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15 years ago, CS664 at Cornell

Active contour models (snakes) for interactive segmentation
Goal: trace the boundary of an object
User 1nitializes a contour close to an object boundary
Contour moves to the boundary

® Attracted to local features (intensity gradient)

® Internal forces enforce smoothness
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Optimization problem

m control points

n possible locations for each point (blue regions)
m
minimize:  F(zq, ..., z,,) = Z Vi, Tis1)
i=1
x; = location of i-th control point

Many reasonable v, _ 1
choices for V (P> 4) grad(/, p, q)

- lp — ql|?
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Dynamic programming for open snakes

!
EE X5

E m—1
X1 E(ajlv Z ‘/:L Cmez—l—l
1=1
Shortest path problem

m tables with n entries each

Ti[p] = cost of best placement for first i points with x; = p
® Tilp]=ming Tislg] + Vi(q, p)
® Pick best location in 73, trace-back

O(mn?) time (optimal in a reasonable sense)
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CS664 Homework assignment:
Implement closed snakes

pft’s solution:
® (Consider one control point x;
® [Fixing its location leads to open snake problem
® Try all n possibilities for x;: O(mn”) time total
Is this a good solution?
® pit: I think this 1s the best possible

® rdz: Are you sure?
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An alternative solution

Single DP problem - 4t
= X4 X5
m tables with #n? entries X2 X3

X1
Ti[p, g] = cost of best placement for first i points
withx;=p,xi=¢q

® Tilp, ql =min, Tiilp, r] + Vi(r, q)
® compute 7; from 7;i.; in O(n’) time
® Optimal position for x; minimizes T,[p, p]
® still O(mn’) time total...
But, we can write: T =Ti.; * Vi

Min-sum matrix product (IMSP), a.k.a. distance product

Sunday, November 14, 2010



MSP (min-sum product) / APSP (all-pairs-shortest-paths)

C=A*B Cik:mininj+Bjk
MSP reduces to APSP and vice versa

SP distance matrix in graph with n nodes

E*E"E™E ... = E" (transitive closure of n by n adjacency matrix)
n nodes n nodes n nodes

Ca=d((1,1),(3,k) @ O @)
® A .(Z,J) ®
(1, ) 0/ @ B ©
O O O

O @ O (3, k)
O O O
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MSP algorithms

O(n°) brute force algorithm, O(n°/ log n) via APSP
No known algorithm with O(n7-¢) runtime in the worst case
® Strassen’s algorithm doesn’t work

Our result: O(n?log n) expected time, assuming values are

independent samples from a uniform distribution
With tweaks this really works in practice

® On inputs with significant structure from real applications

in vision and natural language
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Basic algorithm

MSP(A, B)
1. S:=0
2: O := 00

3: Initialize () with entries of A, B, C

4: while S does not contain all C;; do

5:

6:

7:

8:

9:

10:

11:

12:

item := remove-min(Q))
S = S Uitem
if item = A;; then

for B, € S relax(Cix, Aij + Bjk)
end if
if «tem = Bj; then

for A;; € S relax(Ciy, Aij + Bji)
end if

13: end while

1:

2:

3:

4.

relax(Cix, v)

if v < Cj, then
Cik :=v
decrease-key(Q, C;i)
end if

Sunday, November 14, 2010



Correctness

Assume entries in A and B are non-negative

Let j = argmin A;; + By,

We always have C;, > A;; + B

So A;; and Bji come off the queue before Cjy
This implies we call relax(Cs, Aij + Bjk)

When Cj, comes off the queue it equals A;; + By
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Implementation

MSP(A, B)

1: S =9

2: O := 00

3: Initialize () with entries of A, B, C

4: while S does not contain all C;; do

5:

6:

7:

8:

9:

10:

11:

12:

item := remove-min(Q))
S = S Uitem
if item = A;; then

for B, € S relax(Cix, Aij + Bjk)
end if
if item = Bj; then

for A;; € S relax(Ciy, Aij + Bji)
end if

13: end while

relax(Cjg, v)

1: 1f v < Czk then
2: Ozk =0
3:  decrease-key(Q, Cjr)

4: end if

Maintain 2n lists
I[j]: list of 7 such that A;; in S
K[j]: list of k such that By in §

Running time determined by
number of additions and
priority queue operations
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Runtime Analysis

Let N = # pairs A;j, Bjx that are combined before we stop
(both A;;, Bjx come off the queue)

® /N additions

® 3n‘ Insertions

® at most 3n? remove-min

® at most N decrease-key
Lemma: E[N] = O(n? log n)

Using a Fibonacci heap the expected time 1s O(n? log n)
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Main lemma
Let N = # pairs A;j, Bjx that come off the queue

If entries 1n A and B are 11d samples from a uniform
distribution over [0,1] then E[N] = O(n? log n)

proot sketch:

Let X;ix = I it A;j and Bjx both come off the queue
EIN] =) E[Xg] =) P(Xjr=1).

ijk ijk

Minimum priority in Q i1s non-decreasing
Let M be maximum value in C

Xiix = 1 11 A;j and Bj are at most M
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Xiik = 1 1t A;j and Bj, are at most M
The probability that M is large is low
M > e iff one Cj > €
Cip > eiff all A;; + Bjj, > ¢
P(Ajj+Bjr>e€)=1—¢*/2< e /2

P(M > €) < n2e "¢/2 (union + independence)

The probability that A;; and Bj, are both small is low
P(A;j <eNBj, <e)=¢.

E[N] < n?(1+6logn)
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Improvements - normalizing the inputs

1) Subtract min value from each row of A and column of B
(add back to C 1n the end)

2) Remove entries from //K 1f we finish a row/column of C
3) (A* search)
Let a(j) be minimum value in column j of A
Let b(j) be minimum value in row j of B
® Put A; into Q at priority A;; + b(j)

® Put Bj; into Q at priority Bjx + a(j)
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Practical 1ssues

Fibonacci heap not practical (believe me, we tried)
Practical alternatives:
® [nteger queue gives approximation algorithm
® Avoid queue by sorting A and B
- 0k, but not as fast as integer queue
® Scaling method
- Avoids sorting

- exact, and fastest 1n practice
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Scaling method

1: Cjp := o0

2: T = t-man . .
Consider entries of A and B

3: while max;, Ci, > T' do that are at most T

s K[j]i={k| By < T} If maximum entry in resulting

| C 1s at most T we are done
6: forje{l...n} do

7: for ¢ € I[j] do

8: for k € K|j] do

9: Cir = min(Cix, Aij + Bjk)
10: end for

11: end for

12: end for
13: T := 27T

14: end while
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Experimental results with real data
Image segmentation

/

—e naive method

+—+ method from [12]
A—4A Algorithm 1
BT o—o Algorithm 2

60 |-

Wall time (seconds)

| |
200 400 600 800 1000

0
0
n=wXxXuw

naive method uses O(n’) brute-force algorithm MSP

[12] gives an O(n?~) algorithm with (weaker) assumption that

entries come 1n random order
Algorithm 1: integer queue (approximate)

Algorithm 2: scaling method (exact)
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Other Applications

MAP estimation with pairwise graphical model
® s variables, n possible values for each variable
E(x1,...,x ZV T;) + Z Vii(zi, xj)
(4,5)€E

Tree-width 2 model :

10 9

® m MSP of n by n matrices 2

® (O(mn’) -> O(mn? log n) 12 4
3
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Language modeling

Something between
bigramand trigrammodel @ @ ® © G G G

® Bigram: P(x; | x:1)

® Trigram: P(x: | xi1, Xt-2)

® Skip-chain: P(x; | xr1, x-2) ~ q1(xs, Xt-1) g2(Xt, X1-2)
Task: recover a sentence from noisy data
Assume each character 1s corrupted with probability ¢
Use skip model as prior over sentences P(x)

Given corrupted text y, find x maximizing P(xly) ~ P(ylx)P(x)
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Language modeling

Skip-chain text denoising

v method . naive method takes O(mn?)

@ sl + + meth(?d from [12]
=l o Acoritm m is the length of the sentence
)
L 30}
I n is the alphabet size
—_ o .
g 15_0.08—% éé géé A

0 _8.1. 11|08
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Point pattern matching

Map points in template to points in target
preserving distances between certain pairs (o) Point-matching model

2D Graph matching

4000 F
X —e naive method
template :-.,,';.:.;:::.\ — +—+ method from [12]
© 3000 [ A=A Algorithm 1
c o0s ° ceq S e—e Algorithm 2
e 0 e ()]
®e ° o? * g)/
e o 2000
BV =
.‘ ..‘..' o —_—
AR A S 1000
¢ 8
8 '... Y s
0
target 0 200 400 600 800 1000

n (size of target graph)
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Parsing

Parsing with stochastic context-free grammars

® ((n’) with dynamic programming (CKY)

® Reduces to MSP with Valiant’s transitive closure method

RNA Secondary structure prediction
® ((n’) dynamic programming

® Reduces to parsing with special grammar
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Some open questions

Why does it actually work?
Characterize what “normalization” 1s doing

How does it relax assumptions on input distribution

O(n3-¢) worst case (randomized) algorithm for MSP

Can we get a practical parsing method?

Avoid transitive closure machinery?
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