
Fast Inference with Min-Sum Matrix Product

Pedro F. Felzenszwalb

University of Chicago

pff@cs.uchicago.edu

Julian J. McAuley

Australian National University/NICTA

julian.mcauley@gmail.com

May 20, 2011

Abstract

The MAP inference problem in many graphical models can be solved efficiently using a fast algo-

rithm for computing min-sum products of n × n matrices. The class of models in question includes

cyclic and skip-chain models that arise in many applications. Although the worst-case complexity of

the min-sum product operation is not known to be much better than O(n3), an O(n2.5) expected time

algorithm was recently given, subject to some constraints on the input matrices. In this paper we give

an algorithm that runs in O(n2 log n) expected time, assuming that the entries in the input matrices are

independent samples from a uniform distribution. We also show that two variants of our algorithm are

quite fast for inputs that arise in several applications. This leads to significant performance gains over

previous methods in applications within computer vision and natural language processing.

1 Introduction

Min-sum matrix product (a.k.a. distance matrix product) is an important operation with applications in a

variety of areas, including in inference algorithms for graphical models [15], parsing with context-free

grammars [23], and shortest paths algorithms [1].

Our main interest in min-sum matrix product (MSP) involves its application to MAP inference in graph-

ical models, and optimization problems that have similar form. It is well known that inference in discrete

graphical models with low tree-width can be done using dynamic programming and belief propagation. [15]

showed that faster inference can be done in a large class of models if we have a fast method for MSP. This

class includes cyclic and skip-chain models that arise in many applications including in natural language

understanding and computer vision. See Figure 1 for some examples.

1

d e n o i s e

(a) Skip-chain model

(b) Triangulated cycle (c) Point-matching model

Figure 1: Some typical graphical models with third-order cliques but only pairwise factors.

Let A and B be two n× n matrices. The MSP of A and B is the n× n matrix C = A⊗B defined by

Cik = min
j
Aij +Bjk. (1)

Note that this is exactly matrix multiplication in the min-plus (tropical) semiring.

Standard algorithms for inference with a tree-width 2 model take O(mn3) time, where m is the number

of variables in the model and n is the number of possible values for each variable. For models that contain

only pairwise factors inference can be done in O(mf(n)) time if we have an algorithm for computing MSP

of n× n matrices in O(f(n)) time (see Section 2).

The brute-force approach for computing MSP of n× n matrices takes O(n3) time. Unfortunately there

is no known method that improves this bound by a significant amount in the worst case. An important

difference from the standard matrix product is that the minimum operation does not have an inverse. This

means that fast matrix multiplication methods that rely on a ring structure, such as Strassen’s algorithm [21],

can not be directly applied to compute MSP.

Our main theoretical result is an algorithm for MSP that runs in O(n2 log n) expected time, assuming

the entries of each matrix are independent samples from a uniform distribution. Our experimental results

show that the method also performs well under realistic inputs that arise in several applications.

Our basic algorithm uses a Fibonacci heap (or similar structure) and is mainly of theoretical interest. The

algorithm can be implemented with an integer queue to obtain a practical solution. We also describe an alter-

native algorithm that computes exact values using a scaling technique and avoids any complex data structure.

Our experimental results show the methods perform well in three different applications: interactive image

segmentation with active contours models (‘snakes’), point pattern matching with belief propagation and

text denoising with skip-chain models.

2

1.1 Related Work

Our work is motivated by [15] who noted the application of MSP for MAP inference with graphical models

and gave an O(n2.5) expected time algorithm for MSP. The method in [15] assumes every permutation of

values in the inputs occurs with equal probability. This is a weaker assumption than the one we make in our

analysis and could lead to a faster method in some applications. Section 4 compares the two methods and

shows our algorithms performs better in several applications.

The worst case complexity of the MSP operation has been heavily studied in the theoretical computer

science community because of its relation to the all-pairs-shortest-paths (APSP) problem. The worst case

asymptotic complexity of computing MSP of n× n matrices is the same as solving APSP on dense graphs

with n nodes [1]. To our knowledge the best known algorithm for the APSP problem takes O(n3/ log n)

time in the worst case [8]. The search for a truly sub-cubic algorithm (O(n3−ε)) is a significant open problem

in the area.

There are several known algorithms for the APSP problem which have good expected runtime assuming

the input graph comes from a simple distribution (e.g. [11, 17, 12]). However, the usual reduction of MSP

to APSP (see [1]) leads to graphs that have deterministic structure, violating the assumptions made by the

APSP algorithms designed for random graphs.

Our basic algorithm can be seen as an application of Knuth’s lightest derivation method (KLD) [14, 10]

with a special stopping criterion. [10] suggested using KLD and an A* version of it for inference in graphical

models. However there is a difference between the approach we use here and the one suggested by [10].

When doing inference on a large model we solve several small lightest derivation problems, each defined

by a single MSP computation. In contrast, [10] suggests solving a single large lightest derivation problem.

Solving a sequence of small problems leads to better performance and simplifies the implementation.

Our algorithms improve dynamic programming and message passing methods for inference in low tree-

width graphs when the number of possible values for a variable is large. Another approach for inference in

some classes of graphical models involves graph-cuts [7, 6]. However, these methods are typically used for

models with high tree-width, a relatively small number of possible values per variable, and restricted classes

of potential functions. None of the applications we consider can be easily addressed with graph-cuts.

3

2 MAP Inference and Min-Sum Matrix Product

Let G = (V,E) be a graph with m nodes. Let x = (x1, . . . , xm) be a set of variables associated with the

nodes in V . We are interested in solving optimization problems of the form

x∗ = argmin
x

∑
C∈C

ΦC(xC), (2)

where C is the set of maximal cliques in G, xC denotes the variables associated with nodes in C and ΦC is

a potential function assigning a cost to each possible configuration of values for these variables.

Optimization problems of this type arise in many situations including in MAP estimation with graphical

models. Exact or approximate solutions are often found using some form of message passing technique.

This includes classical dynamic programming methods [5, 3, 4], loopy belief propagation [24] and the

junction-tree algorithm [2]. Sometimes messages are computed between cliques of the original graph and

sometimes over a triangulated version.

In general the message passed from a clique A to a clique B takes the form

mA→B(xA∩B) = min
xA\B

ΦX(xA) +
∑

C∈Γ(A)\B

mC→A(xA∩C)

 , (3)

where Γ(A) is the set of cliques neighboring A.

If the model is triangulated andmA→B is computed afterA receives messages from all neighbors except

B (i.e., Γ(A) \ B) this leads to the junction-tree algorithm. This is also equivalent to non-serial dynamic

programming in a decomposable graph [5, 4]. In loopy belief propagation messages are updated in parallel

or some arbitrary order until convergence. After messages are computed a solution x∗ can be obtained by

computing beliefs using a similar computation.

As noted in [15], there are many graphical models whose potential functions ΦC are decomposable into

smaller factors, i.e.,

ΦC(xC) =
∑
F⊂C

ΦF (xF). (4)

This is a general phenomenon that arises for example when one triangulates a model. Triangulation creates

new edges, and thus larger cliques, but the potential functions of the triangulated graphs can always be

decomposed into the original potential functions.

4

As in [15], we focus on the case where the potentials take the form

Φijk(xi, xj , xk) = Φij(xi, xj) + Φik(xi, xk) + Φjk(xj , xk). (5)

That is, we have cliques of size three with pairwise factors. Our algorithms can also be generalized to other

factorizations discussed in [15], but we concentrate on this particular case because it is the most common in

typical applications. For example, if we have a cyclic model, globally optimal solutions x∗ can be obtained

by applying the junction-tree algorithm to a triangulated graph (Figure 1(b)). We describe experiments with

a model of this type for image segmentation in Section 4.1. Another example is a skip-chain model [22]

where we have a sequence of hidden variables and a potential function between pairs of variables that have

distance at most two from each other (Figure 1(a)). Section 4.3 illustrates an application of a model of this

type for text denoising.

When the potentials are of the form in (5) a message from a cliqueA = {i, j, k} to a cliqueB = {i, l, k}
takes the form

mA→B(xi, xk) = Ψik(xi, xk) + min
xj

Ψij(xi, xj) + Ψjk(xj , xk), (6)

where Ψij is the sum of Φij and messages from cliques that intersect A at (i, j), Ψjk is the sum of Φjk and

messages from cliques that intersect A at (j, k), and Ψik is the sum of Φik and messages from cliques, other

than B, that intersect A at (i, k).

Note that (6) is essentially equivalent to MSP (1) of two matrices (Ψij and Ψjk) of size n, where n is

the number of possible values for each variable in the model. The only difference is that (6) requires adding

another matrix (Ψik) to the result. Suppose we can compute the MSP of two n × n matrices in O(f(n))

time. Then we can compute messages in O(f(n)) time. Consider a problem with m variables in which each

variable can take one of n possible values. If the graph has tree-width 2 we can triangulate it and use the

junction-tree algorithm to find x∗ in O(mf(n)) time.

Just like MSP can be used for MAP inference with graphical models, standard matrix multiplication can

be used for computing marginals. Thus matrix multiplication algorithms such as Strassen’s method [21] can

be used for marginal computation in the class of models that we consider here. We note however that such

methods are not very practical due to high constants.

5

3 The Algorithm

Here we describe our basic algorithm (Algorithm 1) for computing C = A⊗B. We assume all entries in A

and B are non-negative. Negative (finite) entries can be eliminated by adding a constant to each matrix and

subtracting the constants from the resulting C.

The algorithm exploits a priority queue to avoid computing most sums Aij + Bjk. We initiallize the

values of C to ∞ and insert all entries of A, B and C into a queue Q, with priority given by their value.

We repeatedly remove items from Q and insert them into a set S. Whenever Aij (resp. Bjk) is removed

from Q we combine it with entries of the form Bjk (resp. Aij) that are already in S and update Cik =

min(Cik, Aij +Bjk). We stop when all entries of C are in S. Pseudocode for the algorithm is shown in the

left column of Figure 2.

Theorem 1 If all entries in A and B are non-negative then Algorithm 1 correctly computes C.

Proof: Let j = argminj Aij + Bjk. Clearly we always have Cik ≥ Aij + Bjk. It suffices to show that

when Cik is removed from Q we have Cik = Aij + Bjk. Since the entries in A and B are non-negative

Aij , Bjk ≤ Cik and both Aij and Bjk will be removed from Q before Cik. This implies that when Cik is

removed from Q we have Cik = Aij +Bjk. �

Theorem 2 If all entries in A and B are i.i.d. samples from a uniform distribution then Algorithm 1 can be

implemented to run in O(n2 log n) expected time.

Proof: First note that we can assume that the entries in A and B come from a uniform distribution over

[0, 1] by scaling them and then re-scaling the resulting C accordingly.

We keep two arrays of linked lists I and K such that I[j] stores indices i for which Aij is in S while

K[j] stores indices k for which Bjk is in S. When an entry is removed from Q we find the entries in S that

combine with it in constant time per entry. For example, when Aij is removed from Q we iterate over k in

K[j]. Thus the running time of the algorithm is dominated by the additions and priority queue operations.

Let N be the number of additions done by the algorithm. We perform O(n2) insertions and remove-min

operations, and O(N) decrease-key operations. Lemma 1 shows E[N] is O(n2 log n). Using a Fibonacci

heap we obtain O(1) time insertion and decrease-key, and O(log n) time remove-min. This leads to the

running time bound of O(n2 log n). �

6

Algorithm 1 Find C = A⊗B

1: S := ∅
2: ∀ik Cik :=∞
3: Initialize Q with entries of A, B, C
4: while S does not contain all Cik do
5: item := remove-min(Q)
6: S := S ∪ item
7: if item = Aij then
8: for Bjk ∈ S do
9: if Aij +Bjk < Cik then

10: Cik := Aij +Bjk
11: decrease-key(Q,Cik)
12: end if
13: end for
14: end if
15: if item = Bjk then
16: for Aij ∈ S do
17: if Aij +Bjk < Cik then
18: Cik := Aij +Bjk
19: decrease-key(Q,Cik)
20: end if
21: end for
22: end if
23: end while

Algorithm 2 Find C = A⊗B

1: ∀ik Cik :=∞
2: T := tmin
3: while maxik Cik > T do
4: I[j] := {i | Aij ≤ T}
5: K[j] := {k | Bjk ≤ T}
6: for j ∈ {1 . . . n} do
7: for i ∈ I[j] do
8: for k ∈ K[j] do
9: c := Aij +Bjk

10: if c < Cik then
11: Cik := c
12: end if
13: end for
14: end for
15: end for
16: T := 2T
17: end while

Figure 2: Two algorithms for computing MSP. The first (Algorithm 1) keeps track of a Fibonacci heap or
similar and data structure Q and a set S. The second (Algorithm 2) avoids the use of ‘exotic’ data structures
and is very fast in practice but may be sensitive to the schedule for T .

Lemma 1 LetN be the number additions performed by Algorithm 1. If the entries inA andB are i.i.d. sam-

ples from the uniform distribution over [0, 1] then E[N] is O(n2 log n)

Proof: Let C = A⊗B, and let M be the maximum value in C. The algorithm only adds Aij and Bjk if

both are at most M . Otherwise at least one of Aij or Bjk will not be removed from Q before the algorithm

stops. Let Xijk = 1 if Aij ≤ M and Bjk ≤ M , and 0 otherwise. The number of additions performed by

the algorithm is N =
∑

ijkXijk. Using linearity of expectation we have

E[N] =
∑
ijk

E[Xijk] =
∑
ijk

P (Xijk = 1).

7

First we show that M is small with high probability because each entry in C is the minimum of n values.

Then we use the fact that Aij and Bjk are both small with low probability. This will imply that Xijk = 1

with very low probability.

Let ε be a value between 0 and 1. M ≥ ε if and only if some Cik ≥ ε. Using the union bound

P (M ≥ ε) ≤
∑
ik

P (Cik ≥ ε).

Cik ≥ ε if and only if for all j we have Aij +Bjk ≥ ε. For fixed (i, k) these are independent events, thus

P (Cik ≥ ε) =
∏
j

P (Aij +Bjk ≥ ε).

Let s = Aij + Bjk. Since Aij and Bjk are independent samples from the uniform distribution over [0, 1],

we have P (s ≤ x) = x2/2. Thus

P (Aij +Bjk ≥ ε) = 1− ε2/2 and P (Cik ≥ ε) = (1− ε2/2)n.

Using 1− x ≤ e−x we obtain

P (Cik ≥ ε) ≤ e−nε
2/2.

Now we can see that M is small with high probability, or large with low probability

P (M ≥ ε) ≤ n2e−nε
2/2.

Note that P (Aij ≤ ε) = P (Bjk ≤ ε) = ε. Since these are independent events we have

P (Aij ≤ ε ∧Bjk ≤ ε) = ε2. (7)

Let E1 denote the event thatM ≥ ε and E2 denote the event thatAij ≤ ε∧Bjk ≤ ε. We have thatXijk = 1

requires at least one of E1 or E2 to hold. Using the union bound

P (Xijk = 1) ≤ P (E1) + P (E2) ≤ n2e−nε
2/2 + ε2.

Now we can pick ε so that both terms above are small. It is sufficient to pick ε2 = 6 logn
n . Note that as long

8

as n is big enough we satisfy the requirement that ε ≤ 1. With this choice

P (Xijk = 1) ≤ 1 + 6 log n

n
.

Finally we obtain

E[N] ≤ n3

(
1 + 6 log n

n

)
= n2(1 + 6 log n). (8)

So E[N] is O(n2 log n). �

3.1 Integer Queue

To obtain the desired running time bound for Algorithm 1 we need a complex data structure supportingO(1)

time decrease-key operations, such as a Fibonacci heap. We have found that this leads to poor performance

since such data structures are relatively slow in practice.

Suppose the entries inA andB are integers in [0,K]. Then we can initializeCik to 2K, and the priorities

in Q will always be integers in [0, 2K]. We can represent such a queue by an array of length 2K + 1, with

each entry Q[p] holding a list of values with priority p.

An important property of Algorithm 1 is that the minimum priority of items inQ never decreases. This is

because when the value of Cik is decreased, it does not go below the last value removed fromQ. This makes

it possible to perform k queue operations in O(k +K) time. Initialization takes O(K) time. Insertions and

decrease-key each take O(1) time, while k remove-min operations take O(k +K) in total. During remove-

min we may need to search for the minimum p withQ[p] not empty. But since the minimum never decreases

we never need to search over the same priority twice.

Using an integer queue Algorithm 1 runs in O(n2 log n + K) time. If the entries in A and B are not

integers or have high value, we can scale and round them to ensure K is not too large. If the maximum

value in A and B is v, using K priority bins leads to bins of size b = v/K. By itself, this approach would

introduce an additive error bounded by b. We can avoid this error by making the priority of Cik equal to

Cik + b. This ensures Aij and Bjk will come off the queue before Cik whenever j = argminAij + Bjk.

Picking K = Θ(n2 log n) ensures the priorities are accurately represented and we still obtain the expected

running time bound of O(n2 log n).

9

3.2 Scaling Method

Here we describe an alternative algorithm (Algorithm 2) that avoids using a priority queue and computes

exact solutions to the MSP problem.

Note that if we knew M = maxik Cik, a very simple algorithm could be developed for computing C.

Since the entries in A and B are non-negative, we have that Cik = minj Aij + Bjk for those j such that

Aij ≤M ∧Bjk ≤M . By (8) this would allow us to compute C in O(n2 log n) expected time, without any

need for a priority queue.

Of course we do not know M . In practice we guess a value T and compute Cik = minj Aij + Bjk for

those j such that Aij ≤ T ∧Bjk ≤ T . If maxik Cik ≤ T , we have correctly computed C since larger values

of Aij or Bjk could not lead to smaller values for Cik. Otherwise we double T and try again. Pseudocode

for the algorithm is shown in the right column of Figure 2.

If we were able to choose T := M then Algorithm 2 would perform the same additions as Algorithm

1. Note that Algorithm 2 terminates before T > 2M . By (7), doubling T increases the expected number

of additions by a factor of 4. Thus the total expected number of additions performed by Algorithm 2 is at

most a constant times the number of additions performed by Algorithm 1. In each iteration Algorithm 2 also

takes O(n2) time to check C and initialize the lists I and K. The total expected running time is O(n2 log n)

as long as the number of iterations is O(log n). This holds as long as the initial value for T is not too small.

3.3 Speedups

There are several speedups that improve the running time of our algorithms in practical situations:

1. From each entry in A we subtract the minimum value in its row, and from each entry in B we subtract

the minimum value in its column. These minima are added back to the resulting C. This makes the

values in C closer to the values in A and B and allows the algorithm to stop earlier.

2. In both algorithms we can remove entries from the set S, or lists I and K, if we already know all of

the values in a row or column of C. We keep track of which rows/columns of C are done, and remove

the entries the first time we consider them and realize they can no longer affect the result.

3. Let a(j) = miniAij and b(j) = mink Bjk be column and row minima in A and B respectively.

Entries in C derived from Aij must have value at least Aij + b(j), and entries in C derived from Bjk

must have value at least Bjk + a(j). This can be used to increase the priority of the items in Q in

10

0 200 400 600 800 1000
n

0

15

30

45

W
al

lt
im

e
(s

ec
on

ds
)

Random matrices

naive method
method from [15]
Algorithm 1
Algorithm 2

0 500 1000 1500 2000
n

0

20

40

60

80

100

120

140

A
dd

iti
on

s
pe

ro
ut

pu
te

nt
ry

Operations and bounds

naı̈ve method
method from [15]
2
√
n (bound from [15])

empirical estimate of E[N]/n2

(1 + 6 log n) (bound on E[N]/n2)

Figure 3: Left: runtime of different MSP algorithms. Right: number of additions per output entry.

Algorithm 1, in which case fewer items might be processed before the algorithm stops. We let Aij

have priority Aij + b(j) and Bjk have priority Bjk + a(j). This does not affect the result because

Aij and Bjk will still come off the queue before Cik whenever j = argminAij + Bjk. This can be

seen as an A* version of the algorithm. The modification is beneficial to handle matricies with non

i.i.d. entries. A similar idea can be used in Algorithm 2 to decide which entries to include in I and

K. We only need to include items that could be combined with each other to get values of at most T .

Thus we can take I[j] := {i | Aij + b(j) ≤ T} and K[j] := {k | a(j) +Bjk ≤ T}.

4 Experiments

We implemented our algorithms and tested them in several applications by comparing them to the naive

(brute force) method for MSP and the method from [15]. Note that all of these methods are guaranteed

to find an exact solution to the MSP problem. Our implementation of Algorithm 1 uses an integer queue,

as described in Section 3.1. Both Algorithms 1 and 2 were implemented using all speedups described

in Section 3.3. All methods were implemented in C++ using the GNU C compiler on an 2.8Ghz Intel

PowerMac running Mac OS X 10.5.

First we evaluate our algorithms on uniform i.i.d. matrices. Note that such matrices satisfy the random

rank statistics assumption made in [15]. Figure 3 shows the performance of the different methods with

running times on the left, and the number of additions done by each method on the right. This confirms that

our methods have better asymptotic complexity on random inputs. The experiments below show that results

on structured inputs that arise in practical applications are similar to the random case.

11

0 200 400 600 800 1000

n = w × w
0

15

30

45

60

W
al

lt
im

e
(s

ec
on

ds
)

Image segmentation

naive method
method from [15]
Algorithm 1
Algorithm 2

Figure 4: Interactive image segmentation with an active contour model. Left: initial placement of the
contour and search neighborhoods for the control points. Center: final segmentation. Right: running time
as a function of the search space size using different MSP algorithms.

4.1 Interactive Image Segmentation

Here we consider the problem of image segmentation using active contour models (‘snakes’) [13, 3]. Fig-

ure 4 illustrates an example. In this application a coarse segmentation of an object is provided by the user,

in the form of a polygonal curve with m control points. The goal is to improve the segmentation by moving

the control points within a search window around their initial positions.

Let x = (x1, . . . , xm) denote the position of the control points. In our experiments the final segmenta-

tion was obtained by solving a problem of the form

x∗ = argmin
x

m∑
i=1

1

grad(xi, xi+1)
+ ||xi − xi+1||2.

Here xi is constrained to be in a w×w window around its initial location. The value grad(p, q) is a measure

of the gradient magnitude along the line segment between p and q, (we want the object boundary to align

with high gradient regions). The second term in the sum encourages compact boundaries with control points

that are approximately uniformily spaced.

Solving for x∗ is equivalent to MAP estimation with a cyclic graphical model and can be done via

the junction-tree algorithm in a triangulated graph, such as the one in Figure 1(b). Using the naive MSP

algorithm this takes O(mn3) time, where n = w2 is the number of possible positions for each control

point.1 Figure 4 shows the result in one particular image and the total running time obtained on this image
1Another common approach is to try every possible location for one point and for each choice optimizing the other point

locations using dynamic programming on a chain. This also takes O(mn3) time.

12

0 200 400 600 800 1000

n (size of target graph)

0

600

1200

1800

2400

W
al

lt
im

e
(s

ec
on

ds
)

2D Graph matching

naive method
method from [15]
Algorithm 1
Algorithm 2

Figure 5: Point pattern matching. Left: a template (above) and a
scene (below) with noise and outliers. Right: running times for
matching using different MSP algorithms as a subroutine.

81 1108

n (alphabet size)

0

10

20

30

40

W
al

lt
im

e
(s

ec
on

ds
)

Skip-chain text denoising

naive method
method from [15]
Algorithm 1
Algorithm 2

81 107
0.00

0.06

0.12

Figure 6: Text denoising experi-
ment. The box is a closeup of bot-
tom left part of the graph.

using different methods for MSP as a subroutine.

4.2 Point Pattern Matching

Many of the problems suggested in [15] involved finding maps between two point sets. Examples include

OCR [9], pose reconstruction [20], SLAM [18], and point pattern matching [16].

Here we search for a ‘template’ s containing m points (s1, . . . , sm) within a ‘target’ t containing n

points (t1, . . . , tn). The target consists of a transformed and noisy version of the template, together with

outliers. An example is shown in Figure 5.

A solution to this matching problem is defined by a map from s to t. Such a map is defined by x =

(x1, . . . , xm) with xi ∈ {1, . . . , n}. Here xi = j indicates si is mapped to tj . The quality of the solution is

defined by how well distances in s are preserved under the map x. We let E be a set of edges over the points

in s specifying which distances should be (explicitly) preserved. The optimal solution is defined as

x∗ = argmin
x

∑
(i,j)∈E

g(||si − sj ||, ||txi − txj ||),

where the function g(a, b) defines a robust elasticity constraint enforcing that a ≈ b.
Solving for x∗ is equivalent to MAP estimation in a graphical model with topology defined by E. It was

shown in [15] that in many applications E forms a tractable model. Here we use the model from [16] with

the set of edges E shown in Figure 1(c). For inference we run loopy belief propagation for 25 iterations in

the loop of ‘width’ 2. This takesO(mn3) time per iteration using the naive MSP method as a subroutine (the

13

iterative nature of this method accounts for the higher total running time compared to the other experiments).

The performance on a particular problem instance using different MSP methods is shown in Figure 5. Note

that we could perform pairwise belief propagation for the model from Figure 1(c) in O(mn2) time per

iteration. However [16] shows that passing messages between cliques leads to better theoretical guarantees.

Our MSP algorithms allow us to maintain the guarantees while incurring an overhead of only O(log n)

compared to pairwise belief propagation.

4.3 Skip-Chain Models for Text Denoising

In [22], it was observed that powerful inference procedures can be developed by introducing long-range

dependencies into pairwise graphical models.

In this experiment, we adapt a simple Markov model for text denoising (typo correction): we model

not only the relationship between neighboring characters, but also the relationship between characters at

distance two. This leads to a graphical model of the type shown in Figure 1(a).

Let t = (t1, . . . , tm) be a sequence of m characters from an alphabet of size n. We assume that

each character was corrupted with probability p. The MAP estimate of the hidden (uncorrupted) sequence

x = (x1, . . . , xm) is given by

x∗ = argmax
x

m∏
i=1

[pδ(ti 6= xi)) + (1− p)δ(ti = xi)]︸ ︷︷ ︸
noise model

m−1∏
i=1

q1(xi, xi+1)
m−2∏
i=1

q2(xi, xi+2)︸ ︷︷ ︸
prior

.

Here δ(v) is the indicator function that equals 1 if v is true and 0 if v is false. Our priors q1, q2 are extracted

from the statistics of sentences in the Leipzig corpora [19]. The model has tree-width 2 and inference again

requires O(mn3) operations using the naive MSP method within the junction tree algorithm. The average

performance (over 10 sentences each with 200 characters) using different methods for MSP is shown in

Figure 6. The largest alphabet we consider comes from the Korean data, which contains 1108 unique

characters.

5 Conclusion

The MSP operation plays an important role for inference in a large class of graphical models. Our basic

algorithm runs in O(n2 log n) expected time assuming the entries in each input matrix are independent

14

samples from a uniform distribution. Despite this strong assumption we show that the algorithm can be

made very fast for inputs that arise in practical applications, achieving significant performance gains over

existing methods. An interesting open question involves showing that the algorithm has good running time

bounds for more general inputs once we include the speedups described in Section 3.3. Another direction

for future work involves other applications of MSP, such as parsing with context-free grammars.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley,

1974.

[2] Srinivas M. Aji and Robert J. McEliece. The generalized distributive law. IEEE Transactions on Information

Theory, 46(2):325–343, 2000.

[3] A. Amini, T. Weymouth, and R. Jain. Using dynamic programming for solving variational problems in vision.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(9):855–867, 1990.

[4] Y. Amit and A. Kong. Graphical templates for model registration. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 18(3):225–236, 1996.

[5] U. Bertele and F. Brioschi. Nonserial Dynamic Programming. Academic Press, 1972.

[6] Yuri Boykov and Marie-Pierre Jolly. Interactive graph cuts for optimal boundary and region segmentation of

objects in N-D images. In International Conference on Computer Vision, 2001.

[7] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization via graph cuts. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 23(11):1222–1239, 2001.

[8] Timothy M. Chan. More algorithms for all-pairs shortest paths in weighted graphs. In Annual ACM Symposium

on Theory of Computing, pages 590–598, 2007.

[9] James M. Coughlan and Sabino J. Ferreira. Finding deformable shapes using loopy belief propagation. In

European Conference on Computer Vision, 2002.

[10] Pedro F. Felzenszwalb and David McAllester. The generalized A* architecture. Journal of Artificial Intelligence

Research, 29:153–190, 2007.

[11] A. M. Frieze and G. R. Grimmett. The shortest-path problem for graphs with random arc-lengths. Discrete

Applied Mathematics, 10(1):57–77, 1985.

[12] David R. Karger, Daphne Koller, and Steven J. Phillips. Finding the hidden path: time bounds for all-pairs

shortest paths. SIAM Journal of Computing, 22(6):1199–1217, 1993.

15

[13] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. International Journal of Computer

Vision, 1(4):321–331, 1987.

[14] Donald Knuth. A generalization of Dijkstra’s algorithm. Information Processing Letters, 6(1):1–5, 1977.

[15] J. J. McAuley and T. S. Caetano. Exploiting within-clique factorizations in junction-tree algorithms. In AI and

Statistics (AISTATS), 2010.

[16] J. J. McAuley, T. S. Caetano, and M. S. Barbosa. Graph rigidity, cyclic belief propagation and point pattern

matching. IEEE Transansactions on Pattern Analysis and Machine Intelligence, 30(11):2047–2054, 2008.

[17] Alistair Moffat and Tadao Takaoka. An all pairs shortest path algorithm with expected time O(n2 log n). SIAM

Journal of Computing, 16(6):1023–1031, 1987.

[18] Mark A. Paskin. Thin junction tree filters for simultaneous localization and mapping. In International Joint

Conferences on Artificial Intelligence, 2003.

[19] U. Quasthoff, M. Richter, and C. Biemann. Corpus portal for search in monolingual corpora. In Language

Resources and Evaluation, 2006.

[20] Leonid Sigal and Michael J. Black. Predicting 3D people from 2D pictures. In Conference on Articulated Motion

and Deformable Objects, 2006.

[21] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 14(3):354–356, 1969.

[22] C. Sutton and A. McCallum. An introduction to conditional random fields for relational learning. In Lise Getoor

and Ben Taskar, editors, Introduction to Statistical Relational Learning. 2006.

[23] Leslie G. Valiant. General context-free recognition in less than cubic time. Journal of Computer and System

Sciences, 10:308–315, 1975.

[24] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Generalized belief propagation. In Neural Information

Processing Systems, 2000.

16

