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Abstract. We define two algorithms for propagating information in classification

problems with pairwise relationships. The algorithms are based on contraction maps

and are related to non-linear diffusion and random walks on graphs. The approach is

also related to message passing algorithms, including belief propagation and mean field

methods. The algorithms we describe are guaranteed to converge on graphs with arbi-

trary topology. Moreover they always converge to a unique fixed point, independent of

initialization. We prove that the fixed points of the algorithms under consideration define

lower bounds on the energy function and the max-marginals of a Markov random field.

The theoretical results also illustrate a relationship between message passing algorithms

and value iteration for an infinite horizon Markov decision process. We illustrate the

practical application of the algorithms under study with numerical experiments in image

restoration and stereo depth estimation.

1. Introduction. In many classification problems there are relationships among a set

of items to be classified. For example, in image reconstruction problems adjacent pixels

are likely to belong to the same object or image segment. This leads to relationships

between the labels of different pixels in an image. Energy minimization methods based on

Markov random fields (MRF) address these problems in a common framework [3,14,21].

Within this framework we introduce two new algorithms for classification with pairwise

information. These algorithms are based on contraction maps and are related to non-

linear diffusion and random walks on graphs.
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The setting under consideration is as follows. Let G = (V,E) be an undirected simple

graph and let L be a set of labels. A labeling of V is a function x : V → L assigning

a label from L to each vertex in V . Local information is modeled by a cost gi(a) for

assigning label a to vertex i. Information on label compatibility for neighboring vertices

is modeled by a cost hij(a, b) for assigning label a to vertex i and label b to vertex j.

The cost for a labeling x is defined by an energy function,

F (x) =
∑
i∈V

gi(xi) +
∑

{i,j}∈E

hij(xi, xj). (1)

In the context of MRFs the energy function defines a Gibbs distribution on random

variables X associated with the vertices V ,

p(X = x) =
1

Z
exp(−F (x)). (2)

Minimizing the energy F (x) corresponds to maximizing p(X = x). This approach has

been applied to a variety of problems in image processing and computer vision [10]. A

classical example involves restoring corrupted images [4, 11]. In image restoration there

is a grid of pixels and the problem is to estimate an intensity value for each pixel. To

restore an image I one looks for an image J that is similar to I and is smooth almost

everywhere. Similarity between I and J is defined by local costs at each pixel. The

smoothness constraint is defined by pairwise costs between neighboring pixels in J .

1.1. Basic definitions and overview of results. Let G = (V,E) be an undirected, sim-

ple, connected graph, with more than one vertex. For simplicity let V = {1, . . . , n}. Let
N(i) and d(i) denote, respectively, the set of neighbors and the degree of vertex i,

N(i) = {j ∈ V | {i, j} ∈ E}, d(i) = |N(i)|.

Let L be a set of labels. For each vertex i ∈ V we have a non-negative cost for

assigning label a to vertex i, denoted by gi(a). These costs capture local information

about the label of each vertex. For each edge {i, j} ∈ E we have a non-negative cost

for assigning label a to vertex i and label b to vertex j, denoted equally by hij(a, b) or

hji(b, a). These costs capture relationships between labels of neighboring vertices.

gi : L → [0,∞) for i ∈ V ;

hij , hji : L
2 → [0,∞) for {i, j} ∈ E with hij(a, b) = hji(b, a).

Let x ∈ LV denote a labeling of V with labels from L. A cost for x that takes

into account both local information at each vertex and the pairwise relationships can be

defined by an energy function F : LV → R,

F (x) =
∑
i∈V

gi(xi) +
∑

{i,j}∈E

hij(xi, xj). (3)

This leads to a natural optimization problem where we look for a labeling x with minimum

energy.

Throughout the paper we assume L is finite. The optimization problem defined by F

is NP-hard even when |L| = 2 as it can be used to solve the independent set problem on

G. It can also be used to solve coloring with k colors when |L| = k. The optimization

problem can be solved in polynomial time using dynamic programming when G is a tree
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DIFFUSION METHODS FOR CLASSIFICATION WITH PAIRWISE RELATIONSHIPS 795

[1]. More generally dynamic programming leads to polynomial optimization algorithms

when the graph G is chordal (triangulated) and has bounded tree-width.

Min-sum (max-product) belief propagation [14,21] is a local message passing algorithm

that is equivalent to dynamic programming whenG is a tree. Both dynamic programming

and belief propagation aggregate local costs by sequential propagation of information

along the edges in E.

For i ∈ V we define the value function fi : L → R,

fi(τ ) = min
x∈LV

xi=τ

F (x). (4)

In the context of MRFs the value functions are also known as max-marginals. The value

functions are also what is computed by the dynamic programming and belief propagation

algorithms for minimizing F when G is a tree. Each value function defines a cost for

assigning a label to a vertex that takes into account the whole graph. If x∗ minimizes

F (x), then x∗
i minimizes fi(τ ), and when fi(τ ) has a unique minimum we can minimize

F (x) by selecting

x∗
i = argmin

τ
fi(τ ). (5)

A local belief is a function γ : L → R. A field of beliefs specifies a local belief for each

vertex in V , and is an element of

(RL)V = {ϕ = (ϕ1, . . . , ϕN ) | ϕi : L → R}. (6)

We define two algorithms in terms of maps,

T : (RL)V → (RL)V ,

S : (RL)V → (RL)V .

The maps T and S are closely related. Both maps are contractions, but each of them

has its own unique fixed point. Each of these maps can be used to define an algorithm

to optimize F (x) based on fixed point iterations and local decisions.

For z ∈ {T, S} we start from an initial field of beliefs ϕ0 and sequentially compute

ϕk+1 = z(ϕk).

Both Sk(ϕ0) and T k(ϕ0) converge to the unique fixed points of S and T , respectively.

After convergence to a fixed point ϕ (or a bounded number of iterations in practice) we

select a labeling x by selecting the label minimizing the belief at each vertex (breaking

ties arbitrarily),

xi = argmin
τ

ϕi(τ ). (7)

The algorithms we consider depend on parameters p ∈ (0, 1), q = 1 − p and weights

wij ∈ [0, 1] for each i ∈ V and j ∈ N(i). The weights from each vertex are constrained

to sum to one, ∑
j∈N(i)

wij = 1 ∀i ∈ V. (8)

These weights can be interpreted in terms of transition probabilities for a random walk

on G. In a uniform random walk we have wij = 1/d(i). Non-uniform weights can be
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796 PEDRO F. FELZENSZWALB AND BENAR F. SVAITER

used to capture additional information about an underlying application. For example, in

the case of stereo depth estimation (Section 5.2) we have used non-uniform weights that

reflect color similarity between neighboring pixels. We note, however, that while we may

interpret the results of the fixed point algorithms in terms of transition probabilities in

a random walk, the algorithms we study are deterministic.

The maps S and T we consider are defined as follows.

Definition 1.1.

(Tϕ)i(τ ) = pgi(τ ) +
∑

j∈N(i)

min
uj∈L

p

2
hij(τ, uj) + qwjiϕj(uj), (9)

(Sϕ)i(τ ) = pgi(τ ) +
∑

j∈N(i)

wij min
uj∈L

phij(τ, uj) + qϕj(uj). (10)

The map defined by T corresponds to a form of non-linear diffusion of beliefs along the

edges of G. The map defined by S corresponds to value iteration for a Markov decision

process (MDP) [2] defined by random walks on G. We show that both S and T are

contractions. Let ϕ̄ be the fixed point of T and let ϕ̂ be the fixed point of S. We show

ϕ̄ defines a lower bound on the energy function F , and that ϕ̂ defines lower bounds on

the value functions fi, ∑
i∈V

ϕ̄i(xi) ≤ F (x) ∀x ∈ LV , (11)

ϕ̂i(τ ) ≤ fi(τ ) ∀i ∈ V, τ ∈ L. (12)

In Section 3 we study the fixed point iteration algorithm defined by T and the re-

lationship between ϕ̄ and F . To the extent that
∑

i∈V ϕ̄i(xi) approximates F (x) this

justifies selecting a labeling x by minimizing ϕ̄i at each vertex. This approach is related

to mean field methods and variational inference with the Gibbs distribution p(X = x)

[14, 21].

In Section 4 we study the algorithm defined by S and the relationship between ϕ̂i and

fi. To the extent that ϕ̂i(τ ) approximates fi(τ ) this justifies selecting a labeling x by

minimizing ϕ̂i at each vertex. We also show a connection between the fixed point ϕ̂ and

optimal policies of a Markov decision process. The process is defined in terms of random

walks on G, with transition probabilities given by the weights wij .

1.2. Examples. Figure 1 shows two examples of fixed points of T when the graph

G = (V,E) is a cycle with 5 vertices. In this case we have a binary labeling problem

L = {1, 2}. The local costs are all zero except that vertex 1 has a preference for label 2.

This is encoded by a cost for label 1,

g1(1) = 1, (13)

g1(2) = 0, (14)

gi(a) = 0 ∀i �= 1, a ∈ L. (15)

In Figure 1(a) we have pairwise costs that encourage equal labels for neighboring vertices,

hij(a, b) =

{
0, a = b,

1, a �= b.
(16)

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



DIFFUSION METHODS FOR CLASSIFICATION WITH PAIRWISE RELATIONSHIPS 797

1 2
0

0.2

0.4

0.6

0.8

1

g1

1 2
0

0.05

0.1

0.15

0.2

ϕ̄1

1 2
0

0.2

0.4

0.6

0.8

1

g2

1 2
0

0.05

0.1

0.15

0.2

ϕ̄2

1 2
0

0.2

0.4

0.6

0.8

1

g3

1 2
0

0.05

0.1

0.15

0.2

ϕ̄3

1 2
0

0.2

0.4

0.6

0.8

1

g4

1 2
0

0.05

0.1

0.15

0.2

ϕ̄4

1 2
0

0.2

0.4

0.6

0.8

1

g5

1 2
0

0.05

0.1

0.15

0.2

ϕ̄5

1 2
0

0.2

0.4

0.6

0.8

1

g1

1 2
0

0.05

0.1

0.15

0.2

ϕ̄1

1 2
0

0.2

0.4

0.6

0.8

1

g2

1 2
0

0.05

0.1

0.15

0.2

ϕ̄2

1 2
0

0.2

0.4

0.6

0.8

1

g3

1 2
0

0.05

0.1

0.15

0.2

ϕ̄3

1 2
0

0.2

0.4

0.6

0.8

1

g4

1 2
0

0.05

0.1

0.15

0.2

ϕ̄4

1 2
0

0.2

0.4

0.6

0.8

1

g5

1 2
0

0.05

0.1

0.15

0.2

ϕ̄5

(a) Attractive relationships (b) Repulsive relationships

Fig. 1. The fixed points of T on two problems defined on the graph
above. In this case L = {1, 2}. In both cases the local costs gi are
all zero except for vertex 1 who has a preference towards label 2.
In (a) the pairwise costs encourage neighboring vertices to take the
same label. In (b) the pairwise costs encourage neighboring vertices

to take different labels.

In Figure 1(b) we have pairwise costs that encourage different labels for neighboring

vertices,

hij(a, b) =

{
1, a = b,

0, a �= b.
(17)

Figure 1 shows a graphical representation of the local costs for each vertex, and the

value of ϕ̄, the fixed point of T , on each example. In Figure 1(a) local selection of xi

minimizing ϕ̄i leads to x = (2, 2, 2, 2, 2). In Figure 1(b) local selection of xi minimizing

ϕ̄i leads to x = (2, 1, 2, 2, 1). In both examples the resulting labeling x is the global

minimum of F (x). For these examples we used p = 0.1 and wij = 1/d(i).

Of course in general local minimization of ϕ̄ does not lead to a labeling minimizing

F (x) and it would be interesting to characterize when this happens.

1.3. Related work. For general graphs G, when the pairwise costs hij(a, b) define a

metric over L there are polynomial time approximation algorithms for the optimization

problem defined by F [13]. In some important cases the optimization problem can be

solved using graph cuts and maximum flow algorithms [6, 7, 12, 15]. This includes in

particular the case of MAP estimation for an Ising model with an external field [12].

The algorithms we study are closely related to message passing methods, in partic-

ular to min-sum (or equivalently max-product) belief propagation (BP) [14, 21]. When
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the graph G is a tree, BP converges and solves the optimization problem defined by F .

Unfortunately BP is not guaranteed to converge and it can have multiple fixed points

for general graphs. Some form of dampening can help BP converge in practice. The

algorithms we study provide a simple alternative to min-sum belief propagation that is

guaranteed to converge to a unique fixed point, regardless of initialization. The algo-

rithms are also guaranteed to converge “quickly”.

One approach for solving the optimization problem defined by F involves using a

linear program (LP) relaxation. The optimization problem can be posed using an LP

with a large number of constraints and relaxed to obtain a tractable LP over the local

polytope [20]. Several message passing methods have been motivated in terms of this

LP [17]. There are also recent methods which use message passing in the inner loop of

an algorithm that converges to the optimal solution of the local polytope LP relaxation

[18, 19]. In Section 3.1 we characterize the fixed point of S using a different LP.

The mean-field algorithm [14,21] is an iterative method for approximating the Gibbs

distribution p(x) by a factored distribution q(x),

q(x) =
∏
i∈V

qi(xi). (18)

The mean-field approach involves minimization of the KL divergence between p and q

using fixed point iterations that repeatedly update the factors qi defining q. A drawback

of the approach is that the fixed point is not unique and the method is sensitive to

initialization.

The algorithm defined by T is related to the mean-field method in the sense that the

fixed points of T appear to approximate F (x) by a function H(x) that is a sum of local

terms,

H(x) =
∑
i∈V

ϕ̄i(xi). (19)

We do not know, however, if there is a measure under which the resulting H(x) is an

optimal approximation to F (x) within the class of functions defined by a sum of local

terms.

2. Preliminaries. The algorithms we study are efficient in the following sense. Let

m = |E| and k = |L|. Each iteration in the fixed point algorithm involves evaluating

T or S. This can be done in O(mk2) by “brute-force” evaluation of the expressions in

Definition 1.1. In many applications, including in image restoration and stereo matching,

the pairwise cost hij has special structure that allows for faster computation using the

techniques described in [9]. This leads to an O(mk) algorithm for each iteration of the

fixed point methods. Additionally, the algorithms are easily parallelizable.

The fixed point algorithms defined by T and S converge quickly because the maps are

contractions in (RL)V .

Let z : RK → R
K and ‖x‖ be a norm in R

K . For γ ∈ (0, 1), z is a γ-contraction if

‖z(x)− z(y)‖ ≤ γ‖x− y‖. (20)
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DIFFUSION METHODS FOR CLASSIFICATION WITH PAIRWISE RELATIONSHIPS 799

When z is a contraction it has a unique fixed point x̄. It also follows directly from the

contraction property that fixed point iteration xk = z(xk−1) converges to x̄ quickly,

‖xk − x̄‖ ≤ γk‖x0 − x̄‖. (21)

The weights wij in the definition of T and S define a random process that generates

random walks on G. We have a Markov chain with state space V . Starting from a

vertexQ0 we generate an infinite sequence of random vertices (Q0, Q1, . . .) with transition

probabilities

p(Qt+1 = j|Qt = i) = wij . (22)

A natural choice for the weights is wij = 1/d(i), corresponding to moving from i to j

with uniform probability over N(i). This choice leads to uniform random walks on G

[16].

We consider in (RL)V the partial order

ϕ ≤ ψ ⇐⇒ ϕi(τ ) ≤ ψi(τ ) ∀i ∈ V ∀τ ∈ L. (23)

It follows trivially from the definitions of T and S that both maps preserve order in

(RL)V ,

ϕ ≤ ψ ⇒ Tϕ ≤ Tψ, Sϕ ≤ Sψ. (24)

We claim that for any α ∈ R
V ,∑
i∈V

∑
j∈N(i)

wjiαj =
∑
j∈V

αj . (25)

This follows from re-ordering the double summation and the constraints that the weights

out of each vertex sum to one,∑
i∈V

∑
j∈N(i)

wjiαj =
∑
j∈V

∑
i∈N(j)

wjiαj =
∑
j∈V

αj .

We note that the algorithms defined by T and S are related in the following sense.

For a regular graph with degree d, if we let wij = 1/d the maps T and S are equivalent

up to rescaling if the costs in T and S are rescaled appropriately.

3. Algorithm defined by T (Diffusion). In this section we study the fixed point

algorithm defined by T . We show that T is a contraction in (RL)V and that the fixed

point of T defines a “factored” lower bound on F .

We start by showing that T is a contraction with respect to the norm on (RL)V defined

by

‖ϕ‖∞,1 =
∑
i∈V

‖ϕi‖∞. (26)

Lemma 3.1 (Contraction). For any ϕ, ψ ∈ (RL)V

‖(Tϕ)i − (Tψ)i‖∞ ≤ q
∑

j∈N(i)

wji‖ϕj − ψj‖∞ ∀i ∈ V, (27)

‖(Tϕ)− (Tψ)‖∞,1 ≤ q‖ϕ− ψ‖∞,1. (28)
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800 PEDRO F. FELZENSZWALB AND BENAR F. SVAITER

Proof. Take i ∈ V and τ ∈ L. For any x ∈ LV

(Tϕ)i(τ ) = pgi(τ ) +
∑

j∈N(i)

min
uj∈L

p

2
hij(τ, uj) + qwjiϕj(uj)

≤ pgi(τ ) +
∑

j∈N(i)

p

2
hij(τ, xj) + qwjiϕj(xj)

≤ pgi(τ ) +
∑

j∈N(i)

p

2
hij(τ, xj) + qwji(ψj(xj) + |ϕj(xj)− ψj(xj)|)

≤ pgi(τ ) +
∑

j∈N(i)

p

2
hij(τ, xj) + qwji(ψj(xj) + ‖ϕj − ψj‖∞).

Since the inequality defined by the first and last terms above holds for any x, it holds

when x minimizes the last term. Therefore

(Tϕ)i(τ ) ≤ (Tψ)i(τ ) + q
∑

j∈N(i)

wji‖ϕj − ψj‖∞.

Since this inequality holds interchanging ϕ with ψ we have

|(Tϕ)i(τ )− (Tψ)i(τ )| ≤ q
∑

j∈N(i)

wji‖ϕj − ψj‖∞.

Taking the τ maximizing the left hand side proves (27). To prove (28), we sum the

inequalities (27) for all i ∈ V and use (25). �
The contraction property above implies the fixed point algorithm defined by T con-

verges to a unique fixed point independent on initialization. It also implies the distance

to the fixed point decreases quickly, and we can bound the distance to the fixed point

using either the initial distance to the fixed point or the distance between consecutive

iterates (a readily available measure).

Theorem 3.2. The map T has a unique fixed point ϕ̄ and for any ϕ ∈ (RL)V and integer

k ≥ 0,

‖ϕ̄− T kϕ‖∞,1 ≤ qk‖ϕ̄− ϕ‖∞,1, (29)

‖ϕ̄− ϕ‖∞,1 ≤ 1

p
‖Tϕ− ϕ‖∞,1. (30)

Proof. Existence and uniqueness of the fixed point, as well as the first inequality

follows trivially from Lemma 3.1. To prove the second inequality observe that since T kϕ

converges to ϕ̄,

‖ϕ̄− ϕ‖∞,1 ≤
∞∑
k=0

‖T k+1ϕ− T kϕ‖∞,1 ≤
∞∑
k=0

qk‖Tϕ− ϕ‖∞,1. (31)

Now note that since p ∈ (0, 1) and p+ q = 1,

∞∑
k=0

qkp = 1 =⇒
∞∑
k=0

qk =
1

p
. (32)

�
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The map T and the energy function F are related as follows.

Proposition 3.3. For any ϕ ∈ (RL)V and x ∈ LV

∑
i∈V

(Tϕ)i(xi) ≤ pF (x) + q
∑
i∈V

ϕi(xi). (33)

Proof. Direct use of the definition of T yields

∑
i∈V

(Tϕ)i(xi) =
∑
i∈V

pgi(xi) +
∑

j∈N(i)

min
uj∈L

p

2
hij(xi, uj) + qwjiϕj(uj)

≤
∑
i∈V

pgi(xi) +
∑

j∈N(i)

p

2
hij(xi, xj) + qwjiϕj(xj)

= p

⎛
⎝∑

i∈V

gi(xi) +
∑
i∈V

∑
j∈N(i)

1

2
hij(xi, xj)

⎞
⎠+ q

∑
i∈V

∑
j∈N(i)

wjiϕj(xj)

= pF (x) + q
∑
j∈V

ϕj(xj),

where the last equality follows from the fact that hij(xi, xj) = hji(xj , xi) and equa-

tion (25). �
Now we show the fixed point of T defines a lower bound on F in terms of a sum of

local terms.

Theorem 3.4. Let ϕ̄ be the fixed point of T and

H(x) =
∑
i∈V

ϕ̄i(xi).

Then 0 ≤ ϕ̄ and H(x) ≤ F (x).

Proof. The fact that H(x) ≤ F (x) follows directly from Proposition 3.3.

To prove 0 ≤ ϕ̄ consider the sequence (0, T0, T 20, . . .). The non-negativity of gi
and hij implies 0 ≤ T0. Since T is order preserving (24) it follows by induction that

T k0 ≤ T k+10 for all k ≥ 0. Since the sequence is pointwise non-decreasing and converges

to ϕ̄ we have 0 ≤ ϕ̄. �
Theorem 3.4 allows us to compute both a lower and an upper bound on the optimal

value of F , together with a solution where F attains the upper bound.

Corollary 3.5. Let ϕ̄ be the fixed point of T and

x̄i = argmin
τ

ϕ̄i(τ ) ∀i ∈ V ;

then for any x∗ minimizing F ,∑
i∈V

ϕ̄i(x̄i) ≤ F (x∗) ≤ F (x̄).

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf
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Proof. If x∗ is a minimizer of F , then the inequality F (x∗) ≤ F (x̄) holds trivially. We

can use the definition of x̄ to conclude that∑
i∈V

ϕ̄i(x̄i) ≤
∑
i∈V

ϕ̄i(x
∗
i ) ≤ F (x∗),

where the second inequality follows from Theorem 3.4. �
3.1. Linear programming formulation. Here we provide an LP characterizing for the

fixed point of T . We note that the LP formulation described here is different from the

standard LP relaxation for minimizing F (x) which involves the local polytope described

in [20].

Consider the following LP which depends on a vector of coefficients a in (RL)V ,

max
ϕ

aTϕ

ϕi(ui) ≤ pgi(ui) +
∑

j∈N(i)

p

2
hij(ui, uj) + qwjiϕj(uj) ∀i ∈ V, ∀u ∈ LV .

Note that the constraints in the LP are equivalent to ϕ ≤ Tϕ. Next we show that this

LP has a unique solution which equals the fixed point of T whenever every coefficient

is positive, independent of their specific values. For example, ϕ̄ is the optimal solution

when a is the vector of ones.

Theorem 3.6. If a is a non-negative vector the fixed point of T is an optimal solution

for the LP. If a is a positive vector the fixed point of T is the unique optimal solution

for the LP.

Proof. Let ϕ̄ be the fixed point of T . First note that ϕ̄ is a feasible solution since

ϕ̄ ≤ T ϕ̄.

Let ϕ ∈ (RL)V be any feasible solution for the LP. The linear constraints are equivalent

to ϕ ≤ Tϕ. Since T preserves order it follows by induction that T kϕ ≤ T k+1ϕ for all

k ≥ 0. Since the sequence (ϕ, Tϕ, T 2ϕ, . . .) converges to ϕ̄ and it is pointwise non-

decreasing we conclude ϕ ≤ ϕ̄.

If a is non-negative we have aTϕ ≤ aT ϕ̄ and therefore ϕ̄ must be an optimal solution

for the LP. If a is positive and ϕ �= ϕ̄ we have aTϕ < aT ϕ̄. This proves the fixed point

is the unique optimal solution for the LP. �

4. Algorithm defined by S (Optimal control). In this section we study the

algorithm defined by S. We start by showing that S corresponds to value iteration for

an infinite horizon discounted Markov decision process (MDP) [2].

An infinite horizon discounted MDP is defined by a tuple (Q,A, c, t, γ) where Q is a

set of states, A is a set of actions, and γ is a discount factor in R. The cost function

c : Q × A → R specifies a cost c(s, a) for taking action a on state s. The transition

probabilities t : Q×A×Q → R specify the probability t(s, a, s′) of moving to state s′ if

we take action a in state s.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



DIFFUSION METHODS FOR CLASSIFICATION WITH PAIRWISE RELATIONSHIPS 803

Let o be an infinite sequence of state and action pairs, o = ((s1, a1), (s2, a2), . . .) ∈
(Q×A)∞. The (discounted) cost of o is

c(o) =

∞∑
k=0

γkc(sk, ak). (34)

A policy for the MDP is defined by a map π : Q → A, specifying an action to be taken

at each state. The value of a state s under the policy π is the expected cost of an infinite

sequence of state and action pairs generated using π starting at s,

vπ(s) = E[c(o)|π, s1 = s]. (35)

An optimal policy π∗ minimizes vπ(s) for every starting state. Value iteration com-

putes vπ∗ as the fixed point of L : RQ → R
Q,

(Lv)(s) = min
a∈A

c(s, a) + γ
∑
s′∈Q

t(s, a, s′)v(s′). (36)

The map L is known to be a γ-contraction [2] with respect to the ‖ · ‖∞ norm.

Now we show that S is equivalent to value iteration for an MDP defined by random

walks on G. Intuitively we have states defined by a vertex i ∈ V and a label a ∈ L.

An action involves selecting a different label for each possible next vertex, and the next

vertex is selected according to a random walk defined by the weights wij .

Lemma 4.1. Define an MDP (Q,A, c, t, γ) as follows. The states are pairs of vertices and

labels Q = V × L. The actions specify a label for every possible next vertex A = LV .

The discount factor is γ = q. The transition probabilities and cost function are defined

by

t((i, τ ), u, (j, τ ′)) =

{
wij , j ∈ N(i), τ ′ = uj ,

0 otherwise,
(37)

c((i, τ ), u) = pgi(τ ) +
∑

j∈N(i)

pwijhij(τ, uj). (38)

The map S is equivalent to value iteration for this MDP. That is, if ϕi(τ ) = v((i, τ )),

then

(Sϕ)i(τ ) = (Lv)((i, τ )).

Proof. The result follows directly from the definition of the MDP, L and S.

(Lv)((i, τ )) = min
u∈LV

c((i, τ ), u) + γ
∑

(j,τ ′)∈Q

t((i, τ ), u, (j, τ ′))v(j, τ ′) (39)

= min
u∈LV

pgi(τ ) +
∑

j∈N(i)

pwijhij(τ, uj) + q
∑

j∈N(i)

wijv(j, uj) (40)

= pgi(τ ) +
∑

j∈N(i)

wij min
uj∈L

phij(τ, uj) + qv(j, uj) (41)

= (Sϕ)i(τ ). (42)

�
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The relationship to value iteration shows S is a contraction and we have the following

results regarding fixed point iterations with S.

Theorem 4.2. The map S has a unique fixed point ϕ̂ and for any ϕ ∈ (RL)V and integer

k ≥ 0,

‖ϕ̂− Skϕ‖∞ ≤ qk‖ϕ̂− ϕ‖∞, (43)

‖ϕ̂− ϕ‖∞ ≤ 1

p
‖Sϕ− ϕ‖∞. (44)

Proof. The first inequality follows directly from Lemma 4.1 and the fact that L is a

γ-contraction with γ = q. The proof of the second inequality is similar to the proof of

the analogous result for the map T in Theorem 3.2. �
4.1. Random walks. The formalism of MDPs is quite general, and encompasses the

fixed point algorithm defined by S. In this section we further analyze this fixed point

algorithm and provide an interpretation using one-dimensional problems defined by ran-

dom walks on G.

The weights wij define a random process that generates infinite walks on G. Starting

from some vertex in V we repeatedly move to a neighboring vertex, and the probability

of moving from i ∈ V to j ∈ N(i) in one step is given by wij .

An infinite walk ω = (ω1, ω2, . . .) ∈ V ∞ can be used to define an energy on an infinite

sequence of labels z = (z1, z2, . . .) ∈ L∞,

Fω(z) =

∞∑
t=0

pqtgωt
(zt) + pqthωtωt+1

(zt, zt+1). (45)

The energy Fω(z) can be seen as the energy of a pairwise classification problem on a

graph G′ = (V ′, E′) that is an infinite path,

V ′ = {1, 2, . . .}, (46)

E′ = {{1, 2}, {2, 3}, . . .}. (47)

The graph G′ can be interpreted as a one-dimensional “unwrapping” of G along the walk

ω. This unwrapping defines a map from vertices in the path G′ to vertices in G.

Consider a policy π : V ×L× V → L that specifies zk+1 in terms of ωk, zk and ωk+1,

zk+1 = π(ωk, zk, ωk+1). (48)

Now consider the expected value of Fω(z) when ω is a random walk starting at i ∈ V

and z is a sequence of labels defined by the policy π starting with z1 = τ ,

vπ(i, τ ) = E[Fω(z)|ω1 = i, z1 = τ, zk+1 = π(ωk, zk, ωk+1)]. (49)

There is an optimal policy π∗ that minimizes vπ(i, τ ) for every i ∈ V and τ ∈ L. Let ϕ̂

be the fixed point of S. Then ϕ̂i(τ ) = vπ∗(i, τ ). This follows directly from the connection

between S and the MDP described in the last section.
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4.2. Bounding the value functions of F . Now we show that ϕ̂ defines lower bounds on

the value functions (max-marginals) fi defined in (4). We start by showing that fi can

be lower bounded by fj for j ∈ N(i).

Proposition 4.3. Let i ∈ V and j ∈ N(i). Then

fi(ui) ≥ pgi(ui) + min
uj

phij(ui, uj) + qfj(uj), (50)

fi(ui) ≥ pgi(ui) +
∑

j∈N(i)

wij min
uj

phij(ui, uj) + qfj(uj). (51)

Proof. The second inequality follows from the first one by taking a convex combination

over j ∈ N(i). To prove the first inequality note that,

fi(ui) = min
x∈LV

xi=ui

F (x) (52)

= min
uj∈L

min
x∈LV

xi=ui,xj=uj

F (x) (53)

= min
uj∈L

min
x∈LV

xi=ui,xj=uj

pF (x) + qF (x) (54)

≥ pgi(ui) + min
uj∈L

phij(ui, uj) + min
x∈LV

xi=ui,xj=uj

qF (x) (55)

≥ pgi(xi) + min
uj∈L

phij(ui, uj) + min
x∈LV

xj=uj

qF (x) (56)

= pgi(xi) + min
uj∈L

phij(ui, uj) + qfj(uj). (57)

The first inequality above follows from F (x) ≥ gi(xi) + hij(xi, xj) since all the terms in

F (x) are non-negative. The second inequality follows from the fact that we are minimiz-

ing F (x) over x with fewer restrictions. �
The map S and the value functions are related as follows.

Proposition 4.4. Let f = (f1, . . . , fN ) ∈ (RL)V be a field of beliefs defined by the value

functions

Sf ≤ f. (58)

Proof. The result follows directly from Proposition 4.3. �
Now we show that the fixed point of S defines lower bounds on the value functions.

Theorem 4.5. Let ϕ̂ be the fixed point of S. Then

0 ≤ ϕ̂i(τ ) ≤ fi(τ ).

Proof. Since the costs gi and hij are non-negative we have 0 ≤ S0. Using the fact

that S preserves order we can conclude 0 ≤ ϕ̂.

Since Sf ≤ f and S preserves order, Skf ≤ f for all k. To end the proof, take the

limit k → ∞ at the left hand side of this inequality. �
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5. Numerical experiments. In this section we illustrate the practical feasibility of

the proposed algorithms with preliminary experiments in computer vision problems.

5.1. Image restoration. The goal of image restoration is to estimate a clean image z

from a noisy, or corrupted, version y. A classical approach to solve this problem involves

looking for a piecewise smooth image x that is similar to y [5,11]. In the weak membrane

model [5] the local costs gi(a) penalize differences between x and y while the pairwise

costs hij(a, b) penalize differences between neighboring pixels in x. In this setting, the

graph G = (V,E) is a grid in which the vertices V correspond to pixels and the edges

E connect neighboring pixels. The labels L are possible pixel values and a labeling x

defines an image. For our experiments we use L = {0, . . . , 255} corresponding to the

possible values in an 8-bit image.

To restore y we define the energy F (x) using

gi(xi) = (yi − xi)
2; (59)

hij(xi, xj) = λmin((xi − xj)
2, τ ). (60)

The local cost gi(xi) encourages xi to be similar to yi. The pairwise costs depend on

two parameters λ, τ ∈ R. The cost hij(xi, xj) encourages xi to be similar to xj but also

allows for large differences since the cost is bounded by τ . The value of λ controls the

relative weight of the local and pairwise costs. Small values of λ lead to images x that

are very similar to the noisy image y, while large values of λ lead to images x that are

smoother.

Figure 2 shows an example result of image restoration using the algorithm defined

by T . The example illustrates the algorithm is able to recover a clean image that is

smooth almost everywhere while at the same time preserving sharp discontinuities at the

boundaries of objects. For comparison we also show the results of belief propagation. In

this example the noisy image y was obtained from a clean image z by adding independent

noise to each pixel using a Gaussian distribution with standard deviation σ = 20. The

Fig. 2. Image restoration using the fixed point algorithm defined by
T and BP. The algorithms were run for 100 iterations.
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Table 1. Results of restoration using T , S and belief propagation
(BP). The goal of restoration is to recover the original image z. We

show the energy of the restored image x and the root mean squared
error (RMSE) between x and z. We show the results of the different
algorithms for different values of the parameter λ. Both T and S ob-
tain lower RMSE compared to BP even though BP generally obtains
results with significantly lower energy.

T S BP

λ Energy RMSE Energy RMSE Energy RMSE

0.01 659210 10.1 842459 9.1 211646 15.8

0.02 943508 9.0 1220572 8.7 337785 13.4

0.05 1519837 8.9 1873560 10.9 650296 10.7

0.10 2089415 11.0 2506230 14.8 1080976 10.1

0.20 2700193 14.8 2942392 17.7 1730132 12.9

input image has 122 by 179 pixels. We used λ = 0.05 and τ = 100 to define the

pairwise costs. For the algorithm defined by T we used uniform weights, wij = 1/d(i)

and p = 0.001. Both the algorithms defined by T and belief propagation were run for

100 iterations. We based our implementations on the belief propagation code from [8],

which provides efficient methods for handling truncated quadratic discontinuity costs.

The algorithm defined by T took 16 seconds on a 1.6Ghz Intel Core i5 laptop computer

while belief propagation took 18 seconds.

The goal of restoration is to recover a clean image z. We evaluate the restored image x

by computing the root mean squared error (RMSE) between x and z. We see in Figure 2

that when λ = 0.05 and τ = 100 the result of T has lower RMSE value compared to

the result of BP, even though the result of T has significantly higher energy. We also

evaluate the results of T , S and BP using different values of λ in Table 1. For all of

these experiments we used τ = 100 and ran each algorithm for 100 iterations. The

minimum RMSE obtained by T and S is lower than the minimum RMSE obtained by

BP considering different values for λ, even though T and S always find solutions that

have higher energy compared to BP. This suggests the algorithms we propose do a good

job aggregating local information using pairwise constraints, but the energy minimization

problem defined by F (x) may not be the ideal formulation of the restoration problem.

5.2. Stereo depth estimation. In stereo matching we have two images Il and Ir taken at

the same time from different viewpoints. Most pixels in one image have a corresponding

pixel in the other image, being the projection of the same three-dimensional point. The

difference in the coordinates of corresponding pixels is called the disparity. We assume

the images are rectified such that a pixel (x, y) in Il matches a pixel (x− d, y) in Ir with

d ≥ 0. For rectified images the distance of a three-dimensional point to the image plane

is inversely proportional to the disparity.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



808 PEDRO F. FELZENSZWALB AND BENAR F. SVAITER

In practice we consider the problem of labeling every pixel in Il with an integer dis-

parity in L = {0, . . . , D}. In this case a labeling x is a disparity map for Il. The local

costs gi(a) encourage pixels in Il to be matched to pixels of similar color in Ir. The

pairwise costs hij(a, b) encourage piecewise smooth disparity maps.

The model we used in our stereo experiment is defined by

gi(a) = min(γ, ||Il(i)− Ir(i− (a, 0))||1); (61)

hij(a, b) =

⎧⎪⎪⎨
⎪⎪⎩
0, a = b,

α, |a− b| = 1,

β, |a− b| > 1.

(62)

Here Il(i) is the value of pixel i in Il while Ir(i− (a, 0)) is the value of the corresponding

pixel in Ir assuming a disparity a for i. The �1 norm ||Il(i) − Ir(i − (a, 0))||1 defines

a distance between RGB values (matching pixels should have similar color). The color

distance is truncated by γ to allow for some large color differences which occur due to

Il Ir

Ground truth Result of S

Fig. 3. Stereo disparity estimation using the fixed point algorithm
defined by S on the Tsukuba image pair. The algorithm was run for
1,000 iterations.
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specular reflections and occlusions. The pairwise costs depend on two parameter α, β ∈ R

with α < β. The pairwise costs encourage the disparity neighboring pixels to be similar

or differ by 1 (to allow for slanted surfaces), but also allows for large discontinuities which

occur at object boundaries.

Figure 3 shows an example result of disparity estimation using the fixed point al-

gorithm defined by S. In this example we used non-uniform weights wij to emphasize

the relationships between neighboring pixels of similar color, since those pixels are most

likely to belong to the same object/surface. The parameters we used for the results in

Figure 3 were defined by,

wij ∝ 0.01 + e−0.2||Il(i)−Il(j)||1 , (63)

p = 0.0001, α = 500, β = 1000, and γ = 20. The input image has 384 by 288 pixels and

the maximum disparity is D = 15. The fixed point algorithm was run for 1,000 iterations

which took 13 seconds on a laptop computer.

We note that the results in Figure 3 are similar to results obtained by min-sum belief

propagation shown in [8].

6. Conclusion and future work. The experimental results in the last section il-

lustrate the practical feasibility of the algorithms under study. Our theoretical results

prove these algorithms are guaranteed to converge to unique fixed points on graphs with

arbitrary topology and with arbitrary pairwise relationships. This includes the case of

repulsive interactions which often leads to convergence problems for message passing

methods.

Our results can be extended to other contraction maps similar to T and S and alter-

native methods for computing the fixed points of these maps. Some specific directions

for future work are as follows.

(1) Asynchronous updates. It is possible to define algorithms that update the beliefs

of a single vertex at a time in any order. As long as all vertices are updated

infinitely many times, the resulting algorithms converge to the same fixed point

as the parallel update methods examined in this work. We conjecture that in

a sequential computation, the sequential update of vertices in a “sweep” would

converge faster than a “parallel” update. Moreover, after a sequential update

of all vertices, the neighbors of those vertices with greater change should be the

first ones to be updated in the next “sweep”.

(2) Non-backtracking random walks. The algorithms defined by S and T can be

understood in terms of random walks on G. It is possible to define alternative

algorithms based on non-backtracking random walks. In particular, starting

with the MDP in Section 4 we can increase the state-space Q to keep track of

the last vertex visited in the walk and define transition probabilities that avoid

the previous vertex when selecting the next one. The resulting value iteration

algorithm becomes very similar to belief propagation and other message passing

methods that involve messages defined on the edges of G.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



810 PEDRO F. FELZENSZWALB AND BENAR F. SVAITER

References
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