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Abstract

We present an approach to computing a curve atlas
based on deriving a correspondence between two curves.
This correspondence is based on a notion of an alignment
curve and on a measure of similarity between the intrinsic
properties of the curve, namely, length and curvature. The
optimal correspondence is found by an efficient dynamic-
programming method. This is then used to compute an av-
erage for a set of curves and applied to computing the av-
erages of bone shapes and corpus callosum as examples,
towards constructing a computational atlas. The proposed
notion of alignment also leads to a registration method,
which is illustrated with several examples.

1 Introduction

This paper presents a method to construct the average
of 2D shape outlines (curves) using their intrinsic proper-
ties. A computational framework for constructing an av-
erage curve and for characterizing the deviations from the
average has a wide variety of applications in medical imag-
ing. For example, in comparing the anatomy of a sample
medical structure to a population of similar structures, the
average curve represents the average anatomy. This can
be used for measuring differences in anatomy between dis-
eased/healthy, male/female populations, and across a range
of ages. Correlating “abnormal” deviations from the av-
erage anatomy with diseased states can potentially lead to
diagnostic measures. The current clinical language for de-
scribing “abnormal” shape is limited to a simple set of mea-
surements in the form of simple functions of length, areas,
volumes, ����� [15].

A number of recent approaches have jointly led
to the emergence of the field of “computational neu-
roanatomy” [10], with the goal of capturing the average
shape of medical structures of interest and quantifying free-
form variations. Bookstein [4] uses a thin-plate spline
method based on landmarks to compare the shape of corpus
callosum in the human brains. Pizer et al. [9] have proposed

the “deformable shape loci” model that represents the shape
as a graph of boundary and medialness points. Shape dif-
ferences are then measured as the squared distance of the
properties of the links. Davatzikos et al. [7] have proposed
an interesting two-step approach for deforming brain im-
ages. First, a one-to-one correspondence between points
on the boundaries of the two images is computed, and in
the second step an elastic warping is done so that the corre-
sponding points are aligned. This approach assumes that the
correspondence between boundary points can be found by
uniform scaling and and bending, which can fail in “abnor-
mal” brains. Taylor et al. [16] use “Active Shape Models”
which represent the shape as a mean (average) shape plus a
set of linearly independent variation modes that are derived
using a training set. These models are effective in a vari-
ety of applications [16]. However, they do not adequately
represent low frequency (for ��� ��� , diseased) states. Chris-
tensen et al. [12] superimpose an extrinsic coordinate sys-
tem on the anatomy and model its displacement field to cap-
ture shape variations of human brains. They use the images
generated from a normal subject as the anatomical “text-
book”, and compute the transformation required to deform
the textbook into the images of the other subjects. Average
anatomy is then computed by applying the average trans-
formation to the textbook. This approach penalizes large
deformations, and is not suitable for images that are very
different. Bakircioglu et al. [1] have proposed to match
brain surfaces by matching the Frenet distances of extremal
curvature lines. The curve matching is restricted to be dif-
feomorphic, which rules out deletion of a curve segment,
necessary in modeling diseased state.

Another important application of curve matching in
medical imaging is tracking the motion of anatomical struc-
tures. Duncan et al. [8] and Cohen et al. [5] have used a
bending energy minimization method to track the left ven-
tricular endocardial motion and mitral valve, respectively.
See Younes [18] for a similar approach. Tagare et al. [17],
point out the inherent asymmetry of the above approaches,
and propose a symmetric method which penalizes differ-
ences in local orientation for tracking left ventricle in dias-
tole and systole.
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Our approach to computing the average shape of 2D out-
lines (curves) is based on using the intrinsic properties of
the outlines as follows. First, the optimal alignment be-
tween two curves is defined based on the intrinsic proper-
ties of the curves, Section 2. Second, the average curve is
computed by averaging the corresponding segments on the
two curves, using the optimal alignment between the two
curves, Section 3. The correspondence between the curves
is also be used to register curves,

� � � � , to recover the trans-
formation parameters (translation vector, rotation angle and
global scaling) of the two curves, Section 4. Section 5 dis-
cusses how the average outline of the radius bone of male
and female subjects can be compared.

2 Curve Matching

This section discusses the problem of matching and
aligning two curves �������	�
����������
���������� , ��������
���� and�� � ��!�"�#� ���� ��!�$
 ���� ��!��� , ��%�&����
 ��'� , where � is arc length, �
and � are coordinates of each point, � is length, and each
is similarly defined for

�� . A central premise of this ap-
proach is that the “goodness” of the optimal match is the
sum of “goodness” of the optimal matches between two cor-
responding subsegments. This allows an energy functional
to convey the goodness of a match as a function of the cor-
respondence or alignment of the two curves [5, 18, 7]. Let
a mapping � ,

�)( ����
����+*
����
 ��'�,
 � �����-� ��.

represent an alignment of the two curves. Cohen et al. [5]
use “bending” and “stretching” energies in a physical anal-
ogy similar to the one used in formulating active contours
or snakes [11]. Specifically, they compare the displacement
velocities and bending energies in the form of/ � � �0� 132544766 � � �� � ��!��89�������:�
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where A is the curvature along the curves and
��B� � ����� .

Younes [18] uses a similar functional which measures the
variation in the displacement vector (

8 *� �� ), leading to/ � � �+� 1 2 � �@E 8GF�� ; = �-> 1 2 � �H � ��!�7I � ������8 H �����:� ; = �J

where

H
and

�H
are the angles that the curves � and

��
make with the horizontal axis, respectively. Both these ap-
proaches are not invariant to the rotation of one curve with
respect to the other, and hence the optimal orientation must
be found as well. In addition, Cohen's method is not invari-
ant to sampling. We address both these issues below, but
first define some notation.
Definition: Let � 44 K E�L�M E:N,O denote the portion of the curve

from �QP to � ; and �
44SRTK E L M E N OUM K CE L M CE N OTV the restriction of the map-

ping � to � �JPW
�� ; � . Define a measure / on this alignment

B
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Figure 1. The cost of deforming an infinitesimal segmentXZY
to segment [X [Y , when the initial points and the initial

tangents are aligned (
X]\ [X , ^_�`B\ ^_ba` ), is related to the

distance
Y [Y , and is defined by c d [e�f d e c�g	hic d [j f d j c .

function,/ � � � 44�RTK E L M E N OkM K CE L M CE N OlV ( � 44<RUK E L M E N OTM K CE L M CE N OlV *#monp

which is inversely proportional to the goodness of the
match,

� � ��� , it denotes the cost of deforming � 44<K E L M E N O to�� 44�K CE�L:M CE�N�O .
We restrict this measure / to one which satisfies an ad-

ditivity property/ � � � 44�RUK EqL:M E:r,OTM K CE�L�M CE:r,OlV � / � � � 44�RTK E�L:M E�N�OUM K CEqL�M CE:NsO<V > / � � � 44SRTK E�N�M E�r�OUM K CE�N�M CE:r,OlV 
t � Pbu ��; u ��vw�9����
����x
 �� PDu ���; u ���vw�9����
 ��'� �
(1)

so that we can decompose the match process into a number
of smaller matches and write it as a functional/ � � � 44<RTK y M z.O<M K y M Cz.OlV � 1 zy / � � � 44�RTK E�M E n7{ E�O K |�R E�V�M |�R E n7{ E:VTOlV = � (2)

Then, the optimal match is given by
�~} ���Q�:�3���U�| / � � � 44�RTK y M z.OUM K y M Cz3OTV �

Definition: Let the distance between the two curves � and�� be defined as the cost of the optimal alignment of the two
curves. = �s� 
 ��0��� / � � } � �
Remark: It is clear that the distance function satisfies the
following suboptimal property for

��W� � � } ���$�,�$
 � ��F3
���
�� ,= �k� 44 K E L M E r O 
 �� 44�K CE L M CE r O �-� = �k� 44 K E L M E N O 
 �� 44�K CE L M CE N O ��> = �k� 44�K E N M E r O 
 �� 44�K CE N M CE r O � �
(3)

Consider two infinitesimal curve segments of ���s�����
and

��9� �� ���� of lengths
= � , = �� and curvatures A ,

�A , respec-
tively. Since we only compare the intrinsic aspects of the
curves, we can align these two curves so that � and

�� co-
incide, as well as tangents at � and

�� , ��+� and �� C� , respec-
tively, Figure 1. The cost of matching the curve segments is
related to the distance � �� , which we define as/ � � � 44lRTK E L M E N OUM K CE L M CE N OTV ��� = ��Z8 = �@�$>�?�� = �H 8 = H �S
 (4)



where ? is a constant related to the average size of
= � .

Then, the resulting functional is given by

/ � � � � 1 2 � 4444 = ��= � 8�F
4444 >5? 4444 = �H � ��!�= ��

= ��= � 8
= H �����= �

4444 � = �
� 1 2���44 ��� 8"F 44 > ? 44 �A�� ��!� � ������8�A������ 44���= � (5)

The first term in the functional penalizes “stretching” while
the second term penalizes “bending”. However, this formu-
lation of the curve matching problem is inherently asym-
metric. This is similar to the objection raised by Tagare
et al. [17] to algorithms which are based on differentiable
function of one curve to the other. They instead propose
a “bimorphism”, which diffeomorphically maps a pair of
curves to be matched, and correspond to a closed curve in
space of � P	��� ; . They formulate a cost function that mini-
mizes differences in local orientation change � = �H 8 = H � along
each differential segment of this curve, and seek a pair of
functions 
 P and 
7; , elements of the bimorphism, which
optimize this cost functional. Note that, Tagare et al.'s [17]
cost functional does not penalize stretching. This is prob-
lematic when handling with curves with differing topology,
as in “abnormal” or diseased states.

We approach this asymmetry issue in a similar fashion.
We note that the formulation allows for mapping an entire
segment of the first curve to a single point in the second
curve, but it is not possible to map a single point in the first
curve to a segment in the second curve. This is because the
notion of an alignment is captured by a (uni-valued) func-
tion � . To alleviate this difficulty we revise the formulation.
Reconsider an alignment between two curves as a pairing of
two particles, one on each curve traversing their respective
paths monotonically, but with finite stops allowed. Let the
alignment be specified in terms of two functions � and

��
relating arc length along � and

�� to the newly defined curve
parameter � , � � ��� , �i�
� ���@� , and

��i� �� ���@� . In cases where �
is invertible, we have

�� � �������� P �����:� � ��wI���� P ����� , which
allows for the use of an alignment function, � � ��"I���� P ,
as before. However, when � is not invertible, i.e., when
the first particle stops along the first curve for some finite
time, � is not defined. While this formulation allows for a
symmetric treatment of the curves, note that a superfluous
degree of freedom is introduced as in [17], because differ-
ent traversals � and

�� may give rise to the same alignment.
While Tagare et al. [17] treat this degree of redundancy in
the optimization involving two functions, we remove this
additional degree of redundancy by considering the notion
of an alignment curve, � , with coordinates � and

��
�p���@������� ���@��
 �� ���@�:��
��5� ����
���'�,
��p���J��� ����
��J�$
�� ����-�-� ���D
 ��-��

where � is the arc length along the alignment curve and �� is
its length. The alignment curve can now be specified by a
single function, namely, �D���@� , � �G����
 ��'� , where � denotes
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Figure 2. The alignment curve allows for a finite segment
from one curve to be aligned with a single point on one
curve, thus allowing for (b) the curve segment deletion or
addition.

the angle between the tangent to the curve and the � -axis.
The coordinates can then be obtained by integration

� ���@�-� 1 �y"!$#�% ���D��&.��� = & 
 ����'�@�-� 1 �y"% �T�����D��&@��� = & 
(�"�B� ��
 ��'� �
Note that � is constrained by monotonicity ( � �*) � and�� �+) � ) to lie in [ ��
�, ; ]. The alignment between � and

�� is
then fully represented by single function � .

The goodness of the match corresponding to the align-
ment curve can now be rewritten in terms of � . First, if� �+-��� and

�� �.-� � for � �9� � P 
/�W;�� , then � � �� I0��� P is well
defined and we rewrite / � � � in terms of � using Equations 2
and 4,

/ ���-� 44�K � L M � N O � 1 � N� L / � ���I0� � P � 4444�RUK 1QR � V,M 1!R � n7{ � VSOUM K C1�R � V�M C13R � n7{ � VSO<V
= �

� 12� N� L � = �= � 8 = ��= � ��> ?"� = H= � 8 = �H= � � = �� 1 � N� L � = �= � 8 = ��= � �$> ?"� = H= �
= �= � 8 = �H= ��

= ��= � � = �� 1 � N� L � !$#�% ������8 % �U� ���-��� >?"� A���� � !$#�% ���-��8 �A � ��+� % �U� ���-��� = �
(6)

Second, consider that one of � � or
�� � is zero at a point,

say � � ���@�	�#� , implying that this point maps to a corre-
sponding interval � ��7���@��
 �� ���w> = �@��� . The cost of mapping
the point ���'�@� to the interval � �� ���@��
 �� ����> = �@�,� is defined by
enforcing continuityof the cost with deformations: consider
the cost of aligning the interval �3� ���@��
4� ��� > = �@�,� to the in-
terval � ��'�'�@��
 ����'�+> = �@�,� as the first interval shrinks to a point,� � � � , as � *5, ; . In this case, the energy in Equation 6 can be
used in the limiting case �B* , ; , or !6#7% ���-��*#� . Similarly,
the case where an interval in the first curve is mapped to a
point in the second curve, is the limiting case of ��*
� or% �U� ���-� * � , and Equation 6 can again be used. Thus, the
overall cost of the alignment � is well defined in all cases



(a) (b)

Figure 4. Two examples of the optimal correspondence between the profiles of the radius bone in the sagittal direction (a) and a
vertebra of the spine in the axial direction (b) of two subjects obtained using the curve matching algorithm, Section 2. The curves
being matched (shown in blue) were segmented manually from CT images. The original spine images were obtained from the Visible
Human Data Set from the National Library of Medicine. One of the curve has been scaled to display the match lines (randomly
colored lines) better.
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Figure 3. This figure illustrates the template that is used
to in the Dynamic Programming implementation of Equa-
tion 7. The entry at

���������
is the cost to match the curve

segments �
	 � ��� ��
�
�
�� ��� and ��	 � ��� ��
�
�
�� ���-d ��������� . To up-
date the cost at

���������
(blue dot) we limit the choices of the�

and � in Equation 8, so that only costs at the a limited set
of points (green dots) are considered.

of Equation 6,

/ �3���0� 1��zy � � !$#�% ���-��8 % �U� ���-���> ?"� A ���+� !6#7% ���-��8 �A�� �� � % �U� ���-��� � = �+
 (7)

subject to the following constraints

� u � u�� � 

1 �zy !$#�% ���-� = �5� �D
��!� � 1 �zy % �U� ���-� = �5� �� �

Algorithm: We minimize the above functional by a
dynamic-programming method [2, 6]. Let the curves� and

�� be discretized at samples � P 
��+;!
 � � � 
��"! and� P 
��!;!
 � � � 
��$# , respectively, Figure 3. These are samples

along � and
�� , the axes in Figure 2. Let

= � � 
&%Q� denote
the cost of matching the curve segments ��P!
�� ; 
 � � � 
���� and�3PW
�� ; 
 � � � 
���' and let (����*)7
 � �:
�� +:
&%��s� be the cost of matching
the segments � ,�
 � � � 
�� � and �$-:
 � � � 
�� ' . Then, a discrete
version of Equation 3 can be written as= � � 
&%Q��� ���U�, M - � = � � 8.)7
&%b8/+��7>0(��:� � 81)7
 � � 
�� %p8/+:
&%���� � �

(8)

We discretize � , as a first approximation, to nine values
achieved by using a small template (shown in Figure 3).
This template limits the choices of the ) and + .

We have applied the curve matching to a few medical
imaging applications, with good results. Figure 4(a) shows
the optimal matching for the profiles of the radius bone of
the wrist taken in the sagittal direction. Figure 4 shows the
optimal matching for the outline of a pair of vertebra of the
spine taken in the axial direction.

3 Curve Averaging

This section discusses the computation of the “average”
curve. Given 2 curves, � P 
���;!
 � � � 
��43 , the goal is to com-
pute the average curve 5� which is the curve that minimizes36 �87�P = ;�9 � 
 5�+� . This requirement is rather stringent in that

it should hold for all curves segments � 44 K :<; M :<; n>= :<; O of � �
aligned with the curve segment 5� 44 K@?EqM ?E n>= ?E�O . Ideally, we must

seek a curve 5� such that for any 5� and A 5� the infinites-
imal curve segment

�� 44 K@?E�M ?E n>= ?E O is the result of averaging

the corresponding curve segments ��� 44 K E ; M E ; n>= E ; O . Given the

curve 5� , it is not difficult to compute the corresponding seg-
ments on � � , as shown in Section 2. However, when 5� is
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Â

A A=

C

C

AT AT =
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of two curve seg-
ments

XZY
and [X [Y , when the initial points and the initial

tangents are aligned (
X \ [X , ^_ ` \ ^_ba` ), is computed by

averaging the endpoints.

not available, this becomes a computationally intractable
problem. The computation is made difficult by the fact
that the alignment property is not transitive, Figure 5. The
computational problem of finding 5� and the alignments si-
multaneously is rather intractable. Rather, we select one
of the curves, say � P as a “reference curve” and average
for �QP and A"�QP , � P 44�K E L M E L n>= E L O and the corresponding seg-

ment � ; 44 K E N M E N n>= E N O to define the corresponding average

5� 44�K@?EqM ?E n>= ?E�O 1.
Consider then the case of averaging two corresponding

segments ��� and
�� �� as in Figure 1. Since only the intrin-

sic properties are significant, let � and
�� coincide. Then,

computation of 5� is straightforward, 5� � � � �� . Since,� �� is the main indicator of distance between these two
curve segments, 5� is computed by averaging the end points� , and

�� . To compute an intrinsic average of the endpoints,
we express the endpoints in terms of the initial point and the
length and relative orientation of the segments. Currently,
we use a linear approximation for the curve segments to

1As before, we demand that the averaging process be invariant to ro-
tation and translation of the curves with respect to one another. In other
words, if �	 is the average of two curves

	
and 
	 , then the average

curve of � and a transformed version of 
	 is also �	 up to a global rota-
tion/translation. This implies that the averaging of the infinitesimal pieces
has to be done using the intrinsic properties of the curves.

compute the average curve. We could use a higher order
model if the need arises. Specifically, the endpoints can be
written as

�	�o�5>o� = � !$#7% � = H �$
 = � % �U� � = H �:�$
 �� � �� >�� = �� !6#7% � = �H ��
 = �� % �U� � = �H �:�
Then, the average is computed as

5� � 5� > � = � !$#7% � = H � > = �� !6#7% � = �H �� 
 = � % �U� � = H ��> = �� % �U� � = �H �� �
with

= 5� !$#�% � = 5H � � = � !6#7% � = H � > = �� !$#7% � = �H �� and= 5� % �U� � = 5H � � = � % �U� � = H �7> = �� % �U� � = �H �� , an intrinsic

description of this portion of the average curve. This av-
eraging process is repeated for each pair of corresponding
segments, � � ��� , � 9 and

�� �9 . After combining each curve
segment � = 5�3
 = 5H � the average curve is defined in an intrinsic
form.

The averaging process in the general case of 2 curves is
similar: compute the

= 5� and
= 5H by averaging

= � � !$#�% � = H � � ,
and

= �$� % �U� � = H �,� . We have experimentally studied whether
the choice of the “reference” curve affects the averaging
process, and found that the averaging process is insensitive
to this choice in our examples. In Figure 9, the averaging
was repeated using each of the original curves as the text-
book, and the average curve computed was more or less the
same in all the cases.

Figure 9. This figure illustrates the insensitivity of the
average curve to the choice of the “reference” curve. The
original curves are shown in blue. The averaging process
is repeated by choosing two of the original curves as the
“reference” curve and the result is shown in red and green.

We have applied the curve averaging algorithm to gen-
erate the average outline in a few medical imaging applica-
tions. Figures 7, 8 and 10 show the average outline com-
puted from metacarpal bone outlines of thirteen subjects,



Figure 7. The average outline of the third metacarpal in the sagittal direction for twelve subjects is shown. The original bone
contours are shown in blue, and the average outline in red. The bone contours were manually segmented from X-rays.

Figure 8. The average outline of the corpus callosum in the sagittal direction for ten is subjects is shown. The original corpus
callosal outlines are shown in blue, and the average outline in red. The corpus callosal outlines were manually segmented from MR
images. We thank Dr. James Eliassen and Prof. Jerome Sanes for providing us with the MR datasets.

Figure 10. The average outline of a spine vertebra in the
axial direction for three subjects is shown. The original out-
lines are shown in blue, and the average outline is depicted
in red.

corpus callosal outlines from ten subjects, and the spine ver-
tebra outlines of three subjects, respectively.

4 Curve Registration

In this section, we discuss how the curve matching
framework is used to register 2D curves,

� � � � , to recover
the appropriate transformation (rotation and translation) pa-
rameters of one curve with respect to the other. A typi-
cal registration method computes these transformation pa-
rameters by minimizing a squared distance metric over all
transformations. Let � and

�� be the curves to registered,
and let � �� � ( ����
�����
 H�� � represent the transformed curve

�� after translation by ������
����,� and rotation by
H��

. Let� �k��
�� �� � ( � � 
�� � 
 H � �:� be the squared distance between �
and the transformed curve

�� . Typically the corresponding
points are computed every iteration based on a pre-defined
heuristic [13, 3]. For example, in [3] the corresponding
points are defined to be the closest points. The optimal
transformation parameters are computed as

	 ����

� � 
�����
�� � 
 H�� 

� ��� ���Q�:�3���U���� M � � M ��� ��� � 
�� �� � ( ����
�����
 H�� ���
(9)

We follow an alternate approach, namely, we first estab-
lish a transformation invariant correspondence between the
two curves, and then recover the transformation parame-
ters by minimizing the total squared distance between the
corresponding points. The curve matching algorithm of
Section 2 provides us with a such a correspondence be-
tween the two curves. Let ��� � 
�� � ��
 � � FJ
 � � � 
�2 and� �����
 ������$
 � � F3
 � � � 
�2 be the corresponding points on the
two curves � and

�� , and � �� �� 
 �� �� �$
 � � FJ
 � � � 
�2 be the points
on the transformed curve

�� � . Then the distance between �
and the transformed curve

�� is given by

� �k��
�� �� � ( ����
�����
 H�� ���-� 36 �87�P
� ��� � 8 �� �� � ; >���� � 8 �� �� � ;��

The minimization of the squared distance is done using the
Levenberg-Marquardt method [14].

The optimal global scaling of the two curves is recovered
in a similar fashion. Observe that the functional, Equation 5
that we used for curve matching is not scale-invariant (the



(a) (b) (c) (d)

Figure 11. The third metacarpal bone contours from different subjects are used to illustrate the curve registration results. The
bone contours were manually segmented from X-rays. Blue and green depict the contours that are to be registered, while the red
depicts the optimal registration of the green curve to the blue curve.

bending term is scale invariant whereas the stretching term
is not). Hence, if the second curve

�� is scaled by
�

the
modified functional can be written as

/�� � � �0� 1 2 4444 � = ��= � 8�F 4444 >�? 4444 = �H � ����= � 8 = H �����= �
4444 = � � (10)

The optimal scaling factor
� 
�� � is then computed as�!�:�3���U��

/�� � � � , which can be computed using gradient de-

scent as /�� � � � is a convex function of
�

. We note that only a
small range of

�
needs to be examined due to the one-norm

used in defining / .
We have used this approach to recover the transformation

parameters for a few metacarpal outlines, Figure 11.

5 Comparing Average Curves

This section utilizes the curve averaging and registration
methods described in the previous sections to examine if
there are any differences in the average profiles of the ra-
dius bone between males and females. The average profile
of ten male and female subjects in the sagittal and coronal
directions were computed. The results, Figure 12, clearly
show that there is a difference between the average pro-
files of males and female. However, it is not clear whether
the differences are limited to size,

� � � � , is the male profile
a scaled up version of the female profile? To answer this
question, we have computed the optimal transformation pa-
rameters (translation vector, rotation angle, and global scal-
ing) between the average male and female profiles, have ap-
plied the optimal transformation, and examined whether the
curves are aligned. The results Figure 12 that the differ-
ences are minimal. A more thorough and comprehensive
analysis is required to quantify the differences between the
profiles. The framework presented here provides a method
for such analysis.

6 Conclusion

We have presented a method to compute the average of
a set of 2D shape outlines (curves). We first compute an
optimal, transformation invariant, alignment of two curves,

and then compute the average curve by averaging the corre-
sponding curve segments. The alignment function between
the curves is also be used to recover the optimal transforma-
tion parameters between the two curves. We have applied
this method to a variety of medical images with excellent
results.
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