
2D Min-Filters with Polygons
Paolo Codenotti and Pedro Felzenszwalb

University of Chicago
{paoloc, pff}@cs.uchicago.edu

1. Introduction
Min-filters are an important operation in image process-

ing. The min-filter of an image I by a shape S associates to
every integer translate of S the minimum value that I takes
inside the translated shape. Min-filters are commonly used
for noise suppression, contrast enhancement, and edge de-
tection [1]. Min-filters are also an important special case of
min-convolutions, which have been used in signal process-
ing, pattern recognition, computer vision, and combinatorial
optimization [2].

Most applications of min-filters use small filtering ele-
ments. This is partly due to the computational burden of us-
ing large shapes. Gil and Werman [3] described an algorithm
to compute the min-filter of an image by an axis parallel rect-
angle in constant time per pixel. Here we describe efficient
algorithms for computing min-filters by large polygons.

Min-filters are related to convolutions by binary shapes.
It was previously known how to compute convolutions by
a convex polygon with k sides in O(k) time per pixel [4].
However, computing the min-filter is significantly different
from computing convolutions, since the min operation does
not have an inverse like summation does. On the other hand,
we can use the fact that min is an idempotent operator.

Our algorithms are based on the idea of covering a shape
with smaller copies of itself for a dynamic programming ap-
proach. In general we obtain approximate results that have
a simple interpretation: for each translate of a shape S we
compute the minimum value that the image I takes inside a
shape S′ that is close to S. This notion of approximation is
similar to the one used in [4] for convolutions.

Let R = R ∪ {∞}, and [n] = {0, 1, . . . , n − 1}. For
a shape S ⊆ R2, let Int(S) denote the integer points in S.
Polygons P will be specified so that their center of mass is
at the origin. We use P [i] to denote the translate of P by
i ∈ R2. That is, P [i] = P ⊕ i = {j + i | j ∈ P}.

Definition 1 Let P be a polygon, D = [n] × [m], and f be
a function D → R. The min-filter of f by P , h = f ⊗ P , is
another function D → R:

h(i) = min
j∈Int(P [i])

f(j).

Here we assume that the value of f outside of D is ∞.

In image processing applications f(i) is the brightness of
the pixel centered at i in an n by m image.

An α-approximation of a shape S is a shape S̃ such that
every point that is well inside S (α away from the boundary),
is in S̃, and every point well outside S is not in S̃.

Definition 2 Given a shape S, an α-approximation of S is a
shape S̃ such that:

• x ∈ S, and d(x, ∂S) ≥ α⇒ x ∈ S̃,
• x /∈ S, and d(x, ∂S) ≥ α⇒ x /∈ S̃.

Where d(x, y) denotes the distance between two objects.

Note that if α ≤ 1/2 then every pixel that is completely
inside S is inside S̃, and every pixel that is completely out-
side S is outside of S′.

Let Intα(S) be the set of integer points inside an α-
approximation of S. An α-approximate min-filter of a func-
tion f by a polygon P is defined by:

(f ⊗α P)(i) = min
j∈Intα(P [i])

f(j).

Here each entry (f ⊗α P)(i) is the min over integer points in
some α-approximation to P [i]. In particular, Intα(P [i]) may
not be a translate of Intα(P [j]) for i 6= j.

2. Results
Our main results are efficient algorithms for computing

approximate min-filters of a function f : D → R by large
polygons. All of the running times are linear in the size of
D, which corresponds to the number of pixels in an image.

Theorem 1 For a (non axis-parallel) rectangle R, we can
compute f ⊗α R in O((1

α)2 log L) time per pixel, where L is
the length of the longest side of R.

Theorem 2 For a triangle T , we can compute f ⊗α T in
O(1

sin γ (1
α)2 log L) time per pixel, where L is the length of

the longest side and γ is the smallest angle in T .

Theorem 3 For a polygon P , we can compute f ⊗α P in
O((1

α)2k log3 L) time per pixel, where L is the length of the
longest side and k is the number of sides of P .

3. The Main Algorithm
Here we describe the algorithm to compute an approxi-

mate min-filter by convex polygons with a constant number
of sides and all angles at least π/2. The results can be ex-
tended to arbitrary polygons. We can handle small angles by

1

“cutting corners” and arbitrary polygons (non-convex with
many sides) using triangulations.

Our algorithm uses a simple geometric fact: any convex
polygon P with k sides can be covered by k smaller polygons
P̃1, . . . , P̃k that are translates of each other. These polygons
are similar to P but scaled down by a factor of 2/3. Each
of the polygons P̃i covers a particular corner of P . The idea
of our algorithm is to recursively compute the min-filter by
P in terms of the min-filter by P̃i. However, the polygons
P̃1, . . . , P̃k are generally not centered at integer points. Since
each covering polygon will be near but not exactly at an inte-
ger point, we use expanded versions of the polygons at each
level to ensure proper coverage. This approach introduces
a “drift” which can be controlled by computing every min-
filter over a finer grid Gc, where c is the distance between
neighboring points in the grid.

In order to make sure we make good progress at each level
of recursion we need to carefully choose how to expand P̃i.
In particular neither a global scaling nor the Minkowski sum
of P̃i with a small shape have the right properties.

Definition 3 (α-expansion) The α-expansion of a convex
polygon P is the (convex) polygon P̂ constructed as follows.
For each side s of P , look at the line ls parallel to s at dis-
tance α from s and outside the polygon P . The α-expansion
P̂ is the “interior” of these lines (see Figure 1(a)).

Lemma 1 Let P̂ be the α-expansion of a convex polygon P .
Let ` be the length of any side of P , and `′ the length of the
corresponding side of P̂ . Let γ and θ be the angles incident
to ` (see Figure 1(a)). Then `′ = ` + αt, where

t =
1 + cos γ

sin γ
+

1 + cos θ

sin θ
.

In particular, if both angles are at least π/2 then `′ ≤ `+2α.
Moreover if all angles in P are at least π/2, then P̂ is a

√
2α-

approximation to P .

The α-expansion of a polygon P is another polygon with
the same number of sides and the same angles, containing
all points within α of P . Moreover, the sides don’t grow by
much, as described by Lemma 1.

Consider a convex polygon P with covering polygons
P̃1, . . . , P̃k as described above. Let P̂i be the c-expansion
of P̃i. Let Pi be the translate of P̂i such that the center of
mass of Pi is the closest point to the center of mass of P̂i in
the grid Gc. Note that Pi is a c-approximation to P̂i. More-
over, the covering polygons Pi are congruent and centered at
grid points. Figure 1(b) illustrates the construction.

Lemma 2 Let P ′ =
⋃

i Pi, then P ⊆ P ′ and P ′ is a (1 +√
2)c-approximation to P.

Now we give the algorithm for computing f ⊗α P . We
construct a sequence of polygons P 0, P 1, P 2, . . . P s, where

γ
θ

l
l'

α

(a) α-expansion

P P

Pi

Pi
~

Pi
^

Pi
~

(b) covering

Figure 1: (a) A polygon and its α-expansion. The length of each
side grows according to α and the angles adjacent to that side. (b)
A polygon P , one of its covering polygons ePi, the α-expansion bPi

and the translation with center of mass at an integer point Pi.

P 0 = P and P q+1 has the shape of the covering polygons
P q

i for P q. Let yq
i be center of P q

i . Let gs be the (exact)
min-filter of f by P s. We will compute gs by exhaustive
search. We then compute an approximate min-filter of f by
P q starting with q = s−1 down to q = 0 using the recursion:

gq(x) = min
i
{gq+1(x + yq

i)}. (1)

The running time to compute the base case is O((kl)2) per
point in Gc, where l is the maximum length of a side of P s.
The running time for every other level is O(k) per point in
Gc. If we look at P q as q increases we see that long sides get
smaller by a factor close to 2/3, and short sides remain rela-
tively short. By Lemma 1 we have l ≤ L(2/3)s + 6c, where
L is the longest side of P . Now we choose s = log L, and
c = α/((1 +

√
2) log L). With this choice of parameters, the

analysis above proves the running time claimed in Theorem
3, and Lemma 2 can be used to show that the the algorithm
correctly computes an α-approximate min-filter.

References
[1] P. Maragos. Morphological Filtering for Image Enhancement

and Feature Detection. Elsevier Academic Press, 2005.
[2] L. Babai and P. Felzenszwalb. Computing rank convolutions

with a mask. Technical report, University of Chicago, 2006.
[3] J. Gil and M. Werman. Computing 2-d min, median, and max

filters. IEEE Transactions on pattern analysis and machine in-
tellingence, 15:504–507, 1993.

[4] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. Piatko, R. Sil-
verman, and A. Y. Wu. Approximating large convolutions in
digital images. In Proc. SPIE Vol. 3454, Vision Geometry VII,
pages 216–227, October 1998.

2

