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Abstract. We present a 2D shape recognition and classification method
based on matching shape outlines. The correspondence between outlines
(curves) is based on a notion of an alignment curve and on a mea-
sure of similarity between the intrinsic properties of the curve, namely,
length and curvature, and is found by an efficient dynamic-programming
method. The correspondence is used to find a similarity measure which
is used in a recognition system. We explore the strengths and weaknesses
of the outline-based representation by examining the effectiveness of the
recognition system on a variety of examples.

1 Introduction

The representation of the shape of objects can have a significant impact on the ef-
fectiveness of a recognition strategy. Shapes have been represented as curves [11,
21,2,6,22], point sets [1,15,20], feature sets [3,7], and by medial axis [23,17,18,14,
12,10,9], among others. This paper develops an approach to object recognition
based on a curve-based representation of shape outline using the proposed con-
cept of an alignment curve, and identifies the strengths and weaknesses of using
curves to represent shapes for object recognition and for indexing into image
databases by shape context.

In many object recognition and content-based image indexing applications,
the object outlines are represented as curves and matched. The matching relies
on either aligning feature points using an optimal similarity transformation [1,
15,20] or on a deformation-based approach to aligning the properties of the two
curves [11,21,2,6,22]. Transformation-based methods rely on matching feature
points by finding the optimal rotation, translation, and scaling parameters [1,
15,20]. Deformation-based methods typically involve finding a mapping from one
curve to the other that minimizes an “elastic”performance functional, which pe-
nalizes “stretching” and “bending” [4,19,2,22]. The minimization problem in the
discrete domain is transformed into one of matching shape signatures with curva-
ture, bending angle, or orientation as attributes [5,13,6,11,21]. The curve-based
methods in general typically suffer from one or more of the following drawbacks:
asymmetric treatment of the two curves, sensitivity to sampling, lack of rotation
and scaling invariance, and sensitivity to articulations and deformations of parts.
We address some of these issues in the proposed method.

Another type of shape representation models the shape outline as point sets
and matches the points using an assignment algorithm. Gold et al. [7] use grad-
uated assignment to match image boundary features. In a recent approach, Be-
longie et al. [3] use the Hungarian method to match unordered boundary points,
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using a coarse histogram of the relative location of the remaining points as the
feature. These methods have the advantage of not requiring ordered boundary
points, but do not necessarily preserve the coherence of shapes in matching.

Shapes have also been represented by medial axis or its variants and then
matched. Shock graph matching have been used in [17,18,14] for object recog-
nition and image indexing tasks. Zhu and Yuille [23] have proposed a frame-
work (FORMS) for matching animate shapes by comparing their skeletal graphs.
These approaches do not explicitly model the instabilities of the symmetry-based
representations, which can be problematic when dealing with visual transforma-
tions like occlusion, view-point variation, and articulation. Liu and Geiger [12]
use the A* algorithm to match shape axis trees. Their algorithm does not pre-
serve ordering of edges at nodes which can result in matches that do not pre-
serve coherence of the shapes. Klein et al. [10,9] have recently proposed an edit-
distance based approach to shape matching, which is very effective, but like
other graph matching techniques can in general be computationally intensive.
This gives rise to the question whether the additional effort required in skeletal
matching is justified by the improvements in recognition rates for particular ap-
plications. A goal of this paper is to examine the effectiveness of outline-based
matching techniques in general.

In this paper, we present an outline-based recognition method, which relies on
finding the optimal correspondence between 2D outlines (curves) by comparing
their intrinsic properties, namely, length and curvature. The basic premise of the
approach is that the goodness of the optimal correspondence can be expressed
as the sum of the goodness of matching subsegments. This allows us to cast
the problem of finding the optimal correspondence as an energy minimization
problem, which is solved by an efficient dynamic-programming algorithm. We
introduce the notion of an alignment curve to ensure a symmetric treatment of
the two curves being matched. The problem formulation and the mathematics
underlying the matching process is described in Section 2. In Section 3 we discuss
the proposed curve matching framework in application to shape classification
and handwritten character recognition. In Section 4, we discuss some of the
shortcomings and limitations of curve-based representation for recognition.

2 Curve Matching

This section first discusses the problem of matching and aligning two curve
segments followed by a discussion pertaining to closed curves. Denote the curve
segments to be matched by C(s) = (x(s), y(s)), s ∈ [0, L] and C̄(s̄) = (x̄(s̄), ȳ(s̄)),
s̄ ∈ [0, L̄], where s is arc length, x and y are coordinates of each point, L is length,
and where each is similarly defined for C̄. A central premise of this approach is
that the “goodness” of the overall optimal match is the sum of “goodness”
of the optimal matches between two corresponding subsegments. This allows
an energy functional to convey the goodness of a match as a function of the
correspondence or alignment of the two curves as proposed earlier in [4,22]. Let
a mapping g : [0, L] → [0, L̄], g(s) = s̄, represent an alignment of the two curves.
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Fig. 1. (a) The cost of deforming an infinitesimal segment AB to segment ĀB̄, when
the initial points and the initial tangents are aligned (A = Ā, T A = T Ā), is related
to the distance BB̄, and is defined by |ds̄ − ds| + R|dθ̄ − dθ|. (b) The alignment curve
allows for a finite segment from one curve to be aligned with a single point on one
curve, thus allowing for the curve segment deletion or addition.

Cohen et al. [4] use “bending” and “stretching” energies in a physical analogy
similar to the one used in formulating active contours [8] in the form of

µ[g] =
∫

C

∣∣ ∂
∂s

(C̄(s̄) − C(s))
∣∣2ds+R

∫
C
(κC(s) − κC̄(s̄))2ds,

where κ is the curvature, R is a parameter, and s̄ = g(s). Younes [22] uses a
similar functional. A key drawback of these approaches for recognition is that
they are not invariant to the rotation of one curve with respect to the other,
as the cost functional is a function of the absolute orientation of the curves. In
addition, the issue of invariance to sampling has not been addressed. We now
formulate the problem in an intrinsic manner which addresses both issues:
Definition: Let C∣∣

[s1,s2]
denote the portion of the curve from s1 to s2 and

g
∣∣
([s1,s2],[s̄1,s̄2])

the restriction of the mapping g to [s1, s2], where s̄1 = g(s1) and
s̄2 = g(s2). Define a measure µ on this alignment function,

µ[g]
∣∣
([s1,s2],[s̄1,s̄2])

: g
∣∣
([s1,s2],[s̄1,s̄2])

→ R+,

constructed such that it is inversely proportional to the goodness of the match,
i.e., it denotes the cost of deforming C∣∣

[s1,s2]
to C̄∣∣

[s̄1,s̄2]
.

We restrict this measure µ to one which satisfies an additivity property, i.e.,
µ[g]

∣∣
([s1,s3],[s̄1,s̄3])

= µ[g]
∣∣
([s1,s2],[s̄1,s̄2])

+µ[g]
∣∣
([s2,s3],[s̄2,s̄3])

, where s̄i = g(si). This
property implies that the match process can be decomposed into a number
of smaller matches, which in turn implies that it can be written as a func-
tional µ[g]

∣∣
([0,L],[0,L̄]) =

∫ L
0 µ[g]

∣∣
([s,s+ds][g(s),g(s+ds)])ds. Then, the optimal match

is given by g∗ = argmin
g

µ[g]
∣∣
([0,L],[0,L̄]).

Consider two infinitesimal curve segments C∣∣
[A,B] and C̄∣∣

[Ā,B̄] of lengths ds,
ds̄, and curvatures κ, κ̄, respectively. In our approach we only compare the
intrinsic aspects of the curves. Thus, we can align the curves such that the
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points A and Ā, and their tangents TA and T Ā coincide, Figure 1(a). The cost
of matching the infinitesimal curve segments is the degree by which B and B̄
and their respective tangents differ, namely,

µ[g]
∣∣
([s1,s1+ds],[s̄1,s̄1+ds̄])

= |ds̄− ds| +R|dθ̄ − dθ|, (1)

where R is a constant. Then, the resulting functional is given by

µ[g] =
∫

C

[∣∣∣∣ds̄ds − 1
∣∣∣∣ +R

∣∣∣∣dθ̄(s̄)ds̄

ds̄

ds
− dθ(s)

ds

∣∣∣∣
]
ds (2)

The functional penalizes “stretching” and “bending”. However, this formulation
of the curve matching problem is inherently asymmetric. This is precisely the
objection raised by Tagare et al. [19] to algorithms which are based on differen-
tiable function of one curve to the other. They instead propose a “bimorphism”,
which diffeomorphically maps a pair of curves to be matched, and which corre-
sponds to a closed curve in space of C1 × C2. Specifically, they formulate a cost
function that minimizes differences in local orientation change |dθ̄ − dθ| along
each differential segment of this curve, and seek a pair of functions φ1 and φ2,
elements of the bimorphism, which optimize this cost functional.

We approach this asymmetry issue in a somewhat similar fashion. Observe
that the formulation allows for mapping an entire segment of the first curve
to a single point in the second curve, but it is not possible to map a single
point in the first curve to a segment in the second curve. This is because the
notion of an alignment is captured by a (uni-valued) function g. To alleviate this
difficulty we adopt a view where an alignment between two curves is represented
as a pairing of two particles, one on each curve traversing their respective paths
monotonically, but with finite stops allowed. Let the alignment be specified in
terms of two functions h and h̄ relating arc length along C and C̄ to the newly
defined curve parameter ξ, i.e., s = h(ξ), and s̄ = h̄(ξ). In cases where h is
invertible, we have s̄ = h̄(h−1(s)) = h̄ ◦ h−1(s), which allows for the use of an
alignment function, g = h̄ ◦ h−1, as before. However, when h is not invertible,
i.e., when the first particle stops along the first curve for some finite time, g
is not defined. While this formulation allows for a symmetric treatment of the
curves, note that a superfluous degree of freedom is introduced, as in [19], because
different traversals h and h̄ may give rise to the same alignment. While Tagare
et al. [19] treat this degree of redundancy in the optimization involving two
functions, we remove this additional degree of redundancy by proposing the
notion of an alignment curve, α, with coordinates h and h̄

α(ξ) , (h(ξ), h̄(ξ)), ξ ∈ [0, L̃], α(0) = (0, 0), α(L̃) = (L, L̄),

where ξ is the arc length along the alignment curve and L̃ is its length. The
alignment curve can now be specified by a single function, namely, ψ(ξ), ξ ∈
[0, L̃], where ψ denotes the angle between the tangent to the curve and the x-
axis, Figure 1(b). The coordinates h and h̄ can then be obtained by integration

h(ξ) =
∫ ξ

0
cos(ψ(η))dη, h̄(ξ) =

∫ ξ

0
sin(ψ(η))dη, ξ ∈ [0, L̃].
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Fig. 2. (a) This figure illustrates the template that is used to in the Dynamic Pro-
gramming implementation of Equation 4. The entry at (i, j) is the cost to match
the curve segments x1, x2, . . . , xi and y1, y2, . . . , yj d(i, j). To update the cost at (i, j)
(blue dot) we limit the choices of the k and l, so that only costs at the a limited
set of points (green dots) are considered. (b) This figure illustrates the grid used by
the dynamic-programming method to compute the optimal alignment curve for closed
curves. Discrete samples along the curves are the axes. The first curve C is repeated.
If the blue curves are optimal alignment curves from (si, s̄1) to (si + n − 1, s̄m) and
(sj , s̄1) to (sj + n − 1, s̄m), then the alignment curve from (sk, s̄1) to (sk + n − 1, s̄m)
for i < k < j does not cross the blue lines, so the search can be restricted to the green
area. Full details are discussed in [16].

Note that ψ is constrained by monotonicity (h′ ≥ 0 and h̄′ ≥ 0) to lie in [0, π2 ].
The alignment between C and C̄ is then fully represented by single function ψ.

The goodness of the match corresponding to the alignment curve can now
be rewritten in terms of ψ. First, if h′ 6= 0 and h̄′ 6= 0 for ξ ∈ [ξ1, ξ2], then
g = h̄ ◦ h−1 is well defined and we rewrite µ[ψ] in terms of g using Equation 1,
which after some simplification results in

µ(ψ)
∣∣
[ξ1,ξ2]

=
∫ ξ2

ξ1

[
| cos(ψ) − sin(ψ)| +R|κ(h) cos(ψ) − κ̄(h̄) sin(ψ)|

]
dξ (3)

Second, consider that one of h′ or h̄′ is zero at a point, say h′(ξ) = 0, implying
that this point maps to a corresponding interval [h̄(ξ), h̄(ξ + dξ)]. The cost of
mapping the point h(ξ) to the interval [h̄(ξ), h̄(ξ + dξ)] is defined by enforcing
continuity of the cost with deformations: consider the cost of aligning the interval
[h(ξ), h(ξ + dξ)] to the interval [h̄(ξ), h̄(ξ + dξ)] as the first interval shrinks to a
point, i.e., as ψ → π

2 , cos(ψ) → 0, Similarly, the case where an interval in the
first curve is mapped to a point in the second curve, should be the limiting case
of ψ → 0 or sin(ψ) → 0. Thus, the overall cost of the alignment ψ is well defined
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Fig. 3. Examples of the optimal alignment between curves obtained using the curve
matching algorithm. The alignment is indicated by arbitrarily coloring portions of the
aligned curves by identical colors with a number indicating the each portion’s end
point. Observe that the alignment is intuitive for both open and closed curves.

in all cases of Equation 3, and is found by minimizing

µ[ψ] =

∫ L̃

0

[| cos(ψ) − sin(ψ)| +R|κ(h) cos(ψ) − κ̄(h̄) sin(ψ)|]dξ,
0 ≤ ψ ≤ π

2
,

∫ L̃

0
cos(ψ)dξ = L, and

∫ L̃

0
sin(ψ)dξ = L̄.

(4)

Then, the optimal alignment is given by ψ∗ = argmin
ψ

µ(ψ)
∣∣
[0,L̃].

Definition: Let the edit distance between two curve segments C and C̄ be defined
as the cost of the optimal alignment of the two curves, d(C, C̄) = µ(ψ∗). It is
straightforward to show the following [16].

Lemma 1. If h∗ and h̄∗ specify the optimal alignment given by ψ∗, the dis-
tance function satisfies the following suboptimal property for ξ1 < ξ2 < ξ3, si =
h∗(ξi), s̄i = h̄∗(ξi), i = 1, 2, 3,

d(C∣∣
[s1,s3]

, C̄∣∣
[s̄1,s̄3]

) = d(C∣∣
[s1,s2]

, C̄∣∣
[s̄1,s̄2]

) + d(C∣∣
[s2,s3]

, C̄∣∣
[s̄2,s̄3]

). (5)

Matching Closed Curves: The edit distance between two closed curves is the
minimum cost of the matching the open curve segments starting at s1 and s̄1,
and terminating at s∗

1 and s̄∗
1 having traversed the entire curve.

d(Cclosed, C̄closed) = min
[s1,s̄1]

d(C∣∣
[s1,s∗

1 ], C̄
∣∣
[s̄1,s̄∗

1 ]).

When matching closed curves, we do not have to find the alignment for all pairs
of start point correspondences. It is sufficient to choose a start point s1 on curve
C, and the find the optimal alignments for all possible start points on the curve
C̄. If we choose another point s2, instead of s1, we will get the same optimal
alignment using Lemma 1.

The curve matching is implemented using a fast1 dynamic-programming
method, as outlined in Figure 2 and described in detail in [16]. Figure 3 il-
lustrates the alignment for two simple cases. In all the examples, we set R = 10.
1 The complexity of the algorithm to match curve segments and closed curves is O(n2)

and O(n2log(n)), respectively, where n is the number of samples along the curves.
It takes 0.04 secs and 1.6 secs to match curve segments and closed curves with 50
samples respectively on an SGI INDIGO2 (195MHz).
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Fig. 4. This figure illustrate the performance of the curve matching algorithm in pres-
ence of an affine transformation (a), view-point variation (b) and articulation and
deformation of parts (c). The alignment is indicated by arbitrarily coloring portions
of the aligned curves by identical colors with a number indicating the each portion’s
end point. Observe that the matches are intuitive, e.g., hands, legs and head of the
dolls correspond in the presence of articulation, stretching and bending. Note that the
different views of the kangaroo were obtained by taking snapshots of a 3D model.

We have also seen experimentally that the alignment is relatively insensitive to
the choice of R.

3 Recognition Using Shape Outline Alignment

In this section, we examine the effectiveness of curve matching for recognizing
shape outlines and characters. The curve alignment framework gives a corre-
spondence between two curves, which is then used to measure the similarity
between two curves. One can either use edit distance or normalized Euclidean
distance between corresponding points [11,6]. For curve matching to be effective
in object recognition, it has to perform well under a variety of visual transfor-
mations such as occlusion, articulation and deformation of parts, and view-point
variation, which we examine now. Figure 4 shows that the curve matching algo-
rithm works well in the presence of commonly occurring visual transformations,
affine transformations, modest amounts of view-point variation, and under some
articulation and deformations like stretching and bending of parts.
Object Recognition: We illustrate the use of curve matching for shape clas-
sification on a database of 36 shapes. The database consists of shapes from six
different categories (fishes, tools, planes, rabbits, “greebles”, and hands) with six
different shapes in each category. Comparisons are made between every pair of
shapes. The five nearest neighbors for each shape are highlighted. Observe that
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Table 1. Costs of matching pairs of shape outlines in a database of 36 shapes, 6 samples
of each of 6 categories. The five nearest neighbor are from the “correct” category 36/36,
35/36, 35/36, 33/36, 27/36 cases.

0 5 9 14 7 10 15 33 12 14 27 35 23 16 14 25 21 22 21 22 19 19 21 20 20 21 18 20 15 27 19 28 19 20 21 23

5 0 14 10 6 9 19 21 15 14 14 14 14 17 13 26 25 22 20 21 19 17 18 18 19 19 21 22 18 22 20 19 20 20 20 19

9 14 0 6 6 7 30 31 30 33 29 33 21 18 10 25 21 16 22 22 16 16 20 16 14 24 15 14 14 16 18 19 18 23 21 19

14 10 6 0 7 6 21 26 13 14 12 20 23 17 14 17 24 18 24 23 21 18 19 17 26 25 20 16 16 14 19 19 19 25 20 20

7 6 6 7 0 7 34 35 20 19 20 34 28 22 15 23 21 23 18 20 19 17 21 16 22 22 19 18 13 17 18 20 18 21 22 18

10 9 7 6 7 0 40 40 32 32 17 14 25 20 18 28 24 18 25 26 24 20 21 21 26 27 24 23 16 25 23 22 20 24 22 27

15 19 30 21 34 40 0 2 12 10 6 3 28 23 20 24 28 29 32 31 32 30 34 22 27 21 26 30 31 20 28 25 29 30 29 26

33 21 31 26 35 40 2 0 12 5 4 3 30 25 21 24 24 30 31 29 32 32 30 23 26 20 26 25 31 26 28 32 28 34 35 25

12 15 30 13 20 32 12 12 0 3 4 4 17 19 22 23 18 22 25 24 23 27 26 27 25 23 17 17 21 23 22 27 27 25 31 29

14 14 33 14 19 32 10 5 3 0 5 7 20 23 23 23 23 25 22 22 23 26 26 26 26 24 25 19 18 24 26 22 26 28 31 27

27 14 29 12 20 17 6 4 4 5 0 9 19 21 15 28 17 25 27 22 29 22 22 25 28 24 16 16 15 22 30 28 29 24 24 28
35 14 33 20 34 14 3 3 4 7 9 0 21 22 20 23 22 29 26 28 22 28 25 32 25 25 24 26 25 20 31 27 30 29 28 27

23 14 21 23 28 25 28 30 17 20 19 21 0 14 13 9 9 9 13 14 14 13 17 15 14 17 17 19 10 17 18 23 22 23 20 20

16 17 18 17 22 20 23 25 19 23 21 22 14 0 7 10 11 21 13 18 17 17 20 15 17 17 17 14 17 17 20 23 22 22 23 21

14 13 10 14 15 18 20 21 22 23 15 20 13 7 0 8 12 18 15 17 15 16 16 16 16 13 16 14 15 16 16 14 16 18 16 20

25 26 25 17 23 28 24 24 23 23 28 23 9 10 8 0 9 21 22 25 24 19 17 19 18 18 17 20 18 19 23 23 23 24 24 23

21 25 21 24 21 24 28 24 18 23 17 22 9 11 12 9 0 13 14 14 18 23 22 21 18 19 18 19 14 16 22 22 22 23 23 23

22 22 16 18 23 18 29 30 22 25 25 29 9 21 18 21 13 0 20 19 20 18 23 20 13 15 13 13 15 19 13 25 13 19 14 14

21 20 22 24 18 25 32 31 25 22 27 26 13 13 15 22 14 20 0 3 4 3 5 5 16 11 12 17 15 14 18 17 17 19 19 16

22 21 22 23 20 26 31 29 24 22 22 28 14 18 17 25 14 19 3 0 5 8 5 8 11 15 14 16 20 16 19 18 18 18 20 17

19 19 16 21 19 24 32 32 23 23 29 22 14 17 15 24 18 20 4 5 0 4 5 7 10 16 13 15 13 12 19 19 18 21 20 15
19 17 16 18 17 20 30 32 27 26 22 28 13 17 16 19 23 18 3 8 4 0 11 3 14 13 14 14 12 15 18 18 18 20 19 19

21 18 20 19 21 21 34 30 26 26 22 25 17 20 16 17 22 23 5 5 5 11 0 4 14 12 13 13 11 14 21 21 21 23 23 21

20 18 16 17 16 21 22 23 27 26 25 32 15 15 16 19 21 20 5 8 7 3 4 0 15 15 13 11 9 8 19 18 20 20 21 17

20 19 14 26 22 26 27 26 25 26 28 25 14 17 16 18 18 13 16 11 10 14 14 15 0 3 3 4 3 2 19 21 19 20 21 20
21 19 24 25 22 27 21 20 23 24 24 25 17 17 13 18 19 15 11 15 16 13 12 15 3 0 4 2 2 2 19 23 23 21 20 15
18 21 15 20 19 24 26 26 17 25 16 24 17 17 16 17 18 13 12 14 13 14 13 13 3 4 0 4 3 3 18 16 17 20 19 20
20 22 14 16 18 23 30 25 17 19 16 26 19 14 14 20 19 13 17 16 15 14 13 11 4 2 4 0 4 3 17 17 17 18 19 13

15 18 14 16 13 16 31 31 21 18 15 25 10 17 15 18 14 15 15 20 13 12 11 9 3 2 3 4 0 3 17 11 17 15 25 17

27 22 16 14 17 25 20 26 23 24 22 20 17 17 16 19 16 19 14 16 12 15 14 8 2 2 3 3 3 0 18 17 18 21 20 17

19 20 18 19 18 23 28 28 22 26 30 31 18 20 16 23 22 13 18 19 19 18 21 19 19 19 18 17 17 18 0 1 0 6 5 6

28 19 19 19 20 22 25 32 27 22 28 27 23 23 14 23 22 25 17 18 19 18 21 18 21 23 16 17 11 17 1 0 1 6 5 7

19 20 18 19 18 20 29 28 27 26 29 30 22 22 16 23 22 13 17 18 18 18 21 20 19 23 17 17 17 18 0 1 0 6 5 6

20 20 23 25 21 24 30 34 25 28 24 29 23 22 18 24 23 19 19 18 21 20 23 20 20 21 20 18 15 21 6 6 6 0 5 10

21 20 21 20 22 22 29 35 31 31 24 28 20 23 16 24 23 14 19 20 20 19 23 21 21 20 19 19 25 20 5 5 5 5 0 11

23 19 19 20 18 27 26 25 29 27 28 27 20 21 20 23 23 14 16 17 15 19 21 17 20 15 20 13 17 17 6 7 6 10 11 0

the shapes are categorized intuitively, i.e., the nearest neighbors of the “tool”
shapes are in the “tool” category and similarly for others.

Handwritten character recognition: As another example we have selected
handwritten character recognition which due to its inherently one-dimensional
nature, is well suited to this approach. As in the case of recognizing shape out-
lines, the optimal alignment between two characters is found and then used to
compute a distance measure between the two. We have used a database of 88
digits consisting of 6 different characters, to perform recognition experiments.
Matching is done between every pair of characters in the database, and the top
25 matches of a few sample characters are shown in Table 2. Observe that in
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Table 2. The top 20 matches for a few handwritten digits. The database used in this
experiment consists of 88 handwritten digits. The number below the matching character
is the computed distance. Observe that most of the top matches of a character are
samples of the same character, i.e., the top matches of “2” are samples of “2”.

4 5 8 8 8 9 9 10 11 11 11 13 14 14 14 15 15 15 15 18

5 6 6 6 7 7 7 7 7 8 8 10 11 15 16 16 16 16 17 17

4 4 4 4 4 5 6 6 7 7 7 8 8 9 22 23 24 25 26 26

7 7 7 7 8 9 9 10 10 11 11 11 12 14 25 26 26 27 28 28

Table 3. The top five matches for a few sample characters are shown. The number
below each match is the computed distance measure between the two characters.

4 7 10 13 14

2 4 5 6 10

4 11 11 13 15

5 11 16 16 19

2 10 13 14 15

4 11 15 16 18

5 15 17 21 22

12 17 18 20 21

4 17 18 18 19

4 10 11 11 12

6 8 9 11 15

5 12 19 19 19

5 8 11 12 13

6 16 17 18 21

3 7 10 13 14

most cases, the top matches are other samples of the same character, indicating
the potential of this approach in handwritten character recognition.
Prototype formation: Prototypes have been used to improve the efficiency of
object and character recognition [5] and indexing into image databases. Typi-
cally, a representative sample is used as the prototype. Instead, an “average”
curve can be used. The curve alignment framework allows us to generate the
average of set of curves [16]. Figure 5 shows the average curve for a set of fish
outlines, and handwritten digits. The average outline of handwritten characters
are used in the handwritten character recognition experiments with excellent
results. For 327 digits and alphabets (34 categories) written by one subject, 323
characters (98.8%) were correctly recognized. The top five matches for a few
sample characters are shown in Table 3.
Morphing: Morphing a shape to another has a variety of applications in com-
puter graphics and animation. The proposed curve matching framework can be
used to generate a sequence of images morphing a shape to another when the
shapes are not very dissimilar. Figure 5 shows the morphing of the outline of
a cat to that of a kangaroo. Curve matching has also been used in a variety
of other applications including tracking objects in a video sequence, comparing
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Fig. 5. Top and middle rows: A collection of curves (blue) and their average (red).
Bottom row: Sequence of deforming the outline of a cat to that of a kangaroo.

(a) (b) 0 0

1 1

2 23 34 45

5

6

6

7

78 89 9

Fig. 6. (a) Curves do not represent the interior of the shape, and hence cannot ade-
quately distinguish between perceptually distinct shapes whose outlines have similar
features. (b) This also implies that in relating two shapes by curve matching, outline
features take precedence over matching the shape interior! Curve matching aligns the
wavy sides of the two squares, ignoring the spatial configuration as a square.

medical structures, registering 3D volume datasets by aligning characteristic 3D
space curves like ridges. Thus, our proposed scheme can be useful in numerous
applications.

4 Discussion and Conclusion

We have presented a computational framework to find the optimal correspon-
dence between two 2D curves. The main contribution of this paper is to propose
a new scheme for curve matching that is symmetric in its treatment of the
two curves, is highly efficient, and works well in a variety of computer vision
applications including shape classification, hand-written character recognition,
prototype formation, and morphing. The optimal correspondence is computed
by using the concept of an alignment curve and due to the use of intrinsic prop-
erties is invariant to rotations and translations and gives the intuitive matches
in the presence of visual transformations like viewpoint variation, articulation
and occlusions of limited extent.
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Fig. 7. This figure illustrates the sensitivity of the curve matching to spatial arrange-
ment of parts (a, b, c, d) and to occlusion (e). Top row: We perceive two ellipses with
protrusions. The larger protrusion is matched correctly, as it lies on the same side of
the ellipse. However, the smaller protrusion is matched incorrectly as it lies on opposite
sides of the ellipse. Middle row: The correspondence of the fishes in (b) is incorrect,
as a fin on the fish on the left is matched to the head of the fish on the right. This
incorrect match is because there is an extra fin in the fish on the left. (c) illustrates that
the correspondence is intuitive when the fin on the “correct” side is removed. Bottom
row: The missing finger and the small bump of the hand on the right causes the curve
matching to give the un-intuitive match (d). (e) shows a case where curve matching
gives the un-intuitive correspondence for similar shapes in presence of occlusion. Part
of the tail of fish on the right (shown by the box) is occluded in this case.

We have studied the effectiveness of curve matching for shape matching and
classification, especially in comparison to our group’s work on shock graph-based
methods [10,9], and evaluated its strengths and weaknesses. While the full com-
parison is beyond the scope of this paper, we summarize the main points of dif-
ferences below [16]. The major advantage of curve matching is its computational
efficiency. We have shown that with our proposed curve matching method we
can achieve acceptable recognition rates for shape matching even under a range
of visual transformations while maintaining computational efficiency. However,
we have identified a number of areas where curve matching fails for 2D shape
recognition. The first shortcoming of curve-based representation is that they do
not represent interior of the shape. Hence, curve matching cannot easily dis-
tinguish between some perceptually distinct shapes when the local curve-based
features are in conflict with the global shape percept, Figure 6. Another draw-
back of curve representation and hence curve matching is the sensitivity to the
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presence and spatial arrangement of parts. Figure 7 shows examples where curve
matching gives the un-intuitive correspondence when the parts are arranged dif-
ferently. Curve matching works well in the presence of occlusion, if it does not
affect the overall part structure of the object. When the occlusion adds or deletes
a part, curve matching can fail, as shown in Figure 7(e).

In conclusion, curve-based representation is the natural choice in handwritten
character recognition and in other applications where the data is inherently one-
dimensional. Also, for shape recognition, prototype formation and morphing
where the variation in shape does not alter the part structure, curve matching
works well. However, in the presence of large scale variations of the outline
resulting in changes in the part structure, curve matching can fail, and more
comprehensive representations which explicitly represent the shape interior, such
as skeletal graphs are necessary despite their relatively higher computational
cost.
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