Fast Inference with Min-Sum Matrix Product

(or how I finished a homework assignment 15 years later)

Pedro Felzenszwalb University of Chicago

Julian McAuley Australia National University / NICTA

15 years ago, CS664 at Cornell

Active contour models (snakes) for interactive segmentation

Goal: trace the boundary of an object

User initializes a contour close to an object boundary

Contour moves to the boundary

- Attracted to local features (intensity gradient)
- Internal forces enforce smoothness

Optimization problem

m control points

n possible locations for each point (blue regions) minimize: $E(x_1, ..., x_m) = \sum_{i=1}^m V_i(x_i, x_{i+1})$ $x_i = \text{location of } i\text{-th control point}$

Many reasonable
$$V(p,q) = \frac{1}{\operatorname{grad}(I,p,q)} + ||p-q||^2$$

Dynamic programming for open snakes

Shortest path problem

m tables with n entries each

 $T_i[p] = \text{cost of best placement for first } i \text{ points with } x_i = p$

- $T_i[p] = \min_q T_{i-1}[q] + V_i(q, p)$
- Pick best location in T_m , trace-back

 $O(mn^2)$ time (optimal in a reasonable sense)

CS664 Homework assignment: Implement closed snakes

pff's solution:

- Consider one control point x_i
- Fixing its location leads to open snake problem
- Try all *n* possibilities for x_i : $O(mn^3)$ time total

Is this a good solution?

- pff: I think this is the best possible
- rdz: Are you sure?

An alternative solution

Single DP problem

m tables with n^2 entries

 $T_i[p, q] = \text{cost of best placement for first } i$ points with $x_i = p, x_i = q$

- $T_i[p, q] = \min_r T_{i-1}[p, r] + V_i(r, q)$
- compute T_i from T_{i-1} in $O(n^3)$ time
- Optimal position for x_1 minimizes $T_n[p, p]$
- still $O(mn^3)$ time total...

But, we can write: $T_i = T_{i-1} * V_i$

Min-sum matrix product (MSP), a.k.a. distance product

MSP (min-sum product) / APSP (all-pairs-shortest-paths)

C = A * B $C_{ik} = \min_j A_{ij} + B_{jk}$

MSP reduces to APSP and vice versa

SP distance matrix in graph with *n* nodes $E^* E^* E^* E \dots = E^n$ (transitive closure of *n* by *n* adjacency matrix)

MSP algorithms

 $O(n^3)$ brute force algorithm, $O(n^3 / \log n)$ via APSP

No known algorithm with $O(n^{3-e})$ runtime in the worst case

• Strassen's algorithm doesn't work

Our result: $O(n^2 \log n)$ expected time, assuming values are independent samples from a uniform distribution

With tweaks this really works in practice

• On inputs with significant structure from real applications in vision and natural language

Basic algorithm

 $\mathrm{MSP}(A,B)$

- 1: $S := \emptyset$
- 2: $C_{ik} := \infty$
- 3: Initialize Q with entries of A, B, C
- 4: while S does not contain all C_{ik} do
- 5: item := remove-min(Q)
- $6: \quad S := S \cup item$
- 7: **if** $item = A_{ij}$ **then**
- 8: for $B_{jk} \in S$ relax $(C_{ik}, A_{ij} + B_{jk})$
- 9: **end if**
- 10: **if** $item = B_{jk}$ **then**
- 11: **for** $A_{ij} \in S$ relax $(C_{ik}, A_{ij} + B_{jk})$
- 12: **end if**
- 13: end while

 $\operatorname{relax}(C_{ik}, v)$

- 1: if $v < C_{ik}$ then
- $2: \quad C_{ik} := v$
- 3: decrease-key (Q, C_{ik})
- 4: end if

Correctness

Assume entries in A and B are non-negative

Let $j = \operatorname{argmin} A_{ij} + B_{jk}$ We always have $C_{ik} \ge A_{ij} + B_{jk}$ So A_{ij} and B_{jk} come off the queue before C_{ik} This implies we call $\operatorname{relax}(C_{ik}, A_{ij} + B_{jk})$ When C_{ik} comes off the queue it equals $A_{ij} + B_{jk}$

Implementation

MSP(A, B)

1: $S := \emptyset$

2: $C_{ik} := \infty$

- 3: Initialize Q with entries of A, B, C
- 4: while S does not contain all C_{ik} do
- 5: item := remove-min(Q)
- $6: \quad S := S \cup item$
- 7: **if** $item = A_{ij}$ **then**
- 8: for $B_{jk} \in S$ relax $(C_{ik}, A_{ij} + B_{jk})$
- 9: **end if**
- 10: **if** $item = B_{jk}$ **then**
- 11: **for** $A_{ij} \in S \operatorname{relax}(C_{ik}, A_{ij} + B_{jk})$
- 12: **end if**
- 13: end while

 $\operatorname{relax}(C_{ik}, v)$

- 1: if $v < C_{ik}$ then
- $2: \quad C_{ik} := v$
- 3: decrease-key (Q, C_{ik})
- 4: end if

Maintain 2n lists I[j]: list of i such that A_{ij} in SK[j]: list of k such that B_{jk} in SRunning time determined by number of additions and

priority queue operations

Runtime Analysis

Let N = # pairs A_{ij} , B_{jk} that are combined before we stop

(both A_{ij} , B_{jk} come off the queue)

- N additions
- $3n^2$ insertions
- at most $3n^2$ remove-min
- at most *N* decrease-key

Lemma: $E[N] = O(n^2 \log n)$

Using a Fibonacci heap the expected time is $O(n^2 \log n)$

Main lemma

Let N = # pairs A_{ij} , B_{jk} that come off the queue

If entries in *A* and *B* are iid samples from a uniform distribution over [0,1] then $E[N] = O(n^2 \log n)$

proof sketch:

Let $X_{ijk} = 1$ if A_{ij} and B_{jk} both come off the queue $E[N] = \sum_{ijk} E[X_{ijk}] = \sum_{ijk} P(X_{ijk} = 1).$

Minimum priority in Q is non-decreasing Let M be maximum value in C

 $X_{ijk} = 1$ if A_{ij} and B_{jk} are at most M

$$X_{ijk} = 1 \text{ if } A_{ij} \text{ and } B_{jk} \text{ are at most } M$$

The probability that M is large is low
 $M \ge \epsilon \text{ iff one } C_{ik} \ge \epsilon$
 $C_{ik} \ge \epsilon \text{ iff all } A_{ij} + B_{jk} \ge \epsilon$
 $P(A_{ij} + B_{jk} \ge \epsilon) = 1 - \epsilon^2/2 \le e^{-\epsilon^2/2}$
 $P(M \ge \epsilon) \le n^2 e^{-n\epsilon^2/2} \text{ (union + independence)}$

The probability that A_{ij} and B_{jk} are both small is low $P(A_{ij} \leq \epsilon \wedge B_{jk} \leq \epsilon) = \epsilon^2.$

$$P(X_{ijk} = 1) \le n^2 e^{-n\epsilon^2/2} + \epsilon^2.$$

Pick $\epsilon = \frac{6\log n}{n}$
$$P(X_{ijk} = 1) \le \frac{1+6\log n}{n}$$

$$E[N] \le n^2(1+6\log n)$$

Improvements - normalizing the inputs

- Subtract min value from each row of A and column of B (add back to C in the end)
- 2) Remove entries from *I/K* if we finish a row/column of *C*3) (A* search)
- Let a(j) be minimum value in column j of A
- Let b(j) be minimum value in row j of B
 - Put A_{ij} into Q at priority $A_{ij} + b(j)$
 - Put B_{jk} into Q at priority $B_{jk} + a(j)$

Practical issues

Fibonacci heap not practical (believe me, we tried)

Practical alternatives:

- Integer queue gives approximation algorithm
- Avoid queue by sorting A and B
 - ok, but not as fast as integer queue
- Scaling method
 - Avoids sorting
 - exact, and fastest in practice

Scaling method

- 1: $C_{ik} := \infty$
- 2: T := t min
- 3: while $\max_{ik} C_{ik} > T$ do
- 4: $I[j] := \{i \mid A_{ij} \le T\}$
- 5: $K[j] := \{k \mid B_{jk} \le T\}$
- 6: **for** $j \in \{1 ... n\}$ **do**
- 7: for $i \in I[j]$ do
- 8: for $k \in K[j]$ do

9:
$$C_{ik} = \min(C_{ik}, A_{ij} + B_{jk})$$

- 10: **end for**
- 11: **end for**
- 12: **end for**

13:
$$T := 2T$$

14: end while

that are at most T

If maximum entry in resulting C is at most T we are done

Consider entries of A and B

Experimental results with real data

naive method uses $O(n^3)$ brute-force algorithm MSP

[12] gives an $O(n^{2.5})$ algorithm with (weaker) assumption that entries come in random order

Algorithm 1: integer queue (approximate)

Algorithm 2: scaling method (exact)

Other Applications

MAP estimation with pairwise graphical model

• *m* variables, *n* possible values for each variable

$$E(x_1, \dots, x_m) = \sum_{i=1}^m V_i(x_i) + \sum_{(i,j)\in E} V_{ij}(x_i, x_j)$$

Tree-width 2 model

- *m* MSP of *n* by *n* matrices
- $O(mn^3) \rightarrow O(mn^2 \log n)$

Language modeling

Something between bigram and trigram model

- Bigram: $P(x_t | x_{t-1})$
- Trigram: $P(x_t | x_{t-1}, x_{t-2})$
- Skip-chain: $P(x_t | x_{t-1}, x_{t-2}) \sim q_1(x_t, x_{t-1}) q_2(x_t, x_{t-2})$

Task: recover a sentence from noisy data

Assume each character is corrupted with probability c

Use skip model as prior over sentences P(x)

Given corrupted text y, find x maximizing $P(x|y) \sim P(y|x)P(x)$

Language modeling

naive method takes O(mn³)*m* is the length of the sentence*n* is the alphabet size

Point pattern matching

Map points in template to points in target preserving distances between certain pairs

(c) Point-matching model

Parsing

Parsing with stochastic context-free grammars

- $O(n^3)$ with dynamic programming (CKY)
- Reduces to MSP with Valiant's transitive closure method

RNA Secondary structure prediction

- $O(n^3)$ dynamic programming
- Reduces to parsing with special grammar

Some open questions

Why does it actually work?

Characterize what "normalization" is doing

How does it relax assumptions on input distribution

 $O(n^{3-e})$ worst case (randomized) algorithm for MSP

Can we get a practical parsing method? Avoid transitive closure machinery?