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Abstract

Rank-convolutions have important applications in a variety of areas such as signal processing
and computer vision. We define a “mask” as a function taking only values zero and infinity.
Rank-convolutions with masks are of special interest to image processing.

We show how to compute the rank-k convolution of a function over an interval of length n
with an arbitrary mask of length m in O(n

√
m log m) time. The result generalizes to the d-

dimensional case. Previously no algorithm performing significantly better than the brute force
O(nm) bound was known.

Our algorithm seems to perform well in practice. We describe an implementation, illustrat-
ing its application to a problem in image processing. Already on relatively small images, our
experiments show a signficant speedup compared to brute force.

1 Introduction

1.1 Motivation

Min-convolution and more generally, rank-convolutions (a. k. a. rank filters) have important appli-
cations in a variety of areas, including signal processing, pattern recognition, computer vision, and
mathematical programming. For example, in computer vision they have been used for object recog-
nition, depth estimation, and image restoration. Rank-convolutions such as the median-convolution
have the advantage of being more robust against certain types of noise.

Fast algorithms for computing ordinary convolutions are at the heart of a wide range of applica-
tions. We expect that efficient algorithms for computing the min-convolution and more generally,
rank-convolutions, would also have an impact in a variety of areas.

Unfortunately, however, no significantly subquadratic algorithm appears to be known to com-
pute the min-convolution. In addition to its theoretical interest, this question has practical signifi-
cance because in many signal processing applications the size of the input is on the order of many
thousands or millions.

Our main result is an efficient algorithm for computing rank-convolutions of a function with a
mask (a function that takes values 0 and ∞ only); we save essentially a

√
m factor compared to

brute force, where m is the size of the mask. The result is based on a new reduction of rank-k
convolution to ordinary convolutions of Boolean functions.

This appears to be the first algorithm to obtain a substantial improvement over the brute force
method for this class of functions, even in the special case of min-convolution. An efficient method
for computing the min-convolution of an arbitrary function with a function that has a small range
follows immediately.

Rank-convolutions with masks are interesting in the context of image processing, because they
generalize classical non-linear filters and are not affected by low-level noise. Previous image pro-
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cessing systems have mainly used small masks. Our result opens up the possibility of building
efficient systems that use larger masks.

A prototype implementation shows that our algorithm can easily be implemented using standard
tools and seems to perform well in a realistic setting.

Below we give a somewhat detailed introduction to the min-convolution and rank-convolution
problems, their applications, and history, as many readers may not be familiar with these problems
and their significance.

1.2 Definitions

Let G be an additive abelian group. The case of importance for us will be G = Zd under compo-
nentwise addition (d ≥ 1); in fact the case d = 1 already illustrates the idea behind our algorithm
and the resulting speedup. On the other hand, both the definitions and our algorithm become more
transparent when stated on the level of a general abelian group G.

The sum of subsets A,B ⊆ G is defined as A + B = {a + b : a ∈ A, b ∈ B}.
Let R = R ∪ {∞}.

Definition 1.1. For a function f : G → R we define the ∞-support supp∞(f) as the set

supp∞(f) = {a ∈ G : f(a) < ∞}; (1)

and the 0-support supp0(f) as the set

supp0(f) = {a ∈ G : f(a) 6= 0}. (2)

We shall use the 0-support in the context of the ordinary convolution and the ∞-support in the
context of rank-convolutions (including the min-convolution). To facilitate parallel treatment we
shall often refer to these two concepts as the “support” and use the notation supp(f). This will
not lead to ambiguity, the context being either specified or implied in each case.

In each context, we shall only be interested in functions with a finite support. If S is a finite
subset of G and f : S → R is a function, we shall view f as a function f : G → R by extending f
to G \ S so that supp(f) remains a subset of S (i. e., for a ∈ G \ S we set f(a) = ∞ in the context
of rank-convolutions and f(a) = 0 in the context of the ordinary convolution).

Recall that the ordinary convolution of functions f, g : G → R with finite support is the
function h = f ∗ g : G → R defined by

h(i) =
∑
j∈G

f(j)g(i− j). (3)

Observe that the sum (3) has only a finite number of nonzero terms and is therefore well defined.
Replacing addition by min, multiplication by addition, and 0 by ∞ in (3), we obtain the

definition of min-convolution:

Definition 1.2. Let f, g : G → R be functions with finite support. The min-convolution of f and
g is the function h = f ⊗min g : G → R defined by

h(i) = min
j∈G

(f(j) + g(i− j)). (4)
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In other words, min-convolution is the convolution operation in the (min,+) semiring of func-
tions G → R. Observe that in (4), the minimum is taken over a finite number of values and is
therefore well defined.

Like the ordinary convolution, min-convolution is commutative and associative. Moreover, in
further analogy with ordinary convolution which is distributive over addition, min-convolution is
distributive over “min,” i. e., if g1, . . . gk : G → R, then

f ⊗min min{g1, . . . , gk} = min{f ⊗min g1, . . . , f ⊗min gk}, (5)

and vertical shift (addition of a constant) has the expected effect, i. e., for any constant c ∈ R,

f ⊗min (g + c) = (f ⊗min g) + c. (6)

An important generalization of min-convolution concerns order statistic. For a function f :
G → R with finite ∞-support S of size m = |S|, for k ≥ 1 we define the rank-k order-statistic of f
as Rk(f) := f(bk) where the support S = {b1, . . . , bm} is sorted by the f -values: f(b1) ≤ f(b2) ≤
· · · ≤ f(bm). For k > m we stipulate Rk(f) = ∞.

Definition 1.3. Let f, g : G → R be functions with finite support and let k ≥ 1. The rank-k
convolution of f and g is the function h = f ⊗k g : G → R defined by

h(i) = Rk{f(j) + g(i− j) : j ∈ G}. (7)

Note that ⊗min = ⊗1.
Observe that for every i ∈ G, the function ri(j) := f(j) + g(i − j) (j ∈ G) has finite support

and therefore the quantity h(i) in (7) is well defined.
Rank-k convolution is commutative and satisfies (6), but for k ≥ 2 it is not associative and does

not satisfy any distributive law analogous to (5).
A mask is a function with finite ∞-support that takes the values 0 and ∞ only. We shall

use masks in the context of rank-convolutions only. The term “mask” comes from the way such
functions are used in image processing. A mask is uniquely determined by its ∞-support and
therefore we can identify masks with finite subsets of G. The effect of rank-k convolution with a
mask is that for every i ∈ G, we replace f(i) by the rank-k order statistic of the values within a
shifted copy of the mirror reflection of the mask “centered” at i.

Let ◦ denote either of the ∗ and ⊗k operations. We conclude this section with the observation
that for functions f, g with finite supports we have

supp(f ◦ g) ⊆ supp(f) + supp(g). (8)

1.3 The main results

Let G = Zd; we refer to d as the dimension of the convolution problems over G. We use the notation
[n] = {0, 1, . . . , n− 1}. We shall assume the supports of our functions f, g satisfy

supp(f) ⊆ [n]d; supp(g) ⊆ [m]d. (9)

It follows by (8) that
supp(f ◦ g) ⊆ [n + m− 1]d, (10)

where, as before, ◦ denotes either of our convolution operations.
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The input functions f, g and the output function f ◦ g will be given as d-dimensional arrays
of sizes nd, md, and (n + m − 1)d, respectively (recall our convention that we regard a function
defined on a finite subset of G as a function defined on all of G by extending it so as not to change
its support). Throughout the paper we assume both m and n are powers of 2.

Our computational model is a RAM capable of performing arithmetic operations on numbers
≤ (n + m)d (the addresses to the output array) and comparisons of real numbers (the data in the
f array) at unit cost.

One-dimensional rank-convolutions can be computed by brute force in O(nm) operations (in
the RAM model with real arithmetic), using linear time median selection [3, 19]. One of our main
goals is to understand if (or when) the computation of min-convolution and rank-convolutions can
be done in substantially subquadratic time (O(n2−c) for some constant c > 0) for the case m = n.

Our main result is a new upper bound on the complexity of computing the rank-k convolution
of any function f : [n]d → R with a mask g : [m]d → {0,∞}.

Theorem 1.4. (a) Let f be a function [n]d → R and g a mask [m]d → {0,∞} where m ≤ n. Then
the rank-k convolution f ⊗k g can be computed in O

(
8dndmd/2

√
d log m

)
time, with O(dnd log n)

comparisons of reals. (b) If m = n, we obtain the time bound O
(
2dn3d/2

√
d log n

)
.

Note that for bounded d, our time bound simplifies to

O
(
ndmd/2

√
log m

)
, (11)

saving a factor of md/2/
√

log m compared to the brute force bound O
(
(nm)d

)
.

Our algorithm works via a generic reduction to ordinary convolution of binary arrays, which in
turn can be performed via the Fast Fourier Transform (FFT) [8].

Even in dimension d = 1 and in the special case of min-convolution, this appears to be the first
result that beats the brute force bound O(nm) by more than a logarithmic factor for a significant
class of pairs of functions with no convexity assumptions.

For the case of min-convolutions, the main result extends to the case when g is not a mask but
its range is small.

Corollary 1.5. Let f be a function [n]d → R and g a function [m]d → R where m ≤ n. Assume g
takes s distinct values. Then f ⊗min g can be computed in O

(
s8dndmd/2

√
d log m

)
time.

In Section 4 we state our main result in the general context of rank-convolutions over abelian
groups (Theorem 4.1).

2 Prior work

In this account, we assume the dimension is d = 1. This is the case that received the most
attention; and the improvement produced by our algorithm in one dimension is essentially the
same as in higher dimensions, saving a factor of Θ̃(

√
K) where K is the size of the mask.

For simplicity, we shall also assume m = n. In this case the brute force computation of the
one-dimensional min-convolution takes O(n2) operations (in the RAM model with real arithmetic).
We discuss previous attempts at improving this quadratic behavior.
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2.1 Early work: the slope transform

Bellman and Karush [2] introduced a transform (the “maximum transform”) which is an extension
of the Legendre transform to not necessarily convex functions. Bellman and Karush showed how this
transform can be used to compute the min-convolution of a pair of convex functions. Maragos [17]
rediscovered the Bellman–Karush transform and called it the slope transform; this term has gained
acceptance in the mathematical morphology community. We note that the concept was defined
for continuous signals and some ad-hoc discretization was used for its approximate calculation.
Maragos saw that the slope transform plays a similar role for morphological operators as the
Fourier transform does for linear operators.

In analogy with the convolution theorem for the Fourier transform, the slope transform of
f ⊗min g is the sum of the slope transforms of f and g. While the slope transforms of sampled
functions f, g : [n] → R can be sensibly defined, and computed in linear time, this does not
lead to a fast min-convolution algorithm because the slope transform is not invertible. The slope
transform of h is identical to the slope transform of the lower hull of h (the maximal convex function
dominated by h). The slope transform can be used to compute f ⊗min g in O(n) time when both
f and g are convex, in which case the output is also convex.

2.2 Complexity of the general case

It seems that the best existing bound for the complexity of computing the min-convolution of two
arbitrary functions is O(n2/ log n). This result follows from a technique used in Chan’s O(n3/ log n)
algorithm for the all-pairs shortest path problem [6]. Bremner et al. [4] describe the method and
also present an O(n2(log log n)2/ log n) algorithm for computing arbitrary rank-convolutions. This
appears to be the best bound to-date. Bremner et al. [4] also describe faster algorithms in the
non-uniform linear decision tree model.

Bussieck et al. [5] considered the average-case complexity of min-convolution and developed an
algorithm that runs in expected O(n log n) time for random inputs where every permutation of the
values of f and g is equally likely to occur. Unfortunately this is not a reasonable assumption to
make in most applications.

2.3 Convexity assumptions

Under convexity assumptions, faster algorithms are known for min-convolution, but not for the
potentially more important case of rank-convolutions.

The only special case we are aware of where a fast algorithm is known for rank-convolutions
is the case when the mask is an axis-parallel box. This case is common in computer vision and
image processing. Rank-convolutions in this case can be computed in O(n log n) time; and min-
convolution in O(n) (Gil and Werman [15]).

Computing min-convolutions when f is arbitrary but g is convex has received special attention
because of its applications to sequence alignment [9] and to computing distance transforms of
images [10]. As pointed out by Eppstein [9], the problem can be solved in O(n) time by using the
totally monotone matrix search algorithm of Aggarwal et al. [1].

When g is concave, the min-convolution can be computed in O(nα(n)) time using the matrix
search algorithm of Klawe and Kleitman [16]. Here α is the extremely slowly growing inverse
Ackermann function. Eppstein [9] combined the convex and the concave cases and generalized
them to an algorithm that computes the min-convolution in O(nkα(n/k)) time when g can be
decomposed into a sequence of k convex or concave segments.
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Felzenszwalb and Huttenlocher [10] developed a different algorithm for the case when g is convex
by noting the relationship between min-convolutions and lower-envelopes (minimum of a family of
functions). The same approach can be used when g is concave. This algorithm runs in O(n) time
if an intersection point between shifted copies of g can be computed in constant time. In the worst
case, binary search will find an intersection in O(log n) time, yielding an O(n log n) algorithm.

3 Applications

3.1 Applications of min-convolution

Bellman and Karush considered min-convolution in the context of optimization problems in eco-
nomics and operations research such as optimal distribution of effort and allocation processes [2].
Min-convolution plays an important role in signal processing because it is closely related to the dila-
tion and erosion of real valued signals [20, 17]. Recently one and two-dimensional min-convolutions
have been crucial in developing a variety of fast algorithms in computer vision [10, 12, 11, 7] and
sequential data analysis [13]. The operation arises naturally in the solution of sequence alignment
problems [9]. Sequence alignment is widely used in computational biology to find similarities be-
tween DNA/RNA/protein sequences, as well as for time-warping in speech/sound recognition and
other pattern matching situations [18].

3.2 Significance of masks

Masks appear in many applications. In signal processing, the min-convolution of a discrete signal
f with a mask corresponds to a type of min-filtering. In this case g represents a binary mask M
that is “on” at indices where g equals zero and “off” at indices where g equals infinity. Now the
min-convolution corresponds to placing a mirror reflected version of M on top of f at all horizontal
shifts and finding the minimum entry in f that is under an “on” position of M .

The min-filtering operation can be seen as the erosion of f by a binary structuring element.
This is one of the basic operations in mathematical morphology where it is used to analyze images;
in particular, erosions are commonly used to detect structures (such as lines, “blob” shapes like
cells under a microscope, wood grain, etc.) in grayscale images [20, 21].

In image analysis the masks used for min-filtering are usually convex (balls, squares), but the
masks are sometimes tuned to the shape of a particular object. We believe that an O(N log N)
algorithm for the general two-dimensional min-filtering problem (where N = n2 is the size of the
image) would inspire a host of new applications; even the more modest progress made in this paper
might help expand the application horizon. In the case of images, N tends to be so large that a
quadratic algorithm is not practical.

While min-convolutions with masks are quite common in image processing, rank-convolutions
seem to be more important because they can filter out noise.

3.3 Applications of rank convolution

Rank-convolutions are important because they are more robust than min-convolutions. The min
operation is fragile because a single low value in a set of values makes the minimum low, even if
most of the remaining values are high. In pattern recognition we often have noisy inputs and we
do not want low-level noise to have a drastic effect on the output.

Rank-convolutions have been used for a variety of image processing tasks [21]. Images often
suffer from what is called “salt-and-pepper” artifacts, where a few pixels get arbitrary values due
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to noise in the sensing. A classical approach for removing such noise is to compute a median-filter,
where the value of a pixel is replaced by the median value in a small region around it.

In Section 5 we describe an application of rank-convolutions to object detection, where a large
mask is used to detect translated copies of an object with a particular shape in an image that
contains salt-and-pepper noise.

4 Algorithms

4.1 Notation, terminology

A Boolean function is a function which takes only two values, 1 (“TRUE”) and 0 (“FALSE”). A
log–Boolean function (or a “mask”) is a function which takes only two values, 0 (“TRUE”) and ∞
(“FALSE”). Note that f is Boolean if and only if − log(f) is log-Boolean.

If f is Boolean or log-Boolean we define the support of f , supp(f), as f−1(TRUE). This termi-
nology is consistent with our previous usage since Boolean functions will only occur in the context
of ordinary convolutions and log-Boolean functions only in the context of rank-convolutions.

For S ⊆ G, the characteristic function XS is the Boolean function G → {0, 1} with support S;
and the log-characteristic function LS = − log XS is the analogously defined log-Boolean function.

4.2 Main algorithmic result

In this section we reduce the problem of computing the rank-k convolution of an arbitrary function
and a log-Boolean function to ordinary convolution of Boolean functions. (All functions are assumed
to have finite support.)

Our input will be two functions represented by arrays over finite subsets A,B ⊆ G. The
output will be represented by an array over A + B. Our computational model is a RAM capable
of performing arithmetic operations on integers up to |A + B| and comparisons of pairs of real
numbers at unit cost.

Assume we have an algorithm A to compute the ordinary convolution of Boolean functions
with finite supports over G. For finite subsets A,B ⊂ G, let T (A,B) denote the maximum cost
incurred by A in computing u ∗ v where u : A → {0, 1} and v : B → {0, 1} are Boolean. Note
that T (A,B) ≥ |A + B| since |A + B| is the size of the output.

Theorem 4.1. Let k ≥ 1. Let A,B be finite subsets of the abelian group G. Given a function
f : A → R and a log-Boolean function g : B → R as arrays over their respective domains, the rank-
k convolution f ⊗k g can be computed, for any integer q > 0, in O (qT (A,B) + (1/q)|A + B||A|)
time, with O(|A| log |A|) comparisons of reals.

In particular, if T (A,B) = O(|A + B| log |A + B|) then the total cost of the computation is
O(|A + B|

√
|A| log |A + B|).

The assumption T (A,B) = O(|A+B| log |A+B|) is justified when G = Zd and A = B = [n]d; in
this case we can use the d-dimensional FFT [8]. Using FFT, ordinary one-dimensional convolution
can be computed in O(n log n) operations over complex numbers. The “row-column algorithm,” de-
riving its name from the two-dimensional case, yields d-dimensional FFT and ordinary convolution
using O((2n)d log(nd)) arithmetic operations over complex numbers [8].

Our calculation of ordinary convolutions needs to be accurate up to an additive error of 1/3,
which we follow by rounding to the nearest integer. This overall accuracy can be achieved by per-
forming arithmetic over complex numbers to O(log |A + B|)-digit accuracy. Arithmetic operations
of this accuracy cost O(1) in our model.
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The n = m case of our main result, part (b) of Theorem 1.4, follows, noting that in that result
we have |A| = |B| = nd and |A + B| = (2n− 1)d.

4.3 The main algorithm

We now describe the algorithm that will prove Theorem 4.1.
Let q be a positive integer parameter which we will set later around

√
|A|.

Phase 0. Preprocessing f

1. Sort A by the f -values: A = {a1, . . . , as} where f(a1) ≤ f(a2) ≤ · · · ≤ f(as) and s = |A|.

2. Divide up {a1, . . . , as} into q consecutive subintervals A1, . . . , Aq such that |At| ≤ ds/qe.
(: Note that if t1 < t2 then for every xi ∈ Ati (i = 1, 2) we have f(x1) ≤ f(x2). :)

3. Let et : G → {0, 1} be the characteristic function of At.
(: Note that supp(et) ⊆ supp(f) ⊆ A. :)

Phase 1. Counting via ordinary convolution of Boolean functions

For t = 1, . . . , q, let ut = et ∗ e−g.
(: Note that both et and e−g are Boolean functions; supp(e−g) = supp(g) ⊆ B. :)

Phase 2. Final selection

For i ∈ A + B,

if k >
∑q

t=1 ut(i) then let h(i) = ∞
else let

`i = min{` :
∑̀
t=1

ut(i) ≥ k} and ki = k −
`i−1∑
t=1

ut(i); (12)

h(i) = Rki
{f(j) + g(i− j) : j ∈ A`i

}. (13)

This concludes the description of the algorithm. The key observation to justify correctness is
that ordinary convolution can be used for counting; specifically, ut(i) counts the entries j ∈ At

which contribute a finite value f(j) + g(i− j) in the definition of h(i) (equation (7)).

4.4 Timing analysis

The preprocessing phase takes O(|A| log |A|) time with O(|A| log |A|) comparisons of reals. The
time is negligible compared to our final estimate; and no more comparisons of reals will be made.

In Phase 1 we compute q ordinary convolutions of Boolean functions over A and B. This takes
at most qT (A,B) time.

In Phase 2, the computation of h(i) for each i ∈ A + B takes O(q + |A|/q) time. In computing
h(i) we can consider the values j ∈ A`i

in sorted order (it has already been sorted in Phase 0) until
we find ki values with g(i− j) < ∞.

The total cost is as stated in the Theorem (using that T (A,B) ≥ |A + B|). Under the stated
assumption on T (A,B) we choose q = d

√
|A| log |A + B|e to obtain the more specific bound.
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4.5 Min-convolution

We can go somewhat further for k = 1 (min-convolution) in view of equations (5) and (6). In this
case, we do not need to assume that g is log-Boolean; it suffices to assume that it has small range.
We obtain the following result.

Proposition 4.2. Let A,B be finite subsets of G. Assume we can compute the min-convolution of
a function f : A → R with any log-Boolean function (mask) g : B → {0,∞} in O(t(A,B)) time.
Then we can compute the min-convolution of f with any g : B → R in O(|R(g)|t(A,B)) time,
where R(g) denotes the range of g.

The result follows from equations (5) and (6) and the following observation.

Observation 4.3. Assume the number of distinct finite values in the range of g : G → R is s.
Then g is the lower-envelope (minimum) of vertical shifts of s log-Boolean functions.

Proof. For r ∈ R, let Lr denote the log-characteristic function of the set g−1(r). Let R be the set
of finite values in the range of g. Then g = minr∈R{Lr + r}.

All the sets g−1(r) can be found in O(|B|) time and the decomposition g = minr∈R{Lr + r}
can be described explicitly in O(s|B|) time. Therefore, by using identities (5) and (6), it suffices to
compute each min-convolution f ⊗min Lr in O(t(A,B)) time.

4.6 Small masks

In this section we complete the proof of our main result (Theorem 1.4) by considering the case
m < n. We reduce this case to the case m = n (part (b) of Theorem 1.4) by a standard tiling
argument.

The main idea is to tile the output array, and compute h through many smaller rank-k convo-
lutions. Each of these rank-k convolutions is between functions defined over similar sized domains.
This reduction makes no assumptions about the values of g and how the smaller rank-k convolutions
are computed. The following lemma describes the reduction.

Lemma 4.4. Let f : [n]d → R and g : [m]d → R be functions with m < n. Suppose we can
compute f ′ ⊗k g in O(t(m, d)) time for f ′ : [2m − 1]d → R. Then we can compute f ⊗k g in
O

(
((n/m) + 2)dt(m, d)

)
time.

Proof. As before, we extend f and g to Zd by assigning them the value ∞ outside their original
domains. Let h = f ⊗k g; so supp(h) ⊆ [n + m − 1]d. For t ∈ Zd, let ft denote the restriction of
f to the translate [2m − 1]d + mt + 1 of [2m − 1]d, where 1 = (1, . . . , 1) ∈ Zd. (Let ft(j) = ∞ for
j /∈ [2m− 1]d + mt + 1.)

Let ht = ft ⊗k g. For r = (r1, . . . , rd) ∈ Rd let brc = (br1c, . . . , brdc).
We claim that for every i ∈ Zd,

h(i) = ht(i) where t = bi/mc − 1. (14)

Indeed, the only j ∈ Zd for which the value f(j) matters when evaluating h(i) = Rk{f(j) +
g(i− j) : j ∈ G} are those for which i− j ∈ [m]d, i. e., j ∈ i− [m]d (otherwise g(i− j) = ∞). So
we need to show that i− [m]d ⊆ [2m− 1]d +mt+1, i. e., i−mbi/mc+(m− 1)1− [m]d ⊆ [2m− 1]d.
Now we note that i − mbi/mc ∈ [m]d and (m − 1)1 − [m]d = [m]d, so the claim follows from the
fact that [m]d + [m]d = [2m− 1]d.

Now if i ∈ [n + m− 1]d then bi/mc ∈ [b(n− 2)/mc+ 2]d and therefore the number of relevant
values of t is less than ((n/m) + 2)d, completing the proof.
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(a) I (b) M

(c) I ⊗k M ′ (d) I ⊗min M ′

Figure 1: The rank-2500 convolution of (a) and a mirror reflection of (b) is shown in (c). The
image in (b) represents a mask, with black indicating a value of zero and white indicating a value
of infinity. In the other images bright pixels represent high values, while darker pixels represent
lower values. The two peaks in (c) indicate good shifts for the mask, corresponding to locations
where the target object may be present. The min-convolution of (a) and (b) is shown in (d). In
this case the result is meaningless due to the noise in (a).

When m < n/2 we can combine this lemma with the case m = n (part (b) of Theorem 1.4)
and observe that ((n/m) + 2)d < (2n/m)d to obtain part (a) of the Theorem. The case m ≥ n/2
follows from part (b) by simply extending g to [n]d.

For min-convolutions with functions with small range we can use Theorem 1.4 and Proposi-
tion 4.2 to obtain Corollary 1.5.

5 Image processing application and implementation

5.1 The application

Figure 1 illustrates an application of our algorithm for locating translated copies of an object in
an image. Here we have an image I with target objects that are brighter than the background.
This image is corrupted with salt-and-pepper noise (each pixel is changed to a random value with
probability 0.1). We also have a mask M that has approximately the same shape as a target object
(it fits inside the object). Good locations for the object show up as peaks in the rank-k convolution
I ⊗k M ′, where M ′ is a mirror reflection of M .
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(a) J (b) N

(c) J ⊗k N ′

Figure 2: The rank-600 convolution of (a) and a mirror reflection of (b) is shown in (c). Each peak
in the rank-convolution gives a location in J with a bright object that approximately contains N .
The arrows point to the objects “found” by each peak. Note the two rotated copies of (b) in the
image, one by 15◦ (detected) and one by 30◦ (missed). Note also the “false positives:” the mask
almost fits in the union of ‘c’ and ‘d,’ and the large ‘B’ under several shifts.

This example demonstrates how rank-convolutions filter out salt-and-pepper noise. Figure 1
also shows the result of the min-convolution, I ⊗min M ′. In this case the target locations do not
show up in the output due to the noise in I.

The image I has 500× 500 pixels and the support of the mask M fits inside this domain. The
ideal value for k in the rank-convolution depends on the amount of noise in the input image, and
the size of the support of the mask. In this example we used k = 2500 because the mask M has
approximately 25000 “on” pixels. This allows for up to 10% of the pixels in the image to have
arbitrary values, without affecting the result of the computation by much.

Figure 2 shows another example. Here the image J contains several letters from different fonts,
and the mask N is the letter ‘a’ from a particular font. As in the previous example, 10% of the
pixels in J are corrupted by salt-and-pepper noise. The mask N has approximately 3500 “on”
pixels and we used k = 600. This example illustrates how rank-convolutions are not only robust
against noise; they can also be used to find objects that approximately contain a particular shape
(the mask). Note that J contains two rotated copies of the letter ‘a.’ The rank-600 convolution
was able to detect an ‘a’ rotated by 15◦ but not an ‘a’ rotated by 30◦. Note that 12 repetitions
of the algorithm could detect all rotations of the mask (we need to rotate the mask by 30 degrees
each time). The output also has false detections because the mask almost fits inside the union of
the ‘c’ and the ‘d,’ and the ‘B’ makes a large area of J bright. Larger values of k would allow the
detection of objects that are less similar to the mask but would also lead to more false positives.
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5.2 The implementation

We implemented our algorithm for rank-convolutions in C, using the FFTW library for computing
FFTs [14]. Our implementation stipulates m = n, thus it does not take advantage of the fact that
the mask can be defined over a smaller domain.

For comparison, we also implemented the O(n2K) brute force algorithm, where K ≤ n2 is the
size of the support of the mask. So this implementation takes advantage of the smaller size of the
masks. If the size of the smallest square containing the support of the mask is s× s then K ≤ s2.
For the examples shown here, K is much less than n2 (10% in Fig. 1 and 1.4% in Fig. 2).

We measured the running times on a 2.8GHz PowerMac computer with 8GB of RAM running
the Mac OS X 10.5 operating system. The programs were compiled using gcc 4.0.1 (the GNU C
compiler). In the images in Figure 1 we have n = 500, d = 2, and K ≈ 25000. Our algorithm
runs in about 8 seconds, while the brute-force implementation takes approximately 180 seconds.
Thus we observe a more than 20-fold speedup for this relatively small image, even though our
implementation favored the brute-force method in the sense described above.

This speedup is related to the size of the mask. In Figure 2 the image has the same size as
before but the mask has smaller support (K ≈ 3500). In this case the timing of our algorithm
barely changes (7 seconds) while the brute-force implementation runs faster in proportion to the
size of the support of the mask (25 seconds).
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