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Deformable models
• Can take us a long way...

• But not all the way

(a) (b)

Figure 1: Sample results for detection of a face (a); and a human body (b). Each

image shows the globally best location for the corresponding object, as computed by

our algorithms. The object models were learned from training examples.

the problem of learning such models from example images. Our work is motivated

by the pictorial structure representation introduced by Fischler and Elschlager [16]

thirty years ago, where an object is modeled by a collection of parts arranged in a

deformable configuration. Each part encodes local visual properties of the object,

and the deformable configuration is characterized by spring-like connections between

certain pairs of parts. The best match of such a model to an image is found by

minimizing an energy function that measures both a match cost for each part and a

deformation cost for each pair of connected parts.

While the pictorial structure formulation is appealing in its simplicity and gener-

ality, several shortcomings have limited its use: (i) the resulting energy minimization

problem is hard to solve efficiently, (ii) the model has many parameters, and (iii)

it is often desirable to find more than a single best (minimum energy) match. In

this paper we address these limitations, providing techniques that are practical for a

broad range of object recognition problems. We illustrate the method for two quite

different generic recognition tasks, finding faces and finding people. For faces, the

parts are features such as the eyes, nose and mouth, and the spring-like connections

allow for variation in the relative locations of these features. For people, the parts

are the limbs, torso and head, and the spring-like connections allow for articulation

at the joints. Matching results with these two models are illustrated in Figure 1.

The main contributions of this paper are three-fold. First, we provide an efficient

algorithm for the classical pictorial structure energy minimization problem described

in [16], for the case where the connections between parts do not form any cycles and
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Structure variation
• Object in rich categories have variable structure

• These are NOT deformations

• There is always something you never saw before

• Mixture of deformable models?  too many combined choices

• Bag of words?  not enough structure

• Non-parametric?  doesn’t generalize
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Object detection grammars

• Pictorial structure model with variable structure

• Stochastic context-free grammar 

- Generates tree-structured model

- Springs connect symbols along derivation tree

- Appearance model associated with each terminal

Tuesday, August 23, 11



- person -> face, trunk, arms, lower-part

- face -> hat, eyes, nose, mouth

- face -> eyes, nose, mouth

- hat -> baseball-cap

- hat -> sombrero

- lower-part -> shoe, shoe, legs

- lower-part -> bare-foot, bare-foot, legs

- legs -> pants

- legs -> skirt
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Person detection grammar

• Instantiation includes a variable number of parts

- 1,...,k and occluder if k < 6

• Parts can translate relative to each other

• Parts have subtypes

• Parts have deformable sub-parts (not shown)

• Beats all other methods on PASCAL 2010 (49.5 AP)
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Figure 1: Shallow grammar model. This figure illustrates a shallow version of our grammar model
(Section 2.1). This model has six person parts and an occlusion model (“occluder”), each of which
comes in one of two subtypes. A detection places one subtype of each visible part at a location and
scale in the image. If the derivation does not place all parts it must place the occluder. Parts are
allowed to move relative to each other but are constrained by deformation penalties.

We consider models with productions specified by two kinds of schemas (a schema is a template for
generating productions). A structure schema specifies one production for each placement ! 2 ⌦,

X(!) s�! { Y1(! � �1), . . . , Yn

(! � �
n

) }. (3)

Here the �
i

specify constant displacements within the feature map pyramid. Structure schemas can
be used to define decompositions of objects into other objects.

Let � be the set of possible displacements within a single scale of a feature map pyramid. A
deformation schema specifies one production for each placement ! 2 ⌦ and displacement � 2 �,

X(!)
↵·�(�)�! { Y (! � �) }. (4)

Here �(�) is a feature vector and ↵ is a vector of deformation parameters. Deformation schemas
can be used to define deformable models. We define �(�) = (dx, dy, dx2, dy2) so that deformation
scores are quadratic functions of the displacements.

The parameters of our models are defined by a weight vector w with entries for the score of each
structure schema, the deformation parameters of each deformation schema and the filter coefficients
associated with each terminal. Then score(T ) = w ·�(T ) where �(T ) is the sum of (sparse) feature
vectors associated with each placed terminal and production in T .

2.1 A grammar model for detecting people

Each component in the person model learned by the voc-release4 system [12] is tuned to detect
people under a prototypical visibility pattern. Based on this observation we designed, by hand, the
structure of a grammar that models visibility by using structural variability and optional parts. For
clarity, we begin by describing a shallow model (Figure 1) that places all filters at the same resolution
in the feature map pyramid. After explaining this model, we describe a deeper model that includes
deformable subparts at higher resolutions.

Fine-grained occlusion Our grammar model has a start symbol Q that can be expanded using one
of six possible structure schemas. These choices model different degrees of visibility ranging from
heavy occlusion (only the head and shoulders are visible) to no occlusion at all.

Beyond modeling fine-grained occlusion patterns when compared to the mixture models from [12]
or [7], our grammar model is also richer in the following ways. In Section 5 we show that each of
these aspects improves detection performance.

Occlusion model If a person is occluded, then there must be some cause for the occlusion — either
the edge of the image or an occluding object such as a desk or dinner table. We model the cause of
occlusion through an occlusion object that has a non-trivial appearance model.
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Building the model
• Type in any non-recursive grammar

• Train parameters from bounding box annotations

- Production costs

- Deformation models

- HOG filters for terminals
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Part subtypes The mixture model from [12] has two subtypes for each mixture component. The
subtypes are forced to be mirror images of each other and correspond roughly to left-facing people
and right-facing people. Our grammar model has two subtypes for each part, which are also forced
to be mirror images of each other. But in the case of our grammar model, the decision of which part
subtype to instantiate at detection time is independent for each part.

The shallow person grammar model is defined by the following grammar. The indices p (for part), t
(for subtype), and k have the following ranges: p 2 {1, . . . , 6}, t 2 {L, R} and k 2 {1, . . . , 5}.

Q(!) sk�! { Y1(! � �1), . . . , Yk

(! � �
k

), O(! � �
k+1) }

Q(!) s6�! { Y1(! � �1), . . . , Y6(! � �6) }

Y
p

(!) 0�! { Y
p,t

(!) } Y
p,t

(!)
↵p,t·�(�)�! { A

p,t

(! � �) }
O(!) 0�! { O

t

(!) } O
t

(!)
↵t·�(�)�! { A

t

(! � �) }

The grammar has a start symbol Q with six alternate choices that derive people under varying de-
grees of visibility (occlusion). Each part has a corresponding nonterminal Y

p

that is placed at some
ideal position relative to Q. Derivations with occlusion include the occlusion symbol O. A derivation
selects a subtype and displacement for each visible part. The parameters of the grammar (production
scores, deformation parameters and filters) are learned with the discriminative procedure described
in Section 4. Figure 1 illustrates the filters in the resulting model and some example detections.

Deeper model We extend the shallow model by adding deformable subparts at two scales: (1)
the same as, and (2) twice the resolution of the start symbol Q. When detecting large objects,
high-resolution subparts capture fine image details. However, when detecting small objects, high-
resolution subparts cannot be used because they “fall off the bottom” of the feature map pyramid.
The model uses derivations with low-resolution subparts when detecting small objects.

We begin by replacing the productions from Y
p,t

in the grammar above, and then adding new pro-
ductions. Recall that p indexes the top-level parts and t indexes subtypes. In the following schemas,
the indices r (for resolution) and u (for subpart) have the ranges: r 2 {H,L}, u 2 {1, . . . , N

p

},
where N

p

is the number of subparts in a top-level part Y
p

.

Y
p,t

(!)
↵p,t·�(�)�! { Z

p,t

(! � �) }
Z

p,t

(!) 0�! {A
p,t

(!), W
p,t,r,1(! � �

p,t,r,1), . . . ,Wp,t,r,Np(! � �
p,t,r,Np)}

W
p,t,r,u

(!)
↵p,t,r,u·�(�)�! {A

p,t,r,u

(! � �)}

We note that as in [22] our model has hierarchical deformations. The part terminal A
p,t

can move
relative to Q and the subpart terminal A

p,t,r,u

can move relative to A
p,t

.

The displacements �
p,t,H,u

place the symbols W
p,t,H,u

one octave below Z
p,t

in the feature map
pyramid. The displacements �

p,t,L,u

place the symbols W
p,t,L,u

at the same scale as Z
p,t

. We add
subparts to the first two top-level parts (p = 1 and 2), with the number of subparts set to N1 = 3
and N2 = 2. We find that adding additional subparts does not improve detection performance.

2.2 Inference and test time detection

Inference involves finding high scoring derivations. At test time, because images may contain mul-
tiple instances of an object class, we compute the maximum scoring derivation rooted at Q(!), for
each ! 2 ⌦. This can be done efficiently using a standard dynamic programming algorithm [11].

We retain only those derivations that score above a threshold, which we set low enough to ensure
high recall. We use box(T ) to denote a detection window associated with a derivation T . Given a
set of candidate detections, we apply non-maximal suppression to produce a final set of detections.

To define box(T ) we assign a detection window size, in feature map coordinates, to each produc-
tions schema that can be applied to the start symbol. This leads to detections with one of six possible
aspect ratios, depending on which production was used in the first step of the derivation. The ab-
solute location and size of a detection depends on the placement of Q. For the first five production
schemas, the ideal location of the occlusion part, O, is outside of box(T ).
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The grammar has a start symbol Q with six alternate choices that derive people under varying de-
grees of visibility (occlusion). Each part has a corresponding nonterminal Y

p

that is placed at some
ideal position relative to Q. Derivations with occlusion include the occlusion symbol O. A derivation
selects a subtype and displacement for each visible part. The parameters of the grammar (production
scores, deformation parameters and filters) are learned with the discriminative procedure described
in Section 4. Figure 1 illustrates the filters in the resulting model and some example detections.

Deeper model We extend the shallow model by adding deformable subparts at two scales: (1)
the same as, and (2) twice the resolution of the start symbol Q. When detecting large objects,
high-resolution subparts capture fine image details. However, when detecting small objects, high-
resolution subparts cannot be used because they “fall off the bottom” of the feature map pyramid.
The model uses derivations with low-resolution subparts when detecting small objects.

We begin by replacing the productions from Y
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in the grammar above, and then adding new pro-
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We note that as in [22] our model has hierarchical deformations. The part terminal A
p,t

can move
relative to Q and the subpart terminal A

p,t,r,u
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.

The displacements �
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. We add
subparts to the first two top-level parts (p = 1 and 2), with the number of subparts set to N1 = 3
and N2 = 2. We find that adding additional subparts does not improve detection performance.

2.2 Inference and test time detection

Inference involves finding high scoring derivations. At test time, because images may contain mul-
tiple instances of an object class, we compute the maximum scoring derivation rooted at Q(!), for
each ! 2 ⌦. This can be done efficiently using a standard dynamic programming algorithm [11].

We retain only those derivations that score above a threshold, which we set low enough to ensure
high recall. We use box(T ) to denote a detection window associated with a derivation T . Given a
set of candidate detections, we apply non-maximal suppression to produce a final set of detections.

To define box(T ) we assign a detection window size, in feature map coordinates, to each produc-
tions schema that can be applied to the start symbol. This leads to detections with one of six possible
aspect ratios, depending on which production was used in the first step of the derivation. The ab-
solute location and size of a detection depends on the placement of Q. For the first five production
schemas, the ideal location of the occlusion part, O, is outside of box(T ).
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grees of visibility (occlusion). Each part has a corresponding nonterminal Y

p

that is placed at some
ideal position relative to Q. Derivations with occlusion include the occlusion symbol O. A derivation
selects a subtype and displacement for each visible part. The parameters of the grammar (production
scores, deformation parameters and filters) are learned with the discriminative procedure described
in Section 4. Figure 1 illustrates the filters in the resulting model and some example detections.

Deeper model We extend the shallow model by adding deformable subparts at two scales: (1)
the same as, and (2) twice the resolution of the start symbol Q. When detecting large objects,
high-resolution subparts capture fine image details. However, when detecting small objects, high-
resolution subparts cannot be used because they “fall off the bottom” of the feature map pyramid.
The model uses derivations with low-resolution subparts when detecting small objects.

We begin by replacing the productions from Y
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We note that as in [22] our model has hierarchical deformations. The part terminal A
p,t

can move
relative to Q and the subpart terminal A

p,t,r,u
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subparts to the first two top-level parts (p = 1 and 2), with the number of subparts set to N1 = 3
and N2 = 2. We find that adding additional subparts does not improve detection performance.

2.2 Inference and test time detection

Inference involves finding high scoring derivations. At test time, because images may contain mul-
tiple instances of an object class, we compute the maximum scoring derivation rooted at Q(!), for
each ! 2 ⌦. This can be done efficiently using a standard dynamic programming algorithm [11].

We retain only those derivations that score above a threshold, which we set low enough to ensure
high recall. We use box(T ) to denote a detection window associated with a derivation T . Given a
set of candidate detections, we apply non-maximal suppression to produce a final set of detections.

To define box(T ) we assign a detection window size, in feature map coordinates, to each produc-
tions schema that can be applied to the start symbol. This leads to detections with one of six possible
aspect ratios, depending on which production was used in the first step of the derivation. The ab-
solute location and size of a detection depends on the placement of Q. For the first five production
schemas, the ideal location of the occlusion part, O, is outside of box(T ).
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We retain only those derivations that score above a threshold, which we set low enough to ensure
high recall. We use box(T ) to denote a detection window associated with a derivation T . Given a
set of candidate detections, we apply non-maximal suppression to produce a final set of detections.
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grees of visibility (occlusion). Each part has a corresponding nonterminal Y

p

that is placed at some
ideal position relative to Q. Derivations with occlusion include the occlusion symbol O. A derivation
selects a subtype and displacement for each visible part. The parameters of the grammar (production
scores, deformation parameters and filters) are learned with the discriminative procedure described
in Section 4. Figure 1 illustrates the filters in the resulting model and some example detections.

Deeper model We extend the shallow model by adding deformable subparts at two scales: (1)
the same as, and (2) twice the resolution of the start symbol Q. When detecting large objects,
high-resolution subparts capture fine image details. However, when detecting small objects, high-
resolution subparts cannot be used because they “fall off the bottom” of the feature map pyramid.
The model uses derivations with low-resolution subparts when detecting small objects.

We begin by replacing the productions from Y
p,t

in the grammar above, and then adding new pro-
ductions. Recall that p indexes the top-level parts and t indexes subtypes. In the following schemas,
the indices r (for resolution) and u (for subpart) have the ranges: r 2 {H,L}, u 2 {1, . . . , N

p

},
where N

p

is the number of subparts in a top-level part Y
p

.

Y
p,t

(!)
↵p,t·�(�)�! { Z

p,t

(! � �) }
Z

p,t

(!) 0�! {A
p,t

(!), W
p,t,r,1(! � �

p,t,r,1), . . . ,Wp,t,r,Np(! � �
p,t,r,Np)}

W
p,t,r,u

(!)
↵p,t,r,u·�(�)�! {A

p,t,r,u

(! � �)}

We note that as in [22] our model has hierarchical deformations. The part terminal A
p,t

can move
relative to Q and the subpart terminal A

p,t,r,u

can move relative to A
p,t

.

The displacements �
p,t,H,u

place the symbols W
p,t,H,u

one octave below Z
p,t

in the feature map
pyramid. The displacements �

p,t,L,u

place the symbols W
p,t,L,u

at the same scale as Z
p,t

. We add
subparts to the first two top-level parts (p = 1 and 2), with the number of subparts set to N1 = 3
and N2 = 2. We find that adding additional subparts does not improve detection performance.

2.2 Inference and test time detection

Inference involves finding high scoring derivations. At test time, because images may contain mul-
tiple instances of an object class, we compute the maximum scoring derivation rooted at Q(!), for
each ! 2 ⌦. This can be done efficiently using a standard dynamic programming algorithm [11].

We retain only those derivations that score above a threshold, which we set low enough to ensure
high recall. We use box(T ) to denote a detection window associated with a derivation T . Given a
set of candidate detections, we apply non-maximal suppression to produce a final set of detections.

To define box(T ) we assign a detection window size, in feature map coordinates, to each produc-
tions schema that can be applied to the start symbol. This leads to detections with one of six possible
aspect ratios, depending on which production was used in the first step of the derivation. The ab-
solute location and size of a detection depends on the placement of Q. For the first five production
schemas, the ideal location of the occlusion part, O, is outside of box(T ).

4
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Felzenszwalb & McAllester

Figure 20: An example where the most salient curve goes over locations with essentially no
local evidence for a the curve at those locations.

The abstract problem defined above is relatively small even in large images, so we can
use the pattern database approach outlined in Section 5.1. For each input image we use
KLD to compute lightest context weights for every abstract statement. We then use these
weights as heuristic values for solving the concrete problem with A*LD. Figure 19 illustrates
some of the results we obtained using this method. It seems like the abstract problem is
able to capture that most short curves can not be extended to a salient curve. It took
about one minute to find the most salient curve in each of these images. Figure 19 lists the
dimensions of each image and the running time in each case.

Note that our algorithm does not rely on an initial binary edge detection stage. Instead
the base case rules allow for salient curves to go over any pixel, even if there is no local
evidence for a boundary at a particular location. Figure 20 shows an example where this
happens. In this case there is a small part of the horse back that blends with the background
if we consider local properties alone.

The curve finding algorithm described in this section would be very di�cult to formulate
without A*LD and the general notion of heuristics derived from abstractions for lightest
derivation problems. However, using the framework introduced in this paper it becomes
relatively easy to specify the algorithm.

In the future we plan to “compose” the rules for computing salient curves with rules for
computing more complex structures. The basic idea of using a pyramid of boxes for defining
an abstract problem should be applicable to a variety of problems in computer vision.

188

Salient contours

• Curve(a,b) + Curve(b,c) --> Curve(a,c)

Felzenszwalb & McAllester

Figure 15: Running time of di↵erent search algorithms as a function of the problem size R.
Each sample point indicates the average running time taken over 200 random
inputs. In each case N = 20 and � = 100. See text for discussion.

t
ca

b

Figure 16: A curve with endpoints (a, c) is formed by composing curves with endpoints
(a, b) and (b, c). We assume that t � ⇡/2. The cost of the composition is
proportional to sin2(t). This cost is scale invariant and encourages curves to be
relatively straight.

assume that these short curves are straight, and their weight depends only on the image
data along the line segment from a to b. We use a data term, seg(a, b), that is zero if the
image gradient along pixels in ab is perpendicular to ab, and higher otherwise.

Figure 17 gives a formal definition of the two rules in our model. The constants k
1

and
k

2

specify the minimum and maximum length of the base case curves, while L is a constant
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Shapes / Regions
Random shapes

33

Example results

35

Samples from stochastic context-free shape grammar

“Matching” to images 
(samples from posterior)
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Processing pipeline

• Vision system have multiple processing stages

• Compositional model: each stage builds structures by grouping 
structures from previous stages

- Single parsing problem

- Avoids intermediate decisions 
(high-level information influences low-level interpretations)

Edges Contours

Pixels

Regions

Objects
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Computation
• Context-free or Context-sensitive?

• Even context-free models lead to hard parsing problem

- Too many constituents!

- String of length n have O(n2) substrings

- Images with n pixels have O(2n) regions

G E T I K D S W O W Z Q E

Tuesday, August 23, 11



Alternative parsing problems
1. Whole image parsing

- Explains every pixel exactly once

- Hard 

2. Find light derivations within an image

- Expansion of start symbol into terminals

- Explains part of the image

- May explain the same pixel more then once

- Efficient

Example results

35

wall

pictures

floor

chest

book book book

shelves

...

room
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Computation
• Bottom-up

- Repeated grouping structures (KLD / A*LD)

• Top-down

- Repeated refining with backtracking (AO*)

• Bottom-up + Top-down

- Bottom-up computation guided by top-down influence

- Coarse derivations provide heuristic guidance 
for finding finer structures (HA*LD)
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Coarse-to-fine
• Model abstraction f : Si --> Si+1

- lower resolution

- coarsen labels
horse --> animal --> piecewise smooth object

• Coarse computation guides finer computation
Felzenszwalb & McAllester

Edges

Edges

Edges

Recognition

Recognition

RecognitionContours

Contours

Contours�
0

�
1

�
m�1

Figure 8: A vision system with several levels of processing. Forward arrows represent the
normal flow of information from one stage of processing to the next. Backward
arrows represent the computation of contexts. Downward arrows represent the
influence of contexts.

derivation problem. For example, the lightest derivation of a complete scene analysis might
require the presence of an edge that is not locally apparent. By implementing the whole
system as a single lightest derivation problem we avoid the need to make hard decisions
between stages of the pipeline.

The influence of late pipeline stages in guiding earlier stages is pronounced if we use
HA*LD to compute lightest derivations. In this case the influence is apparent not only
in the structure of the optimal solution but also in the flow of information across di↵erent
stages of processing. In HA*LD a complete interpretation derived at one level of abstraction
guides all processing stages at a more concrete level. Structures derived at late stages of
the pipeline guide earlier stages through abstract context weights. This allows the early
processing stages to concentrate computational e↵orts in constructing structures that will
likely be part of the globally optimal solution.

While we have emphasized the use of admissible heuristics, we note that the A* archi-
tecture, including HA*LD, can also be used with inadmissible heuristic functions (of course
this would break our optimality guarantees). Inadmissible heuristics are important because
admissible heuristics tend to force the first few stages of a processing pipeline to generate
too many derivations. As derivations are composed their weights increase and this causes a
large number of derivations to be generated at the first few stages of processing before the
first derivation reaches the end of the pipeline. Inadmissible heuristics can produce behavior
similar to beam search — derivations generated in the first stage of the pipeline can flow
through the whole pipeline quickly. A natural way to construct inadmissible heuristics is to
simply “scale-up” an admissible heuristic such as the ones obtained from abstractions. It is
then possible to construct a hierarchical algorithm where inadmissible heuristics obtained
from one level of abstraction are used to guide search at the level below.

8. Other Hierarchical Methods

In this section we compare HA*LD to other hierarchical search methods.
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Challenges
• Whole image parsing (with context-free grammars)

- Restrict possible constituents

- LP relaxation

- DDMCMC

• Learn object grammars from weakly labeled data

- PASCAL VOC

• Build a complete processing pipeline unifying 
segmentation and recognition

Tuesday, August 23, 11


