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We consider a problem that involves finding similar elements in a collection of sets. The problem
is motivated by applications in machine learning and pattern recognition (see, e.g. [3]). Intuitively
we would like to discover something in common among a collection of sets, even when the sets have
empty intersection. A solution involves selecting an element from each set such that the selected
elements are close to each other under an appropriate metric. We formulate an optimization problem
that captures this notion and give an efficient approximation algorithm that finds a solution within
a factor of 2 of the optimal solution.

The similar elements problem is a special case of the metric labeling problem defined in [2] and
we also give an efficient 2-approximation algorithm for the metric labeling problem on complete

graphs. Metric labeling on complete graphs generalizes the similar elements problem to include
costs for selecting elements in each set.

The algorithms described here are similar to the “center star” method for multiple sequence
alignment described in [1].

Beyond producing solutions with good theoretical guarantees, the algorithms described here are
also practical. A version of the algorithm for the similar elements problem has been implemented
and used to find objects in a collection of photographs [4].

1 Similar Elements

Let X be a (possibly infinite) set and d be a metric on X. Let S1, . . . , Sn be n finite subsets of
X. The goal of the similar elements problem is to select an element from each set Si such that
the selected elements are close to each other under the metric d. One motivation is for discovering
something in common among the sets S1, . . . , Sn even when they have empty intersection.

We formalize the problem as the minimization of the sum of pairwise distances among selected
elements. Let x = (x1, . . . , xn) with xi ∈ Si. Define the similar elements objective as,

c(x) =
∑

1≤i,j≤n

d(xi, xj). (1)

Let x∗ = argminx c(x) be an optimal solution for the similar elements problem.
Optimizing c(x) appears to be difficult, but we can define easier problems if we ignore some of

the pairwise distances in the objective. In particular we define n different “star-graph” objective
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functions as follows. For each 1 ≤ r ≤ n define the objective cr(x) to account only for the terms in
c(x) involving xr,

cr(x) =
∑

j 6=r

d(xr, xj). (2)

Let xr = argminx c
r(x) be an optimal solution for the optimization problem defined by cr(x).

We can compute xr efficiently using a simple form of dynamic programming, by first computing xrr
and then computing xrj for j 6= r.

xrr = argmin
xr∈Sr

∑

j 6=r

min
xj∈Sj

d(xr, xj), (3)

xrj = argmin
xj∈Sj

d(xrr, xj). (4)

Each of the n “star-graph” objective functions leads to a possible solution. We then select from
among the solutions x1, . . . , xn as follows,

r̂ = argmin
1≤r≤n

cr(xr), (5)

x̂ = xr. (6)

Theorem 1. The algorithm described above finds a 2-approximate solution for the similar elements

problem. That is,

c(x̂) ≤ 2c(x∗).

Proof. First note that,

c(x) =

n
∑

r=1

cr(x).

Since the minimum of a set of values is at most the average, and xr minimizes cr(x),

min
1≤r≤n

cr(xr) ≤
1

n

n
∑

r=1

cr(xr) ≤
1

n

n
∑

r=1

cr(x∗) =
1

n
c(x∗).

By the triangle inequality we have

c(x) =
∑

1≤i,j≤n

d(xi, xj) ≤
∑

1≤i,j≤n

(d(xi, xr) + d(xr, xj)) = 2n

n
∑

l=1

d(xr, xl) = 2ncr(x).

Therefore
c(x̂) ≤ 2ncr̂(x̂) = 2n min

1≤r≤n
cr(xr) ≤ 2c(x∗).

To analyze the running time of the algorithm we assume the distances d(p, q) between pairs of
elements in S = S1 ∪ · · · ∪ Sn are either pre-computed and given as part of the input, or they can
each be computed in O(1) time.

Let k = max1≤i≤n |Si|. The first stage of the algorithm involves n optimization problems that
can be solved in O(nk2) time each. The second stage of the algorithm involves selecting one of the
n solutions, and takes O(n2) time.
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Remark 2. If each of the sets S1, . . . , Sn has size at most k the running time of the approximation

algorithm for the similar elements problem is O(n2k2).

The bottleneck of the algorithm is the evaluation of the minimizations over xj ∈ Sj in (3) and
(4). This computation is equivalent to a nearest-neighbor computation, where we want to find
a point from a set S ⊆ X that is closest to a query point q ∈ X. When the nearest-neighbor
computation can be done efficiently (with an appropriate data structure) the running time of the
similar elements approximation algorithm can be reduced.

2 Metric Labeling on Complete Graphs

Let G = (V,E) be an undirected simple graph on n nodes V = {1, . . . , n}. Let L be a finite set
of labels with |L| = k and d be a metric on L. For i ∈ V let mi be a non-negative function
mapping labels to real values. The unweighted metric labeling problem on G is to find a labeling
x = (x1, . . . , xn) ∈ Ln minimizing

c(x) =
∑

i∈V

mi(xi) +
∑

{i,j}∈E

d(xi, xj). (7)

Let x∗ = argminx c(x). This optimization problem can be solved in polynomial time using
dynamic programming if G is a tree. Here we consider the case when G is the complete graph

and give an efficient 2-approximation algorithm based on the solution of several metric labeling
problems on star graphs.

For each r ∈ V define a different objective function, cr(x), corresponding to a metric labeling
problem on a star graph with vertex set V rooted at r,

cr(x) =
∑

i∈V

mi(xi)

n
+

∑

j∈V \{r}

d(xr, xj)

2
. (8)

Let xr = argminx c
r(x). We can solve this optimization problem in O(nk2) time using a simple

form of dynamic programming. First compute an optimal label for the root vertex using one step
of dynamic programming,

xrr = argmin
xr∈L





mr(xr)

n
+

∑

j∈V \{r}

min
xj∈L

(

mj(xj)

n
+

d(xr, xj)

2

)



 . (9)

Then compute xrj for j ∈ V \ {r},

xrj = argmin
xj∈L

(

mj(xj)

n
+

d(xrr, xj)

2

)

. (10)

Optimizing each cr(x) separately leads to n possible solutions x1, . . . , xn, and we select one of
them as follows,

r̂ = argmin
r∈V

cr(xr), (11)

x̂ = xr. (12)
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Theorem 3. The algorithm described above finds a 2-approximate solution for the metric labeling

problem on a complete graph. That is,

c(x̂) ≤ 2c(x∗).

Proof. First note that,

c(x) =

n
∑

r=1

cr(x).

Since the minimum of a set of values is at most the average, and xr minimizes cr(x),

min
1≤r≤n

cr(xr) ≤
1

n

n
∑

r=1

cr(xr) ≤
1

n

n
∑

r=1

cr(x∗) =
1

n
c(x∗).

Since d is a metric and mi is non-negative,

c(x) =
∑

i∈V

mi(xi) +
∑

{i,j}∈E

d(xi, xj)

=
∑

i∈V

mi(xi) +
∑

(i,j)∈V 2

d(xi, xj)

2

≤
∑

i∈V

mi(xi) +
∑

(i,j)∈V 2

(

d(xi, xr)

2
+

d(xr, xj)

2

)

=
∑

i∈V

mi(xi) + 2n
∑

l∈V \{r}

d(xr, xl)

2

≤ 2n
∑

i∈V

mi(xi)

n
+ 2n

∑

l∈V \{r}

d(xr, xl)

2

= 2ncr(x).

Therefore
c(x̂) ≤ 2ncr̂(x̂) = 2n min

1≤r≤n
cr(xr) ≤ 2c(x∗).

The first stage of the algorithm involves n optimization problems that can be solved in O(nk2)
time each. The second stage involves selecting one of the n solutions, and takes O(n2) time.

Remark 4. The running time of the approximation algorithm for the metric labeling problem on

complete graphs is O(n2k2).
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