Fast Inference with Min-Sum Matrix Product

(or how I finished a homework assignment 15 years later)

Pedro Felzenszwalb
University of Chicago

Julian McAuley

Australia National University / NICTA

15 years ago, CS664 at Cornell

Active contour models (snakes) for interactive segmentation
Goal: trace the boundary of an object
User initializes a contour close to an object boundary
Contour moves to the boundary

- Attracted to local features (intensity gradient)
- Internal forces enforce smoothness

Optimization problem

m control points
n possible locations for each point (blue regions)
minimize: $\quad E\left(x_{1}, \ldots, x_{m}\right)=\sum_{i=1}^{m} V_{i}\left(x_{i}, x_{i+1}\right)$

$$
x_{i}=\text { location of } i \text {-th control point }
$$

$\begin{aligned} & \text { Many reasonable } \\ & \text { choices for } V\end{aligned} V(p, q)=\frac{1}{\operatorname{grad}(I, p, q)}+\|p-q\|^{2}$

Dynamic programming for open snakes

Shortest path problem
m tables with n entries each
$T_{i}[p]=\operatorname{cost}$ of best placement for first i points with $x_{i}=p$

- $T_{i}[p]=\min _{q} T_{i-1}[q]+V_{i}(\mathrm{q}, p)$
- Pick best location in T_{m}, trace-back
$O\left(m n^{2}\right)$ time (optimal in a reasonable sense)

CS664 Homework assignment: Implement closed snakes

pff's solution:

- Consider one control point x_{i}
- Fixing its location leads to open snake problem
- Try all n possibilities for $x_{i}: O\left(m n^{3}\right)$ time total

Is this a good solution?

- pff: I think this is the best possible
- rdz: Are you sure?

An alternative solution

Single DP problem
m tables with n^{2} entries

$T_{i}[p, q]=$ cost of best placement for first i points with $x_{l}=p, x_{i}=q$

- $T_{i}[p, q]=\min _{r} T_{i-1}[p, r]+V_{i}(r, q)$
- compute T_{i} from T_{i-l} in $O\left(n^{3}\right)$ time
- Optimal position for x_{l} minimizes $T_{n}[p, p]$
- still $O\left(m n^{3}\right)$ time total...

But, we can write: $T_{i}=T_{i-1} * V_{i}$
Min-sum matrix product (MSP), a.k.a. distance product

MSP (min-sum product) / APSP (all-pairs-shortest-paths)

$C=A * B \quad C_{i k}=\min _{j} A_{i j}+B_{j k}$
MSP reduces to APSP and vice versa
SP distance matrix in graph with n nodes
$E^{*} E^{*} E^{*} E \ldots=E^{n}$ (transitive closure of n by n adjacency matrix)
n nodes $\quad n$ nodes $\quad n$ nodes
$C_{i k}=\mathrm{d}((1, i),(3, k))$

$(1, i)$

n no
$(2, j)$
0
\bigcirc
\bigcirc
\bigcirc

MSP algorithms

$O\left(n^{3}\right)$ brute force algorithm, $O\left(n^{3} / \log n\right)$ via APSP
No known algorithm with $O\left(n^{3-e}\right)$ runtime in the worst case

- Strassen's algorithm doesn't work

Our result: $O\left(n^{2} \log n\right)$ expected time, assuming values are independent samples from a uniform distribution

With tweaks this really works in practice

- On inputs with significant structure from real applications in vision and natural language

Basic algorithm

$\operatorname{MSP}(A, B)$

1: $S:=\varnothing$
2: $C_{i k}:=\infty$
3: Initialize Q with entries of A, B, C
4: while S does not contain all $C_{i k}$ do
5: \quad item $:=$ remove- $\min (Q)$
6: $\quad S:=S \cup$ item
7: \quad if item $=A_{i j}$ then
8: \quad for $B_{j k} \in S$ relax $\left(C_{i k}, A_{i j}+B_{j k}\right)$
9: end if
10: \quad if item $=B_{j k}$ then
11: \quad for $A_{i j} \in S$ relax $\left(C_{i k}, A_{i j}+B_{j k}\right)$
12: end if
13: end while
$\operatorname{relax}\left(C_{i k}, v\right)$
1: if $v<C_{i k}$ then
2: $\quad C_{i k}:=v$
3: \quad decrease-key $\left(Q, C_{i k}\right)$
4: end if

Correctness

Assume entries in A and B are non-negative
Let $j=\operatorname{argmin} A_{i j}+B_{j k}$
We always have $C_{i k} \geq A_{i j}+B_{j k}$
So $A_{i j}$ and $B_{j k}$ come off the queue before $C_{i k}$
This implies we call relax $\left(C_{i k}, A_{i j}+B_{j k}\right)$
When $C_{i k}$ comes off the queue it equals $A_{i j}+B_{j k}$

Implementation

$\operatorname{MSP}(A, B)$

1: $S:=\varnothing$
2: $C_{i k}:=\infty$
Initialize Q with entries of A, B, C
while S does not contain all $C_{i k}$ do
5: \quad item $:=$ remove- $\min (Q)$
6: $\quad S:=S \cup$ item
7: \quad if item $=A_{i j}$ then
8: \quad for $B_{j k} \in S \operatorname{relax}\left(C_{i k}, A_{i j}+B_{j k}\right)$
9: end if
10: \quad if item $=B_{j k}$ then
11: \quad for $A_{i j} \in S$ relax $\left(C_{i k}, A_{i j}+B_{j k}\right)$
12: end if
13: end while
$\operatorname{relax}\left(C_{i k}, v\right)$
1: if $v<C_{i k}$ then
2: $\quad C_{i k}:=v$
3: \quad decrease-key $\left(Q, C_{i k}\right)$
4: end if

Maintain $2 n$ lists

I[j]: list of i such that $A_{i j}$ in S
$K[j]$: list of k such that $B_{j k}$ in S
Running time determined by number of additions and priority queue operations

Runtime Analysis

Let $N=$ \# pairs $A_{i j}, B_{j k}$ that are combined before we stop
(both $A_{i j}, B_{j k}$ come off the queue)

- N additions
- $3 n^{2}$ insertions
- at most $3 n^{2}$ remove-min
- at most N decrease-key

Lemma: $E[N]=O\left(n^{2} \log n\right)$
Using a Fibonacci heap the expected time is $O\left(n^{2} \log n\right)$

Main lemma

Let $N=$ \# pairs $A_{i j}, B_{j k}$ that come off the queue
If entries in A and B are iid samples from a uniform distribution over $[0,1]$ then $E[N]=O\left(n^{2} \log n\right)$
proof sketch:
Let $X_{i j k}=1$ if $A_{i j}$ and $B_{j k}$ both come off the queue

$$
E[N]=\sum_{i j k} E\left[X_{i j k}\right]=\sum_{i j k} P\left(X_{i j k}=1\right) .
$$

Minimum priority in Q is non-decreasing
Let M be maximum value in C
$X_{i j k}=1$ if $A_{i j}$ and $B_{j k}$ are at most M

$X_{i j k}=1$ if $A_{i j}$ and $B_{j k}$ are at most M

The probability that M is large is low
$M \geq \epsilon$ iff one $C_{i k} \geq \epsilon$
$C_{i k} \geq \epsilon$ iff all $A_{i j}+B_{j k} \geq \epsilon$
$P\left(A_{i j}+B_{j k} \geq \epsilon\right)=1-\epsilon^{2} / 2 \leq e^{-\epsilon^{2} / 2}$
$P(M \geq \epsilon) \leq n^{2} e^{-n \epsilon^{2} / 2}$ (union + independence)

The probability that $A_{i j}$ and $B_{j k}$ are both small is low
$P\left(A_{i j} \leq \epsilon \wedge B_{j k} \leq \epsilon\right)=\epsilon^{2}$.
$P\left(X_{i j k}=1\right) \leq n^{2} e^{-n \epsilon^{2} / 2}+\epsilon^{2}$.
Pick $\epsilon=\frac{6 \log n}{n}$
$P\left(X_{i j k}=1\right) \leq \frac{1+6 \log n}{n}$
$E[N] \leq n^{2}(1+6 \log n)$

Improvements - normalizing the inputs

1) Subtract min value from each row of A and column of B (add back to C in the end)
2) Remove entries from I / K if we finish a row/column of C
3) (A* search)

Let $a(j)$ be minimum value in column j of A
Let $b(j)$ be minimum value in row j of B

- Put $A_{i j}$ into Q at priority $A_{i j}+b(j)$
- Put $B_{j k}$ into Q at priority $B_{j k}+a(j)$

Practical issues

Fibonacci heap not practical (believe me, we tried)
Practical alternatives:

- Integer queue gives approximation algorithm
- Avoid queue by sorting A and B
- ok, but not as fast as integer queue
- Scaling method
- Avoids sorting
- exact, and fastest in practice

Scaling method

1: $C_{i k}:=\infty$
2: $T:=t-m i n$
3: while $\max _{i k} C_{i k}>T$ do
4: $\quad I[j]:=\left\{i \mid A_{i j} \leq T\right\}$
5: $\quad K[j]:=\left\{k \mid B_{j k} \leq T\right\}$
6: \quad for $j \in\{1 \ldots n\}$ do
7: \quad for $i \in I[j]$ do
8: \quad for $k \in K[j]$ do
9: $\quad C_{i k}=\min \left(C_{i k}, A_{i j}+B_{j k}\right)$
10: end for
11: end for
12: end for
13: $\quad T:=2 T$
14: end while

Experimental results with real data

naive method uses $O\left(n^{3}\right)$ brute-force algorithm MSP
[12] gives an $O\left(n^{2.5}\right)$ algorithm with (weaker) assumption that entries come in random order

Algorithm 1: integer queue (approximate)
Algorithm 2: scaling method (exact)

Other Applications

MAP estimation with pairwise graphical model

- m variables, n possible values for each variable

$$
E\left(x_{1}, \ldots, x_{m}\right)=\sum_{i=1}^{m} V_{i}\left(x_{i}\right)+\sum_{(i, j) \in E} V_{i j}\left(x_{i}, x_{j}\right)
$$

Tree-width 2 model

- m MSP of n by n matrices
- $O\left(m n^{3}\right)->O\left(m n^{2} \log n\right)$

Language modeling

Something between bigram and trigram model

- Bigram: $P\left(x_{t} \mid x_{t-1}\right)$
- Trigram: $P\left(x_{t} \mid x_{t-1}, x_{t-2}\right)$
- Skip-chain: $P\left(x_{t} \mid x_{t-1}, x_{t-2}\right) \sim q_{l}\left(x_{t}, x_{t-1}\right) q_{2}\left(x_{t}, x_{t-2}\right)$

Task: recover a sentence from noisy data
Assume each character is corrupted with probability c
Use skip model as prior over sentences $P(x)$
Given corrupted text y, find x maximizing $P(x \mid y) \sim P(y \mid x) P(x)$

Language modeling

naive method takes $O\left(m n^{3}\right)$

m is the length of the sentence
n is the alphabet size

Point pattern matching

Map points in template to points in target preserving distances between certain pairs

(c) Point-matching model

Parsing

Parsing with stochastic context-free grammars

- $O\left(n^{3}\right)$ with dynamic programming (CKY)
- Reduces to MSP with Valiant's transitive closure method

RNA Secondary structure prediction

- $O\left(n^{3}\right)$ dynamic programming
- Reduces to parsing with special grammar

Some open questions

Why does it actually work?
Characterize what "normalization" is doing
How does it relax assumptions on input distribution
$O\left(n^{3-e}\right)$ worst case (randomized) algorithm for MSP

Can we get a practical parsing method?
Avoid transitive closure machinery?

