
Chapter 21
A Stochastic Grammar for Natural Shapes

Pedro F. Felzenszwalb

21.1 Introduction

In this chapter, we consider the problem of detecting objects using a generic model
for natural shapes. A common approach for object recognition involves matching
object models directly to images. Another approach involves building intermediate
representations via a generic grouping processes. One of the ideas behind the work
described here is that these two processes (model-based recognition and grouping)
are not necessarily different. By using a generic object model, we can use model-
based techniques to perform category-independent object detection. This leads to a
grouping mechanism that is guided by a generic model for objects.

It is generally accepted that the shapes of natural objects have certain regularities
and that these regularities can be used to guide visual perception. For example, the
Gestalt grouping laws explain how the human visual system favors the perception of
some objects over others. Intuitively, the tokens in an image should be grouped into
regular shapes because these groupings are more likely to correspond to the actual
objects in the scene. This idea has been studied in computer vision over several
decades (see [6–10, 12]).

We propose a method in which a generic process searches the image for regular
shapes to generate object hypotheses. These hypotheses should then be processed
further in a way that depends on the perceptual task at hand. For example, each
hypothesis could be matched against a database of known objects to establish their
identities. Our algorithm works by sampling shapes from a conditional distribution
defined by an input image. The distribution is constructed so that shapes with high
probability look natural, and their boundaries align with areas of the image that have
high gradient magnitude.

Our method simply generates a number of potential object hypothesis. Two hy-
pothesis might overlap in the image, and some image areas might not be in any
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Fig. 21.1 Rabbit, pear, and hand represented by triangulated polygons. The polygonal boundaries
represent the outlines, while the triangulations decompose the objects into parts

hypothesis. A consequence of this approach is that the low-level processing doesn’t
commit to any particular interpretation of the scene.

We start by defining a stochastic grammar that generates random triangulated
polygons. This grammar can be tuned to capture regularities of natural shapes. For
example, with certain choice of parameters the random shapes generated tend to
have piecewise smooth boundaries and a natural decomposition into elongated parts.
We combine this prior model with a likelihood model that defines the probability of
observing an image given the presence of a particular shape in the scene. This leads
to a posterior distribution over shapes in a scene. Samples from the posterior provide
hypotheses for the objects in an image.

Our approach is related to [13] who also build a stochastic model for natural
shapes. One important difference is that our approach leads to polynomial time in-
ference algorithms, while [13] relied on MCMC methods.

The ideas described here are based on the author’s PhD thesis [3].

21.2 Shape Grammar

We represent objects using triangulated polygons. Intuitively, a polygonal curve is
used to approximate the object boundary, and a triangulation provides a decompo-
sition of the objects into parts. Some examples are shown in Fig. 21.1.

There is a natural graph structure associated with a triangulated polygon, where
the nodes of the graph are the polygon vertices and the edges include the polygon
boundary and the diagonals in the triangulation. Figure 21.2 shows a triangulated
polygon T and its dual graph GT .

Here we consider only objects that are represented by simple polygons (polygons
without holes). If T is a triangulated simple polygon, then its dual graph GT is a
tree [1]. There are three possible types of triangles in T , corresponding to nodes
of different degrees in GT . The three triangle types are shown in Fig. 21.3, where
solid edges are part of the polygon boundary, and dashed edges are diagonals in the
triangulation. Sequences of triangles of type 1 form branches, or necks of a shape.
Triangles of the type 0 correspond to ends of branches, and triangles of the type 2
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Fig. 21.2 A triangulated
polygon T and its dual graph
GT . If the polygon is simple
the dual graph is a tree where
each node has degree 1, 2 or 3

form junctions connecting multiple branches together. For the rest of this chapter, we
will use a particular labeling of the triangle vertices shown in Fig. 21.3. A triangle
will be defined by its type (0, 1 or 2) and the location of its vertices x0, x1 and x2.

A procedure to generate triangulated polygons is given by the following growth
process. Initially a seed triangle is selected from one of the three possible types.
Then each dashed edge “grows” into a new triangle. Growth continues along newly
created dashed edges until all branches end by growing a triangle of the first type.
Figure 21.4 illustrates the growth of a polygon. A similar process for growing com-

Fig. 21.3 Different triangle types in a triangulated polygon. The types corresponds to nodes of
different degrees in the dual graph. Solid edges correspond to the polygon boundary while dashed
edges are diagonals in the triangulation

Fig. 21.4 Growth of a triangulated polygon. The label in each triangle indicates the stage at which
it was created. Initially we select a triangle (stage 1) from one of three possible types. Then each
dashed edge grows into a new triangle (stage 2) and growth continues along newly created dashed
edges (stages 3, 4, 5). New branches appear whenever a triangle of type 2 is created. All branches
end by growing a triangle of type 0
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Fig. 21.5 In principle our
growth process can generate
objects with overlapping parts

binatorial structures known as n-clusters is described in [5]. The growth process can
be made stochastic as follows. Let a triangle of type i be selected initially or during
growth with probability ti . As an example, imagine picking ti such that t1 is large
relative to t0 and t2. This would encourage growth of shapes with long branches.
Similarly, t2 will control the number of branches in the shape.

The three parameters t0, t1, t2 control the structure of the object generated by
the stochastic process. The shape of the object is determined by its structure and
distributions that control the shape of each triangle. Let X = (x0, x1, x2) be the
locations of the vertices in a triangle. We use [X] to denote the equivalence class of
configurations that are equal up to translations, scales and rotations. The probability
that a shape [X] is selected for a triangle of type i is given by si([X]). We assume
the triangle shapes are independent.1

The growth process described above can be characterized by a stochastic gram-
mar. We note however that this grammar will not only generate triangulated poly-
gons, but will also generate objects with overlapping parts as illustrated in Fig. 21.5.

There are two types of symbols in the grammar, corresponding to triangles cre-
ated during growth T and dashed edges that still need to grow E . Triangles cre-
ated during growth are elements of T = {0,1,2} × R

2 × R
2 × R

2. The element
(i, a, b, c) ∈ T specifies a triangle of type i with vertices x0 = a, x1 = b, x3 = c

following the labeling in Fig. 21.3. Edges that still need to grow are elements of
E = R

2 ×R
2. The element (a, b) ∈ E specifies an internal edge of the triangulated

polygon from point a to point b. The edges are oriented from a to b so the system
can “remember” the direction of growth. Figure 21.6 illustrates the production rules
for the grammar. Note that there are two different rules to grow a triangle of type
1, corresponding to a choice of how the new triangle is glued to the edge that is
growing. We simply let both choices have equal probability, t1/2.

To understand the effect of the parameters t0, t1, t2, consider the dual graph of
a triangulated polygon generated by our stochastic process. The growth of the dual
graph starts in a root node that has one, two or three children with probability t0, t1
and t2 respectively. Now each child of the root grows according to a Galton–Watson
process [4], where each node has i children with probability ti .

1The fact that we can safely assume that triangle shapes are independent in a triangulated polygon
and get a sensible model follows from Theorem 2.1 in [3].
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Fig. 21.6 Production rules for the shape grammar. The grammar generates triangles and oriented
edges. The variables a, b and c correspond to locations in the plane. The three variables are selected
in a production from the start symbol, but only c is selected in a production from an edge. Note
that edges are oriented carefully so that growth continues along a particular direction

An important parameter of a Galton–Watson process is the expected number of
children for each node, or Malthusian parameter, that we denote by m. In our pro-
cess, m = t1 + 2t2. When m < 1 the probability that the growth process eventually
terminates is one. From now on, we will always assume that m < 1, which is equiv-
alent to requiring that t2 < t0 (here we use that t0 + t1 + t2 = 1).

Let e, b and j be random variables corresponding to the number of end, branch
and junction triangles in a random shape. Let n = e + b + j be the total number of
triangles in a shape. For our Galton–Watson process (corresponding to growth from
each child of the root of the dual graph), we can compute the expected number of
nodes generated, which we denote by x,

x = 1 + (x)t1 + (2x)t2 ⇒ x = 1/(t0 − t2).

The total number of triangles in a shape is obtained as one node for the root of the
dual graph plus the number of nodes in the subtrees rooted at each child of the root.
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So the expected value of n is,

E(n) = 1 + (x)t0 + (2x)t1 + (3x)t2.

Substituting for x we get,

E(n) = 2

t0 − t2
. (21.1)

Similarly we can compute the expected value of j , the number of junction tri-
angles in a shape. This quantity is interesting because it gives a measure of the
complexity of the shape. In particular it is a measure of the number of parts (limbs,
necks, etc.). For the Galton–Watson process, let y be the expected number of nodes
with degree 3 (two children),

y = (y)t1 + (1 + 2y)t2 ⇒ y = t2/(t0 − t2).

The number of junction triangles in a shape equals the number of such triangles in
each subtree of the root plus one if the root itself is a junction triangle,

E(j) = (y)t0 + (2y)t1 + (1 + 3y)t2.

Substituting for y we get,

E(j) = 2t2

t0 − t2
. (21.2)

Equations (21.1) and (21.2) provide intuition to the effect of the parameters
t0, t1, t2. The equations also show that the parameters are uniquely defined by the
expected number of triangles and the expected number of junction triangles in a ran-
dom shape. We can compute the ti corresponding to any pair E(n) and E(j) such
that E(n) ≥ 2 and E(n) ≥ 2E(j) + 2. These requirements are necessary since the
growth process always creates at least two triangles and the number of triangles is
always at least twice the number of junction triangles plus two.

t0 = (
2 + E(j)

)
/E(n),

t1 = 1 − (
2E(j) + 2

)
/E(n),

t2 = E(j)/E(n).

While the ti control the combinatorial structure of the random shapes we gen-
erate, their geometry is highly dependent on the choice of shape for each triangle.
The triangle shapes are chosen according to distributions that depend on the triangle
type. As an example we can define,

si
([X]) ∝ e−ki def(Xi ,X)2

,

where Xi is an ideal triangle of type i and def(Xi,X) is the log-anisotropy of the
affine map taking Xi to X (see [2, 3]). The constant ki controls how much the in-
dividual triangle shapes are allowed to vary. For the experiments in this chapter,
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Fig. 21.7 Connecting multiple type 1 triangles in alternating orientations to form an elongated
branch, and with the same orientation to form a bend. If the neck triangles tend to be isosceles and
thin than the shape boundary tends to be smooth

we chose both X0 and X2 to be equilateral triangles and X1 to be isosceles, with a
smaller side corresponding to the polygon boundary edge. This choice for X1 gen-
erates shapes that tend to have smooth boundaries. Figure 21.7 shows what happens
when we connect multiple triangles of this type with alternating or similar orienta-
tions.

Figure 21.8 shows some random shapes generated by the random process with
E(n) = 20, E(j) = 1, and the choice for si([X]) described above. Note how the
shapes have natural decompositions into parts, and each part has an elongated struc-
ture, with smooth boundaries almost everywhere. These examples illustrate some of
the regularities captured by our stochastic shape grammar. In the next section, we
will show how the grammar can be used for object detection.

21.3 Sampling Shapes from Images

Now we describe how our model for random shapes can be combined with a likeli-
hood function to yield a posterior distribution p(T |I ) over triangulated polygons in
an image. We then show how to sample from the posterior using a dynamic program-
ming procedure. The approach is similar to sampling from the posterior distribution
of a hidden Markov model using weights computed by the forward-backward algo-
rithm [11]. Our experiments in the next section illustrate how samples from p(T |I )

provide hypotheses for the objects in an image.
Recall that each triangle created during growth is an element of T , specifying a

triangle type and the location of its vertices. We assume that the likelihood p(I |T )

factors into a product of terms, with one term for each triangle,

p(I |T ) ∝
∏

(i,x0,x1,x2)∈T

πi(x0, x1, x2, I ). (21.3)

This factorization allows for an efficient inference algorithm to be developed to
generate samples from the posterior p(T |I ) ∝ p(I |T )p(T ).

We expect the image to have high gradient at the boundary of objects, with orien-
tation perpendicular to the boundary. In practice, we have used a likelihood function
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Fig. 21.8 Examples of random shapes generated by the stochastic grammar

of the form,

P(I |T ) ∝ exp

(
λ

∫ ∥∥(∇I ◦ f )(s) × f ′(s)
∥∥ds

)
.

Here f (s) is a parametrization of the boundary of T by arclength. The term ‖(∇I ◦
f )(s) × f ′(s)‖ is the component of the image gradient that is perpendicular to the
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Fig. 21.9 A partial shape
generated from the edge
(a, b)

object boundary at f (s). The integral above can be broken up into a sum of terms,
with one term for each boundary edge in the triangulated polygon. This allows us to
write the likelihood in the form of Eq. (21.3) where πi(x0, x1, x2, I ) evaluates the
contribution to the integral due to the boundary terms (solid edges) of a triangle of
type i with vertices (x0, x1, x2).

Let Tr denote a triangulated polygon rooted at a triangle r . Using Bayes’ law, we
can write the posterior distribution for rooted shapes given an observed image as,

p(Tr |I ) ∝ p(Tr)p(I |T ).

There are two approximations we make to sample from this posterior efficiently. We
consider only shapes where the depth of the dual graph is bounded by a constant d

(the depth of a rooted graph is the maximum distance from a leaf to the root). This
should not be a significant problem since shapes with too many triangles have low
prior probability anyway. Moreover, the running time of our sampling algorithm is
linear in d , so we can let this constant be relatively large. We also only consider
shapes where the location of each vertex is constrained to lie on a finite grid G , as
opposed to an arbitrary location in the plane. The running time of our algorithm for
sampling from p(T |I ) is O(d|G |3).

To sample from the posterior we first pick a root triangle, then pick the triangles
connected to the root and so on. The root triangle r should be selected according to
its marginal conditional distribution,

p(r|I ) =
∑

Tr

p(Tr |I ). (21.4)

Note that the sum is over all shapes rooted at r , and with the depth of the dual
graph bounded by d . We can compute this marginal distribution in polynomial time
because the triangles in a shape are connected together in a tree structure.

Let T(a,b) denote a partial shape generated from an edge (a, b). Figure 21.9 shows
an example of a partial shape. We denote the probability that the grammar would
generate T(a,b) starting from the edge (a, b) by p(T(a,b)). The posterior probability
of a partial shape T(a,b) given an image I is given by,

p(T(a,b)|I ) ∝ p(T(a,b))
∏

(i,x0,x1,x2)∈T(a,b)

πi(x0, x1, x2, I ).
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We define the following quantities in analogy to the backward weights of a hid-
den Markov model (see [11]),

Vj (a, b) =
∑

T(a,b)

p(T(a,b)|I ),

where the sum is taken over all partial shapes with depth at most j . Here we measure
depth by imagining the root to be a triangle that would be immediately before the
edge (a, b). The quantities Vj (a, b) can be computed recursively using a dynamic
programming procedure,

V0(a, b) = 0,

Vj (a, b) = t0
∑

c

s0
([b, c, a])π0(b, c, a, I )

+ (t1/2)
∑

c

s1
([b, c, a])π1(b, c, a, I )Vj−1(a, c)

+ (t1/2)
∑

c

s1
([c, a, b])π1(c, a, b, I )Vj−1(c, b)

+ t2
∑

c

s2
([b, c, a])π2(b, c, a, I )Vj−1(a, c)Vi−1(c, b).

Now, depending on the type of the root triangle we can rewrite the marginal distri-
bution in Eq. (21.4) as,

p
(
(0, a, b, c)|I) ∝ t0 s0

([a, b, c])Vd(a, c),

p
(
(1, a, b, c)|I) ∝ t1 s1

([a, b, c])Vd(a, c)Vd(c, b),

p
(
(2, a, b, c)|I) ∝ t2 s2

([a, b, c])Vd(a, c)Vd(c, b)Vd(b, a).

The equations above provide a way to sample the root triangle from its marginal
distribution. The running time for computing all the Vj (a, b) and the marginal dis-
tribution for the root triangle is O(d|G |3). Once we compute these quantities we can
obtain samples for the root by sampling from a discrete distribution. After choos-
ing r = (i, x0, x1, x2) we need to sample the triangles connected to the root. We
then sample the triangles that are at distance two from the root, and so on. When
sampling a triangle at distance j from the root, we have an edge (a, b) that is grow-
ing. We need to sample a triangle by selecting the location c of a new vertex and a
triangle type according to

p
(
(0, b, c, a)|I, (a, b)

) ∝ t0 s0
([b, c, a]),

p
(
(1, b, c, a)|I, (a, b)

) ∝ (t1/2) s1
([b, c, a])Vd−j (a, c),

p
(
(1, c, a, b)|I, (a, b)

) ∝ (t1/2) s1
([c, a, b])Vd−j (c, b),

p
(
(2, b, c, a)|I, (a, b)

) ∝ t2 s2
([b, c, a])Vd−j (a, c)Vd−j (c, b).
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Fig. 21.10 Samples from p(T |I ) for two synthetic images I . Note how in the second image we
get multiple potential objects among the samples

We evaluate these probabilities using the precomputed Vj quantities and then sam-
ple a triangle type and location c from the corresponding discrete distribution. Note
that for a triangle at depth d the only choices with nonzero probability will have
type zero, as V0(a, b) = 0.

21.4 Experimental Results

For the experiments in this section, we used a grid G of 40 × 40 locations for the
vertices of the shapes. We used the likelihood model defined in the last section, and
the same grammar parameters used to generate the random shapes in Fig. 21.8.

Figure 21.10 shows some of the samples generated from the posterior distribution
p(T |I ) for two different synthetic images. The first image has a single object and
each sample from p(T |I ) gives a slightly different representation for that object.
The second image has two objects and the samples from p(T |I ) are split between
the two objects. Note that we obtain samples that correspond to each object and also
to a part of one object that can be naturally interpreted as a single object. Overall the
samples in both cases give reasonable interpretations of the objects in the images.

Figures 21.11 and 21.12 show samples from the posterior distribution p(T |I ) for
two natural images. In practice we obtain groups of samples that are only slightly
different from each other, and here we show representatives from each group. For
the mushroom image, we obtained different samples corresponding to competing
interpretations. In one case the whole mushroom is considered as an object, while
in another case the stem comes out on its own.
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Fig. 21.11 Sample from p(T |I ) for an image with a bird

Fig. 21.12 Samples from p(T |I ) for an image with a mushroom

References

1. De Berg M, Cheong O, Van Kreveld M, Overmars M (2008) Computational geometry: algo-
rithms and applications. Springer, Berlin

2. Dryden IL, Mardia KV (1998) Statistical shape analysis. Wiley, New York
3. Felzenszwalb PF (2003) Representation and detection of shapes in images. PhD thesis, MIT,

September 2003
4. Habib M, McDiarmid C, Ramirez-Alfonsin J, Reed B (1998) Probabilistic methods for algo-

rithmic discrete mathematics. Springer, Berlin
5. Harary F, Palmer EM, Read RC (1975) On the cell-growth problem for arbitrary polygons.

Discrete Math 11:371–389
6. Jacobs DW (1996) Robust and efficient detection of salient convex groups. IEEE Trans Pattern

Anal Mach Intell 18(1):23–37
7. Jermyn IH, Ishikawa H (2001) Globally optimal regions and boundaries as minimum ratio

weight cycles. IEEE Trans Pattern Anal Mach Intell 23(10):1075–1088
8. Lee MS, Medioni G (1999) Grouping ., -, –>, 0, into regions, curves, and junctions. Comput

Vis Image Underst 76(1):54–69
9. Mumford D (1994) Elastica and computer vision. In: Algebraic geometry and its applications.

Springer, Berlin, pp 491–506
10. Nitzberg M, Mumford D (1990) The 2.1-d sketch. In: ICCV, pp 138–144
11. Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech

recognition. Proceedings of the IEEE 77(2)
12. Shashua A, Ullman S (1988) Structural saliency: the detection of globally salient structures

using a locally connected network. In: ICCV, pp 321–327
13. Zhu SC (1999) Embedding gestalt laws in Markov random fields. IEEE Trans Pattern Anal

Mach Intell 21(11):1170–1187


	Chapter 21: A Stochastic Grammar for Natural Shapes
	21.1 Introduction
	21.2 Shape Grammar
	21.3 Sampling Shapes from Images
	21.4 Experimental Results
	References


