Fast Inference with
Min-Sum Matrix Product

(or how | finished a homework assignment 15 years later)

Pedro Felzenszwalb
University of Chicago

Julian McAuley
Australia National University / NICTA

Sunday, November 14, 2010

15 years ago, CS664 at Cornell

Active contour models (snakes) for interactive segmentation
Goal: trace the boundary of an object
User 1nitializes a contour close to an object boundary
Contour moves to the boundary

® Attracted to local features (intensity gradient)

® Internal forces enforce smoothness

Sunday, November 14, 2010

Optimization problem

m control points

n possible locations for each point (blue regions)
m
minimize: F(zq, ..., z,,) = Z Vi, Tis1)
i=1
x; = location of i-th control point

Many reasonable v, _ 1
choices for V (P> 4) grad(/, p, q)

- lp — ql|?

Sunday, November 14, 2010

Dynamic programming for open snakes

!
EE X5

E m—1
X1 E(ajlv Z ‘/:L Cmez—l—l
1=1
Shortest path problem

m tables with n entries each

Ti[p] = cost of best placement for first i points with x; = p
® Tilp]=ming Tislg] + Vi(q, p)
® Pick best location in 73, trace-back

O(mn?) time (optimal in a reasonable sense)

Sunday, November 14, 2010

CS664 Homework assignment:
Implement closed snakes

pft’s solution:
® (Consider one control point x;
® [Fixing its location leads to open snake problem
® Try all n possibilities for x;: O(mn”) time total
Is this a good solution?
® pit: I think this 1s the best possible

® rdz: Are you sure?

Sunday, November 14, 2010

An alternative solution

Single DP problem - 4t
= X4 X5
m tables with #n? entries X2 X3

X1
Ti[p, g] = cost of best placement for first i points
withx;=p,xi=¢q

® Tilp, ql =min, Tiilp, r] + Vi(r, q)
® compute 7; from 7;i.; in O(n’) time
® Optimal position for x; minimizes T,[p, p]
® still O(mn’) time total...
But, we can write: T =Ti.; * Vi

Min-sum matrix product (IMSP), a.k.a. distance product

Sunday, November 14, 2010

MSP (min-sum product) / APSP (all-pairs-shortest-paths)

C=A*B Cik:mininj+Bjk
MSP reduces to APSP and vice versa

SP distance matrix in graph with n nodes

E*E"E™E ... = E" (transitive closure of n by n adjacency matrix)
n nodes n nodes n nodes

Ca=d((1,1),(3,k) @ O @)
® A .(Z,J) ®
(1,) 0/ @ B ©
O O O

O @ O (3, k)
O O O

Sunday, November 14, 2010

MSP algorithms

O(n°) brute force algorithm, O(n°/ log n) via APSP
No known algorithm with O(n7-¢) runtime in the worst case
® Strassen’s algorithm doesn’t work

Our result: O(n?log n) expected time, assuming values are

independent samples from a uniform distribution
With tweaks this really works in practice

® On inputs with significant structure from real applications

in vision and natural language

Sunday, November 14, 2010

Basic algorithm

MSP(A, B)
1. S:=0
2: O := 00

3: Initialize () with entries of A, B, C

4: while S does not contain all C;; do

5:

6:

7:

8:

9:

10:

11:

12:

item := remove-min(Q))
S = S Uitem
if item = A;; then

for B, € S relax(Cix, Aij + Bjk)
end if
if «tem = Bj; then

for A;; € S relax(Ciy, Aij + Bji)
end if

13: end while

1:

2:

3:

4.

relax(Cix, v)

if v < Cj, then
Cik :=v
decrease-key(Q, C;i)
end if

Sunday, November 14, 2010

Correctness

Assume entries in A and B are non-negative

Let j = argmin A;; + By,

We always have C;, > A;; + B

So A;; and Bji come off the queue before Cjy
This implies we call relax(Cs, Aij + Bjk)

When Cj, comes off the queue it equals A;; + By

Sunday, November 14, 2010

Implementation

MSP(A, B)

1: S =9

2: O := 00

3: Initialize () with entries of A, B, C

4: while S does not contain all C;; do

5:

6:

7:

8:

9:

10:

11:

12:

item := remove-min(Q))
S = S Uitem
if item = A;; then

for B, € S relax(Cix, Aij + Bjk)
end if
if item = Bj; then

for A;; € S relax(Ciy, Aij + Bji)
end if

13: end while

relax(Cjg, v)

1: 1f v < Czk then
2: Ozk =0
3: decrease-key(Q, Cjr)

4: end if

Maintain 2n lists
I[j]: list of 7 such that A;; in S
K[j]: list of k such that By in §

Running time determined by
number of additions and
priority queue operations

Sunday, November 14, 2010

Runtime Analysis

Let N = # pairs A;j, Bjx that are combined before we stop
(both A;;, Bjx come off the queue)

® /N additions

® 3n‘ Insertions

® at most 3n? remove-min

® at most N decrease-key
Lemma: E[N] = O(n? log n)

Using a Fibonacci heap the expected time 1s O(n? log n)

Sunday, November 14, 2010

Main lemma
Let N = # pairs A;j, Bjx that come off the queue

If entries 1n A and B are 11d samples from a uniform
distribution over [0,1] then E[N] = O(n? log n)

proot sketch:

Let X;ix = I it A;j and Bjx both come off the queue
EIN] =) E[Xg] =) P(Xjr=1).

ijk ijk

Minimum priority in Q i1s non-decreasing
Let M be maximum value in C

Xiix = 1 11 A;j and Bj are at most M

Sunday, November 14, 2010

Xiik = 1 1t A;j and Bj, are at most M
The probability that M is large is low
M > e iff one Cj > €
Cip > eiff all A;; + Bjj, > ¢
P(Ajj+Bjr>e€)=1—¢*/2< e /2

P(M > €) < n2e "¢/2 (union + independence)

The probability that A;; and Bj, are both small is low
P(A;j <eNBj, <e)=¢.

E[N] < n?(1+6logn)

Sunday, November 14, 2010

Improvements - normalizing the inputs

1) Subtract min value from each row of A and column of B
(add back to C 1n the end)

2) Remove entries from //K 1f we finish a row/column of C
3) (A* search)
Let a(j) be minimum value in column j of A
Let b(j) be minimum value in row j of B
® Put A; into Q at priority A;; + b(j)

® Put Bj; into Q at priority Bjx + a(j)

Sunday, November 14, 2010

Practical 1ssues

Fibonacci heap not practical (believe me, we tried)
Practical alternatives:
® [nteger queue gives approximation algorithm
® Avoid queue by sorting A and B
- 0k, but not as fast as integer queue
® Scaling method
- Avoids sorting

- exact, and fastest 1n practice

Sunday, November 14, 2010

Scaling method

1: Cjp := o0

2: T = t-man . .
Consider entries of A and B

3: while max;, Ci, > T' do that are at most T

s K[j]i={k| By < T} If maximum entry in resulting

| C 1s at most T we are done
6: forje{l...n} do

7: for ¢ € I[j] do

8: for k € K|j] do

9: Cir = min(Cix, Aij + Bjk)
10: end for

11: end for

12: end for
13: T := 27T

14: end while

Sunday, November 14, 2010

Experimental results with real data
Image segmentation

/

—e naive method

+—+ method from [12]
A—4A Algorithm 1
BT o—o Algorithm 2

60 |-

Wall time (seconds)

| |
200 400 600 800 1000

0
0
n=wXxXuw

naive method uses O(n’) brute-force algorithm MSP

[12] gives an O(n?~) algorithm with (weaker) assumption that

entries come 1n random order
Algorithm 1: integer queue (approximate)

Algorithm 2: scaling method (exact)

Sunday, November 14, 2010

Other Applications

MAP estimation with pairwise graphical model
® s variables, n possible values for each variable
E(x1,...,x ZV T;) + Z Vii(zi, xj)
(4,5)€E

Tree-width 2 model :

10 9

® m MSP of n by n matrices 2

® (O(mn’) -> O(mn? log n) 12 4
3

Sunday, November 14, 2010

Language modeling

Something between
bigramand trigrammodel @ @ ® © G G G

® Bigram: P(x; | x:1)

® Trigram: P(x: | xi1, Xt-2)

® Skip-chain: P(x; | xr1, x-2) ~ q1(xs, Xt-1) g2(Xt, X1-2)
Task: recover a sentence from noisy data
Assume each character 1s corrupted with probability ¢
Use skip model as prior over sentences P(x)

Given corrupted text y, find x maximizing P(xly) ~ P(ylx)P(x)

Sunday, November 14, 2010

Language modeling

Skip-chain text denoising

v method . naive method takes O(mn?)

@ sl + + meth(?d from [12]
=l o Acoritm m is the length of the sentence
)
L 30}
I n is the alphabet size
—_ o .
g 15_0.08—% éé géé A

0 _8.1. 11|08

Sunday, November 14, 2010

Point pattern matching

Map points in template to points in target
preserving distances between certain pairs (o) Point-matching model

2D Graph matching

4000 F
X —e naive method
template :-.,,';.:.;:::.\ — +—+ method from [12]
© 3000 [A=A Algorithm 1
c o0s ° ceq S e—e Algorithm 2
e 0 e ()]
®e ° o? * g)/
e o 2000
BV =
.‘ ..‘..' o —_—
AR A S 1000
¢ 8
8 '... Y s
0
target 0 200 400 600 800 1000

n (size of target graph)

Sunday, November 14, 2010

Parsing

Parsing with stochastic context-free grammars

® ((n’) with dynamic programming (CKY)

® Reduces to MSP with Valiant’s transitive closure method

RNA Secondary structure prediction
® ((n’) dynamic programming

® Reduces to parsing with special grammar

Sunday, November 14, 2010

Some open questions

Why does it actually work?
Characterize what “normalization” 1s doing

How does it relax assumptions on input distribution

O(n3-¢) worst case (randomized) algorithm for MSP

Can we get a practical parsing method?

Avoid transitive closure machinery?

Sunday, November 14, 2010

