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Abstract

We describe a new hierarchical representation for two-
dimensional objects that captures shape information at mul-
tiple levels of resolution. This representation is based ona
hierarchical description of an object’s boundary and can be
used in an elastic matching framework, both for compar-
ing pairs of objects and for detecting objects in cluttered
images. In contrast to classical elastic models, our repre-
sentation explicitly captures global shape information. This
leads to richer geometric models and more accurate recog-
nition results. Our experiments demonstrate classification
results that are significantly better than the current state-
of-the-art in several shape datasets. We also show initial
experiments in matching shapes to cluttered images.

1. Introduction

Humans can often recognize objects using shape infor-
mation alone. This has proven to be a challenging task for
computer vision systems. One of the main difficulties is in
developing representations that can effectively capture im-
portant shape variations. We want to be able to compare
different objects, and to detect objects in cluttered images.
The computational complexity of these tasks and the recog-
nition accuracy obtained are highly dependent on the choice
of a shape representation.

This paper describes an approach for matching shapes
based on a hierarchical description of their boundaries. This
approach can be used both for determining the similarity
between two shapes and for matching a deformable shape
model to a cluttered image. By using a hierarchical model,
we are able to develop simple elastic matching algorithms
that can take global geometric information into account.

Our matching algorithms are based on a compositional
procedure. We combine matchings between adjacent seg-
ments on two curves to form matchings between longer seg-
ments. This approach makes it possible to consider the ge-
ometric arrangement among the endpoints of the matchings
being combined. For long matchings, the endpoints are far
away, which means that our measure of deformation cap-
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Figure 1. The composition of matchings between adjacent seg-
ments on two curves to form a matching between longer segments.

tures global geometric properties. Figure 1 illustrates the
procedure, where we combine a matching fromA1 to B1

with a matching fromA2 toB2 to obtain a longer matching
between two curves. The quality of the combination de-
pends on both the quality of the matchings being combined
and the similarity between the geometric arrangements of
points(p1, p2, p3) and(q1, q2, q3).

We have tested the hierarchical representation and com-
positional matching procedure in a variety of situations and
obtained excellent performance. In classification tasks, we
obtain better recognition results than other methods on sev-
eral shape datasets, including the MPEG-7 shape dataset
[15], a Swedish leaf dataset [26], and a silhouette dataset
from Brown University [24]. We have also used the ETHZ
dataset [12] to demonstrate how hierarchical matching can
be used for matching shapes to real, cluttered images. These
experiments illustrate how the approach is not restricted to
matching pre-segmented shapes. Instead, we can match a
model shape directly to an unorganized set of contours ex-
tracted from natural images.

Most of the previous elastic matching methods look for
maps between two curves while minimizing a measure of
local bending and stretching (see [2], [23] and references
within). The methods in [6] and [13] use a similar idea to
match a curve to cluttered images. Local deformation mod-
els are appealing from an algorithmic perspective. Usually
dynamic programming can be used to find optimal match-
ings. However, as described in [2, 23] these methods can
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Figure 2. (a) Two curves that are almost indistinguishable by local
properties alone. (b) Two objects that are similar at a coarse level
but quite dissimilar at a local level.

only address some aspects of shape similarity. Consider the
curves in Figure 2(a). While they represent different char-
acters (6 and U) they can be transformed into each other
without much bending and stretching. The two shapes are
essentially indistinguishable if we focus on local properties
alone. On the other hand, while the objects in Figure 2(b)
are perceptually similar, they have completely different lo-
cal boundary properties.

Our hierarchical representation captures geometric prop-
erties at different levels of resolution. At the finest level,
these properties are related to standard local descriptions
(capturing local curvature, for example). At coarser levels,
the properties capture global shape aspects. As in classic
elastic matching approaches, we use a dynamic program-
ming algorithm for matching. But, as opposed to these other
methods, ours does not solve a shortest path problem due to
its compositional nature. Our compositional approach is re-
lated to the work in [4].

Hierarchical representations have proven to be useful in
a variety of situations. The arc-tree in [14] gives a hierar-
chical description of a curve based on recursive selection
of midpoints. This representation was used to perform geo-
metric queries such as detecting intersections between two
curves. Our representation can be thought of as a modified
arc-tree in which the only information kept at each node
is the relative position of the selected midpoint. Recursive
midpoint selection is also a standard method used for poly-
gon simplification in computer graphics [22].

In vision, multiscale representations such as the curva-
ture scale-space (CSS) have been previously used for shape
recognition [21, 20, 28]. The CSS captures critical curva-
ture points of a contour at different levels of smoothing. Our
representation is also based on a multiresolution approach,
but we rely only on subsampling to define coarse geometric
properties. The method in [28] uses dynamic programming
for matching multiscale descriptions, but this method is not
compositional in contrast to ours. Other hierarchical meth-
ods include the hierarchical graphical models in [8] and hi-
erarchical procrustes matching [19].

The methods in [1] and [9] use triangulated graphs to
represent shapes and to model deformations of objects. Our
work is related since we use the geometric arrangement of
sets of three points to capture shape information. Our algo-

rithm for matching shapes to cluttered images, like that of
[12], works by linking edge contours.

There are many other methods for representing, match-
ing and recognizing shapes. These include methods based
on the medial axis transform and the shock graph [5], [25],
[24], procrustes analysis [7], shape contexts [3] and the in-
ner distance [16]. We experimentally compare our algo-
rithm to several of these approaches in Section 5.

2. The Shape-Tree

We start by describing our hierarchical representation for
open curves. LetA be an open curve specified by a se-
quence of sample points(a1, . . . , an). Let ai be a midpoint
onA. For example, we usually takei = ⌊n/2⌋. Another
option is to choose the sample point such that the coarse
curve(a1, ai, an) approximatesA as well as possible. Let
L(ai|a1, an) denote the location ofai relative toa1 andan.
The locations of the first and last sample points can be used
to define a coordinate frame where we measure the loca-
tion of the midpoint. The first and last sample points define
a canonical scale and orientation, so the relative location
L(ai|a1, an) is invariant to similarity transformations.

The choice of a midpoint,ai, breaks the original curve
into two halves,A1 = (a1, . . . , ai) andA2 = (ai, . . . , an).
The hierarchical description ofA is defined recursively, we
keep track ofL(ai|, a1, an) and the hierarchical description
of A1 andA2. This hierarchical description can be repre-
sented by a binary tree, as illustrated in Figure 3. We call
this representation theshape-treeof a curve. Each node in
the shape-tree stores the relative location of a midpoint with
respect to the start and end point of a subcurve. The left
child of a node describes the subcurve from the start to the
midpoint while the right child describes the subcurve from
the midpoint to the end. The leaves of this tree represent
locations of sample points,ai, relative to their neighboring
points,ai−1 andai+1. Note that a subtree rooted at a node
corresponds to the shape-tree of a subcurve.

Nodes in the bottom of the shape-tree represent relative
locations of three sequential points along the curve. These
nodes capture local geometric properties such as the an-
gle formed at a point (which is a measure of curvature)
and the relative distance between adjacent sample points.
On the other hand, nodes near the root of the tree capture
more global information encoded by the relative locations
of points that are far from each other. This is a local prop-
erty of a subsampled version of the original curve. The
shape-tree contains only the locations of points relative to
two other points. This makes the representation invariant to
similarity transformations.

Given the tree representation forA, along with the lo-
cation of its start and end pointsa1 andan, the curve can
be recursively reconstructed. First, the start and end points
of the curve are placed. Because the location of a midpoint
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Figure 3. A shape-tree. Filled circles represent endpoints of sub-
curves and unfilled circles represent midpoints. Each node stores
the location of a midpoint relative to the endpoints. The midpoint
becomes an endpoint when a subcurve is divided.

of A relative to the start and the end is known, it can be
placed. This process continues down the shape-tree until
we have placed every sample point ofA. By placing the
initial pointsa1 andan at arbitrary locations, a translated,
rotated and scaled version ofA can be obtained.

A closed curve can be represented in a similar fashion.
Let B be a closed curve, specified by a sequence of sam-
ple points(b1, . . . , bn), wherebn = b1. Now let bi be a
midpoint onB. The open curvesB1 = (b1, . . . , bi) and
B2 = (bi, . . . , bn) can each be represented by a shape-tree.
Given a shape-tree representation of each side of a closed
curve and a location for the start/end point and the first mid-
point, the curve can be reconstructed at any location, orien-
tation, and size. We simply reconstruct each side using the
procedure outlined above.

We note that for a continuous curve it is possible to de-
fine an infinite shape-tree. This infinite tree gives a dense
sampling of the points in the curve, fully capturing its ge-
ometry up to similarity transformations.

2.1. Deformations

We can deform a curve by perturbing the relative loca-
tions stored in its shape-tree representation. To explore this
idea we need to pick a particular representation for the rel-
ative locations of the midpoints in a curve.

Bookstein coordinates [7] encode the relative locations
of three points as a point in the plane. They give a sim-
ple way to represent the relative location,L(ai|a1, an), of a
midpoint in the shape-tree. Letv1, v2 andv3 be three dis-
tinct points. There exists a unique similarity transformation
that mapsv1 to (−0.5, 0) and v2 to (0.5, 0). This trans-
formation mapsv3 to a location that we call theBookstein
coordinateof v3 with respect tov1 andv2.

→

→

→

Figure 4. Random deformations obtained by adding independent
noise to the nodes in a shape-tree representation of an object. The
deformed squares illustrate how the method preserves important
global properties while generating a wide range of variation.

Figure 4 shows some examples where we added indepen-
dent noise to the Bookstein coordinates of each midpoint in
a shape-tree before reconstructing a curve. The results are
curves that are perceptually similar to the originals. Note
that in the case of the square the deformed objects still seem
to have four sides that meet at a right angle, even though the
sides are quite deformed.

3. Elastic Matching

LetA andB be two open curves. When matching these
curves, we build a shape-tree forA and look for a mapping
from points inA to points inB such that the shape-tree of
A is deformed as little as possible.1 Here, we measure the
total amount of deformation as a sum over deformations ap-
plied to each node in the shape-tree ofA. The hierarchical
nature of the shape-tree ensures that both local and global
geometric properties are preserved by a good matching. In
practice, we use use a non-uniform weighting over deforma-
tions applied to different nodes in the shape-tree. We allow
larger deformations near the bottom of a shape-tree as these
do not change the global appearance of an object.

SupposeA = (a1, . . . , an) andB = (b1, . . . , bm). We
assume thata1 maps tob1 while an maps tobm. The shape-
tree ofA defines a midpointai dividing the curve into two
halvesA1 andA2. The best match fromA toB can be de-
fined by a search for a pointbj onB whereai maps to. This
point is used to divideB into two halvesB1 andB2 where
A1 andA2 map to respectively. We sayA andB are sim-
ilar if we can find a midpoint onB such thatA1 is similar
to B1, A2 is similar toB2 and the relative locations of the
midpointsL(ai|a1, an) andL(bj |b1, bm) are similar. The
similarity between subcurves is defined in the same man-
ner. The cost of matchingA to B can be expressed by a

1The method described here is not symmetric. It is possible to define a
symmetric method, but that leads to a less efficient algorithm.

3



recursive equation,

ψ(A,B) = min
bj∈B

(ψ(A1, B1) + ψ(A2, B2) +

λA ∗ dif (L(ai|a1, an), L(bj |b1, bm))). (1)

wheredif measures the difference between the relative lo-
cations of the midpoints onA andB andλA is a weighting
factor. For the experiments in this paper we used a weight-
ing proportional on the length ofA (the curve being de-
formed), giving a higher weights to deforming the relative
locations of points that are far away. We used the squared
Procrustes distance [7] between(a1, ai, an) and(b1, bj , bm)
for definingdif .2

For the base case we need to defineψ(A,B) when either
A or B have two sample points. A curve with two sample
points is just a line segment. We let the cost of matching
one line segment with another be zero, while the cost of
matching a line segment with a curve be exactly what it
would be if the line segment was further subdivided to have
the same number of sample points as the curve.

The recursive equation (1) can be solved using dynamic
programming over the shape-tree ofA. Let v be a node
in the shape-tree ofA. Consider the subcurveA′ corre-
sponding to the subtree rooted atv. Let T (v) be a table
of costs whereT (v)[s, e] is the cost of matchingA′ to the
subcurve ofB given by(bs, ..., be). The tableT (v) can be
computed using equation (1) once the tables for the children
of v have been computed. The algorithm computes all ta-
bles by starting at the leaves of the shape-tree and working
in order of decreasing depth. The cost of matchingA toB
is T (r)[1,m], wherer is the root of the shape-tree.

There areO(n) tables to be computed, and each table
hasO(m2) entries. To compute an entry, we have to search
for an ideal midpoint onB. So, the dynamic programming
procedure takesO(nm3) time overall. After all tables are
computed, we can find the best matching fromA to B by
tracing back from the root of the shape-tree to the leaves, as
in standard dynamic programming procedures.

WhenA andB are closed curves, we first breakA in two
halves,A1 = (a1, . . . , ai) andA2 = (ai, . . . , an), where,
as before,a1 equalsan. We match each node in the shape-
trees ofA1 andA2 to each subcurve ofB. The cost of
matchingA to B, as a function of wherea1 andai map
to, is given byT1(r1)[s, e] + T2(r2)[e, s]. Herer1 andr2
are the roots in the shape-trees ofA1 andA2, while s and
e are locations inB which a1 andai map to. This leads
to anO(nm3) algorithm for matching closed curves. In
practice, we use between 50 and 100 sample points in each

2The Euclidean distance between Bookstein coordinates is not a very
good measure of difference between relative locations of midpoints. Book-
stein coordinates are better seen as points in the Poincaré plane, where
geodesic distance corresponds to a natural deformation measure.

(a) (b)

(c) (d)

Figure 5. Detecting a bottle in an image. The input image is shown
in (a). The soft edge map is shown in (b). In (c), we have the image
contours extracted from (b). Our final detection is shown in (d).

curve. Our current implementation takes about 0.5 seconds
to compute a matching in a 3Ghz computer.

The formulation above assumes that each part ofA has a
corresponding part onB. In many situations two curves are
similar except that one of them has a missing or extra part.
To make the matching robust to these transformations we
boundψ(A′, B′) from above using a cost proportional to
λA′ ∗(|A′|+ |B′|). This models a process where we replace
a subcurve ofA with a subcurve ofB. Since the shape-
tree ofA is fixed in advance, this process can only replace
certain parts ofA. To allow for more flexibility in dealing
with occlusions, we usually compute matchings using 2 to
4 different shape-trees and pick the best one. It is also pos-
sible to give a dynamic programming algorithm that allows
arbitrary parts ofA andB to be replaced, but that algorithm
runs inO(n3m3) time.

4. Matching to Cluttered Images

Generalizing the ideas from the last section, we can also
match a model curve to a cluttered image. This algorithm
proceeds in four stages. First, given a color image, we com-
pute an edge strength map. Then, we extract a set of image
contours from the edge map. After this, we match each im-
age contour to all sub-countors of our model using dynamic
programming. Finally, we use a second dynamic program-
ming procedure to compose these matches together, form-
ing an optimal matching between the model and a subset of
the image contours. These stages are illustrated in Figure 5.

For the first stage, we use the PB edge operator [18] to
compute an edge strength map. For the second stage, we
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trace smooth contours in the edge map using the method
from [10]. The result is a set of salient contours in the im-
age. An example can be found in Figure 5(c).

Let M be a model curve,C be the set of contours ex-
tracted from an image andP denote the set of endpoints of
contours inC. Our goal is to find a matching betweenM
and a subset ofC. Leta andb be sample points inM , while
p andq are points inP . We useMatch(a, b, p, q) to denote
a matching from the subcurve ofM from a to b to a subset
of the contours inC such thata maps top andb maps toq.

In the third stage of the algorithm, we compute the best
matching between each contour inC and each subcurve of
M . This is done using the method from the last section. It
takesO(nm3) time to compute a table giving the cost of
deforming an image contour withn sample points to ev-
ery possible subcurve in a model withm sample points.
Thus, the overall running time of the third stage is lin-
ear in the total length of the contoursC and cubic in the
length of the model. This stage generates a set of matchings
Match(a, b, p, q) that are stitched together to form larger
matchings in the last stage.

We use the following compositional rule to stitch partial
matchings together. Letq andr be two points inP such
that ||q − r|| ≤ τ , for some small thresholdτ . If we have
two matchingsMatch(a, b, p, q) and Match(b, c, r, s) then
we can compose them to get a matchingMatch(a, c, p, s).
We allow q andr to be different so that we can compose
adjacent contours in the image even if their endpoints do not
exactly align. Mismatches between endpoint locations can
be caused by the edge detection or edge tracing procedure.
In analogy to the expression in equation (1), the cost of the
composed matching is the sum of the costs of the matchings
being composed plus a measure of the differences between
the relative locations of the midpoints in the model and the
image. Here we take the “midpoint” in the image to be the
average(q + r)/2.

Because of occlusions and missing edges we would like
to allow a subcurve of the model to be left unmatched even
though regions around it are matched. This is captured by
considering “gap matches”Match(a, b, p, q) for every pair
of sample pointsa andb in the model and pointsp andq
in P . In these matchingsa is mapped top andb is mapped
to q while the subcurve betweena andb is left unmatched.
The cost of a gap match is proportional to the arclength of
the subcurve froma to b.

A complete match betweenM and a subset of the con-
tours is given by a pair of matchingsMatch(a, b, p, q) and
Match(b, a, q′, p′), where both||p′ − p|| and||q′ − q|| are at
mostτ . Figure 6 illustrates the stitching procedure. We can
find the best complete matching using a second dynamic
programming step. We sequentially compute the cheapest
matching of typeMatch(a, b, p, q) in order of increasing ar-
clength of subcurves in the model. This stage of the al-

(a) Model (b) Image contours (c) Final result

Figure 6. The initial matchingMatch(a, b, p, q) can be com-
posed with the gap matchMatch(b, c, q, r) to form a matching
Match(a, c, p, r). Becauses and t are close, the initial match-
ings Match(c, d, r, s) and Match(d, e, t, u) can be composed to
form a matchingMatch(c, e, r, u). At this point, matchings
Match(a, c, p, r) andMatch(c, e, r, u) could be composed. Con-
tinuing in this way, we stitch together the boundary of the object.

gorithm runs inO(m3k3) time, wherem is the number of
sample points in the model andk is the number of end-
points inP . In the future we plan to use the algorithms in
[11] to compute optimal matches even faster. Those algo-
rithms would compose matchings in order of their quality
to avoid considering many possibilities that are considered
by the dynamic programming procedure.

5. Experiments

5.1. Shape Classification

MPEG-7 Shape Database

The MPEG-7 shape database [15] is a widely used dataset
for testing shape recognition methods. The database has
1400 silhouette images, with 20 images per object class
from a total of 70 different classes. Figure 7 shows some of
the images in the database. The standard method for mea-
suring the recognition rate of an algorithm in this dataset
is as follows. For every image in the database, we look at
the 40 most similar images and count how many of those
are in the same class as the query image. The final score of
the test is the ratio of the overall number of correct hits ob-
tained to the best possible number of correct hits. The best
possible number is 1400 * 20 since there are 1400 query im-
ages and 20 images per class. This is a hard dataset due to
the large intraclass variability in each category. Table 1 lists
the recognition rate we obtained using the shape-tree defor-
mation method, together with results from other algorithms.
Note that our method outperforms all previous systems.

Swedish Leaf Database

The Swedish leaf dataset [26] has pictures of 15 species
of leaves, with 75 images per species for a total of 1125
images. Figure 8 shows some example images from this
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Figure 7. Some of the objects in the MPEG-7 dataset. One image per class for the first 40 classes (the database has 70 classes).

Method Recognition rate
Shape-tree 87.70%

IDSC + DP + EMD [17] 86.56%
Hierarchical Procrustes [19] 86.35%

IDSC + DP [16] 85.40%
Generative Models [27] 80.03%

Curve Edit [23] 78.14%
SC + TPS [3] 76.51%

Visual Parts [15] 76.45%
CSS [20] 75.44%

Table 1. Classification results on the MPEG-7 dataset.

Method Recognition rate
Shape-tree 96.28%

IDSC + DP [16] 94.13%
SC + DP [16] 88.12%

Fourier descriptors [16] 89.60%
Söderkvist [26] 82.40%

Table 2. Classification results on the Swedish leaf dataset.

dataset. Note that some species are indistinguishable to the
untrained eye. Similar to the methods in [26] and [16], we
randomly select 25 training images from each species and
classify the remaining images using a nearest neighbor ap-
proach. Table 2 compares our classification rate to the other
methods that have been tested on this dataset. The shape-
tree matching algorithm outperforms the other methods by
a significant amount.

Brown Database

We also tested the shape-tree matching algorithm on the sil-
houette database from [24]. The dataset has 11 examples
from 9 different object categories for a total of 99 images.
One interesting aspect of this dataset is that many of the
shapes have missing parts and added clutter. Figure 9 shows
some of the images. The recognition results in this dataset
are measured as follows. For each shape in the database, we
check if the 10 closest matches are in the same category as
the query shape. Table 3 summarizes the results of different
methods. With our method, all of the 7 best matches for
each shape are in the correct category.

Figure 8. Leaves from the Swedish leaf dataset, one leaf per
species. Note the similarity among some species.

Figure 9. Images from the Brown dataset. Two per category.

Figure 10. The models used for matching in the ETHZ dataset.

5.2. Matching in Cluttered Images

To test our matching algorithm on cluttered images, we
ran experiments on a set of 80 images of swans and bot-
tles from the ETHZ dataset [12]. Matching for each class is
done with a single hand-drawn model shown in Figure 10.
This makes this dataset a good test for elastic matching.
The objects in each image often have substantially different
shape from the model. Interestingly, several images in the
dataset are paintings, drawings, or computerized renderings
of scenes. Our algorithm performs very well on these im-
ages. A sampling of our results can be found in Figures 11
and 12. Note that our current implementation simply finds
the best match in each picture.

6. Summary

We introduced a hierarchical shape representation with
the goal of explicitly capturing both global and local geo-
metric properties of an object. This representation is cap-
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Figure 11. Some example results of matching a bottle to images in the ETHZ dataset. Only the best match in each image is shown. Most
of the gaps in each matching are due to missing edges.

Figure 12. Some example results of matching a swan to images in the ETHZ dataset. Only the best match in each image is shown. The
third image on the top shows a mistake, due to missing edges on the swan and extra edges on the water.
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Method 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
Shape-tree 99 99 99 99 99 99 99 97 93 86

IDSC + DP [16] 99 99 99 98 98 97 97 98 94 79
Shock-Graph Edit [24] 99 99 99 98 98 97 96 95 93 82
Generative Models [27] 99 97 99 98 96 96 94 83 75 48

Table 3. Retrieval results on the dataset from [24]. Ideally the top 10 matches of each of the 99 shapes would be a shape in the same
category. The table summarizes the number of correct matches in eachrank.

tured by a tree, which we term theshape-treeof an object.
We can define deformations of an object in terms of inde-
pendent deformations applied to each node in its shape-tree.
Since some of the nodes in the shape-tree capture global ge-
ometric information, the process of applying a small defor-
mation to each node preserves perceptually important as-
pects of the object’s shape.

We have used the shape-tree deformation model to de-
velop a simple and efficient algorithm for matching curves.
Our experimental results show that this method is very ac-
curate when used for classifying objects from several large
databases. Moreover, the matching algorithm can be ex-
tended to detecting deformable objects in cluttered images.
Our future work will be directed towards refining and eval-
uating this process.
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