as stickiness of the

algorithm to the initial latent values. Our experimental results show that G-MM leads

to methods that tend to be less sticky to initialization. We demonstrate the benefit

of using G-MM on multiple problems, including 𝑘-means clustering and applications

of Latent Structural SVMs to image classification with latent variables.

Both MM and G-MM are guaranteed to “make progress” in all iterations. A major

difference, however, is in the way they measure progress. MM makes progress with

respect to the value of the original objective function. To enforce this, MM requires

the bound at each iteration to touch the objective function at the solution of the

previous iteration. This “touching” requirement is very restrictive and, in practice,
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can give rise to stickiness [47, 20]. It also overlooks the possibility of using bounds

that do not touch the objective function but still make progress with respect to it.

In G-MM, bounds are constructed by leveraging prior beliefs about the model

and/or data-driven constraints. This can be particularly useful when incorporating

such side-information in the objective function directly is conceptually or computa-

tionally hard. Avoiding dead (or unbalanced) clusters in clustering and encouraging

coherent solutions in image labeling are two examples of this (see Section 5.4 for more

discussion). In cases where no prior belief is available to bias the selection of new

bounds we propose to pick a bound uniformly at random from the family of valid

bounds. The touching requirement in MM results in committing to a bound that

agrees with the current solution better than all the other valid bounds. Thus, we

expect G-MM with randomly selected bounds to be less sticky than MM in average.

5.1.1 Related Work

Perhaps the most famous iterative algorithm for non-convex optimization in machine

learning and statistics is the EM algorithm [15]. EM is best understood in the context

of maximum likelihood estimation in the presence of missing data, or latent variables.

EM is a bound optimization algorithm: in each E-step, a lower bound on the likelihood

is constructed, and the M-step maximizes this bound.

Countless efforts have been made to extend the EM algorithm since its intro-

duction. In [43] it is shown that, while both steps in EM involve optimizing some

functions, it is not necessary to fully optimize the functions in each step; in fact, each

step only needs to “make progress”. This relaxation can potentially avoid bad local

minima and even speed up convergence.

Lange et al. [28] proposed the Majorization-Minimization framework. MM gen-

eralizes methods like EM by “transferring” the optimization to a sequence of sur-

rogate functions (bounds) on the original objective function. The Concave-Convex

Procedure (CCCP) [72] is another widely-used instance of MM, where the surrogate

function is obtained by linearizing the concave part of the objective function. Many

successful machine learning algorithms employ CCCP, e.g. the Latent SVM [20].
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Despite widespread success, MM (and CCCP in particular) has a number of draw-

backs, some of which have motivated our work. CCCP is often sensitive to initial-

ization, which necessitates expensive initialization or multiple trials [47, 11, 61]. In

optimizing latent variable models, CCCP lacks the ability to incorporate application-

specific information like latent variable uncertainty [34, 50] or posterior regulariza-

tion [4] without making modifications to the objective function. Our framework is

designed to deal with these drawbacks. Our key observation is that we can relax the

constraint enforced by MM that requires the bounds to touch the objective function.

A closely related work to ours is pseudo-bound optimization by Tang et al. [64],

which generalizes CCCP by using “pseudo-bounds” that may intersect the objective

function. In contrast, our framework still uses valid bounds but only relaxes the

touching requirement. Also, [64] is not as general as our framework in that it is

designed specifically for optimizing binary energies in MRFs, and it restricts the form

of surrogate functions to parametric max-flow.

The incremental and sparse variants of EM proposed in [43] are closely related to

our work when we restrict our attention only to the EM algorithm. Typically, the like-

lihood function 𝐿(𝜃) is parameterized only by the model parameters 𝜃. Neal et al. [43]

formulate the likelihood as a function 𝐹 (𝜃, 𝑞), where 𝑞 is the posterior distributions

of the latent variables, and show that if (𝜃, 𝑞) is a local maxima of 𝐹 then 𝜃 is a local

maxima of 𝐿 as well. However, they do not provide an algorithm for how to optimize

𝐹 . They only analyze a simple case where the function 𝐹 is optimized in a 2-step it-

erative fashion, like EM. In the E-step, they update the posterior distributions of the

latent variables only for a fraction of the training examples (instead of all of them).

They show that, their algorithm converges faster than the standard EM because the

E-steps are cheap to compute. This also fits in our framework. Besides that, our

framework uses the exact same objective that is used in EM the only difference is in

the bound selection step. We propose two strategies for selecting bounds (stochastic

and deterministic) and demonstrate that they lead to higher quality solutions and

are less sensitive to initialization than other EM-like methods.
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Figure 5-1: Optimization of a function 𝐹 using MM (red) and G-MM (blue). In MM
the bound 𝑏2 has to touch 𝐹 at 𝑤1. In G-MM we only require that 𝑏2 be below 𝑏1 at
𝑤1, leading to several choices ℬ2.

Algorithm 6 G-MM optimization

Input: 𝑤0, 𝜂, 𝜖
1: 𝑣0 := 𝐹 (𝑤0)
2: for 𝑡 := 1, 2, . . . do
3: select 𝑏𝑡 ∈ ℬ𝑡 = ℬ(𝑤𝑡−1, 𝑣𝑡−1) as defined in (5.6)
4: 𝑤𝑡 := arg min𝑤 𝑏𝑡(𝑤)
5: 𝑑𝑡 := 𝑏𝑡(𝑤𝑡)− 𝐹 (𝑤𝑡)
6: 𝑣𝑡 := 𝑏𝑡(𝑤𝑡)− 𝜂𝑑𝑡
7: if 𝑑𝑡 < 𝜖 break
8: end for
Output: 𝑤𝑡

5.2 General Optimization Framework

We consider minimization of functions that are bounded from below. The extension

to maximization is trivial. Let 𝐹 (𝑤) : R𝑑 → R be the objective function that we wish

to minimize. We propose an iterative procedure that generates a sequence of solutions

𝑤1, 𝑤2, . . . until it converges. The solution at iteration 𝑡 is obtained by minimizing

an upper bound 𝑏𝑡(𝑤) to the objective function i.e. 𝑤𝑡 = arg min𝑤 𝑏𝑡(𝑤). The bound

at iteration 𝑡 is chosen from a set of “valid” bounds ℬ𝑡 (see Figure 5-1). In practice,

we assume that the members of ℬ𝑡 come from a family ℱ of functions that upper

bound 𝐹 and can be optimized efficiently, such as quadratic functions, or quadratic

functions with linear constraints. Algorithm 6 gives the outline of the approach. This

general scheme is used in both MM and G-MM. However, as we shall see in the rest
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of this section, MM and G-MM have key differences in the way they measure progress

and the way they construct new bounds.

5.2.1 Progress Measure

MM measures progress with respect to the true objective values. In particular, MM

requires that ∀𝑡 : 𝐹 (𝑤𝑡−1) ≥ 𝐹 (𝑤𝑡). To guarantee this MM requires that the bound

at iteration 𝑡 must touch the objective function at the previous solution, leading to

the following constraint:

MM constraint: 𝑏𝑡(𝑤𝑡−1) = 𝐹 (𝑤𝑡−1). (5.1)

This touching constraint, along with the fact that 𝑤𝑡 minimizes 𝑏𝑡, and that 𝑏𝑡 upper-

bounds 𝐹 , guarantees that MM improves the value of the true objective over time:

𝐹 (𝑤𝑡−1) = 𝑏𝑡(𝑤𝑡−1) ≥ 𝑏𝑡(𝑤𝑡) ≥ 𝐹 (𝑤𝑡). (5.2)

The touching requirement is restrictive and, in practice, can make the algorithm

sensitive to initialization [47, 11, 61]. It also eliminates the possibility of using bounds

that do not touch the objective function but may have other desirable properties.

In G-MM, we measure progress with respect to the bound values. It allows us to

relax the touching constraint of MM, stated in (5.1), and require instead that,

G-MM constraints:

⎧
⎪⎨
⎪⎩
𝑏1(𝑤0) = 𝐹 (𝑤0)

𝑏𝑡(𝑤𝑡−1) ≤ 𝑏𝑡−1(𝑤𝑡−1).

(5.3)

Note that the G-MM constraints are weaker than MM. In fact, (5.1) implies (5.3)

because 𝑏𝑡−1 is an upper bound on 𝐹 .

The weaker constraints used in G-MM do not imply 𝐹 (𝑤𝑡) ≤ 𝐹 (𝑤𝑡−1), but, are

sufficient to ensure that ∀𝑡, 𝐹 (𝑤𝑡) ≤ 𝐹 (𝑤0). This follows from the fact that 𝑏𝑡 is an
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upper bound of 𝐹 , 𝑤𝑡 is a minimizer of 𝑏𝑡(𝑤), and (5.3):

𝐹 (𝑤𝑡) ≤ 𝑏𝑡(𝑤𝑡) ≤ 𝑏𝑡(𝑤𝑡−1) ≤ · · · ≤ 𝑏1(𝑤1) ≤ 𝑏1(𝑤0) = 𝐹 (𝑤0). (5.4)

5.2.2 Bound Construction

This section describes step 3 of Algorithm 6. To construct new bounds, MM commits

to a particular bound that touches the objective function 𝐹 at the previous solution

(see (5.3)). G-MM, however, considers a set of “valid” upper bounds that satisfy (5.3).

Recall that ℱ is a family of functions that upper bound 𝐹 and are “easy” to optimize;

e.g. convex functions in R𝑑:

ℱ = {𝑓 : R𝑑 → R | 𝑓(𝑤) ≥ 𝐹 (𝑤),∀𝑤 ∈ R and 𝑓 is easy to optimize}. (5.5)

We denote the set of valid bounds at iteration 𝑡 by ℬ𝑡. To guarantee convergence, we
restrict ℬ𝑡 to bounds that are below a threshold 𝑣𝑡−1 at the previous solution 𝑤𝑡−1:

ℬ𝑡 = ℬ(𝑤𝑡−1, 𝑣𝑡−1)

ℬ(𝑤, 𝑣) = {𝑏 ∈ ℱ | 𝑏(𝑤) ≤ 𝑣}. (5.6)

Initially, we set 𝑣0 = 𝐹 (𝑤0) to ensure that the first bound touches 𝐹 , satisfying

the first requirement of G-MM (see 5.3). In the next iterations, we set 𝑣𝑡 using a

progress coefficient 𝜂 ∈ (0, 1] that ensures making, at least, 𝜂𝑑𝑡 progress where 𝑑𝑡 =

𝑏𝑡−1(𝑤𝑡−1) − 𝐹 (𝑤𝑡−1) is the gap between the previous bound and the true objective

value at 𝑤𝑡−1. Note that when 𝜂 = 1 all valid bounds touch 𝐹 at 𝑤𝑡−1, corresponding

to the MM requirement. Small 𝜂 values allow for gradual exploratory progress in each

step while large 𝜂 values greedily select bounds that guarantee immediate progress.

We consider two scenarios for constructing bounds in G-MM and propose a de-

terministic and a stochastic approach for generating bounds as a result.

Deterministic Bound Generation: in the first scenario we assume we have

access to a bias function 𝑔 : ℬ𝑡×R𝑑 → R over the set of valid bounds. The function 𝑔
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takes in a bound 𝑏 ∈ ℬ𝑡 and a current solution 𝑤 ∈ R𝑑 and returns a scalar indicating

the goodness of the bound. In this scenario we select the bound that has the largest

bias value i.e. 𝑏𝑡 = arg max𝑏∈ℬ𝑡
𝑔(𝑏, 𝑤𝑡−1). MM algorithms, such as EM and CCCP,

fall into this category.

Stochastic Bound Generation: in the second scenario we assume that all

bounds are equally favorable and propose to choose one of the valid bounds from ℬ𝑡
uniformly at random.

In general, MM algorithms are special cases of deterministic G-MMs that use a

specific bias function 𝑔(𝑏, 𝑤) = −𝑏(𝑤). The bound that touches 𝐹 at 𝑤 maximizes this

bias function. It also maximizes the amount of progress with respect to the previous

bound at 𝑤. By choosing bounds that maximize progress, MM algorithms tend to

rapidly converge to a nearby local minimum. For instance, at iteration 𝑡, the CCCP

bound for latent SVMs is obtained by fixing latent variables in the concave part of the

objective function to the best values according to the previous solution 𝑤𝑡−1, making

the new solution 𝑤𝑡 = arg min𝑤 𝑏𝑡(𝑤) attracted to 𝑤𝑡−1. Similarly, in the E-step,

EM sets the posterior distribution of the latent variables conditioned on the data

according to the model from the previous iteration. Thus, in the next maximization

step, the model is updated to “match” the fixed posterior distributions. This explains

one reason why MM algorithms are observed to be sensitive to initialization.

G-MM offers a more flexible bound construction scheme than MM. The bias func-

tion 𝑔 can incorporate prior beliefs about the desired properties of the selected bounds

whenever such prior information is available. Importantly, unlike in MM, G-MM can

use any bias function. In Section 5.5 we show empirically that picking bounds uni-

formly at random from the set of valid bounds is less sensitive to initialization and

leads to a better result compared to CCCP and 𝑘-means (hard-EM). We also show

that using good bias functions can further improve performance of the learned models.
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5.3 Convergence Proof of G-MM

We showed in (5.4) that, in any iteration 𝑡, the G-MM solution is no worse than the

initial solution in terms of the objective value, i.e. 𝐹 (𝑤𝑡) ≤ 𝐹 (𝑤0). In this section we

also show that the gap between the G-MM bounds and the true objective converges to

zero at the minimizers of the bounds (Theorem 5.1). Moreover, we show, under mild

conditions, G-MM converges to a solution (Theorem 5.2) that is a local extremum or

a saddle point of 𝐹 (Theorem 5.3). Other convergence properties of G-MM depend

on the structure of the objective function 𝐹 , the family of the bounds ℱ , and the

details of the bound selection strategy.

Theorem 5.1. In the limit as 𝑡→∞, G-MM bounds and 𝐹 touch at the minimizer

of the bounds, i.e. lim𝑡→∞ 𝑑𝑡 = 0.

Proof. We have 𝑏𝑡(𝑤𝑡) ≤ 𝑏𝑡(𝑤𝑡−1) ≤ 𝑣𝑡−1. The first inequality holds because 𝑤𝑡

minimizes 𝑏𝑡 and the second inequality follows from (5.6). Summing over 𝑡 gives

∑︀𝑇
𝑡=1 𝑏𝑡(𝑤𝑡) ≤

∑︀𝑇
𝑡=1 𝑣𝑡−1 = 𝑣0 +

∑︀𝑇−1
𝑡=1 𝑏𝑡(𝑤𝑡)− 𝜂𝑑𝑡 (5.7)

⇒ 𝜂
∑︀𝑇

𝑡=1 𝑑𝑡 ≤ 𝑣0 − 𝑏𝑇 (𝑤𝑇 ) = 𝐹 (𝑤0)− 𝑏𝑇 (𝑤𝑇 ), (5.8)

where ∀𝑡 ≥ 1, 𝑣𝑡 is defined as in line 6 of Algorithm 6. Let 𝑤* ∈ arg min𝑤 𝐹 (𝑤) be an

unknown global minimum of 𝐹 . Using 𝐹 (𝑤*) ≤ 𝐹 (𝑤𝑇 ) ≤ 𝑏𝑇 (𝑤𝑇 ) and (5.8), we have

𝜂
∑︀𝑇

𝑡=1 𝑑𝑡 ≤ 𝐹 (𝑤0)− 𝐹 (𝑤*) ⇒ lim𝑡→∞ 𝑑𝑡 = 0. (5.9)

Since we assume 𝐹 is bounded from below, if 𝐹 does not have a unique global mini-

mum we can replace 𝐹 (𝑤*) with the value of lower bound in (5.9).

Theorem 5.2. If ∀𝑏 ∈ ℱ , b is differentiable and ∇2𝑏(𝑤) ⪰ 𝑚𝐼 for 𝑚 > 0, where 𝐼

is the identity matrix, then G-MM converges to a solution; i.e. ∃𝑤† s.t. lim
𝑡→∞

𝑤𝑡 = 𝑤†.
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Proof. If ∇2𝑓(𝑥) ⪰ 𝑚𝐼, for any two points 𝑥, 𝑦 in the domain of 𝑓 we have:

𝑓(𝑦) ≥ 𝑓(𝑥) +∇𝑓(𝑥)𝑇 (𝑦 − 𝑥) + (𝑚/2)||𝑥− 𝑦||2 (5.10)

We set 𝑓 = 𝑏𝑡, 𝑥 = 𝑤𝑡, and 𝑦 = 𝑤𝑡−1 in (5.10), and note that ∇𝑏𝑡(𝑤𝑡) = 0 to get:

(2/𝑚) (𝑏𝑡(𝑤𝑡−1)− 𝑏𝑡(𝑤𝑡)) ≥ ||𝑤𝑡 − 𝑤𝑡−1||2 (5.11)

We can replace 𝑏𝑡(𝑤𝑡−1) by 𝑣𝑡−1 in (5.11) due to (5.6). By adding the inequalities for

𝑇 iterations, similar to what we did in the proof of Theorem 5.1, we get:

(2/𝑚) (𝐹 (𝑤0)− 𝐹 (𝑤*)) ≥∑︀𝑇
𝑡=1 ||𝑤𝑡 − 𝑤𝑡−1||2 (5.12)

⇒ ∃𝑤† s.t. lim𝑡→∞𝑤𝑡 = 𝑤† (5.13)

Theorem 5.3. If 𝐹 is differentiable and ∀𝑏 ∈ ℱ , b is differentiable and 𝑀𝐼 ⪰
∇2𝑏(𝑤) ⪰ 𝑚𝐼 for∞ > 𝑀 > 𝑚 > 0, where 𝐼 is the identity matrix, then ∇𝐹 (𝑤†) = 0;

that is, G-MM converges to a local extremum or saddle point of 𝐹 .

Proof. We briefly overview the sketch of the proof before explaining the steps in detail.

We prove the theorem by contradiction and show that if ∇𝐹 (𝑤†) ̸= 0 then we can

construct a lower bound on 𝐹 (stated in (5.21)) that, at some point 𝑤, goes above an

upper bound of 𝑏𝑡 (stated in (5.25)). This implies that ∃𝑤 s.t. 𝐹 (𝑤) > 𝑏𝑡(𝑤) which

contradicts with the assumption that 𝑏𝑡 is an upper bound of 𝐹 . The proof has three

steps: 1) constructing the lower bound on 𝐹 , 2) constructing the upper bound on 𝑏𝑡,

and 3) finding a point 𝑤 s.t. 𝐹 (𝑤) > 𝑏𝑡(𝑤). Details of the proof are presented below.

Step 1: Assume ||∇𝐹 (𝑤†)||2 ̸= 0. This can be stated as

∃𝐴 > 0 s.t. ||∇𝐹 (𝑤†)||2 = 2𝐴. (5.14)

Consider value of 𝐹 on the line that touches 𝐹 at 𝑤†. We denote this by 𝑔(𝑧) where
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(a)
(b) (c)

Figure 5-2: An example of a non-convex function 𝐹 on R𝑑. (a) shows the plot of 𝐹 ;
the value of the function on the line that touches 𝐹 at the point 𝑝 = (0.3,−0.2) is
marked by the black and white line. (b) shows 𝐹 from the top view; it also marks the
point 𝑝 with the red circle and shows the direction of the gradient vector at 𝑝. The
length of the vector is set arbitrarily for visualization purposes. (c) shows the value
of 𝐹 along the tangent line as a one dimensional function (see Equation 5.15); it also
shows the gradient direction at 𝑧 = 0 (in red) and the linear function of Equation
5.21 that lower bounds 𝐹 (in green).

𝑧 ∈ R and define it as

𝑔(𝑧) = 𝐹 (𝑤† + 𝑧𝑢), 𝑢 =
∇𝐹 (𝑤†)

||∇𝐹 (𝑤†)||2
. (5.15)

We can write the following equalities:

𝑔′(𝑧) =
𝜕𝑔

𝜕𝑧
(𝑧) = ∇𝐹 (𝑤† + 𝑧𝑢) · 𝑢 (5.16)

𝑔′(0) = ||𝐹 (𝑤†)||2 = 2𝐴 (5.17)

𝑔(0) = 𝐹 (𝑤†) (5.18)

In Figure 5-2a we show a non-convex function 𝐹 in R2. The line that touches the

function at a particular point 𝑝 is also shown in the figure. Figure 5-2b shows the

same function from the top view, together with the gradient direction at 𝑝. Figure5-

2c shows how the value of 𝐹 changes along the tangent line as a function of the step

size 𝑧 along the gradient direction 𝑢 (see 𝑔(𝑧) in Equation 5.15).

Since 𝐹 is differentiable and its gradient changes smoothly, so is 𝑔, and we can
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use the mean value theorem to rewrite 𝑔 for 𝑧 ≥ 0 as follows 1:

∀𝑧 ≥ 0,∃𝑘 ∈ [0, 𝑧] s.t. 𝑔(𝑧) = 𝑔(0) + 𝑔′(𝑘)𝑧. (5.19)

Smoothness of 𝑔 also implies that in a small neighborhood around 0 the gradient of

𝑔 is larger than 𝐴; that is:

∃𝛿 > 0 s.t. ∀𝑧 ∈ [0, 𝛿], 𝑔′(𝑧) > 𝐴. (5.20)

We use this inequality in (5.19) to get a lower bound on 𝑔 in vicinity of 0, or equiva-

lently, a lower bound on 𝐹 in the vicinity of 𝑤† and in the direction of 𝑢, as follows:

∀𝑧 ∈ [0, 𝛿], 𝑔(𝑧) ≥ 𝑔(0) + 𝐴𝑧 ⇒

∀𝑧 ∈ [0, 𝛿], 𝐹 (𝑤† + 𝑧𝑢) ≥ 𝐹 (𝑤†) + 𝐴𝑧. (5.21)

This lower bound is shown in Figure 5-2c in green.

Step 2: To get an upper bound on 𝑏𝑡 we note that 𝑤𝑡 = arg min𝑤 𝑏𝑡(𝑤) is the min-

imizer of 𝑏𝑡 and since 𝑏𝑡 is differentiable, ∇𝑏𝑡(𝑤𝑡) = 0. From this and the assumption

that the curvature of all bounds in all directions is finite (i.e. ∀𝑏 ∈ ℱ ,∇2𝑏(𝑤) ⪯𝑀𝐼)

we can upper bound 𝑏𝑡 with a quadratic function with curvature 𝑀 whose minimum

occurs at 𝑤 = 𝑤𝑡 and has value 𝑏𝑡(𝑤𝑡), as follows:

∀𝑤, (𝑤 − 𝑤𝑡)𝑇𝑀𝐼(𝑤 − 𝑤𝑡) + 𝑏𝑡(𝑤𝑡) ≥ 𝑏𝑡(𝑤). (5.22)

Similar to step 1, we only focus the points 𝑤 that lie on the line 𝑤† + 𝑧𝑢 and get the

following bound on 𝑏𝑡 for all 𝑧 ∈ R:

𝑀 ||𝑤† + 𝑧𝑢− 𝑤𝑡||2 + 𝑏𝑡(𝑤𝑡) ≥ 𝑏𝑡(𝑤
† + 𝑧𝑢) (5.23)

From Young’s inequality in multiple dimensions we have that ∀𝑎, 𝑏 ∈ R𝑑, ||𝑎+ 𝑏||2 ≤

1𝑔 can be written similarly for 𝑧 < 0, however, we are only interested in the positive half space.
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2||𝑎||2 + 2||𝑏||2. We can set 𝑎 = 𝑤†−𝑤𝑡 and 𝑏 = 𝑧𝑢 and use Young’s inequality in the

left hand side of (5.23) to get:

2𝑀 ||𝑤† − 𝑤𝑡||2 + 2𝑀𝑧2 + 𝑏𝑡(𝑤𝑡) ≥ 𝑏𝑡(𝑤
† + 𝑧𝑢) (5.24)

From Theorem 5.2 we have that ∀𝜖1 > 0, ∃𝑇1 s.t. ∀𝑡 > 𝑇1, ||𝑤† − 𝑤𝑡||2 < 𝜖1. We can

use this in (5.24) to get the following upper bound for 𝑏𝑡:

2𝑀𝜖21 + 2𝑀𝑧2 + 𝑏𝑡(𝑤𝑡) ≥ 𝑏𝑡(𝑤
† + 𝑧𝑢) (5.25)

Step 3: We show that ∃𝑧 ∈ [0, 𝛿] for which the right hand side of (5.21) is larger

than the left hand side of (5.25), which implies that for 𝑤 = 𝑤† + 𝑧𝑢, 𝐹 (𝑤) > 𝑏𝑡(𝑤).

We need to find 𝑧 ∈ [0, 𝛿] such that

𝐹 (𝑤†) + 𝐴𝑧 > 2𝑀𝜖21 + 2𝑀𝑧2 + 𝑏𝑡(𝑤𝑡) ≡

2𝑀𝑧2 − 𝐴𝑧 + 2𝑀𝜖21 + 𝑏𝑡(𝑤𝑡)− 𝐹 (𝑤†) < 0. (5.26)

Lemma 5.1. ∀𝜖2 > 0,∃𝑇2 s.t. ∀𝑡 > 𝑇2, 𝑏𝑡(𝑤𝑡)−𝐹 (𝑤†) < 𝜖2.

Proof. To prove the lemma we first show that

lim
𝑡→∞
|𝑏𝑡(𝑤𝑡)− 𝐹 (𝑤†)| = 0 (5.27)

and then note that 𝑏1(𝑤1), 𝑏2(𝑤2), . . . is a non-increasing sequence, and therefore, ∀𝑤,
𝑏𝑡(𝑤𝑡) ≥ 𝐹 (𝑤†), thus, we can drop the absolute value.

To show (5.27), we note that we can write:

|𝑏𝑡(𝑤𝑡)−𝐹 (𝑤†)| = | (𝑏𝑡(𝑤𝑡)−𝐹 (𝑤𝑡))+
(︀
𝐹 (𝑤𝑡)−𝐹 (𝑤†)

)︀
|

≤ |𝑏𝑡(𝑤𝑡)− 𝐹 (𝑤𝑡)|+ |𝐹 (𝑤𝑡)− 𝐹 (𝑤†)|.

The first term on the right hand side can get arbitrarily close to zero due to Theorem

5.1. The second term, also, can get arbitrarily close to zero due to Theorem 5.2 and
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that 𝐹 it is Lipschitz continuous (because it is differentiable).

We use lemma 5.1 in inequality (5.26) to get

2𝑀𝑧2 − 𝐴𝑧 + 2𝑀𝜖21 + 𝜖2 < 0. (5.28)

Note that 𝜖1 and 𝜖2 can be chosen arbitrarily. In particular, we can set them so that

the discriminant of the quadratic function in the left hand side of (5.28) is positive,

as follows:

∆ = 𝐴2 − 4 (2𝑀)
(︀
2𝑀𝜖21 + 𝜖2

)︀
> 0

⇒ 2𝑀𝜖21 + 𝜖2 <
𝐴2

8𝑀
. (5.29)

This guarantees that the quadratic function in (5.28) has two distinct roots. If 2𝑀𝜖21+

𝜖2 = 0, the two roots are 𝑧1 = 0 and 𝑧2 = − 𝑏
𝑎

= 𝐴
2𝑀

> 0. Changing 𝜖1 and 𝜖2 only

affects the constant 2𝑀𝜖21 + 𝜖2, and thereby, it only shifts the quadratic function up

or down. In particular, we can control 𝜖1 and 𝜖2 to drive the constant arbitrarily close

to 0, causing 𝑧1 > 0 to get arbitrarily close to zero. In particular, since 𝛿 > 0, we can

set 𝜖1 and 𝜖2 such that 0 < 𝑧1 <
𝛿
2
, and also (5.29) holds. Then ∀𝑧 ∈ (𝑧1,min (𝑧2, 𝛿))

inequality (5.28) holds and we have that 𝐹 (𝑤† + 𝑧𝑢) > 𝑏𝑡(𝑤
† + 𝑧𝑢). This violates

the assumption that 𝑏𝑡 is an upper bound of 𝐹 and proves that our initial hypothesis

(stated in (5.14)) is wrong and, therefore, ||∇𝐹 (𝑤†)||2 = 0.

5.4 Examples of Derived G-MM Algorithms

In this section we derive G-MM algorithms for 𝑘-means clustering and Latent Struc-

tural SVM (LS-SVM), both of which are widely used in machine learning. To this end,

we implement the bound construction step (line 3) and the optimization step (line 4)

of Algorithm 6. We primarily focus on demonstrating G-MM on latent variable models

where bound construction naturally corresponds to imputing latent variables in the
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Figure 5-3: The quadratic function in
the left hand side of (5.28). When 𝜖1 =
𝜖2 = 0, the quadratic function has two
roots, 𝑧1 = 0 and 𝑧2 = 𝐴

2𝑀
> 0 (shown

in blue). When 𝜖1 and 𝜖2 are non-zero,
but chosen so that (5.29) holds, the
quadratic function is shifted up but
still has two distinct roots (shown in
red).

model. Both 𝑘-means and LS-SVM belong to this category. It is worth mentioning

that G-MM is fully capable of handling more general non-convex problems.

5.4.1 Clustering

Let {𝑥1, . . . , 𝑥𝑛} denote a set of sample points and 𝑤 = (𝜇1, . . . , 𝜇𝑘) denote a set of

cluster centers. We use 𝑧𝑖 ∈ {1, . . . , 𝑘} to denote the index of the cluster assigned to

the 𝑖-th sample point. The objective function in 𝑘-means is defined as follows:

𝐹 (𝑤) =
𝑛∑︁

𝑖=1

𝑘

min
𝑧𝑖=1
||𝑥𝑖 − 𝜇𝑧𝑖 ||2. (5.30)

Bound construction: We obtain a convex upper bound on 𝐹 by fixing the latent

variables (𝑧1, . . . , 𝑧𝑛) to certain values instead of minimizing over these variables.

Bounds constructed this way are quadratic convex functions of 𝑤 = (𝜇1, . . . , 𝜇𝑘),

ℱ =

{︃
𝑏(𝑤) =

𝑛∑︁

𝑖=1

||𝑥𝑖 − 𝜇𝑧𝑖 ||2
⃒⃒
⃒⃒
⃒ ∀𝑖, 𝑧𝑖 ∈ {1, . . . , 𝑘}

𝑛, 𝑤 = (𝜇1; . . . ;𝜇𝑘)

}︃
. (5.31)

The 𝑘-means algorithm is an instance of MM. The algorithm repeatedly assigns each

example to its nearest center to construct a bound, and then updates the centers

by optimizing the bound. We can set 𝑔(𝑏, 𝑤) = −𝑏(𝑤) in G-MM to obtain the

𝑘-means algorithm. We can also define 𝑔 differently to obtain a G-MM algorithm

107



that exhibits other desired properties. For instance, a common issue in clustering is

cluster starvation. One can design a bias function that encourages balanced clusters

by selecting 𝑔 appropriately.

We select a random bound from ℬ𝑡 by sampling a latent configuration 𝑧 =

(𝑧1, . . . , 𝑧𝑛) uniformly from the set of configurations leading to valid bounds. Specifi-

cally, we start from a valid initial configuration (e.g. 𝑘-means solution) and perform a

random walk on a graph whose nodes are latent configurations defining valid bounds.

The neighbors of a latent configuration 𝑧 are the valid configurations that can be

obtained by changing the value of one latent variable. The transition probabilities

are chosen properly to define a uniform stationary distribution on the graph.

Bound optimization: Optimization of a bound 𝑏 ∈ ℱ can be done in closed

form by setting 𝜇𝑗 to be the mean of all examples assigned to cluster 𝑗:

𝜇𝑗 =

∑︀
𝑖∈𝐼𝑗 𝑥𝑖

|𝐼𝑗|
, 𝐼𝑗 = {1 ≤ 𝑖 ≤ 𝑛 | 𝑧𝑖 = 𝑗}. (5.32)

5.4.2 Detection and Classification with Latent Structural SVM

A Latent Structural SVM (LS-SVM) [71] defines a structured output classifier with

latent variables. It extends the Structural SVM [30] by introducing latent variables.

Let {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1 denote a set of labeled examples with 𝑥𝑖 ∈ 𝒳 and 𝑦𝑖 ∈ 𝒴 . We

assume that each example 𝑥𝑖 has an associated latent value 𝑧𝑖 ∈ 𝒵. Let 𝜑(𝑥, 𝑦, 𝑧) :

𝒳×𝒴×𝒵 → R𝑑 denote a feature map. A vector 𝑤 ∈ R𝑑 defines a classifier 𝑦 : 𝒳 → 𝒴 ,

𝑦(𝑥) = arg max
𝑦

(max
𝑧
𝑤 · 𝜑(𝑥, 𝑦, 𝑧)). (5.33)

The LS-SVM training objective is defined as follows,

𝐹 (𝑤) =
𝜆

2
||𝑤||2 +

1

𝑛

𝑛∑︁

𝑖=1

(︁
max
𝑦,𝑧

(𝑤 · 𝜑(𝑥𝑖, 𝑦, 𝑧) + ∆(𝑦, 𝑦𝑖))

−max
𝑧
𝑤 · 𝜑(𝑥𝑖, 𝑦𝑖, 𝑧)

)︁
, (5.34)

where 𝜆 is a hyper-parameter that controls regularization and ∆(𝑦, 𝑦𝑖) is a non-
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negative loss function that penalizes the prediction 𝑦 when the ground truth label

is 𝑦𝑖.

Bound construction: As in the case of 𝑘-means clustering a convex upper bound

on the LS-SVM objective can be obtained by imputing latent variables. Specifically,

for each example 𝑥𝑖, we fix 𝑧𝑖 ∈ 𝒵, and replace the maximization in the last term

of the objective with a linear function 𝑤 · 𝜑(𝑥𝑖, 𝑦𝑖, 𝑧𝑖). This forms a family of convex

piecewise quadratic bounds,

ℱ=

{︃
𝜆

2
||𝑤||2 +

1

𝑛

𝑛∑︁

𝑖=1

max
𝑦,𝑧

(𝑤 · 𝜑(𝑥𝑖, 𝑦, 𝑧) + ∆(𝑦, 𝑦𝑖))

− 𝑤 · 𝜑(𝑥𝑖, 𝑦𝑖, 𝑧𝑖)

⃒⃒
⃒⃒
⃒∀𝑖, 𝑧𝑖 ∈ 𝒵

}︃
. (5.35)

The CCCP algorithm for LS-SVM selects the bound 𝑏𝑡 defined by 𝑧𝑡𝑖 = arg max𝑧𝑖 𝑤𝑡−1 ·
𝜑(𝑥𝑖, 𝑦𝑖, 𝑧𝑖). This particular choice is a special case of G-MM when 𝑔(𝑏, 𝑤) = −𝑏(𝑤).

To generate random bounds from ℬ𝑡 we use the same approach as in the case of

𝑘-means clustering. We perform a random walk in a graph where the nodes are latent

configurations leading to valid bounds, and the edges connect latent configurations

that differ in a single latent variable.

Bound optimization: Optimization of a bound 𝑏 ∈ ℱ corresponds to a convex

quadratic program and can be solved using different techniques, including gradient

based methods (e.g. SGD) and the cutting-plane method [30]. We use the cutting-

plane method in our experiments.

Bias Function for Multi-fold Multiple Instance Learning

The multi-fold MIL algorithm [11] was introduced for training latent SVMs for weakly

supervised object localization, to deal with stickiness issues in training with CCCP.

It modifies how latent variables are updated during training. [11] divides the training

set into𝐾 folds, and updates the latent variables in each fold using a model trained on

the other 𝐾 − 1 folds. This algorithm does not have a formal convergence guarantee.

By defining a suitable bias function, we can derive a G-MM algorithm that mimics
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the behavior of multi-fold MIL, and yet, is convergent.

Consider training an LS-SVM. Let 𝑆 = (1, . . . , 𝑛) be an ordered sequence of

training sample indices. Also, let 𝑧𝑖 ∈ 𝒵 denote the latent variable associated to

training example (𝑥𝑖, 𝑦𝑖). Let 𝐼 denote a subsequence of 𝑆. Also, let 𝑧𝑡𝐼 denote the

fixed latent variable values of training examples in 𝐼 in iteration 𝑡, and let 𝑤(𝐼, 𝑧𝑡𝐼)

be the model trained on {(𝑥𝑖, 𝑦𝑖)|𝑖 ∈ 𝐼} with latent variables fixed to 𝑧𝑡𝐼 in the last

maximization of Equation 5.34.

We assume access to a loss function ℓ(𝑤, 𝑥, 𝑦, 𝑧). For example, for latent SVM

[20] where 𝑦 ∈ {−1, 1}, ℓ is the hinge loss: ℓ(𝑤, 𝑥, 𝑦, 𝑧) = max{0, 1 − 𝑦 𝑤 · 𝜑(𝑥, 𝑧)}.
We start by considering the Leave-One-Out (LOO) setting, i.e. 𝐾 = 𝑛. We call [11]’s

algorithm LOO-MIL in this case. The update rule of LOO-MIL in iteration 𝑡 is:

𝑧𝑡𝑖 = arg min
𝑧∈𝒵

ℓ
(︁
𝑤(𝑆∖𝑖, 𝑧𝑡−1

𝑆∖𝑖 ), 𝑥𝑖, 𝑦𝑖, 𝑧
)︁
, ∀𝑖 ∈ 𝑆. (5.36)

After updating the latent values for all training examples, the model 𝑤 is retrained

by optimizing the resulting bound.

Now let us derive the bias function for a G-MM algorithm that mimics the behavior

of LOO-MIL. Recall from Equation 5.35 that each bound 𝑏 ∈ ℬ𝑡 is associated with a

joint latent configuration 𝑧(𝑏) = (𝑧1, . . . , 𝑧𝑛). We use the following bias function:

𝑔(𝑏, 𝑤) = −
∑︁

𝑖∈𝑆

ℓ
(︁
𝑤(𝑆∖𝑖, 𝑧𝑡−1

𝑆∖𝑖 ), 𝑥𝑖, 𝑦𝑖, 𝑧𝑖

)︁
. (5.37)

Note that picking a bound according to (5.37) is equivalent to the LOO-MIL update

rule of (5.36) except that in (5.37) only valid bounds are considered; that is bounds

that make at least 𝜂-progress.

For the general multi-fold case (i.e. 𝐾 < 𝑛), the function 𝑔 can be derived similarly.

5.5 Experimental Results

We evaluate G-MM and MM algorithms on clustering and LS-SVM training on various

datasets. Recall from (5.6) that the progress coefficient 𝜂 defines the set of valid

110



bounds ℬ𝑡 in each step. CCCP and 𝑘-means bounds correspond to setting 𝜂 = 1,

thus taking maximally large steps towards a local minimum of the true objective.

5.5.1 Clustering with G-MMs

We conduct experiments on five different clustering datasets: Aggregation [23], Norm-

25 [1], D31 [66], Cloud [1], and GMM-200. Norm-25, D31, and GMM-200 are synthetic

and Cloud is from real data. See the references for details about the datasets. GMM-

200 was created by us. It is a Gaussian mixture model on 2-D data with 200 mixture

components. Each component is a Gaussian distribution with 𝜎 = 1.0 and 𝜇 on a

square of size 70 × 70. The means are placed at least 2.5𝜎 apart from each other.

The dataset contains 50 samples per mixture component.

We compare results from three different initializations: forgy selects 𝑘 training

examples uniformly at random without replacement to define initial cluster centers,

random partition assigns training samples to cluster centers randomly, and 𝑘-

means++ uses the algorithm in [1]. In each experiment we run the algorithm 50

times and report the mean, standard deviation, and the best objective value (Equation

5.30). Table 5.1 shows the results using 𝑘-means (hard-EM) and G-MM. In each run,

the two optimization methods are initialized from exactly the same point by setting

the random seed to the same number. We note that the variance of the solutions

found by G-MM is typically smaller than that of 𝑘-means. Moreover, the best and

the average solutions found by G-MM are always better than (or the same as) those

found by 𝑘-means. This trend generalizes over different initialization schemes as well

as different datasets and suggests that the G-MM algorithm requires fewer runs to

find a good solution.

Although random partition seems to be a very bad initialization for 𝑘-means on

all datasets, G-MM recovers from it. In fact, on D31 and GMM-200 datasets, G-MM

initialized by random partition performs better than when it is initialized by other

methods (including 𝑘-means++). Also, the variance of the best solutions (across

different initialization methods) in G-MM is smaller than that of 𝑘-means. These

suggest that the G-MM optimization is less sticky to initialization than 𝑘-means.
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Dataset k
Opt. forgy random partition 𝑘-means++

Method avg ± std best avg ± std best avg ± std best

Aggregation 7
hard-EM 14.93± 1.15 13.96 55.81± 61.52 14.47 14.81± 1.04 13.96
G-MM 14.34± 0.97 13.96 14.31± 1.08 13.96 14.43± 0.84 13.96

Norm-25 25
hard-EM 1.9×105±2×105 70000 5.8×105±3×105 220000 5.3×103±9×103 1.5
G-MM 9.7×103±1×104 1.5 2.0×104±0 20000 4.5×103±8×103 1.5

D31 31
hard-EM 1.69± 0.03 1.21 52.61± 47.06 4.00 1.55± 0.17 1.10
G-MM 1.43± 0.15 1.10 1.21± 0.05 1.10 1.45± 0.14 1.10

Cloud 50
hard-EM 1929± 429 1293 44453± 88341 3026 1237± 92 1117
G-MM 1465± 43 1246 1470± 8 1444 1162± 95 1067

GMM-200 200
hard-EM 2.25± 0.10 2.07 11.20± 0.63 9.77 2.12± 0.07 1.99
G-MM 2.04± 0.09 1.90 1.85± 0.02 1.80 1.98± 0.06 1.89

Table 5.1: Comparison of G-MM and 𝑘-means (hard-EM) on multiple clustering
datasets. Three different initialization methods were compared; forgy initializes
cluster centers to random examples, random partition assigns each data point to
a random cluster center, and 𝑘-means++ implements the algorithm from [1]. The
mean, standard deviation, and best objective values out of 50 random trials are
reported. Both 𝑘-means and G-MM use the exact same initialization in each trial.
G-MM consistently converges to better solutions.

Figure 5-4 shows the effect of the progress coefficient on the quality of the solution

found by G-MM. Different colors correspond to different initialization schemes. The

solid line indicates the average objective over 50 iterations, the shaded area covers one

standard deviation from the average, and the dashed line indicates the best solution

over the 50 trials. Smaller progress coefficients allow for more extensive exploration,

and hence, smaller variance in the quality of the solutions. On the other hand, when

the progress coefficient is large G-MM is more sensitive to initialization (i.e. is more

sticky) and, thus, the quality of the solutions over multiple runs is more diverse.

However, despite the greater diversity, the best solution is worse when the progress

coefficient is large. G-MM reduces to 𝑘-means if we set the progress coefficient to 1

(i.e. the largest possible value).

Figure 5-5 visualizes the result of 𝑘-means and G-MM on the D-31 dataset from

the same initialization. G-MM finds a near perfect solution while, in 𝑘-means, many

clusters get merged incorrectly or die off. Dead clusters are those which do not get

any points assigned to them. The update rule of Equation 5.32 collapses the dead

clusters on to the origin.
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(a) D31 (b) Cloud (c) GMM-200

Figure 5-4: The effect of the progress coefficient 𝜂 (x-axis) on the quality of the
solutions found by G-MM on three different clustering datasets. The quality of the
solutions is measured by the objective function in (5.30). Lower values are better.
The average (solid line), the best (dashed line), and the variance (shaded area) over
50 trials are shown and different initializations are coded with different colors.

(a) ground truth (b) 𝑘-means (c) generalized-MM

Figure 5-5: Visualization of the solution of 𝑘-means and G-MM on the D31
dataset [66] from identical starting point. Random partition initialization scheme
is used. (a) color-coded ground-truth clusters. (b) solution of 𝑘-means. (c) solution
of G-MM. The white crosses indicate location of the cluster centers. Color codes
match up to a permutation.

5.5.2 Object Detection with G-MMs

We consider the problem of training an LS-SVM classifier on the mammals dataset

[27]. The dataset contains images of six mammal categories with image-level annota-

tion. Locations of the objects in these images are not provided, and therefore, treated

as latent variables in the model. Specifically, let 𝑥 be an image and 𝑦 be a class label

(𝑦 ∈ {1, . . . , 6} in this case), and let 𝑧 be the latent location of the object in the

image. We define 𝜑(𝑥, 𝑦, 𝑧) to be a feature function with 6 blocks; one block for each

category. It extracts features from location 𝑧 of image 𝑥 and places them in the 𝑦-th

block of the output and fills the rest with zero. We use the following multi-class
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Opt. Method
center top-left random

objective test error objective test error objective test error

CCCP 1.21 ± 0.03 22.9 ± 9.7 1.35 ± 0.03 42.5 ± 4.6 1.47 ± 0.03 31.8 ± 2.6
G-MM random 0.79 ± 0.03 17.5 ± 3.9 0.91 ± 0.02 31.4 ± 10.1 0.85 ± 0.03 19.6 ± 9.2
G-MM biased 0.64 ± 0.02 16.8 ± 3.2 0.70 ± 0.02 18.9 ± 5.0 0.65 ± 0.02 14.6 ± 5.4

Table 5.2: LS-SVM results on the mammals dataset [27]. We report the mean and
standard deviation of the training objective (Equation 5.34) and test error over five
folds. Three strategies for initializing latent object locations are tried: image center,
top-left corner, and random location. “G-MM random” uses random bounds, and
“G-MM bias” uses a bias function inspired by multi-fold MIL [11]. Both variants
consistently and significantly outperform the CCCP baseline.

classification rule:

𝑦(𝑥) = arg max
𝑦,𝑧

𝑤 · 𝜑(𝑥, 𝑦, 𝑧), 𝑤 = (𝑤1, . . . , 𝑤6). (5.38)

Our experimental setup is similar to that in [34]. We use Histogram of Oriented

Gradients [14] for the image feature 𝜑, and the 0-1 classification loss for ∆. We set

𝜆 = 0.4 in (5.34), and report 5-fold cross-validation performance. We compare three

strategies for initializing the latent object locations: center of the image, top-left cor-

ner, and random locations. The first is a reasonable initialization since most objects

are at the center in this dataset; the second initialization strategy is adversarial.

We try a stochastic as well as a deterministic bound construction method. In each

iteration 𝑡, the stochastic method samples a subset of examples 𝑆𝑡 from the training

set uniformly, and updates their latent variables using 𝑧𝑡𝑖 = arg max𝑧𝑖 𝑤𝑡−1·𝜑(𝑥𝑖, 𝑦𝑖, 𝑧𝑖).

Other latent variables are kept the same as the previous iteration. We increase the

size of 𝑆𝑡 across iterations by 20% of the size the entire training set across iterations.

The deterministic method uses the bias function described in Section 5.4.2. This is

inspired by the multi-fold MIL idea of [11], and is shown to be robust to initialization,

especially in high dimensions. We set the number of folds to 10 in our experiments.

Table 5.2 shows results on the mammals dataset. Both variants of G-MM consis-

tently outperform CCCP in terms of training objective and test error. We observed

that CCCP rarely updates the latent locations, under all initializations. On the other

hand, both variants of G-MM significantly alter the latent locations, thereby avoiding

114



0 0.2 0.4 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

topleft: CCCP

0 0.2 0.4 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

topleft: G−MM random

0 0.2 0.4 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

topleft: G−MM biased, K=10

Figure 5-6: Latent location changes after learning, in relative image coordinates, for
all five cross-validation folds, for the top-left initialization on the mammals dataset.
Left to right: CCCP, “G-MM random”, “G-MM biased” (𝐾 = 10). Each cross rep-
resents a training image; cross-validation folds are color coded differently. Averaged
over five folds, CCCP only alters 2.4% of all latent locations, leading to very bad per-
formance. “G-MM random” and “G-MM biased” alter 86.2% and 93.6% on average,
respectively, and perform much better.

the local minima close to the initialization. Figure 5-6 visualizes this for top-left ini-

tialization. Since objects rarely occur at the top-left corner in the mammals dataset,

a good model is expected to significantly update the latent locations. Averaged over

five cross-validation folds, about 90% of the latent variables were updated in G-MM

after training whereas this measure was 2.4% for CCCP. This is consistent with the

better training objectives and test errors of G-MM. Figure 5-7 shows example train-

ing images and the final imputed latent object locations by three algorithms: CCCP

(red), G-MM random (blue), and G-MM biased (green). The initialization is top-left.

In most cases CCCP fails to update the latent locations given by initialization.

The two G-MM variants, however, update the latent locations significantly and often

localize objects in the training images correctly. This is achieved only with image-level

object category annotations, and with a very bad (even adversarial) initialization.

5.5.3 Image Classification with G-MMs

We implement the reconfigurable model of Chapter 2 to do scene classification on

MIT-Indoor dataset [52], which has images from 67 indoor scene categories. We

segment each image into a 10×10 regular grid and treat the grid cells as image regions.

We train a model with 200 shared parts. All parts can be used to describe the data
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Figure 5-7: Example training images from the mammals dataset, shown with final
imputed latent object locations by three algorithms: CCCP (red), G-MM random
(blue), G-MM biased (green). Initialization: top-left.
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in an image region. We use the pre-trained hybrid ConvNet of [73] to extract features

from image regions. We record from the 4096 neurons at the penultimate layer of the

network and use PCA to reduce the dimensionality of these features to 240.

The reconfigurable model is an instance of LS-SVMs where the latent variables are

the assignments of parts to image regions and the output structure is the multi-valued

category labels. We refer to Chapter 2 for more details about the model.

Initializing training entails the assignment of parts to image regions i.e. setting

𝑧𝑖’s in Equation 5.35 to define the first bound. To this end we first discover 200 parts

that capture discriminative features in the training data. We then run graph cut on

each training image to obtain part assignments to image regions. Each cell in the

10×10 image grid is a node in the graph. Two nodes in the graph are connected if

their corresponding cells in the image grid are next to each other. Unary terms in

the graph cut are the dot product scores between the feature vector extracted from

an image region and a part filter plus the corresponding region-to-part assignment

score. Pairwise terms in the graph cut implement a Potts model that encourages

coherent labelings. Specifically, the penalty of labeling two neighboring nodes differ-

ently is 𝜆 and it is zero otherwise. 𝜆 controls the coherency of the initial assignments.

We experiment using 𝜆 ∈ {0, 0.25, 0.5, 1}. We also experiment with random initial-

ization, which corresponds to assigning 𝑧𝑖’s randomly. This is the simplest form of

initialization and does not require discovering initial part filters.

We do G-MM optimization using both random and biased bounds. For the latter

we use a bias function 𝑔(𝑏, 𝑤) that measures coherence of the labeling from which

the bound was constructed. Recall from Equation 5.35 that each bound in 𝑏 ∈ 𝐵𝑡

corresponds to a labeling of the image regions. We denote the labeling corresponding

to the bound 𝑏 by 𝑧(𝑏) = (𝑧1, . . . , 𝑧𝑛) where 𝑧𝑖 = (𝑧𝑖,1, . . . , 𝑧𝑖,100) specifies part assign-

ments for all the 100 regions in the 𝑖-th image. Also, let 𝐸(𝑧𝑖) denote a function that

measures coherence of the labeling 𝑧𝑖. In fact, 𝐸(𝑧𝑖) is the Potts energy function on a

graph whose nodes are 𝑧𝑖,1, . . . , 𝑧𝑖,100. The graph respects a 4-connected neighborhood

system (recall that 𝑧𝑖,𝑟 corresponds to the 𝑟-th cell in the 10×10 grid defined on the

𝑖-th image). If two neighboring nodes 𝑧𝑖,𝑟 and 𝑧𝑖,𝑠 get different labels the energy 𝐸(𝑧𝑖)

117



Opt. Method
Random 𝜆 = 0.00 𝜆 = 0.25 𝜆 = 0.50 𝜆 = 1.00

Acc.% ± std O.F. Acc. % O.F. Acc. % O.F. Acc. % O.F. Acc. % O.F.

CCCP 41.94± 1.1 15.20 40.88 14.81 43.99 14.77 45.60 14.72 46.62 14.70
G-MM random 47.51± 0.7 14.89 43.38 14.71 44.41 14.70 47.12 14.66 49.88 14.58
G-MM biased 49.34± 0.9 14.55 44.83 14.63 48.07 14.51 53.68 14.33 56.03 14.32

Table 5.3: Performance of LS-SVM trained with CCCP and G-MM on MIT-Indoor
dataset. We report classification accuracy (Acc.%) and the training objective value
(O.F.). Columns correspond to different initialization schemes. “Random” assigns
random parts to regions. 𝜆 controls the coherency of the initial part assignments:
𝜆 = 1 (𝜆 = 0) corresponds to the most (the least) coherent case. “G-MM random”
uses random bounds and “G-MM biased” uses the bias function of Equation 5.39.
𝜂 = 0.1 in all the experiments. Coherent initializations lead to better models in
general, but, they require discovering good initial parts. “G-MM” outperforms CCCP,
especially with random initialization. “G-MM biased” performs the best. The value
of the progress coefficient is set to 𝜂 = 0.1 in these experiments.

increases by 1. For biased bounds we use the following bias function which favors

bounds that correspond to more coherent labelings:

𝑔(𝑏, 𝑤) = −
𝑛∑︁

𝑖=1

𝐸(𝑧𝑖), 𝑧(𝑏) = (𝑧1, . . . , 𝑧𝑛). (5.39)

Table 5.3 compares performance of models trained using CCCP and G-MM with ran-

dom and biased bounds. For G-MM with random bounds we repeat the experiment

five times and report the average over these five trials. Also, for random initialization,

we do five trials using different random seeds and report the mean and standard devi-

ation of the results. G-MM does better than CCCP under all initializations. It also

converges to a solution with lower training objective value than CCCP. Our results

show that picking bounds uniformly at random from the set of valid bounds is slightly

(but consistently) better than committing to the CCCP bound. We get a remarkable

boost in performance when we use a reasonable prior over bounds (i.e. the bias func-

tion of Equation 5.39). With 𝜆 = 1, CCCP attains accuracy of 46.6%, whereas G-MM

attains 49.9%, and 56.0% accuracy with random and biased initialization respectively.

Moreover, G-MM is less sensitive to initialization.
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experiment setup MM
G-MM

random biased
scene 𝜆 = 0.0 145 107 87

recognition 𝜆 = 1.0 65 69 138

data forgy 35.76± 7.8 91.52± 4.4
clustering rand. part. 114.98± 12.9 241.89± 2.1
(GMM-200) 𝑘-means++ 32.92± 5.8 80.78± 2.9

data forgy 37.18± 12.1 87.68± 15.4
clustering rand. part. 65.14± 18.7 138.64± 5.9
(Cloud) 𝑘-means++ 21.3± 4.1 44.12± 10.7

Table 5.4: Comparison of the number of iterations it takes for MM and G-MM to
converge in the scene recognition and the data clustering experiment with different
initializations and/or datasets. The numbers reported for the clustering experiment
are the average and standard deviation over 50 trials.

5.5.4 Run Time

G-MM bounds make a fraction of the progress made in each bound construction

step compared to the MM bound. Therefore, we would expect G-MM to take more

steps before it converges. We report the number of iterations that MM and G-MM

take to converge in Table 5.4. The results for G-MM depend on the value of the

progress coefficient 𝜂 which is set to match the experiments in the paper; 𝜂 = 0.02

for the clustering experiment (Section 5.5.1) and 𝜂 = 0.10 for the scene recognition

experiment (Section ??).

The overhead of the bound construction step depends on the application. For

example, in the scene recognition experiment, optimizing the bounds takes orders of

magnitude more than sampling them (a couple of hours vs. a few seconds). In the

clustering experiment, however, the optimization step is solved in closed form whereas

sampling of the bounds involves performing a random walk on a large graph which

can take a couple of minutes to run.

5.6 G-MM in Expectation (G-MME)

Although G-MM is more flexible and relaxed than MM, however, G-MM still requires

greedily making progress in each step (see the second constraint in (5.3)). In this
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section, we extend G-MM by allowing it to occasionally move to worse solutions,

and thereby, standing a chance of getting out of local minima. The idea is to select

a bound from ℱ at random from a distribution that guarantees making progress

in expectation and not necessarily in all iterations. We call this method G-MM in

Expectation (G-MME).

Let 𝒫 denote the set of all probability distributions defined on ℱ ; that is

𝒫 =
{︁
𝑃 : ℱ → R | 𝑃 (𝑓) ≥ 0,∀𝑓 ∈ ℱ , and ∑︀

𝑓∈ℱ 𝑃 (𝑓) = 1
}︁
. (5.40)

G-MME selects bounds by sampling from a distribution 𝑃𝑡 ∈ 𝒫 . Let 𝑏 denote a ran-

dom variable with probability distribution 𝑃𝑡. In order tomake progress in expectation

G-MME requires that

E𝑏[𝑏(𝑤𝑡−1)] ≤ 𝑏𝑡−1(𝑤𝑡−1)− 𝜂𝑑𝑡 (5.41)

where 𝑑𝑡 = 𝑏𝑡(𝑤𝑡) − 𝐹 (𝑤𝑡) is the gap between the bound selected in iteration 𝑡 and

the objective function at 𝑤𝑡, and 𝜂 ∈ (0, 1] is the progress coefficient.

G-MM guarantees making progress by adjusting the set of valid bounds over time

(see (5.6)). In G-MME, however, ℬ𝑡 = ℱ at all times, and making progress is guar-

anteed by adjusting the distribution 𝑃𝑡 over time. Since, all bounds in ℱ stand a

chance of getting selected in each iteration, G-MME always have a chance of getting

out of local minimum. Whereas, in G-MM, if at some iteration the minimizers of

all valid bounds are within the attraction basin of a local minimum, the method is

destined to eventually converge to that local minimum.

5.6.1 Sampling Bounds from Maximum Entropy Distribution

The principle of maximum entropy states that, among all possible probability distri-

butions, the distribution with the highest entropy makes the least assumptions and

is the closest distribution to uniform. In G-MME we define 𝑃𝑡 to be the maximum
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entropy distribution among the distributions in 𝒫 that satisfy (5.41):

𝑃𝑡 = arg max
𝑃∈𝒫

𝐻(𝑃 )

s.t. E𝑏∼𝑃 [𝑏(𝑤𝑡−1)] ≤ 𝑏𝑡−1(𝑤𝑡−1)− 𝜂𝑑𝑡. (5.42)

It can be shown that the maximum entropy distribution 𝑃𝑡 is an exponential

distribution of the following form for some scalar 𝜆:

𝑃𝜆(𝑏) =
1

𝑍𝜆
𝑒𝜆𝑏(𝑤𝑡−1), 𝑍𝜆 =

∑︀
𝑓∈ℱ 𝑒

𝜆𝑓(𝑤𝑡−1), (5.43)

and we can rewrite the optimization problem of (5.42) as follows:

𝑃𝑡 = 𝑃𝜆* where 𝜆* = arg max
𝜆

𝐻(𝑃𝜆)

s.t. E𝑏∼𝑃𝜆
[𝑏(𝑤𝑡−1)] ≤ 𝑏𝑡−1(𝑤𝑡−1)− 𝜂𝑑𝑡. (5.44)

𝜆 controls the skewness of the distribution. In particular, 𝜆 = 0 corresponds to the

uniform distribution and 𝜆 = −∞ corresponds to the distribution that has all its

mass on arg min𝑏∈ℱ 𝑏(𝑤𝑡−1).

We prove two theorems (5.4 and 5.5) that make it possible to do binary search

on the value of 𝜆 in order to find the distribution 𝑃𝑡 that solves (5.44). In the rest of

this section we define ℎ(𝑏) ≡ 𝑏(𝑤𝑡−1) and E[·] ≡ E𝑏∼𝑃 [·] to simplify notation.

Theorem 5.4. If 𝑃𝜆(𝑏) ∝ 𝑒𝜆ℎ(𝑏), then 𝐻(𝑃𝜆) is a decreasing function of |𝜆|.
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Proof. We show that 𝜕𝐻
𝜕𝜆

is positive when 𝜆 < 0 and negative when 𝜆 > 0.

𝐻(𝑃 ) = −
∑︁

𝑏∈ℱ

𝑃 (𝑏) log (𝑃 (𝑏))

= −
∑︁

𝑏∈ℱ

𝑒𝜆ℎ(𝑏)

𝑍𝜆
(𝜆ℎ(𝑏)− log𝑍𝜆)

=
−𝜆
𝑍𝜆

∑︁

𝑏∈ℱ

𝑒𝜆ℎ(𝑏)ℎ(𝑏) + log𝑍𝜆

⇒ 𝜕𝐻

𝜕𝜆
(𝑃 ) =

−𝑍𝜆 + 𝜆
∑︀

𝑏∈ℱ ℎ(𝑏)𝑒𝜆ℎ(𝑏)

𝑍2
𝜆

∑︁

𝑏∈ℱ

𝑒𝜆ℎ(𝑏) − 𝜆E[ℎ2(𝑏)] +

∑︀
𝑏∈ℱ ℎ(𝑏)𝑒𝜆ℎ(𝑏)

𝑍𝜆

= −E[ℎ(𝑏)] + 𝜆E[ℎ(𝑏)]2 − E[ℎ2(𝑏)] + E[ℎ(𝑏)]

= −𝜆 var (ℎ(𝑏))

⎧
⎪⎨
⎪⎩

> 0 if 𝜆 < 0

< 0 if 𝜆 > 0

= 0 if 𝜆 = 0

(5.45)

Theorem 5.5. If 𝑃𝜆(𝑏) ∝ 𝑒𝜆ℎ(𝑏), then E𝑏∼𝑃𝜆
[ℎ(𝑏)] is an increasing function of 𝜆

unless ℎ(𝑏) is the same for all 𝑏 ∈ ℱ where ℎ(𝑏) = 𝑏(𝑤𝑡−1).
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Proof. We show that 𝜕E𝑏∼𝑃 [ℎ(𝑏)]
𝜕𝜆

is non-negative for any 𝜆.

E𝑏∼𝑃 [ℎ(𝑏)] =
∑︁

𝑏∈ℱ

𝑃 (𝑏)ℎ(𝑏)

𝜕E[ℎ(𝑏)]

𝜕𝜆
=

∑︁

𝑏∈ℱ

𝜕𝑃

𝜕𝜆
(𝑏)ℎ(𝑏)

𝜕𝑃

𝜕𝜆
(𝑏) =

𝜕𝑒𝜆ℎ(𝑏)

𝜕𝜆
𝑍𝜆 − 𝜕𝑍𝜆

𝜕𝜆
𝑒𝜆ℎ(𝑏)

𝑍2
𝜆

=

(︀
ℎ(𝑏)𝑒𝜆ℎ(𝑏)

)︀
(𝑍𝜆)−

(︁∑︀
𝑓∈ℱ ℎ(𝑓)𝑒𝜆ℎ(𝑓)

)︁ (︀
𝑒𝜆ℎ(𝑏)

)︀

𝑍2
𝜆

= 𝑃 (𝑏)
(︁
ℎ(𝑏)− E[ℎ(𝑏)]

)︁
(5.46)

⇒ 𝜕E[ℎ(𝑏)]

𝜕𝜆
=

∑︁

𝑏∈ℱ

𝑃 (𝑏)
(︁
ℎ(𝑏)− E[ℎ(𝑏)]

)︁
ℎ(𝑏)

=
∑︁

𝑏∈ℱ

𝑃 (𝑏)ℎ2(𝑏)− E[ℎ(𝑏)]
∑︁

𝑏∈ℱ

𝑃 (𝑏)ℎ(𝑏)

= E[ℎ2(𝑏)]− E2[ℎ(𝑏)] = var (ℎ(𝑏)) ≥ 0 (5.47)

Theorems 5.4 and 5.5 imply that we can do binary search on 𝜆 ∈ (−∞, 0] to solve

(5.44). This assumes the expectation E𝑏∼𝑃𝜆
[𝑏(𝑤𝑡−1)] can be computed efficiently.

More precisely, we start by setting 𝜆𝑙𝑜𝑤 = −𝐴 and 𝜆ℎ𝑖𝑔ℎ = 0, where 𝐴 is a large

positive value. We set 𝜆 =
𝜆𝑙𝑜𝑤+𝜆ℎ𝑖𝑔ℎ

2
and check if E𝑏∼𝑃𝜆

satisfies the constraint in

(5.44); if so, we set 𝜆𝑙𝑜𝑤 = 𝜆, otherwise, we set 𝜆ℎ𝑖𝑔ℎ = 𝜆. We keep doing this until

𝜆ℎ𝑖𝑔ℎ−𝜆𝑙𝑜𝑤 < 𝜖, where 𝜖 is a small positive value. When this happens we have 𝜆* ≈ 𝜆.

After finding 𝜆*, the G-MME bound in iteration 𝑡 is obtained by sampling from

𝑃𝑡 = 𝑃𝜆* i.e. 𝑏𝑡 ∼ 𝑃𝑡. The hardness of the sampling procedure depends on the form of

ℱ and 𝑏. For example, in the clustering example of Section 5.4.1 bounds correspond

to fixing the assignment of the data points to cluster centers (see (5.31)) and for a

bound 𝑏 corresponding to the assignment vector 𝑧 = (𝑧1, . . . , 𝑧𝑛) we have

ℎ(𝑏) =
𝑛∑︁

𝑖=1

||𝑥𝑖 − 𝜇𝑧𝑖||2, 𝑤𝑡−1 = (𝜇1; . . . ;𝜇𝑘). (5.48)
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In this particular case 𝑧𝑖s are independent and we can draw samples from 𝑃𝑡 simply

by sampling 𝑧𝑖s from the discrete distribution 𝑃𝑖(𝑗) ∝ 𝑒𝜆
*||𝑥𝑖−𝜇𝑗 ||2 for 1 ≤ 𝑗 ≤ 𝑘.

5.7 Conclusion

We introduced Generalized Majorization-Minimization (G-MM), a generic iterative

bound optimization framework that generalizes upon Majorization-Minimization (MM).

Our key observation is that MM enforces an overly-restrictive touching constraint in

its bound construction step, making it inflexible and sensitive to initialization. G-

MM relaxes this constraint by adopting a different measure of progress than MM.

As a result, there are multiple valid bounds that can be selected in each iteration of

the optimization process. We propose deterministic and stochastic ways of selecting

bounds in each step. This generalized bound construction process leads to optimiza-

tion methods that are less sensitive to initialization, and enjoy the ability to directly

incorporate rich application-specific priors and constraints, without the need for mod-

ifying the true objective function. Experimental result with several latent variable

models show that G-MM algorithms significantly outperform their MM counterparts.

We extend G-MM further and allow it to occasionally select bounds that do not

make progress, and thereby, stand a chance of getting out of imminent local optima.

More precisely, we require the bound in each step to make progress in expectation,

and refer to the resulting model as G-MM in Expectation (G-MME).

Future work includes applying G-MM(E) to a wider range of problems and the-

oretical analysis, such as convergence rate. For example, an idea similar to G-MME

can be applied to gradient descent method. More precisely, in each iteration, we can

move in a random direction drawn from a maximum entropy distribution such that,

in expectation, the value of the objective function is guaranteed to improve.
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Chapter 6

Conclusion

This thesis focuses on the problem of image classification in presence of latent vari-

ables. We proposed latent variable models (LVMs) to solve different tasks in com-

puter vision including scene recognition and object detection. Training latent variable

models often entail optimizing a non-convex objective function. We proposed new

optimization techniques that are useful for training latent variable models and other

non-convex optimization problems.

Reconfigurable Bag of Words (RBoW) model [47] is a latent variable model for

scene recognition that represents a scene as a collection of parts arranged in a re-

configurable pattern. RBoW partitions an image into a pre-defined set of regions

and uses latent variables to assign one part to each image region. Each part can be

thought of as a region type, such as sky, building, grass, etc., and inference provides

a semantic segmentation of the image in addition to the scene category prediction.

Image regions in RBoW are very coarse (16 cells of a 4×4 spatial grid on the image),

and using smaller image regions degrades the performance because RBoW assumes

image regions are independent conditional on the image category label. We extended

RBoW by introducing pairwise dependencies between image regions. For example,

the new model can encourage coherent semantic labeling of the image regions, and can

penalize certain geometric configurations, such as water on top of sky. Inference with

the proposed model is NP-hard, and we used the 𝛼/𝛽-swap algorithm [9] together

with graph-cut to find and approximate solution to the inference problem.
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Another way to do image classification using part-based models is to represent an

image as a vector of part responses, and train a classifier for each category on this

shared representation. The location of each part in the image is treated as a latent

variable in this model. We presented an algorithm for training all the parameters in

such models jointly, including the set of shared part filters and the set of category

specific classifiers. Unlike other existing approaches, that use hand-engineered heuris-

tics to discover distinctive parts, all stages in our training pipeline are driven by the

same objective namely the classification performance on the training set. We showed

that this part-based model can be seen as a 3-layer neural network with a convolu-

tional layer that computes the part responses at each image location, followed by a

max-pooling layer, and a fully connected layer that computes the category specific

classification scores. While neural networks are typically trained using (stochastic)

gradient descent (back-propagation, in particular), we train our model using sequen-

tial convex optimization which is deterministic, more reliable, and easier to work with

in practice. For example, the quality of the solution in our training algorithm does

not depend on careful tuning of hyper-parameters such as learning rate schedule.

We also introduced an extension to the family of LVMs, called Generalized LVM

(GLVM). The latent variables in an LVM, referred to as positive latent variables, col-

lect evidence for the presence of the foreground object in the image. In addition to

positive latent variables, GLVM has a special type of latent variables, referred to as

negative latent variables, that collect counter evidence for presence of the foreground

object. Negative latent variables can make it easier for the classifier to distinguish

between the foreground object and other similar objects in the image or the back-

ground by firing on parts of the other objects. For example, a cow detector can use

a negative latent variable that captures a saddle to distinguish a cow from a horse.

All the latent variable models that we studied in this thesis lead to a non-convex

training objective. Existing non-convex optimization methods that work by alternat-

ing between constructing a bound on the objective function and optimizing the bound,

such as Expectation Maximization (EM) and Concave-Convex Procedure (CCCP),

are observed to be sensitive to initialization. We argue that this is due to an unnec-
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essary and overly-restrictive constraint that requires the bound at each iteration to

touch the objective function at the solution of the previous iteration. We proposed a

generic framework for optimizing non-convex objectives, called G-MM, which relaxes

this constraint. Moreover, we proved that, under mild conditions, G-MM converges

to a local optimum or a saddle point of the true objective. Our experimental result

shows that G-MM tends to converge to a better solution compared to EM and CCCP,

and is also less sensitive to initialization.
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