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Abstract

We introduce a new spectral method for image segmentation that incorporates long range relationships
for global appearance modeling. The approach combines two different graphs, one is a sparse graph that
captures spatial relationships between nearby pixels and another is a dense graph that captures pairwise
similarity between all pairs of pizels. We extend the spectral method for Normalized Cuts to this setting
by combining the transition matrices of Markov chains associated with each graph. We also derive an
efficient method for sparsifying the dense graph of appearance relationships. This leads to a practical
algorithm for segmenting high-resolution images. The resulting method can segment challenging images
without any filtering or pre-processing.

1 Introduction

Image segmentation is a fundamental problem in computer vision. Spectral clustering methods pioneered
by the normalized cuts approach [1] provide simple and powerful algorithms based on fundamental graph-
theoretic notions and computational linear algebra.

Spectral clustering methods are formulated using an objective function defined by a graph. The classical
constructions used for image segmentation focus on pairwise similarity between nearby pixels. In this paper
we introduce a new spectral method that incorporates long range relationships for global appearance model-
ing. The resulting method can segment challenging images without any filtering or pre-processing. Figure 1
shows several results obtained with the proposed method. Figure 6 shows how the new method significantly
outperforms the original normalized cuts formulation.

We use a dense graph to capture the global appearance of regions. We show the normalized cut criteria
in this graph reflects the distributions of pixel values in each region using a kernel density estimate. The
measure penalizes the overlap between distributions in different regions.

To implement our image segmentation approach we extend the normalized cuts spectral algorithm to
a setting where there are multiple graphs that encode different grouping cues. Our approach for image
segmentation combines two graphs. We provide a natural interpretation for the normalized cut criteria on
each of these graphs. One of the graphs is sparse and does not depend on the image data, it simply captures
spatial relationships between pixels. The other graph is dense and captures pairwise similarity between all
pairs of pizels, irrespective of their spatial location.

The direct implementation of spectral methods to segment high resolution images is challenging due
to high memory and computational requirements. We tackle this challenge using a graph sparsification
approach that enables the efficient segmentation of high resolution images.

We show experimental results with a variety of images and provide a quantitative evaluation using a
dataset of synthetic images with Brodatz textures. Our approach achieves highly accurate results in this
setting despite the complex appearance of the textures.
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Figure 1: Segmentation results using the proposed method

2 Previous work

The mathematical foundation of spectral graph partitioning can be dated back to [2] and [3]. The seminal
work of Shi and Malik [1] built on this foundation to develop the normalized cuts method for image seg-
mentation. Since then a significant body of work has emerged in the fields of both spectral clustering and
image segmentation (see, i.e. [4]). An important development on the theoretical understanding of normalized
cuts can be found in [5], where the authors traced the parallel between the normalized cuts criteria and low
conductivity sets in Markov chains.

On the application and implementation side, the normalized cuts algorithm poses two main challenges
when applied to image segmentation: how to (efficiently) construct a graph over the set of pixels and how to
perform the spectral decomposition. In order to solve them, the usual approach is to construct sparse graphs
where each pixel is connected to nearby pixels [1, 6, 7]. Furthermore, works such as [8, 9, 10] reduce the
computation burden of spectral segmentation by relying on approximate eigenvector solvers. Our method
instead starts with a dense graph connecting all pairs of pixels and uses an edge sparsification technique
based on importance sampling. We also provide an importance sampling implementation of the original
similarity graph proposed in [1].

A key step in developing spectral segmentation algorithms is to decide which information to extract
from the image in order to compute pixel affinities (the edge weights). While the initial implementations
used raw intensities or filter-banks [1, 5, 11], further developments adopted the intervening contour cue from
probability of boundary (Pb) maps [12, 6, 7]. In this paper, we show that using raw pixel intensities (or
color) is enough to obtain satisfactory segmentation results in complex images. In particular, our method is
able to outperform traditional filter-bank based methods in segmentation of textured images.

Our spectral segmentation algorithm is also related to multiview clustering methods. In multiview
clustering one is concerned on clustering the data using different features (or views). One of the earlier
results on this problem can be traced to [13], where the authors propose multiview counterparts of traditional
clustering algorithms, such as EM and K-means.

In the spectral multiview realm, the work presented in [14] proposes a two-view clustering algorithm that
computes the normalized eigenvectors arising from a bipartite graph that encodes the views. The authors
in [15] describe an iterative procedure that enforces consistency among views by solving the generalized
eigenvalue problem for each view separately using the eigenvectors from other views computed in previous
iterations. Finally, other relevant approaches to multiview clustering involve combining graphs and weights
arising from different views into a sole graph either via a convex combination [16, 17] or according to their
Laplacian’s power mean [18]. To the best of our knowledge, no multiview clustering algorithm has been
developed for image segmentation. One possible explanation for this is the computational burden of existing
multi-view clustering methods.

Considering image segmentation broadly speaking, there is an increasing popularity of deep learning
based solutions, some of which find their inspiration on normalized cuts [19, 20]. We refer the interested
reader to the work in [21] for a comprehensive survey on these techniques. Departing from this learning
based paradigm, our method does not require training data and can be applied in different settings with
little or no fine-tuning. Moreover, our method produces interpretable results. Furthermore, the proposed
algorithm demonstrates the power and practical use of long range relationships between pixels, which are
not, or at least not explicitly, present within typical deep learning frameworks.



3 Background

3.1 Graph cuts and spectral clustering

Let G = (V, E,w) be an undirected weighted graph. A cut (A, B) is a partition of V into two disjoint sets.
We will consider the weight of a cut in different graphs that have the same set of vertices. Let w(i,j) =0
when {i,j} & E. The weight of a cut (A, B) in G is defined as,

Cut(A, B|G) = Z w(i, j).
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In the context of clustering and image segmentation it is typical to use large weights to indicate that
elements are similar and should not be separated. In this case we can look for the minimum cut to find an
optimal partition of V. However, this strategy is heavily biased towards imbalanced cuts, such as having
a single node on one side. This motivated the introduction of the celebrated normalized cut criteria and
algorithm [1].

The normalized cut value is defined as,

Cut(A, B|G) = Cut(A, B|G) Cut(A, B|G)
Vol(A|G) Vol(B|G) Vol(A|G) Vol(B|G)"
Here Vol(A|G) is a measure of the “volume” of A defined as Vol(A|G) = 2, 4 ;e w(i, j).

The spectral algorithm introduced in [1] solves a continuous relaxation of the minimum NCut prob-

lem. Let W be the weighted adjacency matrix of G. Let D be the diagonal degree matrix with D(i,i) =

> jev Wi, j). The matrix L = D — W is the Laplacian of G.
The NCut algorithm solves a generalized eigenvector problem,

NCut(A, B|G) =

= Vol(V|G)

Lz = A\Dz. (1)

The algorithm selects the eigenvector x with second smallest eigenvector, and partitions V' by thresholding
x. In [5] the NCut criteria and algorithm is described in terms of a Markov chain. Let P = D~!W. The
matrix P is the transition matrix of a Markov chain over the vertices V. The long term behavior of this
Markov chain can be characterized by the solutions of the eigenvector problem,

Pz = Az (2)

A solution (A, z) to the eigenvector problem in (2) leads to a solution (1 — A, z) to the generalized eigen-
vector problem in (1) and vice-versa. Therefore the generalized eigenvector x used in the NCut algorithm
corresponds to the eigenvector of P with second largest eigenvalue.

3.2 Traditional Graph Construction for Image Segmentation

The classical application of normalized cuts for image segmentation involves a graph H where the vertices
represent the image pixels and the weights reflect simultaneously the appearance similarity and distance
between pairs pixels.

Let H = (V, E,w) be a graph where the vertices V are the pixels in an image and the edges E connect
every pair of pixels. We use I(j) and to denote the appearance (such as the brightness or color) of pixel j.
We use X (j) to denote the spatial location of the same pixel. Now define,
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w(i,j) = exp ( (3)

The graph H combines two grouping cues in a single real valued weight! and shares similarities with
bilateral filtering [22]. Using the normalized cut criteria, pixels are encouraged to be grouped together if

IThe graph defined here differs slightly from the one used in [1] because in [1] the weight of an edge is set to 0 if the distance
between i and j is above a threshold.
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Figure 2: The edges connecting to a pixel ¢ in Ggriq and Ggata. In the each image, the thickness of each link
represents the weight of the edge connecting a pair of pixels.

they have similar appearance and are close to each other. Note, however, that pixels that have similar
appearance but are far away are not encouraged to be grouped because the corresponding weight is close to
zero. Similarly, neighboring pixels that have very different appearance, such as in a textured region, are also
not encouraged to be grouped.

4 New Criteria for Image Segmentation

We combine two normalized cut values to obtain a new criteria for image segmentation. We break the
grouping cues (spatial proximity and appearance similarity) into two separate graphs, Ggria and Gqata. Both
graphs are defined over the same set of vertices, corresponding to the pixels in an image.

1. The graph Ggriq is a grid over the image pixels, where each pixel is connected to the four neighboring
pixels with an edge of weight 1. This graph encourages neighboring pixels to be grouped together,
independent of their appearance.

2. The graph Ggata is a fully connected graph that encourages pixels with similar appearance to be grouped
together, independent of their location. The weights in Ggata are based on appearance similarity of
pixels, and do not depend on pixel locations,

) = exp (O ZIGIEY,

Figure 2 illustrates the graph construction of both Ggrig and Ggata on a image with two regions.

4.1 Spatial Information: Ggyiq

Let (A, B) be a cut in the grid graph. The cut defines a segmentation of the image into two regions, with a
boundary I" between them. The cut value, Cut(A, B|Ggria), counts the number of neighboring pixels that are
in different regions. In general the cut value in the grid graph and similar graphs can be seen as a measure
of the length of the boundary I' (see [23]).

Observation 1.
Cut(A, B|Ggria) =~ Len(T).



This is a commonly used measure of spatial coherence in image segmentation problems (see, e.g., [24]).
Although the criteria Cut(A, B|Ggria) leads to spatially coherent segmentations and is widely used in practice,
it gives most preference to trivial solutions with a small (single pixel) region.

Using the previous observation and noting that Vol(S|Ggria) ~ 4|S]| for S C V we can derive an expression
for the value of a normalized cut in the grid graph.

Observation 2.
IVI Len(T')

4 |A[lB[

NCut(A, B|Gyria) ~

Minimizing this criteria encourages solutions where the boundary I' between the two regions is short (to
minimize Len(I")) and where the two regions have similar size (to maximize |A||B]).

4.2 Global Appearance Information: Ggata

Now we consider the weight of cuts and normalized cuts in Ggata-
For S C V we use gg to denote a kernel density estimate defined by the values of pixels in .5,

K
(© |S|;

Proposition 1.
d
Cut(A, B|Gaara) = (210%) % |A||B|(g4, 95)-

Here d is the dimension of I(j) (d = 1 for graylevel images and d = 3 for RGB images), g4 and gp are
densitiy estimates defined using a Gaussian kernel, and (-, -) denotes the standard inner product of functions.

Proof. We use the fact that the convolution of two Gaussians with equal variance is a Gaussian with twice
the variance,
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The proposition above is related to the Laplacian PDF Distance in [25]. It is also related to the work in
[26] where a different graph construction was used to define global appearance models.

The weight of a cut in Ggat, Will be minimized when the pixel values in the two regions have comple-
mentary support. Although this intuitively makes sense, the measure encourages regions to be unbalanced
in size due to the term |A||B| multiplying (g4, g5).

In order to derive an expression for NCut (A, B|Gqata ), we first use a similar reasoning as in the proposition
above to note that Vol(S|Gaata) = (2702)(¥2)|S||V|(gs,gv). Then, from the definition of the normalized
cut we obtain the following result.

Proposition 2.

NCU-t(AaBlGdata) = <gv’gv><£714<;xéz>£7\/>-



This criteria is minimized when the distributions g4 and gp have little overlap and both have significant
overlap with gy . In particular it penalizes solutions where one region does not represent a significant amount
of the image data.

4.3 Combining Spatial and Appearance information

The normalized cut values in Ggrig and Ggata provide complementary measures for image segmentation. To
combine the spatial and appearance cues we use a convex combination,

MixNCut(4, B) = (1 — A) NCut(A, B|Gdata) + ANCut(A, B|Gyria)-

The parameter A € [0, 1] controls the relative importance of the two normalized cut measures.
We interpret MixNCut(A, B) as a mixture of an appearance and a spatial term,

v Len(I‘)) |
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The first term encourages a partition of the image into regions with dissimilar color distributions, while the
second term encourages a spatially coherent partition. Both terms are normalized and avoid biases towards
solutions with small regions. Note that each term is normalized in a particular way that is natural and has
appropriate dimensions for the individual measures.

5 Segmentation Algorithm

Let G7 and G2 be two weighted graphs over the same set of vertices. Now we describe a spectral method
we have used as a heuristic for optimizing a convex combination of two normalized cut values,

MixNCut(4, B|G1, Gs) = (1 — A) NCut(4, B|G1) + ANCut(A, B|G2).

Our approach is based on the Markov chain and conductance interpretation of normalized cuts described
in [5]. Let W; and Ws be the weighted adjacency matrices of the two graphs while Dy and Dy are the
diagonal degree matrices. Let,

Py = Dy'Wh,
Py = D;'W,
P=(1-\P, + \P,. (4)

The matrices P; and P, define two Markov chains on V. The matrix P also defines a Markov chain on V'
where in one step we follow P; with probability (1 — \) and P, with probability A\. We compute the second
largest eigenvector of P to find a cut (A4, B) with small conductance.

In our experiments, we use a Lanczos Process to compute the second largest eigenvector of P. We use
K-means with K = 2 to cluster the entries in the eigenvector into 2 clusters.

5.1 Graph Sparsification

When the matrix P is sparse we can compute the required eigenvector much more quickly. The grid Ggriq
is sparse but Ggats is dense. We sparsify the graph using a random sampling approach.

The approach described here is complementary to other methods that have been used to speed up
the computation of eigenvectors for clustering. One such method is based on Nystrom approximation [9].
Another approach involves power iteration [10].

Let G be a weighted graph. To construct a sparse graph G’ we independently sample m edges (with
replacement) from G, with probabilities proportional to the edge weights. The weight of each sampled edge



is set to 1 (adding up weights if there is repetition). With this approach the expected value of a cut (A, B)
in G’ equals the value of the cut in G up to a scaling factor of (m/ Vol(V|G)). Moreover, if m is sufficiently
large then with high probability every cut in G’ has weight close to the cut value in G (up to a scaling factor
of (m/Vol(V|G))) (see, e.g., [27]). For the experiments in this paper we use m = «|V| with & > 0 to obtain
a sparse graph approximating G.

To implement this approach efficiently for Ggas, We need to sample edges with probability proportional
to their weights w(i, j) without enumerating all possible edges. We use an importance sampling method as
a practical alternative.

First we partition V into L (= 1000 in practice) sets Si, ..., Sy with low appearance variance. We do
this greedily, starting with a single set and repeatedly partitioning the set with highest variance into two
using the K-means algorithm. Let m; be the mean appearance of pixels in S; and

_Ima—mb|2>

q(a,b) = |S4||Sp| exp ( 52

To sample an edge for G’ we select a random pair S, and S, with probability proportional to g(a,b). We
then select ¢ € S, and j € Sy uniformly at random. Finally, we add the edge {i,j} to G’ with weight

w'(2,5) = [Sal|Se|w(i, 5)/q(a, b).

6 Numerical Experiments

The algorithms in this section were implemented in MATLAB and run on a computer with an Intel i5-6200U
CPU @ 2.30GHz using 8 GB of RAM running Linux.

6.1 Segmentation accuracy measure

To measure the accuracy of a segmentation we use the Jaccard Index to compare pairs of regions [28],

J(5,Q) =15NQI/ISUQ|.

Let I be an image with a ground-truth binary segmentation (.5, Q). Let (A4, B) be a the result of a binary
segmentation algorithm. To evaluate the accuracy of (A, B) we consider (1) pairing S with A and Q with B
or (2) pairing S with B and @ with A. We define the accuracy of the segmentation (4, B) as,

Jaccard = max (J(S’ 4) —; J(Q’B)’ J (S, B) ‘5 J(QH‘U) '

6.2 Sparsification algorithm for NCut

We compare our new segmentation method with the original normalized cut formulations, NCut, using the
graph H described in section 3.2. In practice we sparsify the graph H to scale the eigenvector computation
to large images. Again, we accomplish this using importance sampling. Let H be the graph with weights
defined by Equation (3). To sample one edge from H we first select a pixel ¢ uniformly at random. We
then draw a location x from a Normal distribution centered at X (i) with variance 0% and select the pixel j
closest to that location. We add the edge {i,j} to G’ with weight w'(i, ) = exp (||I(i) — I(j)||*/207). We
repeat this process m times. In the following experiments we used m = 100|V| to sparsify H.

6.3 Evaluation of NCut and MixNCut without sparsification

In order to demonstrate the efficacy of our approach compared to the traditional normalized cuts method
using the graph construction given in Equation (3), we ran both NCut and MixNCut without the graph
sparsification step of each algorithm. Figure 3 shows the segmentation accuracy of each method on small
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Figure 3: Evaluation of NCut and MixNCut without graph sparsification on 40 x 40 images. Column (a)
shows the input images. Column (b) shows the Jaccard value obtained with NCut for a range of values for
or and ox. Column (c) shows the Jaccard value obtained with MixNCut over various combinations of o
and A. In these experiments NCut averaged 6.31 & 5.28s of processing time and MixCut, 1.35 £ 0.25s.



]. T T T 3 = —
0.9 4 251 =
0.8 | | 2 .
0.7} 4 Lap il

| |

1nm z == T

25 n
0.8 |

2 [ |
0.6 |- |

! ! ! ! \ 1.5k \ \ ! -

0 2 4 6 8 0 2 4 6 8
a o}
(a) Image (b) Jaccard (¢) Time (s)

Figure 4: Impact of graph sparsification using various values for a. Column (a) shows two different test
images of size 200 x 200. Column (b) shows the average and standard deviation of the Jaccard accuracy
measure over 100 runs of MixCut with randomized graph sparsification. Column (c) shows the average and
standard deviation of the running time of the algorithm. Here, we set A = 0.95 and o = 1.

synthetic images under various combinations of parameters. The input images were selected to have regions
of different sizes and textures.

These results demonstrate the effect of low values for either o; or ox for the normalized cut method.
In this setting, the graph H is very sparse and potentially disconnected, which hinders the algorithm’s
segmentation performance. We also see the performance of NCut decays in textured images.

The MixNCut method achieves good results in all scenarios, including in images with textured and/or
unbalanced images.

6.4 Impact of edge sampling on MixNCut

Figure 4 shows how our algorithm performs under different values of a, where m = «|V| is the number
of sampled edges of Ggata When sparsified according to the algorithm in Section 5.1. Our method obtains
satisfactory results in terms of Jaccard index for o > 2 and achieves almost perfect segmentations for when
«a > 4. Furthermore, our method has the lowest processing time when « is close to 2. The increase in
computation time for values of o smaller that 2 is due to the slow convergence of the Lanczos algorithm in
that regime. Having that in mind, the number of sampled edges used to sparsify Ggat. was set to m = 2|V|
for the experiments with MixNCut in the following sections.

6.5 The role of A on MixNCut

Figure 5 depicts the impact of varying A in our method. When A is smaller MixCut outputs a segmentation
where fine image structures are preserved. As A increases, the resulting eigenvector is blurred, leading to
segmentations with without holes or small/thin structures. These results demonstrate the role that A, and
therefore Ggria, plays to enforce spatial coherence within each region, whereas Ggata promotes the fitting of
the color data in each region.

6.6 Experiments in Real Images

We tested our method on real images from a variety of datasets including the Berkeley Segmentation Dataset
[29], the Plant Seedlings Dataset [30], the Grabcut dataset [31], the PASCAL VOC dataset [32] and a



Figure 5: MixNCut results. Column (a) shows the input image. Columns (b)-(d) show the eigenvectors (on
the left) and segmentations (on the right) given by MixNCut for various values of A when o = 1.

Scanning Electron Microscope (SEM) dataset [33]. Figure 6 shows some of the results we obtained, comparing
the original normalized cuts formulation with our new approach. We can see in these examples how the new
approach can segment challenging images in a variety of settings, often outperforming the original normalized
cuts formulation.

Figure 7 illustrates segmentation results using MixNCut to partition an image into 3 regions. In this case
we follow the approach suggested in [34] and [5], using K-means with K = 3 to cluster the pixels using the
second and third largest eigenvector of the transition matrix P in Equation (4).

For each example in these figures, we ran the algorithms using different parameter values (specified in
the next section), and show the best result among the different runs.

6.7 Experiments in Synthetic Images

For a quantitative evaluation we used images with Brodatz textures [35]. To generate input images, we
mixed pairs of textures using different ground-truth segmentation patterns.

We compare our method to NCut, using either graylevel intensities or “texture features”, where we use
the magnitudes of the response of 12 Gabor filters (3 wavelengths and 4 orientations) to define appearance
vectors for each pixel.

Figure 8 shows some of the test images in our dataset along with the computed eigenvectors and seg-
mentations arising with the proposed MixNCut method and the different NCut formulations. The poor
segmentation performance of NCut defined over the raw pixel values (Figure 8b) can be attributed to its
inability to handle the complex appearance of textured regions. This issue is partially solved when texture
features defined by Gabor filters are considered, but it has the drawback of over-smoothing region boundaries
(first and third examples in Figure 8c). In fact, in some extreme cases, it misses an entire small region. On
the other hand, the new MixNCut method defined directly in terms of raw pixel values finds near opti-
mal segmentations in all of these examples, preserving well the region boundaries and outperforming both
baselines. This is due to its capacity to model long range relationships without relying on filtering methods.

We also compare our proposed algorithm to several state of art texture segmentation methods. They
include Level Set segmentation using Wasserstein Distances (LSWD) [36], Factorization Based Segmentation
(FBS) [37], Projective Non-Negative Matrix Factorization on a Graph (PNMF) [38] and ORTSEG [39]. In
all these methods we try different combinations of parameters and select the ones that performed the best
in our data based on their Jaccard value. We run our comparison using the implementations provided by
their authors. FBS and PNMF use a bank of Gabor filters to define texture features, whereas LSWD and
ORTSEG use of local image histograms.

Furthermore, we compare our method with the Multi-view Spectral Clustering (MVSC) algorithm [16].
MVSC uses a convex combination of two Laplacian matrices representing different graphs/views. For MVSC,
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Figure 6: Segmentation results. Column (a) shows the input images. Column (b) shows the eigenvector
found by the original NCut formulation on the left and the segmentation result on the right. Column (c)
shows the eigenvector and segmentation found by the MixNCut method.
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(c) NCut-Gabor (d) MixCut

Figure 8: Comparing NCut-Graylevel, NCut-Gabor, and MixNCut on textured images. Column (a) shows
the input images. Column (b) shows the eigenvector found by the original NCut formulation on the left and
the segmentation result on the right. Column (c) shows the eigenvector found by NCut with Gabor features
on the left and the segmentation result on the right. Column (d) shows the eigenvector found by the new
MixNCut formulation on the left and the segmentation result on the right.

Figure 9: Brodatz Patterns used in the synthetic experiments
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Table 1: Evaluation of different segmentation methods on textured images. The table summarizes accuracy

and running time of each method on images with different ground-truth segmentations.

Jaccard value

Method Time (s)
MixNCut 0.906 £ 0.080 0.876 £0.107  0.842+£0.133 11.27
NCut-Graylevel 0.541 £0.128 0.470+0.126  0.538 £ 0.130 9.53
NCut-Gabor 0.800 £0.173  0.779 +£0.197  0.661 £ 0.193 13.14
MVSC 0.731+£0.273  0.766 £0.214  0.656 £ 0.284 11.19
LSWD 0.852+0.129  0.794+£0.198  0.828 £0.119 67.08
ORTSEG 0.853+0.149  0.668 £0.274  0.826 +£0.135 1.56
FBS 0.850 £0.151  0.778 £0.214  0.804 £0.146 0.10
PNMF 0.907 £0.092  0.733 £0.142  0.857 £ 0.085 14.59

we input the weight matrices of Ggrig and Ggata to their algorithm and tested the results using the same
choices for A\ and ¢ as in MixCut, picking the best segmentation according to the Jaccard value.

For the quantitative experiments, we use all pairings of the 10 textures in Figure 9 with three different
ground-truth segmentations shown in Table 1 to generate three sets of images. We compute the mean
accuracy of each method on each set of images using several parameter combinations. Table 1 summarizes
the best mean accuracy obtained with each method on each set of inputs. The table also shows the average
running time of each method. We see the new MixNCut approach obtains near perfect accuracy (Jaccard ~ 1)
on all ground-truth patterns, outperforming the other methods, specially the spectral ones.

7 Conclusion

We introduced a new spectral method for image segmentation that can segment challenging images while
working directly with raw pixel values, without any pre-processing or filtering. The approach is based on a
novel combination of appearance and spatial grouping cues using two different graphs. We use a dense graph
to capture the appearance of regions. This leads to non-parametric models of region appearance. We also
introduced a technique that can be used to sparsify the resulting graph to ease the computational burden of
spectral segmentation. Our results show that long range pairwise interactions can capture the appearance
of textured regions and significantly improve the performance of graph-based segmentation methods. The
proposed method is practical and it can be applied to different types of images (natural scenes, biomedical,
textures, etc.) that arise in a variety of application.

Broader Impact
Image segmentation has a variety of applications that can benefit all of society. For example, segmentation
methods may enable advances in biomedical image analysis (including for medical diagnosis and treatment),

tele-conferencing technology, human-computer-interaction, remote sensing, and robotics. However, there are
also potential uses with questionable ethics, including mass surveillance and military applications.
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