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Abstract

Image segmentation algorithms often depend on appearance models that characterize the distribution
of pixel values in different image regions. We describe a new approach for estimating appearance models
directly from an image, without explicit consideration of the pixels that make up each region. Our
approach is based on novel algebraic expressions that relate local image statistics to the appearance
of spatially coherent regions. We describe two algorithms that can use the aforementioned algebraic
expressions to estimate appearance models directly from an image. The first algorithm solves a system
of linear and quadratic equations using a least squares formulation. The second algorithm is a spectral
method based on an eigenvector computation. We present experimental results that demonstrate the
proposed methods work well in practice and lead to effective image segmentation algorithms.
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1 Introduction

Image segmentation is a fundamental problem in computer vision and image processing. The goal of segmen-
tation is to partition an image into regions corresponding to different objects or materials that are visible
in a scene. There are numerous applications of automatic segmentation methods including in medical image
analysis, remote sensing, industrial inspection, object recognition and interactive image editing. Therefore,
advances in image segmentation can have significant impact in many applications.

Segmentation algorithms often rely on some type of appearance modeling to be able to classify each pixel
in the image into different regions. Many segmentation algorithms are based on minimization of functionals
that encourage spatial coherence of regions and a fit of the pixels in each region to an appearance model.

In some settings such as medical image analysis or remote sensing the appearance of different objects of
interest may be known in advance. On the other hand, in many applications the appearance of the objects
or materials in a scene need to determined during the segmentation process.

When appearance models are not known in advance, the challenge of image segmentation is that it is
essentially a “chicken-and-egg” problem. If we had appearance models we could segment the image. On
the other hand, if we had a segmentation we could estimate the appearance of each region. Some methods
such as [14] and [16] alternate between estimating appearance models and estimating a segmentation in an
iterative fashion. Similarly, variational methods such as [5] and [13] repeatedly evolve a segmentation and
the appearance model of each region. Less frequently, methods such as [18] and [17] tackle the segmentation
problem by making the dependency on appearance models implicit. Other methods such as the graph-based
approaches in [15] and [6] avoid using appearance models and instead use pairwise similarity to cluster pixels.
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authors were in residence at the Institute for Computational and Experimental Research in Mathematics in Providence, RI,
during the Spring 2019 semester.
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In this paper we describe a novel approach for estimating appearance models directly from an image,
without explicit consideration of the pixels that make up each region. The approach relies on the spatial
coherence of regions but does not require solving for a segmentation to determine the appearance of each
region. Instead we derive a set of algebraic expressions that can be used to solve for the appearance models
of each region using local statistics that can be easily estimated directly from an image.

We focus specifically on the problem of binary segmentation where the goal is to partition an image into
two regions (often the foreground and background). Our results allow for the development of new segmen-
tation algorithms that use a two-step process. First we determine appearance models without segmenting
the image. We can then segment the image using any available method that requires appearance models
to be fixed in advance. In practice we propose to use the estimated appearance models to define a Markov
Random Field [2], and use efficient graph cut algorithms to segment the image [8, 3]. This two-step approach
leads to efficient methods for unsupervised segmentation.

Many image segmentation algorithms pre-process an image using the response of Gabor filters to define
features [9, 11, 19]. Although very useful for capturing texture information, the use of filter banks requires
significant processing and memory overhead. Moreover, the use of filter responses can lead to inaccurate
localization of region boundaries, due to the non-trivial spatial extent of texture filters.

Recent segmentation methods have also use machine learning techniques to define local features or in
complete end-to-end systems (see, e.g. [12]). Machine learning methods typically require labeled datasets
for training and often do not generalize across different imaging domains. The resulting systems can also
suffer from limited interpretability. In contrast, our model based approach is easily interpretable and can be
applied to different types of images without requiring any training data.

The algorithms we describe in this paper do not rely on filter responses or learned features. Instead
we work directly with raw pixel values. Our methods estimate non-parametric models that represent the
appearance of regions in terms of distributions over pixel values. This makes it possible to accurately localize
the boundaries between regions with complex appearances.

The remainder of the paper is organized as follows. In Section 2 we describe how we represent the
appearance of regions using non-parametric models that capture the distribution of pixel values within a
region. In Section 3 we discuss how local image statistics can be related to the appearance models of images
with two regions using a set of algebraic constraints. These algebraic constraints lead to two different methods
for estimating appearance models described in Section 4. In Section 5, we show experimental results and
evaluate both the accuracy of the estimated appearance models and the segmentations obtained using these
models. Finally, Section 6 concludes the paper with a summary and brief discussion.

2 Appearance Models for Segmentation

Let I : Ω → L be an image, where Ω is a set of pixel locations and L is a finite set of pixel values. For an
n by m graylevel image we have Ω = {1, . . . , n} × {1, . . . ,m} while L = {0, . . . , 255}. In Section 5.6, we will
discuss how to generalize our methods to RGB and vector valued images. We use I(x) to denote the value
of a pixel x ∈ Ω. A region R is a subset of the pixels in Ω.

We define an appearance model θ ∈ RL to be a distribution over L. An appearance model for a region
R specifies the typical values for the pixels in R. Note, however, that an appearance model θ does not
fully specify the joint distribution of the pixels in a region, only the probabilities of observing different
pixel values. We do not assume the pixel values in each region are independent. Therefore the appearance
models considered here only define a coarse representation for the appearance of a region. For example, if
we permute the pixels within a region the appearance model would remain the same.

We assume the image domain Ω can be divided into two regions R0 and R1 and use S : Ω → {0, 1} to
denote a binary image specifying an assignment of image pixels into regions, or a segmentation. Let θ0 and
θ1 be appearance models for R0 and R1 respectively.

As discussed in the introduction, one of the fundamental challenges of unsupervised image segmentation
is that it is essentially a “chicken-and-egg” problem. If we have appearance models θ0 and θ1 we can partition
the image into regions using several existing approaches. On the other hand, if we have a partition of an
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image into regions R0 and R1 we can estimate appearance models by computing normalized histograms of
the pixel values in each region.

The main contribution of our work is a method for estimating the appearance models θ0 and θ0 directly
from an image, without explicit consideration of the regions R0 and R1.

Once appearance models are estimated there are many methods that can be used to partition an image.
In the simplest setting we can classify each pixel independently using a likelihood ratio defined by θ0 and θ1.
Alternatively, methods based on Markov Random Fields ([2]) segment an image by minimizing an energy
that combines the appearance models with a boundary regularization term,

E(S|λ, θ0, θ1) = −
∑
x∈Ω

ln θS(x)(I(x)) + λ
∑

x,y neighbors

|S(x)− S(y)|. (1)

In this case the minimum energy segmentation corresponds to a MAP estimate of S, where the boundary
regularization defines a prior over segmentations. Importantly, the energy function E can be efficiently
minimized by the computation of a minimum cut in a graph ([8]).

3 Statistical Model

In order to address the appearance model estimation problem, we treat the image I : Ω→ L as a realization
of a random field. Let R0 and R1 be a partition of Ω into two regions. Let θ0 and θ1 be appearance models
associated with R0 and R1 respectively.

Our approach relies on two key assumptions. The first assumption is that regions have homogeneous
appearance in the following sense.

Assumption 1 (Homogeneity). The probability that a pixel x takes a particular value depends only on the
region the pixel belongs to,

P (I(x) = i |x ∈ Rs) = θs(i).

Note that this assumption does not specify a full generative model for the image. We assume the pixels
in each region have the same marginal distribution, but their joint distribution could involve dependencies,
as we see for example in images with textures. Similar assumptions have been used in other approaches for
image segmentation, including several methods for unsupervised texture segmentation [13, 19, 11].

In general we expect the values of nearby pixels to be dependent. For example, neighboring pixels that
are in the same region almost always have similar values. The second assumption we make captures the idea
that sufficiently far away pixels are independent.

Assumption 2 (Independence at a distance). If x and y are two pixels at a distance r from each other,

P (I(x) = i, I(y) = j |x ∈ Rs, y ∈ Rt) = P (I(x) = i |x ∈ Rs)P (I(y) = j | y ∈ Rt).

To estimate θ0 and θ1 we consider two distributions α and β that can be directly estimated from an
observed image. We will relate θ0 and θ1 to α and β using the assumptions above.

Let x, y ∈ Ω be a pair of pixels at a distance r from each other, selected uniformly at random. Since the
pixels are in a discrete grid we use the L1 norm to measure the distance between them. Let α ∈ RL be a
distribution over L where α(i) is the probability that pixel x has value i. Let β ∈ RL×L be a distribution
over L× L where β(i, j) is the probability that pixel x has value i and pixel y has value j.

Q = {(x, y) ∈ Ω2 | ||x− y|| = r}.
(x, y) ∼ Uniform(Q).

α(i) = P (I(x) = i).

β(i, j) = P (I(x) = i, I(y) = j).

3



0 5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

r

d
B

(β̂
,α̂
α̂
>

)

Figure 1: Evaluating independence at a distance for images with a single Brodatz texture (see Figure 5 for

examples of the images in this dataset). We show the average Bhattacharyya distance between β̂ and α̂α̂>

as a function of r.

Note that we can easily estimate α and β from an observed image. We simply enumerate all pairs of
pixels at distance r from each other and count the number of times we observe pixels with particular values.
If the image is large we can also estimate the two distributions using a random sample of pairs of pixels at
distance r. We use α̂ and β̂ to denote the estimates of α and β computed from an observed image.

α̂(i) =
1

|Q|
∑

(x,y)∈Q

1(I(x) = i).

β̂(i, j) =
1

|Q|
∑

(x,y)∈Q

1(I(x) = i)1(I(y) = j).

For images with a single region Assumption 2 leads to β = αα>. Figure 1 evaluates this identity in
textured images from the Brodatz dataset [4]. See Figure 5 for examples of the images in the Brodatz

dataset. In this case each image has a single textured region and we compare β̂ to α̂α̂> for different values
of r using the Bhattacharyya distance (see Section 5.1). When r is small we see that the two distributions,

β̂ and α̂α̂>, are quite different, because nearby pixels are not independent. As we increase r we see that β̂
is close to α̂α̂>, suggesting that pixels that are relatively far from each other are independent.

Let w0 = P (x ∈ R0) and w1 = P (x ∈ R1). Now consider the probability that x and y are in different
regions. Let ε = P (x ∈ R0, y ∈ R1) = P (x ∈ R1, y ∈ R0). The probability that x and y are in different
regions is 2ε.

The following proposition derives a set of linear and quadratic algebraic constraints between α, β, w0,
w1, θ0, θ1 and ε. These constraints will enable us to estimate θ0 and θ1 without explicit consideration of R0

and R1.

Proposition 1. Under Assumption 1 and Assumption 2 we have:

α = w0θ0 + w1θ1. (2)

β = (w0 − ε)θ0θ
>
0 + (w1 − ε)θ1θ

>
1 + εθ0θ

>
1 + εθ1θ

>
0 . (3)

Proof. The result follows from the law of total probability. For (2),

α(i) = P (I(x) = i)

= P (x ∈ R0)P (I(x) = i |x ∈ R0) + P (x ∈ R1)P (I(x) = i |x ∈ R1)

= w0θ0(i) + w1θ1(i).

For (3), first note that

P (x ∈ R0) = P (x ∈ R0, y ∈ R0) + P (x ∈ R0, y ∈ R1).
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Therefore P (x ∈ R0, y ∈ R0) = w0 − ε. Similarly P (x ∈ R1, y ∈ R1) = w1 − ε. Now,

β(i, j) = P (I(x) = i, I(y) = j)

= P (x ∈ R0, y ∈ R0)P (I(x) = i, I(y) = j |x ∈ R0, y ∈ R0) +

P (x ∈ R1, y ∈ R1)P (I(x) = i, I(y) = j |x ∈ R1, y ∈ R1) +

P (x ∈ R0, y ∈ R1)P (I(x) = i, I(y) = j |x ∈ R0, y ∈ R1) +

P (x ∈ R1, y ∈ R0)P (I(x) = i, I(y) = j |x ∈ R1, y ∈ R0)

= (w0 − ε)θ0(i)θ0(j) + (w1 − ε)θ1(i)θ1(j) + εθ0(i)θ1(j) + εθ1(i)θ0(j).

3.1 Extension to images with m regions

It is possible to generalize the algebraic constraints in Proposition 1 to the case of images with m regions.
Let R0, . . . ,Rm−1 be a partition of Ω into m regions. In this case we have parameters θi, wi and εij for
0 ≤ i, j ≤ m− 1 and j 6= i. Here θi is the appearance model associated with Ri while wi = P (x ∈ Ri) and
εij = P (x ∈ Ri, y ∈ Rj). Since x and y are exchangeable εij = εji.

Using the law of total probability we can derive the following algebraic expressions,

α =

m−1∑
i=0

wiθi, (4)

β =

m−1∑
i=0

(wi −
∑
j 6=i

εij)θiθ
>
i +

∑
j 6=i

εijθiθ
>
j

 . (5)

We note, however, that the algorithms we develop to estimate appearance models when m = 2 do not
readily generalize to the case when m > 2. For the remainder of the paper we consider only the case of
images with 2 regions.

4 Appearance Estimation

As discussed in the previous section we can estimate α and β directly from an image. In this section we
show how we can recover θ0 and θ1 from α and β or their estimates α̂ and β̂. Initially we assume that w0,
w1 and ε are known, and present two different methods (Sections 4.1 and 4.2) for estimating θ0 and θ1. We
consider the case where w0, w1 and ε are unknown in Section 4.3.

Our methods require that w0w1 6= ε. Proposition 2 in Section 4.2 shows that if w0w1 = ε then β = αα>.
In this case we do not have enough information to recover the appearance models. In general we expect that
w0w1 > ε as long r is not too large. This condition imposes certain constraints of the shape and size of the
regions R0 and R1 relative to the value of r.

4.1 Algebraic Method

Suppose α, β, w0, w1 and ε are known, and consider the problem of recovering θ0 and θ1.
Let L = {1, . . . , k}. We have 2k unknowns θ0(1), . . . , θ0(k) and θ1(1), . . . , θ1(k). Proposition 1 defines k

linear and k2 quadratic constraints,

α(i) = w0θ0(i) + w1θ1(i), (6)

β(i, j) = (w0 − ε)θ0(i)θ0(j) + (w1 − ε)θ1(i)θ1(j) + εθ0(i)θ1(j) + εθ1(i)θ0(j). (7)

Since θ0 and θ1 define probability distributions we also have the additional constraints that both vectors
should sum to one and θ0(i) ≥ 0, θ1(i) ≥ 0 for 1 ≤ i ≤ k.
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4.1.1 Minimal constraints

We first consider a simple method that uses a subset of the constraints to solve for all of the unknowns in
the appearance models. The approach uses the k linear constraints defined by α and k quadratic constraints
defined by a single row of β. For the derivation below we treat α and β as known although in practice we
only have empirical estimates of the two distributions.

1. Let i ∈ L. Using the quadratic constraint defined by β(i, i) and the linear constraint defined by α(i)
we can solve for θ0(i) and θ1(i),

θ0(i) = α(i)±

√
w0w1−ε
ω2

1
(β(i, i)− α2(i))

w0w1−ε
w2

1

, θ1(i) =
α(i)− w0θ0(i)

w1
. (8)

2. Now consider each j ∈ L with j 6= i. Since we solved for θ0(i) and θ1(i) in Step 1, now β(i, j) defines a
linear constraint on θ0(j) and θ1(j). Together with the linear constraint defined by α(j) we can solve
for θ0(j) and θ1(j),

θ0(j) =
w1β(i, j)− α(j)(w1θ1(i) + ε(θ0(i)− θ1(i)))

(w0w1 − ε)(θ0(i)− θ1(i))
, θ1(j) =

α(j)− w0θ0(j)

w1
. (9)

When β(i, i) = α2(i) we have θ0(i) = θ1(i). To avoid dividing by zero when solving for θ0(j) in Step 2
and to increase the robustness of the method, we can select i maximizing β(i, i)−α2(i) in Step 1. Note that
if β(i, i)− α2(i) = 0 for all i then θ0 = θ1 = α.

To solve for θ0(i) in Step 1 we require that (w0w1 − ε)(β(i, i) − α2(i)) ≥ 0. Proposition 2 below shows
that under the assumptions we have made

β(i, i)− α2(i) = (w0w1 − ε)(θ0(i)− θ1(i))2. (10)

Therefore (w0w1 − ε)(β(i, i)− α2(i)) ≥ 0.

4.1.2 Least squares solution

The approach described above uses a small number of the constraints defined by α and β to exactly recover
θ0 and θ1. However, in practice we only have empirical estimates of α and β. We also don’t expect real data
to perfectly fit our assumptions. We now describe an alternative method that uses all of the constraints
defined by α and β in a least squares formulation.

Let i1, . . . , ik be an ordering of L = {1, . . . , k}. Our empirical results show that ordering the indices in

decreasing value of β̂(i, i)− α̂2(i) works well and is better than a random order.

1. We start by solving for θ0(i1) and θ1(i1) using the quadratic constraint defined by β̂(i1, i1) and the
linear constraint defined by α̂(i1).

θ0(i1) = α̂(i)±

√
w0w1−ε
ω2

1
(β̂(i1, i1)− α̂2(i1))

w0w1−ε
w2

1

, θ1(i1) =
α̂(i1)− w0θ0(i1)

w1
. (11)

2. We iterate ` from 2 to k and solve for θ0(i`) and θ1(i`) in each step. When solving for θ0(i`) and θ1(i`) we

already have values for θ0(i1), . . . , θ0(i`−1) and θ1(i1), . . . , θ1(i`−1). Therefore β̂(i1, i`), . . . , β̂(i`−1, i`)
define ` − 1 linear constraints on θ0(i`) and θ1(i`). Together with the constraint defined by α̂(i`) we
form a system with ` linear equations and 2 unknowns that can be solved using linear least squares:

∀j ∈ {i1, . . . , i`−1} ((w0 − ε)θ0(j) + εθ1(j))θ0(i`) + ((w1 − ε)θ1(j) + εθ0(j))θ1(i`) = β̂(j, i`),

w0θ0(i`) + w1θ1(i`) = α̂(i`).
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3. We improve our estimates by iterating ` from 1 to k and re-estimate θ0(i`) and θ1(i`) in each step.

To re-estimate θ0(i`) and θ1(i`) we use β̂(j, i`) and the current values for θ0(j) and θ1(j) for j 6= i` to
define k− 1 linear constraints. Together with the constraint defined by α̂(i`) we form a system with k
linear equations and 2 unknowns that can be solved using linear least squares:

∀j 6= i` ((w0 − ε)θ0(j) + εθ1(j))θ0(i`) + ((w1 − ε)θ1(j) + εθ0(j))θ1(i`) = β̂(j, i`)

w0θ0(i`) + w1θ1(i`) = α̂(i`)

Empirically we found that iterating over the entries one time using this method is enough to obtain
improved results.

4. We set θs(i) = max(θs(i), 0) and normalize θ0 and θ1 to add up to one. This ensures θ0 and θ1 define
valid probability distributions.

Note that there are two choices for the value of θ0(i1) when solving the quadratic equation in Step 1.
We consider both choices to estimate full appearance models. We then compare β defined by the estimated
models and Equation (3) to β̂ using the Bhattacharyya distance. We select the appearance models leading
to the smaller Bhattacharyya distance.

4.2 Spectral Method

Now we describe a spectral method for estimating the appearance models. As in the previous section we
assume the values of w0, w1 and ε are known. The following proposition provides the basis for the approach.

Proposition 2.
β − αα> = (w0w1 − ε) (θ0 − θ1) (θ0 − θ1)

>
(12)

Proof. First note that w0 + w1 = 1 implies w0w1 = w0 − w2
0 and w0w1 = w1 − w2

1.

β − αα> = (w0 − ε)θ0θ
>
0 + (w1 − ε)θ1θ

>
1 + εθ0θ

>
1 + εθ1θ

>
0 − (w0θ0 + w1θ1)(w0θ0 + w1θ1)>

= (w0 − ε− w2
0)θ0θ

>
0 + (w1 − ε− w2

1)θ1θ
>
1 + (ε− w0w1)θ0θ

>
1 + (ε− w1w0)θ1θ

>
0

= (w0w1 − ε)θ0θ
>
0 + (w0w1 − ε)θ1θ

>
1 − (w0w1 − ε)θ0θ

>
1 − (w1w0 − ε)θ1θ

>
0

= (w0w1 − ε)(θ0 − θ1)(θ0 − θ1)>

Let u = θ0− θ1. The above result shows that that matrix β−αα> is of rank one and its only eigenvector
with non-zero eigenvalue is proportional to u. Moreover, the corresponding eigenvalue is (w0w1 − ε)||u||2.

The matrix β̂ − α̂α̂> defines an approximation to β − αα> that can be computed from an image. Let v
be the dominant eigenvector of β̂ − α̂α̂> normalized so that ||v|| = 1. The vector v gives us an estimate of
u/||u|| up to a sign ambiguity. The corresponding eigenvalue λ can be used to approximate (w0w1− ε)||u||2.
We can estimate u as,

û = ±
√

λ

w0w1 − ε
v (13)

We can then use α̂ and Equation (2) to estimate θ0 and θ1,

θ0 = α̂+ w1û,

θ1 = α̂− w0û.

Finally, we set θs(i) = max(θs(i), 0) and normalize θ0 and θ1 to add up to one. This ensures θ0 and θ1

define valid probability distributions.
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Figure 2: The area where pairs of pixels with ||x− y|| = r can be in different regions.

To handle the sign ambiguity in Equation (13) we consider both choices to estimate θ0 and θ1. We then

compare β defined by the estimated appearance models and Equation (3) to β̂ using the Bhattacharyya
distance. We select the choice of sign in Equation (13) leading to the smaller Bhattacharyya distance.

Notice that we can use simple power iteration methods to compute v and λ. The algorithm complexity
depends on |L|, which is usually much smaller that the number of pixels in the image. The rate of convergence
of power iteration depends on the spectral gap, which is proportional to w0w1 − ε.

4.3 Estimating w0, w1 and ε

The methods described above assume w0, w1 and ε are known. We have experimented with two different
approaches for estimating the appearance models when w0, w1 and ε are unknown. The first approach simply
selects a typical, or average, value for each of the unknown parameters. The second approach involves an
explicit search over a discretized set of choices for the unknown parameters.

4.3.1 Typical values

A simple approximation for w0 and w1 involves setting w0 = w1 = 0.5. Although this is a crude approxima-
tion we have found that it leads to good appearance models in a wide variety of images.

In order to approximate ε, we start from the assumption that the ground truth segmentation S is spatially
coherent and that the boundary between regions ∂S is short, i.e., |∂S| ≈

√
|Ω|. In this case ε is proportional

to the area within distance r from ∂S divided by |Ω|, see Figure 2. In our experiments we set r = ρ
√
|Ω|,

where ρ is a parameter set by the user. This makes the selection of the distance r be adaptive to the image
resolution. Our estimate of ε then becomes,

ε = κ
r
√
|Ω|
|Ω| = κρ. (14)

We have found that setting κ = 0.5 often leads to good results in practice.

4.3.2 Searching over w0, w1 and ε

To search over w0 and w1 we use the fact that w0 +w1 = 1 and search over possible values for w0. We assume
without loss of generality that w0 ≤ w1 and w0 ∈ (0, 0.5). In practice we discretize the interval (0, 0.5) using
a step of size of 0.05, leading to 11 choices for w0. To estimate ε we search over the interval (0, 0.1) using a
step size of 0.01, leading to 11 choices for ε. Together this leads to 121 combined choices for w0 and ε.

For each choice of parameters w0, w1 and ε we estimate θ0 and θ1 using either the algebraic or spectral
method above. We then compare β defined by the estimated appearance models and Equation (3) to the
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(a) Image (b) θ0 (c) θ1

Figure 3: Estimation of appearance models with the algebraic method. In (a) we show the input images
and their ground truth segmentation. In (b) and (c) we show the appearance models computed using the
ground truth segmentation in blue ( ) and the algebraic method in green ( ). The images are from
the Berkeley Segmentation [10] dataset.

empirical β̂ computed from the image. We select the model parameters minimizing the Bhattacharyya
distance between β and β̂.

Searching over w0, w1 and ε with the spectral method is fairly efficient because the bottleneck in the
spectral method is computing the dominant eigenvector of β̂ − α̂α̂>. Since this matrix does not depend
on the unknown parameters the eigenvector only has to be computed once. In this case searching for the
parameters leads to limited overhead. Searching for the parameters with the algebraic method is much less
efficient. The experiments in the Section 5 evaluate the running time of the different approaches.

4.4 Examples

Figures 3 and 4 illustrate the estimation of appearance models on real images with the algebraic and spectral
methods respectively. In these examples we used ρ = 0.06 to select r. The values of w0, w1 and ε were
estimated separately for each image by searching over discrete choices as described in the last section. For
comparison we also show the appearance models computed using ground truth segmentations. For the case
of a ground truth segmentation the appearance models are normalized histograms of the pixel values within
each region. We see that both the algebraic and spectral methods give good results, leading to appearance
models that are close to the ground truth.
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(a) Image (b) θ0 (c) θ1

Figure 4: Estimation of appearance models with the spectral method. In (a) we show the input images and
their ground truth segmentation. In (b) and (c) we show the appearance models computed using the ground
truth segmentation in blue ( ) and the spectral method in red ( ). The images are from the Berkeley
Segmentation [10] dataset.

5 Numerical Experiments

All of our algorithms were implemented in Matlab and the experiments presented here were run on a Laptop
computer with an Intel Core i5-6200U CPU 2.30GHz with 8 Gb of RAM.

5.1 Evaluation Measures

We use the Bhattacharyya distance to measure similarity between two probability distributions. Let p and
q be two distributions over a finite set Z. The Bhattacharyya distance beetween p and q is,

dB(p, q) = − ln

(∑
x∈Z

√
p(x)q(x)

)
. (15)

To evaluate the quality of the appearance models we estimate we compare them to the appearance models
defined by a ground truth segmentation.

Let I be an image with a ground truth segmentation defined by R0 and R1. Let θ0 and θ1 be the
normalized histograms of the pixel values within each region. Let θ̂0 and θ̂1 be the appearance models
estimated from I using one of our algorithms. We assess the quality of the estimated appearance models
using a sum of two Bhattacharyya distances, allowing for a permutation of the region labels,

DB = min

(
dB(θ0, θ̂0) + dB(θ1, θ̂1)

2
,
dB(θ0, θ̂1) + dB(θ1, θ̂0)

2

)
. (16)
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Figure 5: Selected Brodatz patterns

(a) GT1 (b) GT2 (c) GT3 (d) GT4 (e) GT5

Figure 6: Ground truth segmentations used to generate synthetic data.

We also evaluate the accuracy of segmentations obtained using different methods by comparing them to
the ground truth segmentation.

We assess the overlap between two regions J,Q ⊆ Ω in different segmentations using the Jaccard index,

J(S,Q) = |S ∩Q|/|S ∪Q|.

Let Q0 and Q1 be two regions obtained by segmenting I. We compare the segmentation defined by Q0

and Q1 to the ground truth segmentation defined by R0 and R1 using a sum of two Jaccard indices, again
allowing for a permutation of the region labels,

Jac = max

(
J(R0,Q0) + J(R1,Q1)

2
,
J(R0,Q1) + J(R1,Q0)

2

)
. (17)

5.2 Synthetic Data

We first illustrate the results of a series of experiments with synthetic data. To generate the synthetic data
we used the segmentations masks in Figure 6 together with pairs of images defined as follows:

� IID: we used 50 pairs of random appearance models to generate pairs of images. For each appear-
ance model we generate a 320 × 320 image where the pixel values are independent samples from the
corresponding distribution.

11



(a) Textures

(b) Synthetic images

Figure 7: Examples of synthesized images with textures.

� Brodatz: we selected all possible pairings of images from the Brodatz textures [4] shown in Figure 5.
We resized the images to be 320× 320 pixels and added uniform IID noise to the pixels to to remove
quantization artifacts.

For each pair of images defined above we use the segmentation masks in Figure 6 to generate graylevel images
with two regions.

Given a pair of images (A,B) and a binary segmentation mask M we generate a graylevel image I with
I(x) = A(x)M(x) +B(x)(1−M(x)). Figure 7 shows the images generated using two Brodatz patterns.

5.3 Evaluating the effect of r

In our experiments we set r = ρ
√

Ω where ρ is a parameter set by the user. This makes the distance r
adaptive to the image resolution.

In Figure 8 we evaluate the quality of the appearance models estimated by our methods using different
values of ρ on the synthetic data defined by the ground truth segmentations GT1 and GT2 (Figure 6).
For these experiments we set w0, w1 and ε using the ground truth values defined by the corresponding
segmentation masks.

Both of our algorithms almost perfectly recover the underlying appearance models for images where the
pixels in each region are IID. In this case the methods work well over the whole range of values of ρ tested.
This is expected since these images strictly follow both Assumption 1 and Assumption 2 and, therefore,
provide the optimal setting for our algorithms.

For images with Brodatz textures Assumption 2 is violated for small values of ρ. As ρ increases the
assumption is satisfied and the quality of our estimation improves.

5.4 Appearance Model Evaluation on Synthetic Images

We compare the performance of our methods for estimating appearance models to a variation of the iterative
scheme described in [16], here called ALT.

In ALT, we start with an initial segmentation of the image and alternate between computing new appear-
ance models using the current segmentation and computing a new segmentation using the current appearance
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Figure 8: Average appearance model estimation error (DB) as a function of ρ on images composed of IID
( ) and Brodatz ( ) patterns disposed as in GT1 and GT2. For both (a) and (b) the results on the
left are from the algebraic method, whereas the results on the right are from the spectral method.

Initial
(DB = 0.71)

3rd iteration
(DB = 0.46)

6th iteration
(DB = 0.29)

9th iteration
(DB = 0.05)

Final iteration
(DB = 0.03)

Figure 9: Model estimation and segmentation using ALT. On the bottom, we see how both foreground and
background color distributions estimated by ALT ( ) evolve compared to the ground truth appearance
models ( ). The evolution of the segmentations given the models is shown on top.

models. This procedure is iterated until convergence. To update the appearance models using the current
segmentation we histogram the pixel values in each region. We “smooth” the histograms by adding a con-
stant K = 1 to their bins before normalizing them. To update the segmentation using the current appearance
models we minimize the energy in Equation (1) using a max-flow/min-cut algorithm ([8, 3]).

For the experiments described here the initial segmentation used for ALT is defined by a square region
in the middle of the image. Figure 9 shows an example of how the segmentation and appearance models
evolve over time. Empirically, we found that ALT works well in many examples but a typical failure mode
leads to assigning the whole image to single segment.

Table 1 compares the results of our methods to the result of ALT using several values of λ for the
segmentation step. We used ρ = 0.06 (which corresponds to r ≈ 20 pixels for the 320×320 synthetic images)
for both the algebraic and spectral methods. We evaluated our algorithms using three different approaches
for selecting w0, w1 and ε. In the first approach we set the parameters to the their ground truth values
defined by the corresponding segmentation mask. In the second approach we fix the parameters to typical
values that work well for many images. In the third approach we search over the parameters explicitly (see
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Table 1: Average DB distance (lower is better) between estimated and ground truth appearance models on
the synthetic data generated using different segmentation masks. We evaluate our algorithms using different
methods for selecting w0, w1 and ε (see text).

Image Setting

GT1 GT2 GT3 GT4 GT5

Method IID Brodatz IID Brodatz IID Brodatz IID Brodatz IID Brodatz Time (s)

Algebraic
GT w0, w1, ε 0.000 0.003 0.001 0.028 0.000 0.006 0.001 0.030 0.000 0.007 0.23

w0, w1 = 0.5, ε = 0.5ρ 0.000 0.003 0.019 0.064 0.001 0.007 0.016 0.058 0.002 0.011 0.14
Search w0, w1, ε 0.000 0.010 0.002 0.040 0.002 0.017 0.003 0.032 0.003 0.021 7.81

Spectral
GT w0, w1, ε 0.000 0.002 0.001 0.034 0.000 0.006 0.001 0.032 0.000 0.007 0.06

w0, w1 = 0.5, ε = 0.5ρ 0.000 0.003 0.019 0.067 0.001 0.007 0.016 0.059 0.002 0.011 0.06
Search w0, w1, ε 0.000 0.008 0.001 0.034 0.002 0.016 0.003 0.040 0.003 0.020 0.16

ALT

λ = 1 0.044 0.091 0.000 0.112 0.000 0.079 0.000 0.098 0.000 0.083 3.70
λ = 3 0.043 0.019 0.000 0.035 0.000 0.021 0.000 0.033 0.000 0.026 3.26
λ = 5 0.043 0.020 0.005 0.014 0.000 0.004 0.032 0.019 0.042 0.016 3.29
λ = 10 0.043 0.073 0.031 0.033 0.027 0.008 0.032 0.046 0.042 0.055 3.04

Section 4.3). All of the approaches lead to good results but searching for the optimal parameters leads to a
significant increase in runtime for the algebraic method.

We see that our algorithms perform extremely well on images where the pixel values in each region
are IID. The results on images with textures are also good and compare favorably to ALT. This result
is compelling in particular because the proposed methods do not rely on an iterative model re-estimation
scheme such as in ALT, which makes them faster and independent of initialization. The average runtime of
the different methods are shown in the last column of Table 1.

5.5 Segmentation Evaluation on Synthetic Images

After estimating appearance models using either the algebraic or spectral methods we compute segmentations
by minimizing Equation (1) using a max-flow/min-cut algorithm ([8, 3]). We compared this approach to
several texture segmentation methods.

The methods we compare to include Level Set Segmentation using Wasserstein Distances (LSWD) [13],
Images as Occlusions of Textures (ORTSEG) [11] and Factorization Based Segmentation (FBS) [19]. For each
of these methods, we used the Matlab implementations provided by the authors. We tuned the parameters
of each method to improve their performance in our dataset. We also evaluate the segmentation results
obtained with the iterative scheme ALT described above.

All of the methods we have used for comparison assume either explicitly or implicitly that regions have
homogeneous appearance. FBS uses a filter bank to define local features, while LSWD and ORTSEG work
with raw pixel values. LSWD, ORTSEG and FBS require the selection of a window size parameter that has
a function similar to r in our methods.

We used ρ = 0.06 to estimate appearance models with our methods. We set w0, w1 and ε by searching
over the parameters explicitly (see Section 4.3). We compute segmentations using several choices for λ in
Equation (1) and evaluate each choice separately.

Figure 10 illustrates some of the segmentations obtained using the different methods for both types of
images (IID and Brodatz) used for evaluation. In these examples we used λ = 5 to compute segmentations
with our methods and in ALT.

Table 2 provides a quantitative evaluation on the full set of synthetic images generated using the procedure
described in Section 5.2. This is the same data used to generate the results in Table 1. Notice that the
runtime of our methods is increased for the segmentation experiments (Table 2) when compared to the model
estimation experiments (Table 1) due to the addition of the graph cut computation to obtain a segmentation
after estimating appearance models.

Table 2 demonstrates a clear advantage of our methods under the IID case. For the Brodatz setting,
the results demonstrate that our methods provide high quality segmentations without relying on iterative
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Table 2: Average Jac index (higher is better) of different segmentation methods on the synthetic data
generated using different segmentation masks.

Image Setting

GT1 GT2 GT3 GT4 GT5

Method λ IID Brodatz IID Brodatz IID Brodatz IID Brodatz IID Brodatz Time (s)

Algebraic

3 1.000 0.896 0.991 0.789 0.977 0.869 0.980 0.780 0.956 0.850 8.13
5 1.000 0.919 0.989 0.814 0.955 0.873 0.966 0.787 0.884 0.841 8.15
7 1.000 0.937 0.986 0.838 0.919 0.856 0.886 0.782 0.708 0.811 8.22
10 1.000 0.936 0.976 0.860 0.793 0.837 0.826 0.777 0.570 0.767 8.31

Spectral

3 1.000 0.894 0.991 0.777 0.977 0.863 0.980 0.780 0.958 0.846 0.53
5 1.000 0.918 0.989 0.805 0.957 0.862 0.965 0.795 0.898 0.841 0.57
7 1.000 0.934 0.986 0.819 0.918 0.845 0.884 0.783 0.759 0.808 0.64
10 1.000 0.930 0.974 0.850 0.804 0.824 0.823 0.783 0.590 0.771 0.72

ALT

1 0.467 0.683 0.990 0.591 0.986 0.700 0.984 0.620 0.982 0.694 3.70
3 0.500 0.874 0.991 0.761 0.981 0.854 0.977 0.757 0.974 0.820 3.26
5 0.500 0.874 0.858 0.843 0.966 0.904 0.187 0.785 0.500 0.835 3.29
10 0.500 0.673 0.141 0.784 0.551 0.842 0.177 0.631 0.500 0.668 3.04

LSWD – 0.936 0.959 0.602 0.737 0.805 0.844 0.576 0.669 0.718 0.776 89.35

ORTSEG – 0.804 0.935 0.785 0.773 0.761 0.883 0.766 0.762 0.719 0.851 1.53

FBS – 0.585 0.908 0.582 0.734 0.549 0.842 0.581 0.700 0.547 0.810 0.08

approaches and filter banks. This makes our methods faster than most of the other approaches, while still
leading to accurate results.

These results confirm the soundness of the assumptions presented in Section 3. They also confirm the
efficacy of our methods for segmenting images with complex textures, despite the fact that we work directly
with raw pixel values. As can be seen in Figure 10 this leads to segmentations that are accurate near region
boundaries, where methods that rely on filter responses often suffer. Finally, although not presented here
for the sake of simplicity, our methods could have their segmentation performance further improved when
using the estimated appearance as an initial guess for an iterative scheme such as ALT.

5.6 Real Images

We also tested the proposed algorithms on real images from a variety of datasets, including the Berkeley
Segmentation Dataset [10], the Plant Seedlings Dataset [7] and a Scanning Electron Microscope (SEM)
dataset [1]. The images were chosen such that Assumption 1 approximately holds.

Figure 11 shows some of the results obtained using our methods for estimating appearance models followed
by segmentation using graph cuts. For each image, we used ρ = 0.03 and λ = 5. These results illustrate how
the proposed algorithms work well on a variety of different types of images.

For these experiments we added a pre-processing step to our algorithms to reduce the total number of
colors in RGB images to a smaller number of quantized values. This is necessary in order to obtain good
estimates for α and β on images with limited resolution.

To quantize the colors in an RGB image we repeatedly partition the color space until each partition has
at most 1000 pixels. Starting from the whole set of pixels, we partition the set into two using a random
hyperplane in RGB space going through the center of mass of the set. We recurse this procedure until the
stopping criteria is met. The same approach could be used for vector valued images such as hyperspectral
images that arise in remote sensing applications.
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(a) Original (b) Algebraic (c) Spectral (d) ALT (e) LSWD (f) ORTSEG (g) FBS

Figure 10: Selected segmentation results comparing our algorithms in (b) and (c) to other methods.
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(a) [1]

(b) [7]

(c) [10]

Figure 11: Application our methods on real images from a variety of different datasets. The blue and red
contours are the results of segmentation using appearance models estimated using the algebraic and spectral
methods, respectively.

17



6 Conclusion

Many image segmentation algorithms rely on appearance models to classify pixels into different regions. We
have shown that appearance models can be estimated directly from an unsegmented image. Our approach is
based on novel algebraic expressions that relate local image statistics to the appearance models of different
image regions. Our experiments demonstrate the algorithms we introduce in this paper work well in a variety
of settings. The resulting appearance models can be used to segment images of different types, including
textured images and other images where regions have complex appearances. These results also suggest that
segmentation algorithms can be improved by making use of second order pixel statistics.

Thus far we have focused on the problem of binary segmentation. An interesting direction for future
work would be to extend our approach to images with more than two regions. As discussed in Section 3.1
it is possible to derive algebraic constraints similar to the ones we have used to the case of images with
(at most) m regions. However, solving for appearance models using these constraints remains a challenging
computational problem.
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