
A Min-Cover Approach for Finding Salient Curves

Pedro Felzenszwalb
University of Chicago
pff@cs.uchicago.edu

David McAllester
TTI at Chicago

mcallester@tti-c.org

Abstract

We consider the problem of deriving a global interpreta-
tion of an image in terms of a small set of smooth curves.
The problem is posed using a statistical model for images
with multiple curves. Besides having important applica-
tions to edge detection and grouping the curve finding task
is a special case of a more general problem, where we want
to explain the whole image in terms of a small set of objects.
We describe a novel approach for estimating the content
of scenes with multiple objects using a min-cover frame-
work that is simple and powerful. The min-cover problem is
NP-hard but there is a good approximation algorithm that
sequentially selects objects minimizing a “cost per pixel”
measure. In the case of curve detection we use a type of
best-first search to quickly find good curves for the cov-
ering algorithm. The method integrates image data over
long curves without relying on binary feature detection. We
have applied the curve detection method for finding object
boundaries in natural scenes and measured its performance
using the Berkeley segmentation dataset.1

1. Introduction

The problem of finding salient curves in grayscale or
color images is an important question with applications to
boundary detection, perceptual grouping and object recog-
nition. This paper describes a new algorithm for estimating
the set of curves in an image. The method is based on a sta-
tistical model for scenes with multiple curves and a novel
approach for estimating the content of a scene with multi-
ple objects.

We see the curve detection task as a instance of a more
general problem, where we want to simultaneously detect
multiple objects in one image. The general problem of find-
ing an optimal interpretation of an image in terms of multi-
ple objects poses an incredible algorithmic challenge. Our
paper describes a novel approach for tackling this problem

1This material is based upon work supported by the National Science
Foundation under Grant No. 0534820 and 0535174.

that is both simple and powerful.
We formulate multiple object detection as a weighted

minimum-cover problem. The basic idea is that each object
in the scene covers a part of the image. An interpretation of
the scene is given by a set of objects which cover the whole
image, where one of the objects is typically a generic back-
ground model. The minimum-cover problem is NP-hard
but approximation algorithms exist. We apply the general
framework for finding curves in images and give empirical
results on the Berkeley segmentation dataset. We show that
our curve finding method improves boundary detection re-
sults relative to the local filters described in [10] and the
conditional random field model in [13].2

One of our main goals is to reliably detect meaningful
curves in natural images. Intuitively, a good curve is a path
in the image which has a single underlying cause. For ex-
ample, a curve can be caused by an occlusion (a discontinu-
ity in depth), a sharp change in albedo (paint on a surface)
or a sudden change in lighting (a shadow). We construct
a simple model for scenes with multiple curves where the
notion that each curve should have a single cause is repre-
sented implicitly in the statistical properties of the model.
For example, we stipulate that curves tend to be smooth.

As mentioned above, we pose multiple object detection
as a minimum-cover problem. In general each object in a
covering has a cost which depends on the prior probability
of seeing that object (some objects are more common than
others) and the probability of observing the part of the im-
age covered by the object, assuming that the object is in the
scene. We propose to use a classical greedy approximation
algorithm for computing a good interpretation of an image.
The algorithm sequentially selects objects so as to minimize
the ratio of the object cost per area of the image it explains.
This can be seen as a “cost per pixel” or cost density mea-
sure. As explained in Section 5, sequentially finding objects
with minimum cost density can lead to significantly differ-
ent results from sequentially finding the best single object
interpretation of the remaining image.

One of our main contributions is an efficient method for

2Our results are inferior to [13] on a horse dataset. An interpretation of
the differences between the two datasets is discussed in Section 7.

1

implementing the inner loop of the minimum-cover algo-
rithm in the case where the objects we are looking for are
smooth curves. We use a type of best-first search to quickly
find a curve with minimum cost density. Our method works
by integrating image measurements over long curves with-
out relying on intermediate decisions such as binary edge
detection. This makes our curve finding system a practi-
cal alternative to classical methods that work by performing
feature detection followed by a linking procedure.

Of course we are not the first to consider the problem
of finding curves in images. Our model for images with
multiple curves is a generalization of the model by Geman
and Jedynak in [6]. They described a statistical model for
scenes with one curve and a fast inference algorithm for
the case where the starting point of the curve is known in
advance. In contrast we consider a model for scenes with
multiple curves without known starting points.

There has been considerable earlier work on using curvi-
linear continuity to compute asaliencymeasure for each
pixel or edge fragment in an image [1, 7, 14, 15, 16, 17].
Typically this saliency measure is related to the likelihood
that a curve in the scene goes through a particular location
in the image. The methods in [8] and [9] look for multi-
ple salient curves by sequentially selecting the most salient
curve and taking it out of the image.

Our curve finding algorithm searches for optimal curves
by starting from short curves and iteratively expanding
curves that look promising. This is related to the methods
in [6] and [4]. It is also related to parsing algorithms that
use figures of merit to order computation [3].

2. Scene Model

We use a simple model for discrete curves where each
curve is represented by a sequence of short oriented seg-
ments (similar to [15] and [6]). LetP be a set of points in
the plane. We assume that there is a fixed number of possi-
ble segments connecting each pointp ∈ P to nearby points
as illustrated in Figure 1. The set of segments coming out of
a pointp corresponds to different orientations that a curve
can follow as it passes through the point. The set of all
possible oriented segments is denoted byS. A curve is rep-
resented by a sequence of adjacent segments(s1, . . . , sn)
as shown in Figure 2.

In the simplest case the set of pointsP correspond to
pixels of the input image. However, we have found it useful
to consider subpixel curves where the segments go between
subpixel locations. In the general model we avoid specify-
ing the precise nature of the setsP or S.

Let Fs denote the output of a local image filter associ-
ated with a segments ∈ S. The filter responseFs gives
a noisy indication as to whether or nots is part of a curve
in the scene. For example,Fs could measure the image
derivative perpendicular tos. Our algorithm looks for a

Figure 1. Example where there are 16 oriented segments leaving
each point. The setS is the union of all oriented segments.

Figure 2. Curves are sequences of adjacent segments. The picture
shows a curve formed by 4 segments.

global explanation of the filter responses in terms of a set of
curvesX = {C1, . . . , Ck}. Each curve explains the filter
responses for the segments in it, while the filter responses
that are not under a curve are explained by a background
model. Each curve in the hypothesisX should be smooth
and the number of curves should be small.

We use a statistical model for images with multiple
curves which is a generalization of the model for images
with one curve in [6]. We assume that each curve in the
scene is drawn independently from a Markov process which
favors smooth curves,

P (C) =
1

Z

n−1
∏

i=1

Φ(si, si+1). (1)

The number of curves in the image is chosen according to
a distributionP (k) ∝ ak with 0 < a < 1 such that scenes
tend to have few curves. This defines a prior distribution
over scenes,

P (X) ∝
∏

C∈X

aP (C). (2)

We assume that the filter responses are conditionally in-
dependent given the true scene, and that the value ofFs

depends only on whether or not a curve passes throughs.
Let pf (Fs) denote the distribution of filter responses for
segments along a curve whilepb(Fs) denotes the distribu-
tion of filter responses in the background. As long as the
intersections among curves in the scene are small we can
approximate the data model as,

P (Fs, s ∈ S |X) =
∏

C∈X

∏

s∈C

pf (Fs)
∏

s∈XB

pb(Fs), (3)

2

whereXB denotes the segments that are not in any curve.
Given the output of the filter responsesFs, the most

likely hypothesis forX can be expressed as,

X∗ = argmax
X

P (X)P (Fs, s ∈ S |X) (4)

= argmax
X

∏

C∈X

(

aP (C)
∏

s∈C

pf (Fs)

)

∏

s∈XB

pb(Fs).

(5)

3. Reduction to Weighted Min-Cover

We can reformulate the optimization problem by taking
the negative logarithm of equation (5). First define,

cost(C) = − log

(

aP (C)
∏

s∈C

pf (Fs)

)

(6)

cost(s) = − log pb(Fs) (7)

Now the optimalX∗ can be expressed as,

X∗ = argmin
X

∑

C∈X

cost(C) +
∑

s∈XB

cost(s). (8)

This is an instance of the general weighted min-cover prob-
lem. In the general case we have a set of elementsU and a
set of objectsO. Each object covers some subset ofU and
has a cost. The problem is to find a subset ofO with mini-
mum sum of costs such that every element ofU is covered.
In our case we can takeU to be the segmentsS and takeO
to be the set of all possible curves plus the set of all possi-
ble “background segments”. Each background segment is
an object that covers a single segments ∈ S with the back-
ground model. Since the costs are non-negative a minimum
cost cover will always contain a set of curves and a set of
background segments that are not in any curve, correspond-
ing toX andXB .

4. Greedy Approximation Algorithm

Here we think of an objecto ∈ O as the subset ofU
that it covers. There is a simple approximation algorithm
for weighted min-cover that is guaranteed to find a solu-
tion within a factor oflog(maxo∈O |o|) of the optimal cover.
From a practical perspective this factor does not seem to be
very good — perhaps around 5 in a realistic setting where
curves can have up to 200 segments. However, approxi-
mation algorithms often perform significantly better than
their worst case guarantees and the method seems to per-
form well for the curve finding problem.

The general algorithm builds a cover ofU using objects
in O starting from the empty cover and selecting objects one
at a time. We denote byoi ∈ O the object selected in the

Figure 3. We can interpret this image as containing two zeros or
an infinity sign. In the case of curves we can think of the image as
containing two circles or a figure eight.

i-th iteration. At each step the algorithm selects an object
with minimum cost per number of newly covered elements,

oi+1 = argmin
o∈O

cost(o)

|o− (o1 ∪ . . . ∪ oi)|
. (9)

Note that the right hand side is a type of cost density mea-
sure. The algorithm keeps selecting objects until all ofU is
covered. While this greedy algorithm is extremely simple,
for the case of finding curves there is an exponential num-
ber of possible objects to consider in each step. In Section 6
we describe an efficient algorithm for finding curves with
optimal cost density that can be used in the “inner-loop” of
the approximation algorithm.

5. Min-Cover vs. Single Object Detection

The min-cover approximation algorithm finds one object
at a time — the object that minimizes a cost density. It is
natural to ask how this process differs from detecting one
object at a time using a model for scenes with a single ob-
ject. The difference is in the optimization criterion used.
The min-cover approximation algorithm finds the object of
minimum cost density ignoring the cost of parts of the im-
age not covered by the object. Algorithms which assume
that there is a single object in the image typically optimize
the total cost of the object plus the background hypothe-
sis. Examples include the method in [6] for curves and the
method in [5] for deformable objects.

Optimizing the total cost (object plus background hy-
pothesis) will tend to find larger objects than optimizing the
object cost density. Consider the image in Figure 3. The
image can be interpreted as having two zeros or one infinity
sign. If we use an algorithm that assumes only one object is
present then the infinity sign interpretation is strongly pre-
ferred because it explains more of the image with less cost
than the background model. The method is biased because
it assumes that any area of the image not explained by the
object hypothesis will have to be explained as being part of
the background. The min-cover greedy approximation al-
gorithm will prefer the two zeros interpretation whenever
one of the two zeros has lower cost density than the infinity

3

sign. Clearly neither algorithm is perfect. We would prefer
an exact solution to the NP-hard min-cover problem. The
problem of finding objects that are too small, or interpreting
object fragments as whole objects is not so serious in curve
finding because breaking a single curve into a few curves
is not an important mistake for most applications. This can
often be fixed by a postprocessing step.

6. Computing the Best Curve

In applying (9) to curve finding there are two cases to
consider:oi+1 can be a curve or a background segment. It
is easy to compute the best background segment. We focus
here on computing the best curve. If the best background
segment is better than the best curve, but it is not part of
the best curve, then selecting the background segment does
not change the best curve for the next iteration of the min-
cover algorithm. This is because covering a segment can
only increase the cost density of curves — if the best curve
is not affected then it must remain optimal. Therefore, the
best curve needs to be recomputed only when a curve is
selected as the next object or when a background segment
is selected that is part of the current best curve.

Consider the greedy selection defined by (9) whereoi is
restricted to be a curve. For each segments ∈ S let l(s) = 1
if s has not been covered so far, whilel(s) = 0 otherwise.
Its useful to think of the length ofC to be the number of
uncovered segments in the curve,

l(C) =
n
∑

i=1

l(si). (10)

The greedy min-cover algorithm needs to repeatedly select a
curve which minimizescost(C)/l(C). To simplify notation
we define the following quantities,

A = − log a (11)

w(s) = − log pf (Fs) (12)

t(s, q) = − log Φ(s, q) (13)

The constantA encourages the best curve to be long (larger
values bias the model toward a smaller number of longer
curves),w(s) is the cost of explaining the filter response
at s using the foreground model andt(s, q) is a cost that
encourages curves to be smooth. In practice we can define
the constantA, the weightsw(s), and the transition costs
t(s, q) directly without reference to probabilities.

Now we express the cost of a curve in terms of a weight
that depends on the data underC and the smoothness ofC,

w(C) =

n
∑

i=1

w(si) +

n−1
∑

i=1

t(si, si+1) (14)

cost(C) = A + w(C) (15)

One way to find a minimum density curve would be to fix
a maximum lengthL and consider all curves of length up
to L. We could use dynamic programming to compute the
minimum cost curve of length 1 through L ending at each
segment and then select the one with minimum cost density.
Since the dynamic programming table has|S|L entries this
would be quite slow — in particular|S| is on the order of the
number of pixels in the image. Below we describe a simple
algorithm which is able to find the optimal curve quickly by
using a type of best-first search.

Intuitively the curve finding algorithm works as follows.
We start by generating all curves of length one and insert-
ing them in a queue. We repeatedly remove a curve from the
queue and insert all possible one-segment extensions back
in the queue. We stop when we can guarantee that no ex-
tension of a curve in the queue can have better cost density
than one of the curves generated so far. Since every curve is
an extension of its first segment, the algorithm is guaranteed
to find the best one.

Note that if we ever have two curvesC andD of the same
length ending at the same segment withw(C) ≤ w(D) we
can forget aboutD because for every extension ofD there
is an extension ofC with the same length that is at least
as light. The algorithm simply keeps track of the lightest
curve of lengthl ending at segments for each pair(s, l) ∈
S × N. This is done using two sparse tablesW andT . The
valueW [s, l] is the weight of the lightest curve ending at
(s, l) generated so far, whileT [s, l] is the predecessor ofs
in a lightest curve ending at(s, l). At any point throughout
the run of the algorithm a curve of weightW [s, l] can be
obtained by starting from the last segments and tracing the
previous segments usingT .

Below we will show that ifP is the prefix of an optimal
curveO, then the cost density ofO is at least the weight
density ofP,

cost(O)

l(O)
≥

w(P)

l(P)
. (16)

This means that if at some point the algorithm has gener-
ated a curve with cost density at most the weight density
of all curves in the queue it must have already generated
the optimal curve. Until this happens we have to keep ex-
tending curves in the queue. We always extend the curve in
the queue with lowest weight density — those are the most
promising curves. Note that the bound in equation (16) im-
plies that every prefix of an optimal curve has low weight
density. By expanding curves in weight density order the
algorithm quickly generates the optimal curve and rules out
promising prefixes.

Pseudocode for the curve finding algorithm is shown in
Figure 4. We use hashtables to keep track ofW andT and
a priority queue to keep track ofQ. The value ofW [s, l]
is taken to be infinity until it is defined for the first time.
Our current implementation starts from scratch every time

4

Algorithm FindCurve
1. for Each segments ∈ S
2. W [s, l(s)]← w(s)
3. Insert(s, l(s)) in Q
4. repeat
5. Remove item(s, l) from Q with minimum weight

densityW [s, l]/l
6. for Each segmentq following s
7. v ←W [s, l] + t(s, q) + w(q)
8. k ← l + l(q)
9. if v < W [q, k]
10. W [q, k]← v
11. T [q, k]← s
12. Insert(q, k) in Q
13. until min(s,l)(W [s, l] + A)/l ≤ min(s,l)∈Q W [s, l]/l

Figure 4. Pseudocode for the curve finding algorithm.

it needs to recompute the best curve but we believe a further
speed up could be obtained by reusing work from one run of
the algorithm in the next run. In practice it takes a fraction
of a second to find the optimal curve in an image.

There is a simple intuition behind the bound in equa-
tion (16). If we look at a curveO with prefixP and suffix
S, the only way forO to have low cost density whenP has
high weight density would be forS to have low weight den-
sity and be long. But ifO is optimalS cannot be better. Let
O be an optimal curve. For every curveC we have,

cost(C)

l(C)
≥

cost(O)

l(O)
, (17)

w(C) + A ≥ l(C)
cost(O)

l(O)
. (18)

Let O be an optimal curve with prefixP and suffixS.
We uset(P,S) to denote the cost of transitioning from the
last segment ofP to the first segment ofS,

cost(O)

l(O)
=

w(P) + w(S) + t(P,S) + A

l(P) + l(S)
. (19)

Sincet(P,S) is non-negative we can get an inequality,

(l(P) + l(S))
cost(O)

l(O)
≥ w(P) + w(S) + A. (20)

Now we use equation (18) whereC is taken to beS,

(l(P) + l(S))
cost(O)

l(O)
≥ w(P) + l(S)

cost(O)

l(O)
. (21)

Cancelingl(S) cost(O)
l(O) from both sides gives us the bound

expressed by equation (16).

7. Results

As described in the introduction one of our main goals is
to detect the boundaries of objects in natural images. Fig-
ure 5 illustrates some results obtained using our curve find-
ing method. These results were obtained using the “prob-
ability of boundary” (PB) measure from [10] to define the
local responsesFs for each segment in the image. The PB
measure assigns a number between zero and one to each im-
age pixel, corresponding to a measure of edge strength. The
value is based on a combination of both color and texture in-
formation around a pixel. In practice we letFs be the aver-
age PB value along segments, whilew(s) = − log(Fs+1).
The value ofcost(s) is set to a constantb. In this case the
background model does not influence the selection of the
optimal curves, it only defines a stopping criteria. The min-
cover algorithm keeps picking optimal curves until the cost
density of the best curve is at leastb. For the transition
costs we lett(s, q) be zero if the orientation ofq is almost
the same as the orientation ofs and infinity otherwise.

The examples in Figure 5 demonstrate how we can get
a good interpretation of an image in terms of just a few
smooth curves. The output of our curve finding algorithm is
significantly better than the output produced by local edge
detection methods. In particular for the desert scene, local
methods produce much more cluttered results.

We have also used our curve finding method to produce
subpixel estimates for the curves in an image. In this case
segments inS connect pairs of subpixel locations in neigh-
boring pixels. For estimating subpixel curves we used the
derivative of the image along a direction perpendicular tos
as the local measureFs. We letw(s) = − log(Fs+1) when
Fs > 0 and zero otherwise. This makes the curve model
have a notion of which side of the curve is brighter than
the other. Figure 6 illustrates the results on a simple image.
Our algorithm is able to find good subpixel estimates for
the curves in the image by simultaneously selecting curves
and regularizing their shapes. For this example we picked
transition costst(s, q) so that curves can only turn in one
direction, giving a stronger shape regularization constraint.
The algorithm simultaneously searched for curves that turn
right and curves that turn left.

Finally, we have used the Berkeley segmentation dataset
[10] to evaluate the performance of our curve finding
method on a wide variety of images. The dataset con-
tains human-segmented natural images for testing bound-
ary detection algorithms. Performance is quantified using a
precision-recall framework. The output of a boundary de-
tection algorithm is rated according to the fraction of the
detected edges that are true boundaries (precision) and the
fraction of true boundaries that are detected by the algo-
rithm (recall). Figure 7 compares the results of our algo-
rithm using PB for the local measurements with the perfor-
mance of the CRF model from [13] and the performance

5

Figure 5. Example results of finding curves in natural images from the Berkeley segmentation dataset. Our algorithm finds good interpre-
tations of these images using just a few smooth curves. Local edge detection methods tend to produce much more cluttered results.

Figure 6. Subpixel curves found in the elephant image. The rightmost picture shows the subpixel estimates around the tusk area. Note how
we get a good description of the image in terms of very few smooth curves.

obtained using PB alone.
In the Berkeley segmentation dataset our algorithm out-

performs edge detection using PB alone and the CRF model
in [13] in the low-recall/high-precision regime. All algo-
rithms have similar performance in the high-recall regime.
Note that the three algorithms perform better than classi-
cal edge detection methods. Although our results on this

dataset are reasonably good, we do not feel that the metric
used in this experiment is an appropriate measure of perfor-
mance for our algorithm. The metric depends only on which
pixels are marked as edges. Therefore it does not check that
the edges were grouped into meaningful curves. Construc-
tion of an appropriate empirical metric for multiple curve
detection remains an open problem.

6

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Recall

P
re

ci
si

on

min−cover
crf model
low−level pb

Figure 7. Berkeley segmentation dataset results. The graph comparesour curve finding algorithm, the CRF model from [13] and the local
detector from [10]. See text for a description of the experiment.

We have also tested our algorithm in the horse dataset
from [2]. In this case the min-cover algorithm performs
better than PB alone but not as well as the CRF method.
The horse dataset poses a significantly different problem
than the Berkeley segmentation dataset — the goal is to de-
tect the boundaries of a horse in each image, and no other
boundaries. Most of the images contain objects such as
fences, posts and trees. The CRF method is able to sup-
press many non-horse boundaries because it takes into ac-
count relationships among curves. For example, it seems
to suppress boundaries that end in a T-junction which is a
good cue for figure/ground separation. Our algorithm as-
sumes that the curves in an image are independent so it has
no ability to reason about junctions.

In the future we will explore how to postprocess the out-
put of our method to do figure/ground separation. One pos-

sibility would be to build a CRF model on top of the curves
we find.

8. Conclusion

The minimum-cover framework gives a general, well-
founded approach for interpreting images with multiple ob-
jects. In particular, the greedy approximation algorithm
can be used in a wide variety of situations, including cases
where there are different types of objects in an image. It
provides an alternative to sequentially selecting the bestsin-
gle object interpretation of the image.

For the case of finding salient curves in images we in-
troduced a new algorithm for finding curves with minimum
cost density. Our method exploits the fact that curves can
be generated by a sequential growth process that starts from

7

a relatively small number of basic tokens (the segments).
We have shown how the quality of a curve can be used as
an effective figure of merit to decide which curves to keep
growing and when the process can stop. The resulting algo-
rithm is able to quickly produce a good interpretation of an
image in terms of a small set of curves.

References

[1] J. August and S. Zucker. Sketches with curvature: The
curve indicator random field and markov processes.PAMI,
25(4):387–400, April 2003.

[2] E. Borenstein and S. Ullman. Class-specific, top-down seg-
mentation. InECCV, page II: 109, 2002.

[3] S. Caraballo and E. Charniak. Figures of merit for best-
first probabilistic chart parsing.Computational Linguistics,
24:275–298, 1998.

[4] J. M. Coughlan and A. L. Yuille. Bayesian A* tree search
with expectedo(n) convergence rates for road tracking. In
EMMCVPR, 1999.

[5] D. Crandall, P. Felzenszwalb, and D. Huttenlocher. Spatial
priors for part-based recognition using statistical models. In
CVPR, pages I: 10–17, 2005.

[6] D. Geman and B. Jedynak. An active testing model for track-
ing roads in satellite images.PAMI, 18(1):1–14, January
1996.

[7] G. Guy and G. Medioni. Inferring global perceptual contours
from local features.IJCV, 20(1/2):113–133, 1996.

[8] I. Jermyn and H. Ishikawa. Globally optimal regions
and boundaries as minimum ratio weight cycles.PAMI,
23(10):1075–1088, October 2001.

[9] S. Mahamud, L. Williams, K. Thornber, and K. Xu. Segmen-
tation of multiple salient closed contours from real images.
PAMI, 25(4):433–444, April 2003.

[10] D. Martin, C. Fowlkes, and J. Malik. Learning to detect nat-
ural image boundaries using local brightness, color, and tex-
ture cues.PAMI, 26(5):530–549, May 2004.

[11] D. Mumford. Elastica and computer vision. InAlgebraic
Geometry and Its Applications, pages 491–506. Springer-
Verlag, 1994.

[12] P. Parent and S. Zucker. Trace inference, curvature consis-
tency, and curve detection.PAMI, 11(8):823–839, August
1989.

[13] X. Ren, C. Fowlkes, and J. Malik. Scale-invariant contour
completion using conditional random fields. InICCV, 2005.

[14] X. Ren and J. Malik. A probabilistic multi-scale model for
contour completion based on image statistics. InECCV, page
I: 312, 2002.

[15] A. Shashua and S. Ullman. Structural saliency: The detec-
tion of globally salient structures using a locally connected
network. InICCV, 1988.

[16] L. Williams and D. Jacobs. Stochastic completion fields:
A neural model of illusory contour shape and salience. In
ICCV, 1995.

[17] L. Williams and K. Thornber. A comparison of measures
for detecting natural shapes in cluttered backgrounds.IJCV,
34(2-3):81–96, August 1999.

8

