
Fast Inference with
Min-Sum Matrix Product

Pedro Felzenszwalb
University of Chicago

Julian McAuley
Australia National University / NICTA

(or how I finished a homework assignment 15 years later)

Sunday, November 14, 2010

15 years ago, CS664 at Cornell

Active contour models (snakes) for interactive segmentation

Goal: trace the boundary of an object

User initializes a contour close to an object boundary

Contour moves to the boundary

• Attracted to local features (intensity gradient)

• Internal forces enforce smoothness

Sunday, November 14, 2010

Optimization problem

m control points

n possible locations for each point (blue regions)

minimize: E(x1, . . . , xm) =
m�

i=1

Vi(xi, xi+1)

V (p, q) =
1

grad(I, p, q)
+ ||p− q||2Many reasonable

choices for V

xi = location of i-th control point

Sunday, November 14, 2010

Dynamic programming for open snakes

Shortest path problem

m tables with n entries each

Ti[p] = cost of best placement for first i points with xi = p

• Ti[p] = minq Ti-1[q] + Vi(q, p)

• Pick best location in Tm, trace-back

O(mn2) time (optimal in a reasonable sense)

x1
x2 x3

x4 x5

p

E(x1, . . . , xm) =
m−1�

i=1

Vi(xi, xi+1)

Sunday, November 14, 2010

CS664 Homework assignment:
Implement closed snakes

pff’s solution:

• Consider one control point xi

• Fixing its location leads to open snake problem

• Try all n possibilities for xi: O(mn3) time total

Is this a good solution?

• pff: I think this is the best possible

• rdz: Are you sure?

Sunday, November 14, 2010

An alternative solution
Single DP problem

m tables with n2 entries

Ti[p, q] = cost of best placement for first i points
with x1 = p, xi = q

• Ti[p, q] = minr Ti-1[p, r] + Vi(r, q)

• compute Ti from Ti-1 in O(n3) time

• Optimal position for x1 minimizes Tn[p, p]

• still O(mn3) time total...

But, we can write: Ti = Ti-1 * Vi

Min-sum matrix product (MSP), a.k.a. distance product

x1
x2 x3

x4 x5p

q

Sunday, November 14, 2010

MSP (min-sum product) / APSP (all-pairs-shortest-paths)

C = A * B Cik = minj Aij + Bjk

MSP reduces to APSP and vice versa

SP distance matrix in graph with n nodes
E * E * E * E ... = En (transitive closure of n by n adjacency matrix)

Aij

Bjk(1, i)

(3, k)

(2, j)
Cik = d((1, i), (3, k))

n nodes n nodes n nodes

Sunday, November 14, 2010

MSP algorithms

O(n3) brute force algorithm, O(n3 / log n) via APSP

No known algorithm with O(n3-e) runtime in the worst case

• Strassen’s algorithm doesn’t work

Our result: O(n2 log n) expected time, assuming values are
independent samples from a uniform distribution

With tweaks this really works in practice

• On inputs with significant structure from real applications
in vision and natural language

Sunday, November 14, 2010

Basic algorithm
MSP(A, B)

1: S := ∅

2: Cik :=∞

3: Initialize Q with entries of A, B, C

4: while S does not contain all Cik do

5: item := remove-min(Q)

6: S := S ∪ item

7: if item = Aij then

8: for Bjk ∈ S relax(Cik, Aij + Bjk)

9: end if

10: if item = Bjk then

11: for Aij ∈ S relax(Cik, Aij + Bjk)

12: end if

13: end while

relax(Cik, v)

1: if v < Cik then

2: Cik := v

3: decrease-key(Q, Cik)

4: end if

1

MSP(A, B)

1: S := ∅

2: Cik :=∞

3: Initialize Q with entries of A, B, C

4: while S does not contain all Cik do

5: item := remove-min(Q)

6: S := S ∪ item

7: if item = Aij then

8: for Bjk ∈ S relax(Cik, Aij + Bjk)

9: end if

10: if item = Bjk then

11: for Aij ∈ S relax(Cik, Aij + Bjk)

12: end if

13: end while

relax(Cik, v)

1: if v < Cik then

2: Cik := v

3: decrease-key(Q, Cik)

4: end if

1

Sunday, November 14, 2010

Correctness

MSP(A, B)

1: S := ∅

2: Cik :=∞

3: Initialize Q with entries of A, B, C

4: while S does not contain all Cik do

5: item := remove-min(Q)

6: S := S ∪ item

7: if item = Aij then

8: for Bjk ∈ S relax(Cik, Aij + Bjk)

9: end if

10: if item = Bjk then

11: for Aij ∈ S relax(Cik, Aij + Bjk)

12: end if

13: end while

relax(Cik, v)

1: if v < Cik then

2: Cik := v

3: decrease-key(Q, Cik)

4: end if

Assume entries in A and B are non-negative

Let j = argminAij + Bjk

We always have Cik ≥ Aij + Bjk

So Aij and Bjk come off the queue before Cik

This implies we call relax(Cik, Aij + Bjk)

When Cik comes off the queue it equals Aij + Bjk

1

Sunday, November 14, 2010

Implementation

Maintain 2n lists

I[j]: list of i such that Aij in S

K[j]: list of k such that Bjk in S

Running time determined by
number of additions and
priority queue operations

MSP(A, B)

1: S := ∅

2: Cik :=∞

3: Initialize Q with entries of A, B, C

4: while S does not contain all Cik do

5: item := remove-min(Q)

6: S := S ∪ item

7: if item = Aij then

8: for Bjk ∈ S relax(Cik, Aij + Bjk)

9: end if

10: if item = Bjk then

11: for Aij ∈ S relax(Cik, Aij + Bjk)

12: end if

13: end while

relax(Cik, v)

1: if v < Cik then

2: Cik := v

3: decrease-key(Q, Cik)

4: end if

1

MSP(A, B)

1: S := ∅

2: Cik :=∞

3: Initialize Q with entries of A, B, C

4: while S does not contain all Cik do

5: item := remove-min(Q)

6: S := S ∪ item

7: if item = Aij then

8: for Bjk ∈ S relax(Cik, Aij + Bjk)

9: end if

10: if item = Bjk then

11: for Aij ∈ S relax(Cik, Aij + Bjk)

12: end if

13: end while

relax(Cik, v)

1: if v < Cik then

2: Cik := v

3: decrease-key(Q, Cik)

4: end if

1

Sunday, November 14, 2010

Runtime Analysis

Let N = # pairs Aij, Bjk that are combined before we stop

(both Aij, Bjk come off the queue)

• N additions

• 3n2 insertions

• at most 3n2 remove-min

• at most N decrease-key

Lemma: E[N] = O(n2 log n)

Using a Fibonacci heap the expected time is O(n2 log n)

Sunday, November 14, 2010

Main lemma
Let N = # pairs Aij, Bjk that come off the queue

If entries in A and B are iid samples from a uniform
distribution over [0,1] then E[N] = O(n2 log n)

proof sketch:

Let Xijk = 1 if Aij and Bjk both come off the queue

Proof: Let j = argminj Aij + Bjk. Clearly we always have Cik ≥ Aij + Bjk. It suffices to show

that when Cik is removed from Q we have Cik = Aij + Bjk. Since the entries in A and B are

non-negative Aij , Bjk ≤ Cik and both Aij and Bjk will be removed from Q before Cik. This implies

that when Cik is removed from Q we have Cik = Aij + Bjk. �

Theorem 2 If all entries in A and B are i.i.d. samples from a uniform distribution then Algorithm

1 can be implemented to run in O(n2 log n) expected time.

Proof: First note that we can assume the entries in A and B come from a uniform distribution

over [0, 1] by scaling them and then re-scaling the resulting C accordingly.

In practice we can keep two arrays of linked lists I and K such that I[j] stores indices i for

which Aij is in S while K[j] stores indices k for which Bjk is in S. Then, when an entry is removed

from Q we can find the entries in S that combine with it in constant time per entry. For example,

when Aij is removed from Q we iterate over k in K[j]. Thus the running time of the algorithm is

dominated by the additions and priority queue operations.

Let N be the number of additions done by the algorithm. We perform O(n2) insertions and

remove-min operations, and O(N) decrease-key operations. Lemma 1 shows E[N] is O(n2 log n).

Using a Fibonacci heap we obtain O(1) insertion and decrease-key, and O(log n) remove-min. This

leads to the running time bound of O(n2 log n). �

Lemma 1 Let N be the number additions performed by Algorithm 1. If the entries in A and B

are i.i.d. samples from the uniform distribution over [0, 1] then E[N] is O(n2 log n)

Proof: Let C = A⊗B, and M be the maximum value in C. The algorithm only adds Aij and

Bjk if both are at most M . Otherwise at least one of Aij or Bjk will not be removed from Q before

the algorithm stops. Let Xijk = 1 if Aij ≤ M and Bjk ≤ M , and 0 otherwise. The number of

additions performed by the algorithm is N =
�

ijk Xijk.

Using linearity of expectation we have

E[N] =

�

ijk

E[Xijk] =

�

ijk

P (Xijk = 1).

First we show that M is small with high probability because each entry in C is the minimum of n

values. Then we use the fact that Aij and Bjk are both small with low probability. This will imply

that Xijk = 1 with very low probability (diminishing with n).

6

Minimum priority in Q is non-decreasing

Let M be maximum value in C

Xijk = 1 if Aij and Bjk are at most M

Sunday, November 14, 2010

1 correctness

foo

Assume entries in A and B are non-negative

Let j = argminAij + Bjk

We always have Cik ≥ Aij + Bjk

So Aij and Bjk come off the queue before Cik

This implies we call relax(Cik, Aij + Bjk)

When Cik comes off the queue it equals Aij + Bjk

2 runtime

foo

The probability that M is large is low

M ≥ � iff one Cik ≥ �

Cik ≥ � iff all Aij + Bjk ≥ �

P (Aij + Bjk ≥ �) = 1− �2/2 ≤ e−�2/2

P (M ≥ �) ≤ n2e−n�2/2 (union + independence)

The probability that Aij and Bjk are both small is low

P (Aij ≤ � ∧Bjk ≤ �) = �2.

P (Xijk = 1) ≤ n2e−n�2/2 + �2.

Pick � = 6 log n
n

P (Xijk = 1) ≤ 1+6 log n
n

E[N] ≤ n2(1 + 6 log n)

3 algorithms

1

Xijk = 1 if Aij and Bjk are at most M

Sunday, November 14, 2010

Improvements - normalizing the inputs

1) Subtract min value from each row of A and column of B
 (add back to C in the end)

2) Remove entries from I/K if we finish a row/column of C

3) (A* search)

Let a(j) be minimum value in column j of A

Let b(j) be minimum value in row j of B

• Put Aij into Q at priority Aij + b(j)

• Put Bjk into Q at priority Bjk + a(j)

Sunday, November 14, 2010

Practical issues

Fibonacci heap not practical (believe me, we tried)

Practical alternatives:

• Integer queue gives approximation algorithm

• Avoid queue by sorting A and B

- ok, but not as fast as integer queue

• Scaling method

- Avoids sorting

- exact, and fastest in practice

Sunday, November 14, 2010

Scaling method
1: Cik :=∞

2: T := t-min

3: while maxik Cik > T do

4: I[j] := {i | Aij ≤ T}

5: K[j] := {k | Bjk ≤ T}

6: for j ∈ {1 . . . n} do

7: for i ∈ I[j] do

8: for k ∈ K[j] do

9: Cik = min(Cik, Aij + Bjk)

10: end for

11: end for

12: end for

13: T := 2T

14: end while

2

Consider entries of A and B
that are at most T

If maximum entry in resulting
C is at most T we are done

Sunday, November 14, 2010

Experimental results with real data

0 200 400 600 800 1000

n = w × w

0

15

30

45

60

W
al

lt
im

e
(s

ec
on

ds
)

Image segmentation

naı̈ve method
method from [12]
Algorithm 1
Algorithm 2

Figure 4: Interactive image segmentation with an active contour model. Left: initial placement of

the contour and search neighborhoods for the control points. Center: final segmentation. Right:

running time as a function of the search space size using different MSP algorithms.

standard inference procedure requires O(mn3), where n = w2 is the number of possible positions

for each control point. Figure 4 shows a typical result and running times obtained using different

methods for MSP as a subroutine. Using the näıve method for MSP is computationally equivalent

to classical dynamic programming solutions for this problem.

4.2 Point Pattern Matching

Many of the problems suggested in [12] involved finding maps between two point sets. Examples

include OCR [6], pose reconstruction [17], SLAM [15], and point pattern matching [13].

Here we search for a ‘template’ s with m points within a ‘target’ t containing n points. The

target consists of a (transformed) copy of the template, together with noise and outliers. An

example is shown in Figure 5. The objective function in question takes the form

f
∗ = argmin

f

�

(i,j)∈E

g(||si − sj ||, ||f(si)− f(sj)||),

where f maps points in s to points in t and for (i, j) ∈ E we have a robust elasticity constraint

defined by g, enforcing distances to be preserved to the extent possible.

Solving for f∗ corresponds to MAP estimation in a graphical model with topology defined by

E. It was shown in [12] that in many applications E forms a tractable model. We use the model

from [13] shown in Figure 1(c). For inference we run loopy belief propagation for 25 iterations in

12

naive method uses O(n3) brute-force algorithm MSP

[12] gives an O(n2.5) algorithm with (weaker) assumption that
entries come in random order

Algorithm 1: integer queue (approximate)

Algorithm 2: scaling method (exact)

Sunday, November 14, 2010

Other Applications

MAP estimation with pairwise graphical model

• m variables, n possible values for each variable

Tree-width 2 model

• m MSP of n by n matrices

• O(mn3) -> O(mn2 log n)

E(x1, . . . , xm) =
m�

i=1

Vi(xi) +
�

(i,j)∈E

Vij(xi, xj)

example, each location in the grid could correspond to an
image pixel. Normally we use a coarser grid, with about
60! 60 locations independent of the image size. In the
discrete setting, g maps each vertex vi to a location li 2 G.
For a polygon with n vertices, the number of different such
maps is jGjn. Our matching algorithm finds an optimal map
in time OðnjGj3Þ, which is exponentially better than just
trying all possible maps.

The algorithm uses a technique known as nonserial
dynamic programming (see [1] and [4]). Typical applica-
tions of dynamic programming rely on a chain structure.
Nonserial dynamic programming generalizes the standard
technique to certain problems defined on decomposable
graphs that do not have large cliques. As described in
Section 2, there is a nice order of elimination for the vertices
and triangles of a triangulated simple polygon (a perfect
elimination scheme). The order is such that when eliminat-
ing the ith vertex, it is in exactly one triangle of the current
triangulated polygon. Fig. 9 shows a triangulated polygon
with vertices labeled by their order in a perfect elimination
scheme. Such an order can be computed in time linear in the
number of polygon vertices using one of the algorithms in
[17]. Note that, in general, there are several valid elimina-
tion orders and the matching algorithm described here
works with any of them.

The algorithm works by sequentially eliminating the
vertices and triangles of a triangulated polygon. As an
illustration, lets consider how we would eliminate v1 when
matching the example in Fig. 9 to an image. This vertex is in
a single triangle (with v2 and v10), so its location in the
image, gðv1Þ, contributes to a single term in an energy
function of the form in (1). Thus, we can compute an
optimal location for v1 as a function of a pair of particular
locations for v2 and v10. Now, the quality of the best location
for v1 can be associated with the placements of v2 and v10.
At this point, we remove v1 and its triangle from the model
and solve the matching problem for a smaller triangulated
polygon. Intuitively, the energy function is updated so that
the cost for the triangle ðv1; v2; v10Þ is taken into account
with the placement of v2 and v10 alone.

Let ðv1; . . . ; vnÞ be a perfect elimination scheme for the
vertices of the triangulated polygon. After eliminating

v1; . . . ; vi$1, vertex vi is in exactly one triangle, say with
nodes vj and vk. The two nodes vj and vk are the parents of
vi, which we indicate by letting p½i&:a ¼ j and p½i&:b ¼ k. We
compute the cost of the best placement for vi as a function of
the locations for vj and vk. This cost is stored in V ½j; k&ðlj; lkÞ.
At this point we can associate the costs in V ½j; k& with the
placement of vertices vj and vk and forget about vertex vi.
When we get to the last two vertices, we can solve for their
best locations and trace back to find the best locations of the
other vertices, as is typical in dynamic programming.
Pseudocode for this procedure is shown in Algorithm 1.

Algorithm Match(I)
1. for i ¼ 1 to n$ 2
2. (* Eliminate the ith vertex *)
3. j p½i&:a
4. k p½i&:b
5. for each pair of locations lj and lk in G
6. V ½j; k&ðlj; lkÞ minli2G cijkðli; lj; lk; IÞ þ V ½i; j&ðli; ljÞ þ

V ½i; k&ðli; lkÞ
7. Pick ln$1 and ln minimizing V ½n$ 1; n& and trace back to
obtain the other optimal locations.

Algorithm 1: Find the best embedding of a shape in an image.

This algorithm runs in Oðnm3Þ time and uses Oðnm2Þ
space, where n is the number of vertices in the polygon
and m is the number of possible locations for each vertex.
In practice, we can speed up the algorithm by noting that
given positions lj and lk for the parents of the ith vertex,
there is a unique similarity transformation taking vj and vk
to the respective locations. This similarity transformation
defines an ideal location for vi. We only need to consider
locations for vi that are near this ideal location because
locations that are far introduce too much deformation in
the model. With this heuristic, the running time of the
algorithm is essentially Oðnm2Þ.

Note that, in line 7 of the algorithm, each entry in
V ½n$ 1; n& gives the cost of an optimal embedding for the
deformable shape given particular locations for vn$1 and
vn. We can detect multiple instances of a shape in an
image by finding local minima in V ½n$ 1; n&. We simply
trace back from each local minima that has value below a
fixed threshold.

3.4 Experimental Results

We present experimental results of our matching algorithm
on both medical and natural images. In each case, we used a
binary picture of the target object to build a triangulated
polygon template. From the binary picture, we computed a
polygonal approximation of the object and then computed a
Delaunay triangulation of the resulting polygon. For the
matching results shown here, we used a grid of 60! 60
possible locations in the image for the vertices of the
polygon. The matching algorithm took approximately five
minutes when running on a 1Ghz Pentium III machine.

Fig. 10a shows a model for the corpus callosum
generated from a manually segmented brain MRI. The best
match of the model to several images is shown in Fig. 11.
Note how these images have very low contrast and the
shape of the corpus callosum varies considerably across

214 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 2, FEBRUARY 2005

Fig. 9. A perfect elimination scheme for the vertices of a triangulated

simple polygon.

Sunday, November 14, 2010

Language modeling

Something between
bigram and trigram model

• Bigram: P(xt | xt-1)

• Trigram: P(xt | xt-1, xt-2)

• Skip-chain: P(xt | xt-1, xt-2) ~ q1(xt, xt-1) q2(xt, xt-2)

Task: recover a sentence from noisy data

Assume each character is corrupted with probability c

Use skip model as prior over sentences P(x)

Given corrupted text y, find x maximizing P(x|y) ~ P(y|x)P(x)

(a) Skip-chain model

(b) Triangulated cycle (c) Point-matching model

Figure 1: Some typical graphical models with third-order cliques but only pairwise factors.

Let A and B be two n × n matrices. The min-sum product (MSP) of A and B is the n × n

matrix C = A⊗B defined by

Cik = min
j

Aij + Bjk; (1)

this is exactly matrix product in the min-plus (tropical) semiring.

Standard algorithms for MAP estimation with a tree-width 2 model take O(mn3) time, where

m is the number of variables in the model and n is the number of possible values for each variable.

For models that contain only pairwise factors inference can be done in O(mf(n)) time if we have

an algorithm for computing MSP of n× n matrices in O(f(n)) time.

The brute-force approach for computing MSP of n×n matrices takes O(n3) time. Unfortunately

there is no known method that improves this bound by a significant amount in the worst case. An

important difference from the standard matrix product is that the minimum operation does not

have an inverse. This means that fast matrix multiplication methods that rely on a ring structure,

such as Strassen’s algorithm [18], can not be directly applied to compute MSP.

Our main result is an algorithm for MSP that runs in O(n2 log n) expected time, assuming the

entries of each matrix are independent samples from a uniform distribution. Our basic algorithm

uses a Fibonacci heap (or similar structure) and is mainly of theoretical interest. The algorithm can

also be implemented with an integer queue to obtain a practical solution up to an additive error.

We also describe an alternative algorithm that computes exact values using a scaling technique

and avoids any complex data structure. Our experimental results show the methods perform well

in three different applications: interactive image segmentation with active contours, point pattern

matching with belief propagation and text denoising with skip-chain models.

2

Sunday, November 14, 2010

Language modeling

0 200 400 600 800 1000

n (size of target graph)

0

1000

2000

3000

4000

W
al

lt
im

e
(s

ec
on

ds
)

2D Graph matching

naı̈ve method
method from [12]
Algorithm 1
Algorithm 2

Figure 5: Point pattern matching experiment. Left: tem-

plate and a scene with noise and outliers. Right: running

times for inference using different algorithms.

81 1108

n (alphabet size)

0

15

30

45

W
al

lt
im

e
(s

ec
on

ds
)

Skip-chain text denoising

naı̈ve method
method from [12]
Algorithm 1
Algorithm 2

81 107
0.00

0.08

0.16

Figure 6: Text denoising exper-

iment with different languages

(box is closeup of bottom left).

the loop of ‘width’ 2. This takes O(mn3) time per iteration using the näıve MSP method. The

performance using different MSP methods is shown in Figure 5.

4.3 Skip-Chain Models for Text Denoising

In [19], it was observed that powerful inference procedures can be developed by introducing long-

range dependencies into pairwise graphical models.

In this experiment, we adapt a simple Markov model for text denoising (typo correction): we

model not only the relationship between neighboring characters, but also the relationship between

characters at distance two. This leads to the graphical model shown in Figure 1(a).

For a sequence of length m drawn from an alphabet with n characters the objective we use is

x∗(t) = argmax
x

m�

i=1

�
p(1− I{ti}(xi)) + (1− p)I{ti}(xi)

�

� �� �
noise model

m−1�

i=1

q1(xi, xi+1)
m−2�

i=1

q2(xi, xi+2)

� �� �
prior

.

Here t is our input text, with each character corrupted with probability p, and IA(x) is the indicator

function that equals 1 if x ∈ A and 0 if x �∈ A. Our priors are extracted from the statistics of

sentences in the Leipzig corpora [16]. Inference again requires O(mn3) operations using the näıve

MSP method. The performance using different methods is shown in Figure 6. The largest language

we consider is Korean with 1108 characters.

13

(a) Skip-chain model

(b) Triangulated cycle (c) Point-matching model

Figure 1: Some typical graphical models with third-order cliques but only pairwise factors.

Let A and B be two n × n matrices. The min-sum product (MSP) of A and B is the n × n

matrix C = A⊗B defined by

Cik = min
j

Aij + Bjk; (1)

this is exactly matrix product in the min-plus (tropical) semiring.

Standard algorithms for MAP estimation with a tree-width 2 model take O(mn3) time, where

m is the number of variables in the model and n is the number of possible values for each variable.

For models that contain only pairwise factors inference can be done in O(mf(n)) time if we have

an algorithm for computing MSP of n× n matrices in O(f(n)) time.

The brute-force approach for computing MSP of n×n matrices takes O(n3) time. Unfortunately

there is no known method that improves this bound by a significant amount in the worst case. An

important difference from the standard matrix product is that the minimum operation does not

have an inverse. This means that fast matrix multiplication methods that rely on a ring structure,

such as Strassen’s algorithm [18], can not be directly applied to compute MSP.

Our main result is an algorithm for MSP that runs in O(n2 log n) expected time, assuming the

entries of each matrix are independent samples from a uniform distribution. Our basic algorithm

uses a Fibonacci heap (or similar structure) and is mainly of theoretical interest. The algorithm can

also be implemented with an integer queue to obtain a practical solution up to an additive error.

We also describe an alternative algorithm that computes exact values using a scaling technique

and avoids any complex data structure. Our experimental results show the methods perform well

in three different applications: interactive image segmentation with active contours, point pattern

matching with belief propagation and text denoising with skip-chain models.

2

naive method takes O(mn3)

m is the length of the sentence

n is the alphabet size

Sunday, November 14, 2010

Point pattern matching

0 200 400 600 800 1000

n (size of target graph)

0

1000

2000

3000

4000

W
al

lt
im

e
(s

ec
on

ds
)

2D Graph matching

naı̈ve method
method from [12]
Algorithm 1
Algorithm 2

Figure 5: Point pattern matching experiment. Left: tem-

plate and a scene with noise and outliers. Right: running

times for inference using different algorithms.

81 1108

n (alphabet size)

0

15

30

45

W
al

lt
im

e
(s

ec
on

ds
)

Skip-chain text denoising

naı̈ve method
method from [12]
Algorithm 1
Algorithm 2

81 107
0.00

0.08

0.16

Figure 6: Text denoising exper-

iment with different languages

(box is closeup of bottom left).

the loop of ‘width’ 2. This takes O(mn3) time per iteration using the näıve MSP method. The

performance using different MSP methods is shown in Figure 5.

4.3 Skip-Chain Models for Text Denoising

In [19], it was observed that powerful inference procedures can be developed by introducing long-

range dependencies into pairwise graphical models.

In this experiment, we adapt a simple Markov model for text denoising (typo correction): we

model not only the relationship between neighboring characters, but also the relationship between

characters at distance two. This leads to the graphical model shown in Figure 1(a).

For a sequence of length m drawn from an alphabet with n characters the objective we use is

x∗(t) = argmax
x

m�

i=1

�
p(1− I{ti}(xi)) + (1− p)I{ti}(xi)

�

� �� �
noise model

m−1�

i=1

q1(xi, xi+1)
m−2�

i=1

q2(xi, xi+2)

� �� �
prior

.

Here t is our input text, with each character corrupted with probability p, and IA(x) is the indicator

function that equals 1 if x ∈ A and 0 if x �∈ A. Our priors are extracted from the statistics of

sentences in the Leipzig corpora [16]. Inference again requires O(mn3) operations using the näıve

MSP method. The performance using different methods is shown in Figure 6. The largest language

we consider is Korean with 1108 characters.

13

(a) Skip-chain model

(b) Triangulated cycle (c) Point-matching model

Figure 1: Some typical graphical models with third-order cliques but only pairwise factors.

Let A and B be two n × n matrices. The min-sum product (MSP) of A and B is the n × n

matrix C = A⊗B defined by

Cik = min
j

Aij + Bjk; (1)

this is exactly matrix product in the min-plus (tropical) semiring.

Standard algorithms for MAP estimation with a tree-width 2 model take O(mn3) time, where

m is the number of variables in the model and n is the number of possible values for each variable.

For models that contain only pairwise factors inference can be done in O(mf(n)) time if we have

an algorithm for computing MSP of n× n matrices in O(f(n)) time.

The brute-force approach for computing MSP of n×n matrices takes O(n3) time. Unfortunately

there is no known method that improves this bound by a significant amount in the worst case. An

important difference from the standard matrix product is that the minimum operation does not

have an inverse. This means that fast matrix multiplication methods that rely on a ring structure,

such as Strassen’s algorithm [18], can not be directly applied to compute MSP.

Our main result is an algorithm for MSP that runs in O(n2 log n) expected time, assuming the

entries of each matrix are independent samples from a uniform distribution. Our basic algorithm

uses a Fibonacci heap (or similar structure) and is mainly of theoretical interest. The algorithm can

also be implemented with an integer queue to obtain a practical solution up to an additive error.

We also describe an alternative algorithm that computes exact values using a scaling technique

and avoids any complex data structure. Our experimental results show the methods perform well

in three different applications: interactive image segmentation with active contours, point pattern

matching with belief propagation and text denoising with skip-chain models.

2

Map points in template to points in target
preserving distances between certain pairs

template

target

Sunday, November 14, 2010

Parsing

Parsing with stochastic context-free grammars

• O(n3) with dynamic programming (CKY)

• Reduces to MSP with Valiant’s transitive closure method

RNA Secondary structure prediction

• O(n3) dynamic programming

• Reduces to parsing with special grammar

Sunday, November 14, 2010

Some open questions

Why does it actually work?

Characterize what “normalization” is doing

How does it relax assumptions on input distribution

O(n3-e) worst case (randomized) algorithm for MSP

Can we get a practical parsing method?

Avoid transitive closure machinery?

Sunday, November 14, 2010

