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Abstract that is both simple and powerful.

We formulate multiple object detection as a weighted
We consider the problem of deriving a global interpreta- minimum-cover problem. The basic idea is that each object
tion of an image in terms of a small set of smooth curves. in the scene covers a part of the image. An interpretation of
The problem is posed using a statistical model for imagesthe scene is given by a set of objects which cover the whole
with multiple curves. Besides having important applica- image, where one of the objects is typically a generic back-
tions to edge detection and grouping the curve finding taskground model. The minimum-cover problem is NP-hard
is a special case of a more general problem, where we wantbut approximation algorithms exist. We apply the general
to explain the whole image in terms of a small set of objects. framework for finding curves in images and give empirical
We describe a novel approach for estimating the contentresults on the Berkeley segmentation dataset. We show that
of scenes with multiple objects using a min-cover frame- our curve finding method improves boundary detection re-
work that is simple and powerful. The min-cover problem is sults relative to the local filters described in [10] and the
NP-hard but there is a good approximation algorithm that conditional random field model in [13f.
sequentially selects objects minimizing a “cost per pixel” One of our main goals is to reliably detect meaningful
measure. In the case of curve detection we use a type oturves in natural images. Intuitively, a good curve is a path
best-first search to quickly find good curves for the cov- in the image which has a single underlying cause. For ex-
ering algorithm. The method integrates image data over ample, a curve can be caused by an occlusion (a discontinu-
long curves without relying on binary feature detection. We ity in depth), a sharp change in albedo (paint on a surface)
have applied the curve detection method for finding object or a sudden change in lighting (a shadow). We construct
boundaries in natural scenes and measured its performancea simple model for scenes with multiple curves where the
using the Berkeley segmentation datdset. notion that each curve should have a single cause is repre-
sented implicitly in the statistical properties of the miode
For example, we stipulate that curves tend to be smooth.
1. Introduction As mentioned above, we pose multiple object detection
as a minimum-cover problem. In general each object in a
The problem of finding salient curves in grayscale or covering has a cost which depends on the prior probability
color images is an important question with applications to of seeing that object (some objects are more common than
boundary detection, perceptual grouping and object recog-others) and the probability of observing the part of the im-
nition. This paper describes a new algorithm for estimating age covered by the object, assuming that the object is in the
the set of curves in an image. The method is based on a stascene. We propose to use a classical greedy approximation
tistical model for scenes with multiple curves and a novel algorithm for computing a good interpretation of an image.
approach for estimating the content of a scene with multi- The algorithm sequentially selects objects so as to mimiz
ple objects. the ratio of the object cost per area of the image it explains.
We see the curve detection task as a instance of a moréThis can be seen as a “cost per pixel” or cost density mea-
general problem, where we want to simultaneously detectsure. As explained in Section 5, sequentially finding olsject
multiple objects in one image. The general problem of find- with minimum cost density can lead to significantly differ-
ing an optimal interpretation of an image in terms of multi- ent results from sequentially finding the best single object
ple objects poses an incredible algorithmic challenge. Ourinterpretation of the remaining image.

paper describes a novel approach for tackling this problem  One of our main contributions is an efficient method for

1This material is based upon work supported by the Nationarei 20ur results are inferior to [13] on a horse dataset. An intggtion of
Foundation under Grant No. 0534820 and 0535174. the differences between the two datasets is discussed fioS&c



implementing the inner loop of the minimum-cover algo-
rithm in the case where the objects we are looking for are
smooth curves. We use a type of best-first search to quickly
find a curve with minimum cost density. Our method works
by integrating image measurements over long curves with-
out relying on intermediate decisions such as binary edge

detection. This makes our curve finding system a practi- ®
cal alternative to classical methods that work by perfogmin
feature detection followed by a linking procedure. Figure 1. Example where there are 16 oriented segments leaving

Of course we are not the first to consider the problem each point. The sef is the union of all oriented segments.
of finding curves in images. Our model for images with
multiple curves is a generalization of the model by Geman

and Jedynak in [6]. They described a statistical model for O OO OO OF s OF O
scenes with one curve and a fast inference algorithm for A A OO
the case where the starting point of the curve is known in

advance. In contrast we consider a model for scenes with o & o o o b

multiple curves without known starting points.

There has been considerable earlier work on using curvi-
linear continuity to compute aaliencymeasure for each
pixel or edge fragment in an image [1, 7, 14, 15, 16, 17].
Typically this saliency measure is related to the likeliloo
that a curve in the scene goes through a particular location
in the image. The methods in [8] and [9] look for multi- global explanation of the filter responses in terms of a set of
ple salient curves by sequentially selecting the mostsialie curvesX = {Ci,...,Cy}. Each curve explains the filter
curve and taking it out of the image. responses for the segments in it, while the filter responses

Our curve finding algorithm searches for optimal curves that are not under a curve are explained by a background
by starting from short curves and iteratively expanding model. Each curve in the hypothesis should be smooth
curves that look promising. This is related to the methods and the number of curves should be small.
in [6] and [4]. It is also related to parsing algorithms that ~ We use a statistical model for images with multiple

Figure 2. Curves are sequences of adjacent segments. The picture
shows a curve formed by 4 segments.

use figures of merit to order computation [3]. curves which is a generalization of the model for images
with one curve in [6]. We assume that each curve in the
2. Scene M odédl scene is drawn independently from a Markov process which

. . favors smooth curves,
We use a simple model for discrete curves where each

curve is represented by a sequence of short oriented seg- 17
ments (similar to [15] and [6]). LeP be a set of points in P(C) = 7
the plane. We assume that there is a fixed number of possi- i=1

ble segments connecting each pgirg P to nearby points  The number of curves in the image is chosen according to
asillustrated in Figure 1. The set of segments coming out of g distributionP(k) o a* with 0 < a < 1 such that scenes

a pointp corresponds to different orientations that a curve tend to have few curves. This defines a prior distribution
can follow as it passes through the point. The set of all gyer scenes,

possible oriented segments is denotedbyA curve is rep- P(X) x H aP(C). 2)
resented by a sequence of adjacent segments. ., s,) Cex

as shown in Figure 2. We assume that the filter responses are conditionally in-

_In the simplest case the set of pointscorrespond 10 yohandent given the true scene, and that the valug, of
pixels of the input image. However, we have found it useful depends only on whether or not a curve passes threugh

to consider subpixel curves where the segments go betweerﬂet p;(F,) denote the distribution of filter responses for

;ubpixel Iocgtions. In the general model we avoid specify- segments along a curve whilg(F,) denotes the distribu-
ing the precise nature of the sdtsor 5. tion of filter responses in the background. As long as the

Iaet F;] denote the outgut_?rf] a f!?cal image fél{_tjer asSOCl" jntersections among curves in the scene are small we can
ated with a segment € S. The filter responsé’; gives approximate the data model as,

a noisy indication as to whether or nefs part of a curve

in the scene. For exampléd;, could measure the image P(F,, seS|X) = H pr(Fg) H w(Fy), (3)
derivative perpendicular te. Our algorithm looks for a ‘ . ‘ ‘

1
(I)(Si, Si+1). (1)

=

seXp



where X  denotes the segments that are not in any curve.
Given the output of the filter responség, the most
likely hypothesis forX can be expressed as,

X" =argmax P(X)P(Fs, s€ S|X) (4)
X
= argmax H (aP(C) H pf(FS)> H pu(Fs).
X cex seC s€EXp Figure 3. We can interpret this image as containing two zeros or
(5) an infinity sign. In the case of curves we can think of the image as

containing two circles or a figure eight.

3. Reduction to Weighted Min-Cover

We can reformulate the optimization problem by taking i-th iteration. At each step the algorithm selects an object

the negative logarithm of equation (5). First define, with minimum cost per number of newly covered elements,
aremi cost (o) ©)
0;4.1 = argmin .
cost(C) = —log (aP(C) H pf(FS)> (6) + ;geo lo— (o1 U...Uo)|
seC

@) Note that the right hand side is a type of cost density mea-
sure. The algorithm keeps selecting objects until all’aé
Now the optimalX* can be expressed as, covered. While this greedy algorithm is extremely simple,
for the case of finding curves there is an exponential num-
X* = argmin Z cost(C) + Z cost(s).  (8) ber of possible obje.ch to consi_der in eaph ;tep. In Sectipn 6
Cex sEXp we describe an efficient algorithm for finding curves with
optimal cost density that can be used in the “inner-loop” of
This is an instance of the general weighted min-cover prob-the approximation algorithm.
lem. In the general case we have a set of elemérasd a
set of objects). Each object covers some subsetoénd 5. Min-Cover vs. Single Object Detection
has a cost. The problem is to find a subse®okith mini-
mum sum of costs such that every element/ds covered. The min-cover approximation algorithm finds one object
In our case we can takg to be the segments and takeO at a time — the object that minimizes a cost density. It is
to be the set of all possible curves plus the set of all possi-natural to ask how this process differs from detecting one
ble “background segments”. Each background segment isobject at a time using a model for scenes with a single ob-
an object that covers a single segment S with the back-  ject. The difference is in the optimization criterion used.
ground model. Since the costs are non-negative a minimumThe min-cover approximation algorithm finds the object of
cost cover will always contain a set of curves and a set of minimum cost density ignoring the cost of parts of the im-
background segments that are not in any curve, correspondage not covered by the object. Algorithms which assume

cost(s) = —log py(Fs)

ingto X and X . that there is a single object in the image typically optimize
the total cost of the object plus the background hypothe-
4. Greedv Approximation Algorithm sis. Examples include the method in [6] for curves and the
y App g method in [5] for deformable objects.
Here we think of an objeat € O as the subset off Optimizing the total cost (object plus background hy-

that it covers. There is a simple approximation algorithm pothesis) will tend to find larger objects than optimizing th
for weighted min-cover that is guaranteed to find a solu- object cost density. Consider the image in Figure 3. The
tion within a factor oflog(max,co |o|) of the optimal cover.  image can be interpreted as having two zeros or one infinity
From a practical perspective this factor does not seem to besign. If we use an algorithm that assumes only one object is
very good — perhaps around 5 in a realistic setting where present then the infinity sign interpretation is stronglg-pr
curves can have up to 200 segments. However, approxiferred because it explains more of the image with less cost
mation algorithms often perform significantly better than than the background model. The method is biased because
their worst case guarantees and the method seems to peit assumes that any area of the image not explained by the
form well for the curve finding problem. object hypothesis will have to be explained as being part of
The general algorithm builds a cover@fusing objects  the background. The min-cover greedy approximation al-
in O starting from the empty cover and selecting objects one gorithm will prefer the two zeros interpretation whenever
at a time. We denote by; € O the object selected in the one of the two zeros has lower cost density than the infinity



sign. Clearly neither algorithm is perfect. We would prefer One way to find a minimum density curve would be to fix
an exact solution to the NP-hard min-cover problem. The a maximum lengthl. and consider all curves of length up
problem of finding objects that are too small, or interprgtin  to L. We could use dynamic programming to compute the
object fragments as whole objects is not so serious in curveminimum cost curve of length 1 through L ending at each
finding because breaking a single curve into a few curvessegment and then select the one with minimum cost density.
is not an important mistake for most applications. This can Since the dynamic programming table h&sL entries this
often be fixed by a postprocessing step. would be quite slow — in particuldf| is on the order of the
number of pixels in the image. Below we describe a simple
algorithm which is able to find the optimal curve quickly by

) o using a type of best-first search.

In applying (9) to curve finding there are two cases 10 hyitively the curve finding algorithm works as follows.
consider:o;; can be a curve or a background segment. It \ye start by generating all curves of length one and insert-
is easy to compute the best background segment. We focug,g them in a queue. We repeatedly remove a curve from the
here on computing the best curve. If the best backgroundq,eye and insert all possible one-segment extensions back
segment is better than the best curve, but it is not part of;, ihe queue. We stop when we can guarantee that no ex-
the best curve, then selecting the background segment doegsion of a curve in the queue can have better cost density
not change the best curve for the next iteration of the min- \han one of the curves generated so far. Since every curve is
cover algorithm. This is because covering a segment canyp, extension of its first segment, the algorithm is guarahtee
only increase the cost density of curves — if the best curve 1 find the best one.
is not affected then it must remain optimal. Therefore, the  Ngte that if we ever have two curvésandD of the same
best curve needs to be recomputed only when a curve iqength ending at the same segment witfC') < w(D) we
;elected as the.next object or when a background segment,, forget abouD because for every extension Bfthere
is selected that is part of the current best curve. _ is an extension o’ with the same length that is at least

Consider the greedy selection defined by (9) wherie as light. The algorithm simply keeps track of the lightest
_restrlcted to be a curve. For each segmeats leti(s) =1 curve of length ending at segmentfor each paif(s, [) €
if s has not been covered so far, while) = 0 otherwise. ¢ . . This is done using two sparse tablésand?’. The
Its useful to think of the length of” to be the number of \51ye 117[s, 1] is the weight of the lightest curve ending at
uncovered segments in the curve, (s,1) generated so far, whil&[s, ] is the predecessor of
in a lightest curve ending &t, 7). At any point throughout
the run of the algorithm a curve of weigkit'[s, ] can be
obtained by starting from the last segmerand tracing the
evious segments using

Below we will show that ifP is the prefix of an optimal
curve O, then the cost density dP is at least the weight

6. Computing the Best Curve

n

> i(si).

i=1

1(C)

(10)

r
The greedy min-cover algorithm needs to repeatedly select ::P
curve which minimizesost(C') /I(C'). To simplify notation
we define the following quantities,

density ofP,
A= —loga (11) COlSt(/()O) > 7(77;) (16)
w(s) = —logps(Fy) (12) (0) (P)
t(s,q) = —log ®(s, q) (13) This means that if at some point the algorithm has gener-

ated a curve with cost density at most the weight density
The constantl encourages the best curve to be long (larger of all curves in the queue it must have already generated
values bias the model toward a smaller number of longerthe optimal curve. Until this happens we have to keep ex-
curves),w(s) is the cost of explaining the filter response tending curves in the queue. We always extend the curve in

at s using the foreground model arnds, ¢) is a cost that

the queue with lowest weight density — those are the most

encourages curves to be smooth. In practice we can defingromising curves. Note that the bound in equation (16) im-

the constant4, the weightsw(s), and the transition costs
t(s, q) directly without reference to probabilities.

Now we express the cost of a curve in terms of a weight
that depends on the data undéand the smoothness 6f,

n—1

w(s:) + > tsisiy)  (14)

(15)

plies that every prefix of an optimal curve has low weight
density. By expanding curves in weight density order the
algorithm quickly generates the optimal curve and rules out
promising prefixes.

Pseudocode for the curve finding algorithm is shown in
Figure 4. We use hashtables to keep trackiond7 and
a priority queue to keep track @j. The value ofi¥[s, ]
is taken to be infinity until it is defined for the first time.
Our current implementation starts from scratch every time



Algorithm FindCurve

1. for Each segment € S

2. Wis, l(s)] < w(s)

3. Insert(s,(s)) in @

4. repeat

5. Remove itents, ) from @ with minimum weight
densityWV s, ]/l

6. for Each segment following s

7. v— Wls,l] +t(s,q) + w(q)

8. kE—14+1(q)

9. if v<Wlg, k|

10. Wig, k] — v

11. Tlg, k] — s

12. Insert(q, k) in Q

13. until ming, ;y(W(s,l] + A)/l < ming, yeq Wls, 1]/l

Figure 4. Pseudocode for the curve finding algorithm.

7. Results

As described in the introduction one of our main goals is
to detect the boundaries of objects in natural images. Fig-
ure 5 illustrates some results obtained using our curve find-
ing method. These results were obtained using the “prob-
ability of boundary” (PB) measure from [10] to define the
local response$’, for each segment in the image. The PB
measure assigns a number between zero and one to each im-
age pixel, corresponding to a measure of edge strength. The
value is based on a combination of both color and texture in-
formation around a pixel. In practice we IEf be the aver-
age PB value along segmenwhile w(s) = —log(Fs+1).

The value ofcost(s) is set to a constarit In this case the
background model does not influence the selection of the
optimal curves, it only defines a stopping criteria. The min-
cover algorithm keeps picking optimal curves until the cost
density of the best curve is at ledst For the transition
costs we let(s, ¢) be zero if the orientation af is almost

it needs to recompute the best curve but we believe a furtherthe same as the orientation ©&nd |nf|n|ty otherwise.

speed up could be obtained by reusing work from one run of

the algorithm in the next run. In practice it takes a fraction
of a second to find the optimal curve in an image.

There is a simple intuition behind the bound in equa-
tion (16). If we look at a curve with prefix P and suffix
S, the only way forO to have low cost density whef has
high weight density would be fa$ to have low weight den-
sity and be long. But i© is optimalS cannot be better. Let
O be an optimal curve. For every cur¢éwe have,

cost(C)

cost(0)
ey -

00) ’
cost(O)
1(0) -

(17)

w(C)+A>1(C) (18)

Let O be an optimal curve with prefi® and suffixS.
We uset(P, S) to denote the cost of transitioning from the
last segment oP to the first segment of,

cost(0)  w(P)+w(S) +t(P,S)+ A
1(O) (P)+1(S)

(19)

Sincet(P, S) is non-negative we can get an inequality,

cost(0)

(U(P)+1(S)) 10 > w(P) +w(S) + A. (20)
Now we use equation (18) whe¢eis taken to beS,
cost(O) cost(0)
(U(P)+1(S)) 10) > w(P) +1(S) ) (21)
Cancelingl(S)“f(té?) from both sides gives us the bound

expressed by equation (16).

The examples in Figure 5 demonstrate how we can get
a good interpretation of an image in terms of just a few
smooth curves. The output of our curve finding algorithm is
significantly better than the output produced by local edge
detection methods. In particular for the desert scene| loca
methods produce much more cluttered results.

We have also used our curve finding method to produce
subpixel estimates for the curves in an image. In this case
segments irt' connect pairs of subpixel locations in neigh-
boring pixels. For estimating subpixel curves we used the
derivative of the image along a direction perpendiculas to
as the local measurg;. We letw(s) = —log(Fs+1) when
F, > 0 and zero otherwise. This makes the curve model
have a notion of which side of the curve is brighter than
the other. Figure 6 illustrates the results on a simple image
Our algorithm is able to find good subpixel estimates for
the curves in the image by simultaneously selecting curves
and regularizing their shapes. For this example we picked
transition costg(s, ¢) so that curves can only turn in one
direction, giving a stronger shape regularization coivgtra
The algorithm simultaneously searched for curves that turn
right and curves that turn left.

Finally, we have used the Berkeley segmentation dataset
[10] to evaluate the performance of our curve finding
method on a wide variety of images. The dataset con-
tains human-segmented natural images for testing bound-
ary detection algorithms. Performance is quantified using a
precision-recall framework. The output of a boundary de-
tection algorithm is rated according to the fraction of the
detected edges that are true boundaries (precision) and the
fraction of true boundaries that are detected by the algo-
rithm (recall). Figure 7 compares the results of our algo-
rithm using PB for the local measurements with the perfor-
mance of the CRF model from [13] and the performance



Figure 5. Example results of finding curves in natural images from tikeBxy segmentation dataset. Our algorithm finds good interpre-
tations of these images using just a few smooth curves. Local edgdideteethods tend to produce much more cluttered results.

m

Figure 6. Subpixel curves found in the elephant image. The rightniciste shows the subpixel estimates around the tusk area. Note how
we get a good description of the image in terms of very few smooth curves

obtained using PB alone. dataset are reasonably good, we do not feel that the metric

In the Berkeley segmentation dataset our algorithm out- used in this experiment is an appropriate measure of perfor-
performs edge detection using PB alone and the CRF modemance for our algorithm. The metric depends only on which
in [13] in the low-recall/high-precision regime. All algo- pixels are marked as edges. Therefore it does not check that
rithms have similar performance in the high-recall regime. the edges were grouped into meaningful curves. Construc-
Note that the three algorithms perform better than classi-tion of an appropriate empirical metric for multiple curve
cal edge detection methods. Although our results on thisdetection remains an open problem.
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Figure 7. Berkeley segmentation dataset results. The graph congpairesrve finding algorithm, the CRF model from [13] and the local
detector from [10]. See text for a description of the experiment.

We have also tested our algorithm in the horse datasetsibility would be to build a CRF model on top of the curves
from [2]. In this case the min-cover algorithm performs we find.
better than PB alone but not as well as the CRF method.
The horse dataset poses a significantly different problem .
than the Berkeley segmentation dataset — the goal is to de—8' Conclusion
tect the boundaries of a horse in each image, and no other The minimum-cover framework gives a general, well-
boundaries. Most of the images contain objects such asy,ynded approach for interpreting images with multiple ob-
fences, posts and trees. The CRF method is able 10 SUPjects. In particular, the greedy approximation algorithm
press many non-horse boundaries because it takes into aGsan he used in a wide variety of situations, including cases
count relationships among curves. For example, it seems,here there are different types of objects in an image. It

to suppress boundaries that end in a T-junction which is apqyides an alternative to sequentially selecting the siest
good cue for figure/ground separation. Our algorithm as- gle object interpretation of the image.

sumes that the curves in an image are independent so it has

o . . For the case of finding salient curves in images we in-
no ability to reason about junctions.

troduced a new algorithm for finding curves with minimum
In the future we will explore how to postprocess the out- cost density. Our method exploits the fact that curves can
put of our method to do figure/ground separation. One pos-be generated by a sequential growth process that starts from



a relatively small number of basic tokens (the segments).
We have shown how the quality of a curve can be used as
an effective figure of merit to decide which curves to keep
growing and when the process can stop. The resulting algo-
rithm is able to quickly produce a good interpretation of an
image in terms of a small set of curves.
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