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Priors for Vision
e Markov models are widely used 1n computer vision
- Natural model for curves and 1images
- Tractable learning and inference
e Markov models capture local properties/regularities
- often not enough
e Multiscale representations
- Can capture local properties at multiple resolutions
- Lead to rich models with a “low-dimensional” parameterization

- (sometimes) Manageable computation



Bayesian Framework

We observe y (curve, image)

Hidden variables x (curve, image, class)

Inference using Bayes rule

- plxy) ~p(x) p(ylx)

Challenges

- X, y are a high-dimensional objects (curve, 1image)

- Efficient inference and learning



Shapes / Curves

e x=2D curve

® classification

- p(x|c) for each class ¢ @ 7 8

- plclx) ~ p(x|c)p(c)

® Jocalization/detection
- 1mage y

- plxy) ~ plx) p(yix)




Markov models for curves

X2 M3 x4

e Sequence of control points x A
e Markov model captures local geometric properties
- smooth, tends to curve to the left, etc.

e Often fails to capture important global geometric properties
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Random deformations with Markov model
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e Small local changes lead to large global change
e Markov models suffer from drift

e Give up long range dependencies to allow for local variation



High order Markov models
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® k-th order model A ’

- p(xix1,....Xk1)
-~ Number of parameters ~ O(|X]¥)
- Complexity of inference ~ O(|X]¥)

- Still suffers from drift, even with reasonably large k



Multiscale sequence model

e C(Capture local properties at multiple resolutions
- Original sequence xo
- Subsample xp to get x;, x> .

- local property of x> = non-local property of xo
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Comparing sequence models

Graphical model (MRF) Junction Tree

i o 3 4 5 6 7 8 9 1,2 23 34 45 56 67 78 89
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Factorizations

1,23 234 345 456 56,7 6,78 7,89

p(1,...,T9) = p(x1, T2)p(T3|T1, T2)p(T4|T2, ¥3)p(T5|T3, T4)p(T6| T4, T5) - - .

1,5,9

p(T1,-.-,T9) = p(T1, T9)p(T5|T1, To)p(T3|T1, T5)p(T2|T1, 3)p(T4|T3, T5) - .-



Multi-Resolution Trees

o Willsky et al.
e New variables represent sequence at coarser resolutions

® Prior defined by a tree MRF on Multi-Resolution representation

;T ’p 1 2 3 4 5 6 7 8 9
i 2 3 4 5 6 7 8 f f

MR tree MS sequence




Closed curves / Cyclic sequences
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e Both graphs have tree-width 2

- Tractable inference ~ O(|X])
- Reasonable number of parameters ~ O(|.X]°)

e Multiscale model captures global shape properties



Random deformations
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Multiscale model does a good job capturing
global shape properties - less drift with similar deformation



Shape recognition

Swedish leaf dataset
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classification
, 15 species
Multiscale model 96.28
75 examples per species
Inner distance 94.13

(25 training, 50 test)
Shape context 88.12




Shape Detection

template
defining
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Images

e MRF models widely used to model images
e Applications:
® 1mage restoration: clean picture 1s piecewise smooth

® 1mage segmentation: foreground mask 1s spatially coherent
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p(x) = Ising model



Binary images

p(x) = Ising model




Contour maps

Berkeley Segmentation Dataset
® x is a binary image
- pixel 1s “on” if contour goes through it
e Lots of regularities
- Continuity, smoothness, closure, parallel lines, symmetries

e How can we build a reasonable model for p(x)?



Fields-of-Patterns

® [.ocal property of x ~ binary pattern in 3x3 window
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® Look at local properties at multiple resolutions

® [.ocal property of coarse 1image reflects global properties
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Single-scale model

1
e Energy model p(x) = EG_E(CU) E

- Look at 3x3 blocks of pixels b E |

- Each block has one of 512 patterns H:l

P =y v (o] ]

- Vs an array of 512 costs

e (Captures continuity, frequency of 1s, frequency of junctions

e But no smoothness, parallelism, closed curves, etc.



Multi-scale model

e OR pyramid
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- x™!is a coarsening of x’

e [.00k at 3x3 blocks at all resolutions
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Frequency of Patterns (BSDS)
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Coarse patterns (BSDS)

level 4 24x24

= P

level 5 48x48

i

F




Samples from the prior p(x)
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Inference

e Inference with MRF generally hard
e Singlescale FOP
- hard but model is local
® (ibbs sampling
e [oopy BP
® Multiscale FOP

- model not local on x but local on pyramid



G1bbs sampling

e
o

e Repeatedly update pixels/blocks 1

- Sample new value for x, given rest of x
- Requires energy difference between x, = 0 and x, = 1
e Efficient computation using multiscale representation
- Change 1n x, affects a small number of auxiliary variables

- Energy difference is local over x/ ... x%



Maximum Likelithood Estimation

pla) = e P B@) = w6

¢(x) : vector of counts of each pattern at each scale
W : vector of costs
Training examples x;,..., X»

Negative log-likelihood 1s convex

MLE model: £, o(x)] = P(x5)

- expected freq of each pattern = average freq in training data



Stochastic Gradient Descent

w' = w+n(Ep[p(x)] — ¢(xi))

e [Estimate expectation by sampling from p

o Mix MCMC simulation with gradient descent

- Let M be Markov chain with stationary distribution p

- Maintain m states s,..., Sm~ p(x)

e Update model w' = w + n(p(s;) — d(x;))

® Evolve sy,..., smaccording to M for a few steps



Contour completion
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“Stochastic completion field” MAP



Contour completion




completion/restoration
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completion/restoration

11d noise
20% tlipped
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Summary

Standard Markov models capture local properties

MS models can capture local properties at multiple resolutions
Local-property of coarse x = global property of x

Future directions

- coarse-to-fine inference

- non-binary 1mages

- data models



