
DOI: 10.1007/s00453-002-1004-3

Algorithmica (2003) 35: 321–345 Algorithmica
© 2003 Springer-Verlag New York Inc.

Detecting Race Conditions in Parallel
Programs that Use Semaphores1

Philip N. Klein,2 Hsueh-I Lu,3 and Robert H. B. Netzer2

Abstract. We address the problem of detecting race conditions in programs that use semaphores for syn-
chronization. Netzer and Miller showed that it is NP-complete to detect race conditions in programs that use
many semaphores. We show in this paper that it remains NP-complete even if only two semaphores are used
in the parallel programs.

For the tractable case, i.e., using only one semaphore, we give two algorithms for detecting race conditions
from the trace of executing a parallel program on p processors, where n semaphore operations are executed. The
first algorithm determines in O(n) time whether a race condition exists between any two given operations. The
second algorithm runs in O(np log n) time and outputs a compact representation from which one can determine
in O(1) time whether a race condition exists between any two given operations. The second algorithm is near-
optimal in that the running time is only O(log n) times the time required simply to write down the output.

Key Words. Race conditions, Parallel programs, Semaphores, Tractability, Scheduling.

1. Introduction. Race detection is crucial in developing and debugging shared-
memory parallel programs [5], [7], [11], [16]–[18]. Explicit synchronization is usually
added to such programs to coordinate access to shared data. For example, when using a
semaphore, a V -operation increments the semaphore, and a P-operation waits until the
semaphore is greater than zero and then decrements the semaphore. P-operations are
typically used to wait (synchronize) until some condition is true (such as a shared buffer
becoming nonempty), and V -operations typically signal that some condition is now true.
Race conditions result when this synchronization does not force concurrent processes to
access data in the expected order. One way to detect races in a program dynamically is to
trace its execution and analyze the traces afterward. A central part of dynamic race detec-
tion is to compute from the trace the order in which shared-memory accesses were guaran-
teed by the execution’s synchronization to have executed. Accesses to the same location
not guaranteed to execute in some particular order are considered a race. When programs
use semaphore operations for synchronization, some operations (belonging to different
processes) could have potentially executed in an order different than what was traced.

In this paper we address the tractability of detecting race conditions from the traces
of parallel programs that use semaphores. Let p be the number of processors used
to execute the parallel program, and let n be the total number of semaphore operations

1 Preliminary versions of this paper appeared in [12] and [13]. This research was supported in part by
National Science Foundation Presidential Young Investigator Award CCR-9047466.
2 Department of Computer Science, Brown University, Providence, RI 02912-1910, USA. {klein,rn}@cs.
brown.edu.
3 Institute of Information Science, Academia Sinica, Taipei 115, Taiwan. hil@iis.sinica.edu.tw. www.iis.sinica.
edu.tw/∼hil/. Most of the results of this paper were done when this author was a Ph.D. student at Brown
University.

Received October 28, 2000; revised November 3, 2001. Communicated by F. Thomson Leighton.
Online publication January 13, 2003.

322 P. N. Klein, H.-I Lu, and R. H. B. Netzer

performed in the execution. The trace can then be represented by a directed n-node graph
G consisting of p disjoint chains, each represents the sequence of semaphore operations
executed by a processor. A schedule of G is a linear ordering of all nodes in G consistent
with the precedence constraints imposed by the arcs of G. A prefix of a schedule of G
is a subschedule of G. A subschedule of G is valid if at each point in the subschedule,
the number of V operations is never exceeded by the number of P operations for each
semaphore (i.e., all semaphores are always nonnegative). If the trace indicates that v

preceded w in the actual execution, but a valid subschedule4 exists in which w precedes
v, then v and w could have executed in either order, i.e., there is a race condition between
v and w. Netzer and Miller showed that detecting race conditions in parallel programs
that use multiple semaphores is NP-complete [15]. Researchers have developed exact
algorithms for cases where the problem is efficiently solvable (programs that use types
of synchronization weaker than semaphores such as post/wait/clear) [8], [9], [14], and
heuristics for the multiple semaphore case [4], [10]. The complexity for the case of a con-
stant number of semaphores was unknown. In the present paper we show that the problem
remains NP-complete even if only two semaphores are used in the parallel program.

For the case of using only one semaphore in parallel programs, we give two algo-
rithms. The first algorithm detects in O(n) time whether a race condition exists between
any two operations. The second algorithm computes in O(np log n) time a compact
representation, from which one can determine whether a race condition exists between
any two operations in O(1) time. Our results are based on reducing the problem of
determining whether a valid subschedule exists in which w precedes v to the problem
of Sequencing to Minimize Maximum Cumulative Cost (SMMCC). Given an acyclic di-
rected graph G with costs on the nodes, the cumulative cost of the first i nodes in a
schedule of G is the sum of the cost of these nodes. Thus, minimizing the maximum
cumulative cost is an attempt to ensure that the cumulative cost stays low throughout
the schedule. The SMMCC problem is NP-complete in general even if the node costs
are restricted to ±1 [1], [6]. Abdel-Wahab and Kameda [2] presented an O(n2)-time
algorithm for the special case that G is a series-parallel graph. (The time bound was later
improved to O(n log n) by the same authors [3].) As part of this solution, they gave an
O(n log p)-time algorithm applicable when G consists of p disjoint chains. The exis-
tence problem of a valid schedule in which v precedes w can be reduced to the SMMCC
problem in a chain graph augmented with one interchain edge. We add an edge from w

to v, assign costs to the nodes (+1 if the node is a P-operation, −1 if a V -operation), and
compute the minimum maximum cumulative cost. Clearly, the cost is nonpositive if and
only if there is a valid schedule. The augmented chain graph is not series-parallel, so the
algorithms of Abdel-Wahab and Kameda [2], [3] are not applicable. We show that the
SMMCC problem can nevertheless be solved in polynomial time. In fact, for the special
case of interest, that in which the costs are ±1, we give a linear-time algorithm.

The rest of the paper is organized as follows. Section 2 gives the preliminaries.
Section 3 gives the algorithm for a single pair of nodes. Section 4 gives the algorithm for
all pairs of nodes. Section 5 sketches the proof for showing that race-condition detection
is NP-complete if two semaphores are used in the parallel program.

4 We consider subschedules rather than schedules because deadlocks might happen during the execution of
parallel programs.

Detecting Race Conditions in Parallel Programs that Use Semaphores 323

2. Preliminaries. Suppose G is an acyclic graph with node costs. We introduce some
terminology having to do with schedules, mostly adapted from [2]. A segment of a
schedule is a consecutive subsequence. Let H = v1v2 · · · vm be a sequence of nodes.
The cost of H , denoted c(H), is the sum of the costs of its nodes. The height of a node
v� in H is defined to be the sum of the costs of the nodes v1 through v�. The height of
H , denoted h(H), is the maximum of zero and the maximum height of the nodes in H .
A node of maximum height in H is called a peak. A node of minimum height in H is
called a valley. The reverse height of H , denote h̃(H), is the height of H minus the cost
of H . Note that height and reverse height are nonnegative. A schedule of G is optimal if
its height is minimum over all schedules of G. We use h(G) to denote the height of its
optimal schedule.

A sequence C = v1v2 · · · vm of nodes of G is called a chain of G if the only edges in
G incident on these nodes are v0v1, v1v2, . . . , vm−1vm, vmvm+1, where v0 and vm+1 are
other nodes, denoted pred(C) and succ(C), respectively. We use start(C) to denote v1

and end(C) to denote vm . Note that C could be a single node.
We use [v, w]G to denote the chain of G starting from v and ending at w. Let [v, −]G

denote the longest chain of G starting from v, and [−, v]G the longest chain of G ending
at v. If it is clear from the context which graph is intended, then we may omit the subscript
G. Note that the above notation might not be well defined for any acyclic graph G, but it
is so when G is composed of disjoint chains, which is the case of interest in this paper.

Suppose H is a chain of G containing a peak v� such that (1) every node of H
preceding v� has nonnegative height in H , and (2) every node of H following v� has
height in H at least the cost of H . In this case we call H a hump, and we say v� is a
useful peak of H . This definition is illustrated in Figure 1. We say a hump is an N-hump
if its cost is negative, a P-hump if its cost is nonnegative.

We are concerned primarily with graphs G consisting of disjoint chains C1, C2, . . . ,

Cp. For convenience, we assume that G contains an initial pseudonode (⊥), preceding
all nodes, and a terminal pseudonode (�), following all nodes, each of cost zero. Thus,
pred(v) could be ⊥ and succ(v) could be �.

For the rest of the section we describe the properties of humps in schedules, mostly
adapted from [2].

2.1. Hump Decomposition. As part of their scheduling algorithm for series-parallel
graphs, Abdel-Wahab and Kameda [3] show that in linear time a sequence of nodes

Fig. 1. A hump H of 12 nodes: v1, v2, . . . , v12. The cost of each node is in the circle. By definition c(H) = −2,
h(H) = 2, and h̃(H) = 4. Both of v2 and v8 are peaks of H , but only v2 is useful.

324 P. N. Klein, H.-I Lu, and R. H. B. Netzer

Fig. 2. A chain decomposed into two N -humps and three P-humps.

can be decomposed into a set of humps by an algorithm DECOMP(). It takes a chain as
input and outputs a set of disjoint subchains such that every subchain is a hump. The
output of DECOMP(C) is unique, although the output is not necessarily the only hump
decomposition of C . An example is shown in Figure 2. The chain is decomposed by
DECOMP() into two N -humps and three P-humps. For a chain C , we say H is a hump
of C if H ∈ DECOMP(C). It can be proved that DECOMP() has the following properties.

HUMP-DECOMPOSITION PROPERTIES.

1. Suppose H1, H2 ∈ DECOMP(C) and H1 precedes H2 in C . If c(H1) ≥ 0, then
c(H2) ≥ 0 and h̃(H1) > h̃(H2). If c(H2) < 0, then c(H1) < 0 and h(H1) < h(H2).

2. If v is the first valley of [u, w], then DECOMP([u, v]) (respectively, DECOMP([succ(v),

w])) consists of N -humps (respectively, P-humps) only.
3. Let C and C ′ be two disjoint chains, whose humps are respectively H1, H2, . . . , Hk

and Hk+1, Hk+2, . . . , H� in order. Then, for some 1 ≤ i ≤ k and k ≤ j ≤ �, the
humps of CC′ are

H1, H2, . . . , Hi , (Hi+1 · · · Hj), Hj+1, . . . , H�

in order.

The third property implies that

{end(H): H ∈ DECOMP(CC′)}
⊆ {end(H): H ∈ DECOMP(C)} ∪ {end(H): H ∈ DECOMP(C ′)}.

It will turn out that once we decompose a chain into humps, we need not be concerned
with the internal structure of these humps. For each hump H we need only store c(H) and
h(H). Thus, a chain consisting of � humps can be represented by a length-� sequence of
pairs (c(H), h(H)). We call this sequence the hump representation of the chain. Using
the third hump-decomposition property, one could straightforwardly derive the hump
representation of C1C2 from the hump representation of C1 and that of C2. In particular,
if we are given DECOMP(C) and DECOMP(C ′), then computing DECOMP(CC′) takes
O(|DECOMP(C)| + |DECOMP(C ′)|) time.

2.2. Hump Clustering. The following lemma concerns an operation on a schedule
called clustering the nodes of a hump. Suppose H is a hump of G, and let v be a useful
peak of H . Let S be a schedule of G. If all the nodes of H are consecutive in S, then we

Detecting Race Conditions in Parallel Programs that Use Semaphores 325

A B C D E F 1 2 3 4 5 G H I

I54HG3F2EDC1BA

Fig. 3. The second sequence of nodes is obtained from the first one by clustering the nodes 1–5 to node 3.

say H is clustered in S. If every hump of G is clustered in S, then we say the schedule
S is clustered. If a hump is not clustered in a schedule, then we can modify the schedule
to make it so. To cluster the nodes of H to v is to change the positions of nodes of H
other than v so that all the nodes of H are consecutive, and the order among nodes of H
is unchanged. An example is shown in Figure 3.

LEMMA 2.1 (see [2]). Let G be an acyclic graph with node costs and let H be a hump
of G. Suppose S is a schedule of G. If T is obtained from S by clustering all nodes in H
to a useful peak of H , then T is a schedule of G and h(T) ≤ h(S).

An example is shown in Figure 4. The height of the schedule in Figure 4(c) is smaller
than that of the schedule in Figure 4(b). Two clustered schedules of the graph in Fig-
ure 4(a) are shown in Figure 4(d), (e). It follows from Lemma 2.1 that there is always an
optimal schedule of G which is clustered.

2.3. Standard Order. A series S1 · · · Sm of subsequences of nodes is in standard order
if it satisfies the following properties.

STANDARD ORDER PROPERTIES.

• The series consists of Si ’s with negative costs, followed by Si ’s with nonnegative costs.
• The Si ’s with negative costs are in nondecreasing order of height; and the Si ’s with

nonnegative costs are in nonincreasing order of reverse height.

Fig. 4. (a) A graph G consists of two chains. The first chain contains an N -hump followed by a P-hump. The
second chain contains two P-humps. (b) A schedule for G of height four. (c) The schedule obtained from
the previous one by clustering the N -hump to its useful peak. (d) A clustered schedule of G of height two.
This one is obtained from the previous schedule by clustering every hump. (e) A clustered schedule of G with
minimum height.

326 P. N. Klein, H.-I Lu, and R. H. B. Netzer

If the humps of a chain are H1, H2, . . . , Hm in order, then the series H1 H2 · · · Hm is
in standard order by the first hump-decomposition property.

LEMMA 2.2 (see [2]). Let A, B, S1, and S2 be subsequences of nodes. Suppose S =
S1ABS2 and T = S1BAS2. If the series BA is in standard order, then h(S) ≥ h(T).

For example, the sequence in Figure 4(d) is a clustered schedule of the graph in
Figure 4(a). Note that the series of the last two humps in the schedule is not in standard
order: the reverse height of the first hump (zero) is less than that of the second hump
(one). The schedule in Figure 4(e) obtained by exchanging those two clustered humps
has height one less than that of the schedule in Figure 4(d).

2.4. Hump Merging. A schedule of G is in standard form if it is clustered and its series
of humps of G is in standard order. Let T be any schedule of G in standard form. Recall
that by Lemma 2.1 there is always an optimal schedule S of G which is clustered. The
humps of G, while clustered in both T and S, may not be in the same order. However,
any two humps of the same chain of G must be in the same order in T and in S, else either
T or S is not a schedule. Take two consecutive humps in S that are from different chains
and that are not in the same order as in T , and exchange their positions. By Lemma 2.2,
the resulting ordering has height no more than S. By a series of such exchanges, we
eventually obtain T from S. It follows that the height of T is no more than that of S, and
hence that T is optimal. This argument shows that every schedule in standard form is an
optimal schedule of G.

Let I = {H1, H2, . . . , Hm}, where the series H1 H2 · · · Hm is in standard order. Sup-
pose MERGE(I) returns a sequence of nodes obtained by concatenating all humps in I
into standard order. Namely, MERGE(I) = H1 H2 · · · Hm . Assume for uniqueness that
MERGE() breaks ties in some arbitrary but fixed way. By the above argument we have
the following lemma.

LEMMA 2.3 (see [2]). The output of

MERGE

(⋃
1≤i≤p

DECOMP(Ci)

)

is an optimal schedule of G.

An example is shown in Figure 4. Since the schedule in Figure 4(e) is clustered and its
series of humps is in standard order, it is an optimal schedule of the graph in Figure 4(a).
Abdel-Wahab and Kameda [2] showed that MERGE(

⋃
1≤i≤p DECOMP(Ci)) can be ob-

tained in O(n log p) time. Note that the output of function MERGE() may not be unique.
Without loss of generality, however, we may define MERGE() more restrictively as fol-
lows to make its output unique for the same G. Suppose G is composed of disjoint chains,
C1, C2, . . . , Cp and I = ⋃

1≤i≤p DECOMP(Ci). Define MERGE(I) = H1 H2 · · · Hm ,
where {H1, H2, . . . , Hm} = I and the series H1 H2 · · · Hm is in standard order. Fur-
thermore, if Hi Hj and Hj Hi are both in standard order, where Ci ′ contains Hi , Cj ′

contains Hj , and i ′ < j ′, then Hi precedes Hj in MERGE(I).

Detecting Race Conditions in Parallel Programs that Use Semaphores 327

3. Algorithm for Single Pair. A vector � = (x1, x2, . . . , xp) of p nodes is called a
cut of G if each xi is either ⊥ or a node in Ci . We call xi the i th cutpoint of �. The
prefix subgraph G[�] of G is the subgraph

⋃
1≤i≤p[−, xi]. Therefore, the problem we

address can be reduced to finding a cut such that the valid schedule of the prefix subgraph
determined by the cut has the minimal maximum cumulative cost. Let h be the maximum
cumulative cost of the optimal subschedule that contains v and w. If h is zero, then a
valid subschedule exists (i.e., the optimal valid subschedule.) If h is positive, then there
is no valid subschedule because the maximum cumulative cost of any valid subschedule
is greater than or equal to h and is thus positive, too. The rest of the section shows that
a best cut can be found in linear time.

Since we will frequently encounter two cuts that differ at only one cutpoint, let
NEWCUT(�, i, u) denote a cut �′ with

�′(�) =
{

�(�) if � �= i,

u if � = i.

A j -schedule of G[�] is a schedule of G[�] whose last node is �(j). We use hj (G[�])
to denote the height of an optimal j-schedule of G[�]. Suppose �(j) �= ⊥. One can
compute hj (G[�]) for a given � as follows. Let �′ = NEWCUT(�, j, pred(�(j))).
Clearly, if S is an optimal schedule of G[�′], then S�(j) is an optimal j-schedule of
G[�]. It follows that

hj (G[�]) = max{h(G[�′]), c(G[�′]) + h(�(j))}.
Note that h(G[�]) and hj (G[�]) are both nonnegative. We use v → w to signify that
there is a valid subschedule of G in which v precedes w. Let v �→ w signify that v → w

is not true. Note that neither → nor �→ is a partial order.

3.1. Basic Idea. Every valid subschedule of G is a valid schedule of a prefix subgraph
G[�] for some cut � of G. Therefore, v → w if and only if there is a cut � of G
such that G[�] has a valid schedule in which v precedes w. Let h∗ be the minimum of
h(G[�] ∪ {vw}) over all G[�]’s that contain v and w. It follows that v → w if and only if
h∗ = 0. Hence, the problem of determining whether v → w is reduced to computing the
minimum height of a set of chain graphs each augmented with an interchain arc. Clearly,
two immediate questions arise. (1) How do we compute the height of G[�] ∪ {vw},
which is not even serial-parallel? (2) How do we cope with the fact that there could be
an exponential number of prefix subgraphs that contain v and w?

Let v and w be contained in two disjoint chains Ci and Cj , respectively. The following
observation will ease the situation. Suppose S is a subschedule of G containing w. Let
S′ be the subschedule of G obtained from S by discarding all nodes succeeding w

in S. Clearly, h(S′) ≤ h(S). Therefore, without loss of generality the minimum of
h(G[�] ∪ {vw}) can be computed over only cuts � with �(j) = w. Moreover, we can
let w always be the last node of a subschedule by considering only the minimum-height
j-schedule of each G[�] that contains v. The first question above is no longer an issue.

It turns out that the second question is not an issue, either. We will show that in order to
obtain the minimum-height of all those j-schedules, it suffices to consider only O(

√
n)

cuts. In particular each of those O(
√

n) cuts is uniquely determined by its j th cutpoint.

328 P. N. Klein, H.-I Lu, and R. H. B. Netzer

Fig. 5. The algorithm for computing h(G[�∗] ∪ {vw}) for a best cut �∗ of G corresponding to vw.

3.2. The Algorithm. The algorithm takes v and w as inputs. Let Ci contain v and Cj

contain w. The algorithm proceeds iteratively with different cutpoint �(i) such that �(i)
does not precede v. In each iteration the algorithm calls the function BEST() to obtain a
minimum-height j-schedule for G[�] over all cuts � with the designated cutpoints in Ci

and Cj . By comparing the heights of these j-schedules with respect to different �(i)’s,
the algorithm outputs the minimum height of j-schedules for G[�] over all � such that
�(j) = w and �(i) does not precede v. In Figure 5 we give the algorithm to compute
h(G[�∗] ∪ {vw}), where �∗ is a best cut of G corresponding to vw.

Function BEST() is the essential part of the algorithm. Based on the given subset F
of {1, 2, . . . , p} and the given cut �, it looks for a best cut �∗ corresponding to vw such
that �∗(k) = �(k) for every k ∈ F . (In the case in which we are interested, F = {i, j}.)
An optimal j-schedule of G[�∗] is then returned. Note that for every k �∈ F , �∗(k)

depends on a value s, which is the maximum of s1 and s2. Each of s1 and s2 is determined
simply by chains with indices in F and their designated cutpoints. Namely, the choices
of �∗(k)’s for different k �∈ F are mutually independent. This is the key to our efficient
algorithm.

In BEST(), we do not explicitly specify cutpoints of �∗. Instead, we work on the hump
representation of subchains and every cutpoint is implicitly specified by an end(H) for
some hump H . Specifically, Step 1 ensures �∗(k) = �(k) for every k ∈ F, k �= j .
Steps 3 and 8 ensure �∗(k) = end(H), where H is the highest N -hump of all Ck with
h(H) < s and k �∈ F . Since we are considering j-schedules, �∗(j) is specified slightly
differently. Although in Step 2 the subchain of Cj is only up to pred(�(j)), �∗(j) is still
�(j), since j-schedule S∗�(j) is returned in Step 10.

3.3. Correctness. We answer the following two questions in this subsection:

1. Why is it sufficient to try for �(i) only those nodes in {end(H): H ∈ I0}?
2. Why does BEST(j, F, �) return an optimal j-schedule of G[�∗] with �∗(k) = �(k)

for every k ∈ F?

LEMMA 3.1. Let � be a cut of G. Suppose [x, z] is a subchain of G containing �(i).
Let H be the hump of [x, z] containing �(i). Let y be the first valley of [pred(H),

Detecting Race Conditions in Parallel Programs that Use Semaphores 329

�(i)]. If

�1(k) =

�(k) if k �= i,

pred(H) if k = i and y = pred(H),

end(H) if k = i and y �= pred(H),

then hj (G[�1]) ≤ hj (G[�]).

PROOF. Straightforward.

Note that the pred(H) in the above lemma is always an end(H ′) for some hump H ′

in I0, which is defined in Step 5 of MINHEIGHT(). Therefore, Lemma 3.1 answers the
first question.

By definitions of I , J , and Ks it is not difficult to see that the sequence returned by
BEST(j, F, �) is an optimal j-schedule of G[�∗] for some cut �∗ such that �∗(k) = �(k)

for every k ∈ F . The correctness of MINHEIGHT() thus relies on the following lemma,
which answers the second question.

LEMMA 3.2. Let � be a cut. Let F be a subset of {1, 2, . . . , p} containing j . If S∗ =
BEST(j, F, �), then h(S∗) ≤ hj (G[�]).

The rest of the subsection proves Lemma 3.2. Let F� = {1, . . . , � − 1, � + 1, . . . , p}.
The following lemma is a special case of Lemma 3.2, in which F is composed of p − 1
numbers.

LEMMA 3.3. Let � be a cut. If S∗ = BEST(j, F�, �) for some � �= j , then h(S∗) ≤
hj (G[�]).

PROOF. Define �1 by

�1(k) =
{

�(k) if k �= �,

the first valley of [−, �(�)] if k = �.

Then it is not difficult to see hj (G[�1]) ≤ hj (G[�]). Let �′ be the cut with h(S∗) =
hj (G[�′]), i.e., S∗ is a j-schedule of G[�′]. By definition of BEST(), �′ and �1 could
differ only at the �th position. Clearly, it suffices to show hj (G[�′]) ≤ hj (G[�1]).

Let w = �1(j). Let L = DECOMP([−, �1(k)]). Define

S = MERGE(I ∪ J ∪ L),

where I and J are defined in Steps 1 and 2 of BEST(). Clearly, Sw is an optimal j-schedule
of G[�1]. Thus, h(Sw) = hj (G[�1]). By choice of �1(�), L contains no P-hump. Hence,
by the uniqueness assumption of MERGE(), we could write Sw = S1S+w, where S+ is
defined in Step 5 of BEST(). We prove hj (G[�′]) ≤ hj (G[�1]) by showing that �′(�)
succeeds �(�) if and only if hj (G[�′]) ≤ h(Sw) as follows.

Case 1: �′(�) succeeds �(�). Since L contains no P-hump, each hump of [−, �1(�)]
appears in S1. Therefore, S1S′S+w is a j-schedule of G[�′], where S′ = [succ(�1(�)),

330 P. N. Klein, H.-I Lu, and R. H. B. Netzer

�′(�)]. We show h(S1S′S+w) ≤ h(S1S+w). Now h(S1S′S+w) = max{h(S1), c(S1) +
h(S′), c(S1S′) + h(S+w)}. Clearly,

h(S1) ≤ h(S1S+w).(1)

By definition of F , the Ks defined in Step 8 of BEST() is composed of the N -humps of
C� that have heights less than s. Therefore, by choice of �′(�) every hump of [−, �′(�)]
has height less than s. It follows from the standard order of humps in S′ that h(S′) < s.
By Step 7 of BEST(), s = max{s1, s2}. If s = s2 = h(S+w), as defined in Step 6 of
BEST(), then c(S1) + h(S′) < c(S1) + h(S+w). If s = s1 = h(H∗), where H∗ is a
highest N -hump in I ∪ J , then we could write S1 = S2 H∗S3. It follows that

c(S1) + h(S′) = c(S2 H∗S3) + h(S′)

< c(S2) + h(H∗)

≤ h(S2 H∗)

≤ h(S1).

Therefore, in either case we have

c(S1) + h(S′) < h(S1S+w).(2)

By choice of �′(�), c(S′) < 0. Hence,

c(S1S′) + h(S+w) < c(S1) + h(S+w)(3)

≤ h(S1S+w).

Combining (1), (2), and (3), we obtain h(S1S′S+w) ≤ h(Sw).

Case 2: �′(�) precedes �1(�). Let S′ = [succ(�′(�)), �1(�)]. By choice of �′(�), it is
not difficult to see

DECOMP([−, �1(�)]) = DECOMP([−, �′(�)]) ∪ DECOMP(S′).

By choice of �1(�), DECOMP(S′) contains only N -humps of heights no less than s. Note
that every N -hump in I ∪ J has height no more than s. By the standard form of S, we
know that S′ is a suffix of S1. Therefore, we could write Sw = S2S′S+w. Removing S′

from Sw, we obtain a j-schedule S2S+w of G[�′]. We show h(S2S+w) ≤ h(Sw).
Now h(S2S+w) = max{h(S2), c(S2) + h(S+w)}. Clearly,

h(S2) ≤ h(S2S′S+w) = h(Sw).(4)

Since each hump of S′ has height no less than s, h(S′) ≥ s. Hence, h(S′S+w) ≥ h(S′) ≥
s ≥ s2 = h(S+w). It follows that

c(S1) + h(S+w) ≤ c(S1) + h(S′S+w)(5)

≤ h(Sw).

Combining (4) and (5), we obtain h(S1S+w) ≤ h(Sw).

Detecting Race Conditions in Parallel Programs that Use Semaphores 331

Procedure CUTTRANS(�, �∗)
1 � := 0;
2 While �∗ �= � do
3 � := (� mod p) + 1;
4 If � �∈ F
5 S := BEST(j, F�, �);
6 �′ := the cut such that S is an optimal j-schedule of G[�′];
7 � := �′;

Fig. 6. The algorithm transforms � to �∗. We prove Lemma 3.2 by showing that this algorithm always
terminates.

Now we are ready to prove Lemma 3.2.

PROOF OF LEMMA 3.2. Recall that S∗ = BEST(j, F, �). Let �′ be the cut such that
S∗ is a j-schedule of G[�′]. (S∗ is certainly an optimal j-schedule of G[�′].) We use
the algorithm in Figure 6 to prove the lemma. Procedure CUTTRANS() proceeds with
iterations, in which the value of � varies among {1, . . . , p}. If � �∈ F , then the value of
�(�) is updated. Since S is an optimal j-schedule of G[�′], it follows from Lemma 3.3
that hj (G[�′]) ≤ hj (G[�]) always holds during the while-loop. If we could show that
CUTTRANS() always terminates, then the lemma is proved.

Let s∗
1 , s∗

2 , and s∗ be the s1, s2, and s in the execution of BEST(j, F, �). Let s1, s2, and
s be those in the execution of BEST(j, F�, �). The values of s1, s2, and s change as the
while-loop of CUTTRANS() proceeds. We show that � eventually becomes �′ by arguing
that s eventually becomes s∗.

Since F ⊆ F�, s1 ≥ s∗
1 always holds. By definition of BEST(), whenever Step 7

of CUTTRANS() is finished, [−, �(�)] contains only N -humps. Thus, after the first p
iterations of the while-loop, [−, �(�)] contains no P-hump for every � �∈ F . Henceforth,
s2 = s∗

2 and therefore s = max{s1, s2} ≥ max{s∗
1 , s∗

2 } = s∗. If s > s∗, then s = s1 > s∗.
Since s1 > s∗, there must be an N -hump H in

⋃
k �∈F DECOMP([−, �(k)]) such that

h(H) = s1. Since s = s1, in the next iteration when C� contains H , �(�) will be moved
before H by definition of BEST(). It follows that the value of s is nonincreasing and s
will become s∗. Once s = s∗, in the following p iterations, �(k) will be moved to �′(k)

for every k �∈ F . The algorithm then terminates.

3.4. Implementation. Recall that DECOMP(C) runs in time linear in |C |, the length of
chain C . It follows that the time complexity of Steps 1–5 and Step 9 of MINHEIGHT() is
O(n). Suppose the order of nodes assigned to �(i) in the for-loop is the same as their
order in Ci . In the subsection we focus on implementing BEST() such that the for-loop
runs in time O(n).

Number of Iterations. The following lemma ensures that the size of I0 is O(
√|Ci |). It

follows that the number of iterations is O(
√

n).

332 P. N. Klein, H.-I Lu, and R. H. B. Netzer

LEMMA 3.4. Suppose C is a chain with node costs ±1. The number of humps in
DECOMP(C) is O(

√|C |).

PROOF. Since the costs of nodes are either +1 or −1, a hump of height � contains at
least � nodes. For the same reason, a hump of reverse height � contains at least � nodes.
By the first hump decomposition property, the heights of the N -humps in DECOMP(C)

are different, and so are the reverse heights of the P-humps in DECOMP(C). If there are
n1 N -humps and n2 P-humps in DECOMP(C), then |C | = �(n2

1 +n2
2) = ((n1 +n2)

2).
This proves the lemma.

Compact Representation of Humps. For the sake of efficiency, we do not deal with the
internal structure of humps in BEST(). It suffices to represent each hump H by a pair
(c(H), h(H)) and work on the compact representation of humps. Therefore, each of the
I , J , and K computed in the first three steps is a set of pairs. Clearly, each of these three
steps takes O(n) time. However, the contents of J and K do not change in different
iterations. Thus, Steps 2 and 3 need only be executed once.

By F = {i, j}, we have I = DECOMP([−, �(i)]). Suppose It and �t are the I and �

in the t th iteration for some t ≥ 2. By the order of nodes assigned to �(i), we need not
recompute DECOMP([−, �t (i)]) from scratch. In the t th execution of Step 1, [−, �t (i)] is
obtained by appending a hump [succ(�t−1(i)), �t (i)] to [−, �t−1(i)]. By the argument
following the hump decomposition properties in Section 2.1, the t th execution of Step 1
takes O(|It−1|) time. By Lemma 3.4, the time complexity of all executions of Step 1 is
O(n + √

n × √
n) = O(n).

Priority Tree. To compute s1 efficiently, we resort to a priority tree, a complete binary
tree with n + 1 leaves.5 Each leaf keeps two values, count and maxheight. The cost of
the (h + 1)st leaf is the number of N -humps of height h in I ∪ J . The maxheight of the
(h + 1)st leaf is zero (respectively, h), if its count is zero (respectively, nonzero). The
maxheight of an internal node is the maximum maxheight of its children. It follows that
the maxheight of the root of a priority tree is the correct value of s. The priority tree can
be built in time O(n). Whenever a hump is added to or deleted from I ∪ J , the priority
tree can be updated in time O(log n). Since J is fixed, to compute s1 in t th iterations for
every t ≥ 2, we add humps in It − It−1 to I ∪ J , remove humps in It−1 − It from I ∪ J ,
and update the priority tree. By the third hump decomposition property, we have∑

2≤t≤qi

|It − It−1| + |It−1 − It | = O(
√

|Ci |),(6)

where qi is the number of humps in Ci . Hence, the time complexity of all executions of
Step 4 is O(n + √

n × log n) = O(n).

Hump Tree. To obtain the value of s2, it is not necessary to know the value of S+. We
need only to obtain the height of S+�(j). Similarly, the actual value of Ss is irrelevant.
What we compare in Step 8 of MINHEIGHT() is the height of Ss�(j). We need a data
structure to compute these two heights efficiently.

5 Note that there are other ways to implement Step 4 to run in linear time. However, the necessity of a priority
tree will become clear when we address the implementation of the all-pairs algorithm.

Detecting Race Conditions in Parallel Programs that Use Semaphores 333

Let L be a set of humps such that h(H) ≤ n and h̃(H) ≤ n for every H ∈ L . A
hump tree T for L is a binary tree composed of two complete binary subtrees. Each
subtree has n + 1 leaves. Let TN be the left subtree and TP be the right subtree. The
(h + 1)st leaf of TN associates with the set of N -humps of height h in L . The (h + 1)st
leaf of TP associates with the set of P-humps of reverse height n − h in L . Let Tx be
the subtree of T rooted at x . Let Lx be the set of humps associated with leaves of Tx .
Define h(Tx) = h(MERGE(Lx)) and c(Tx) = c(MERGE(Lx)). Clearly, when L = I ∪ J ,
h(TP) = h(S+) and c(TP) = c(S+). When L = I ∪ J ∪ Ks , h(T) = h(Ss) and
c(T) = c(Ss). The heights of S+�(j) and Ss�(j) can then be computed by

h(S+�(j)) = max{h(S+), c(S+) + h(�(j))},
h(Ss�(j)) = max{h(Ss), c(Ss) + h(�(j))}.

We keep h(Tx) and c(Tx) in x for every node x of T . Therefore, the hump tree T takes
O(n) space. We show how to compute h(Tx) and c(Tx) for every node x from leaves to
root. When x is a leaf of T , the humps in Lx have the same height if x is in TN , and the
same reverse height if x is in TP . It is not difficult to see that c(Tx) = ∑

H∈Lx
c(H); and

h(Tx) =

0 if Lx = ∅,

h if x is the (h + 1)st leaf of TN ,

c(Tx) − h if x is the (n − h + 1)st leaf of TP .

When x is an internal node of T , h(Tx) and c(Tx) can be computed by the information
kept in the children of x . Suppose y and z are the left and right children of x , respectively.
For any H in L y and H ′ in Lz , by the way we associate humps with leaves, the series
HH′ is in standard order. Hence,

h(Tx) = max{h(Ty), c(Ty) + h(Tz)},
c(Tx) = c(Ty) + c(Tz).

It follows that the hump tree T for L can be built in time O(n + |L|).
Once T is built, inserting a hump to L can be done efficiently. Suppose we insert H

to L . For the case that H is an N -hump, if Lx = ∅, then let h(Tx) = h; otherwise, add
c(H) to c(Tx), where x is the (h(H) + 1)st leaf of TN . If H is a P-hump, then we add
c(H) to both c(Tx) and h(Tx), where x is the (n − h̃(H) + 1)st leaf of TP . To update T ,
we simply update the internal nodes on the path from x to the root of T . Deleting a hump
from L can be done similarly by replacing every addition with a subtraction. Clearly,
both insertion and deletion take time O(log n).

To compute the heights of S+�(j) and Ss�(j), we need not maintain a hump tree for
I ∪ J and another hump tree for I ∪ J ∪ Ks . Suppose K − is the set of N -humps in K ,
i.e., K − = {H ∈ K : c(H) < 0}. It suffices to maintain a hump tree T for I ∪ J ∪ K −.
Since there is no P-hump in K −, it is still true that h(Tp) = h(S+) and c(Tp) =
c(S+). Although the hump tree is not for I ∪ J ∪ Ks , the values of h(Ss) and c(Ss)

can be efficiently obtained by the procedure in Figure 7. Procedure REMOVERANGE()

acts as if the N -humps of heights no less than s are removed from the hump tree for
I ∪ J ∪ K −. Therefore, the resulting h(T) and c(T) are h(Ss) and c(Ss), respectively.

334 P. N. Klein, H.-I Lu, and R. H. B. Netzer

Procedure REMOVERANGE(T, s)
1 y := the sth leaf of TN ;
2 While y is not the root of TN do
3 x := the parent of y;
4 If y is the left child of x then
5 (h(Tx), c(Tx)) := (h(Ty), c(Ty));
6 else
7 Recompute h(Tx) and c(Tx);
8 y := x;
9 Recompute h(T) and c(T);

Fig. 7. Let T be the hump tree for I ∪ J ∪ K −. This procedure acts as if the N -humps of heights no less than
s are removed from the hump tree.

Clearly, REMOVERANGE() takes O(log n) time. Since we maintain the hump tree for
I ∪ J ∪ K − in every iteration, we use O(log n) space to keep the modified information
of T . After obtaining the information we need, we restore the hump tree for I ∪ J ∪ K −

in time O(log n).
Let It be the I in the t th iteration for any t ≥ 1. To obtain the hump tree for It ∪ J ∪K −

from It−1 ∪ J ∪ K −, we need to insert the humps in It − It−1 to T and remove the humps
in It−1− It from T . Since each insertion and deletion takes O(log n) time, it follows from
(6) that the overall time complexity for obtaining the hump tree from that of previous
iterations is O(

√
n × log n). Recall that building a hump tree for L takes O(n + |L|)

time. Since there are n nodes in G, |I1 ∪ J ∪ K −| = O(n). It follows that the time
complexity for building a hump tree for I1 ∪ J ∪ K − is O(n).

By the above arguments we implement BEST() such that the overall time com-
plexity of the while-loop in MINHEIGHT() is O(n). We therefore have the following
theorem.

THEOREM 3.5. Suppose G is a graph consisting of p disjoint chains comprising n
nodes, where each node represents either a P-operation or a V -operation. For any two
nodes v and w of G, one can determine in O(n) time whether there is a valid subschedule
in which v precedes w.

4. Algorithm for All Pairs. In this section we show how to determine the → relations
for all pairs of nodes in G. The linear-time algorithm for a single pair of nodes, applied
to all O(n2) pairs, takes time O(n3). Fortunately, there is a compact representation
of this information. To represent this information, it is sufficient that we indicate, for
each node v, and for each chain C not containing v, the first node w in C such that
v precedes w in some valid subschedules. This representation has size O(np), where
n is the number of nodes and p is the number of chains. The representation can be
used to determine in constant time whether there is a race between two given operations

Detecting Race Conditions in Parallel Programs that Use Semaphores 335

Procedure CHAINPAIR(i, j)
1 (v, w) := (end(Ci), end(Cj));
2 Repeat
3 If w = ⊥ then h := 1;
4 else h := MINHEIGHT(v, w);
5 If h > 0 then firstj (v) := succj (w);
6 v := pred(v);
7 else w := pred(w);
8 Until v = ⊥;

Fig. 8. The algorithm that computes firstj (v) for every v ∈ Ci .

v and w, assuming that the input p chains are schedulable.6 To determine whether
v can precede w, we obtain the first node in w’s chain that could be preceded by v

in some valid subschedules. If this first node is numbered later than w, then v can
precede w. Otherwise, v cannot precede w. We therefore consider the complexity of
constructing such a representation. Clearly, it can be constructed by a sequence of calls
to the algorithm of Theorem 3.5. We show how to do much better; in fact the time
required by our algorithm is only O(log n) times the time required simply to write down
the output.

4.1. The Algorithm. Let firstj (v) denote the first node in Cj that could be preceded by
v in some valid subschedule of G. The output of the all-pairs algorithm is thus the value
of firstj (v) for every node v and 1 ≤ j ≤ p. Note that firstj (v) could be �, which means
that none of nodes in Cj can be preceded by v in any valid subschedule of G.

We describe first the procedure CHAINPAIR(i, j) which computes firstj (v) for every
v ∈ Ci . The all-pairs algorithm simply calls CHAINPAIR(i, j) for every 1 ≤ i, j ≤ p. For
convenience, let succj (w) = succ(w) for every w ∈ Cj and let succj (⊥) = start(Cj).
Procedure CHAINPAIR(i, j) is shown in Figure 8. The algorithm starts with letting v be
end(Ci) and letting w be end(Cj). The repeat-loop proceeds by replacing w with pred(w).
Once MINHEIGHT(v, w) is not zero, the algorithm reports succj (w) as firstj (v). After
replacing v with pred(v), the repeat-loop continues the same procedure to search for
new firstj (w).

4.2. Correctness. By induction on v we show that CHAINPAIR(i, j) correctly computes
firstj (v) for every v ∈ Ci .

When v = end(Ci), procedure CHAINPAIR(i, j) keeps replacing w with predj (w)

until w = ⊥ or MINHEIGHT(v, w) > 0. If w = ⊥, then h(G ∪ {vw′}) = 0 for
every w′ ∈ Cj . Thus, firstj (v) = succj (⊥) = succj (w) = start(Cj) is correct. If

6 Since the p chains represent a trace of a parallel program, the assumption holds. For arbitrary p chains, one
can determine whether they are schedulable using the algorithm in [2].

336 P. N. Klein, H.-I Lu, and R. H. B. Netzer

MINHEIGHT(v, w) > 0, then v �→ w. It follows that v �→ w′ for every w′ precedes w

in Cj . Since MINHEIGHT(v, succj (w)) = 0, v → succj (w). Therefore, succj (w) is the
correct value of firstj (v). This confirms the induction basis.

Suppose the procedure CHAINPAIR(i, j) correctly reports succj (w) as the value of
firstj (succi (v)) in a certain iteration of the repeat-loop. We need to show that in the re-
maining iterations firstj (v) will also be correctly computed. Since succi (v) → succj (w),
v → succj (w). It follows that v → w′ (and thus MINHEIGHT(v, w′) = 0) for every w′

succeeding w in Cj . In other words, to locate the first node in Cj that could be preceded
by v, it suffices to start testing from w. For the same reason as above, CHAINPAIR(i, j)
reports the correct value of firstj (w). The correctness is therefore ensured.

4.3. Implementation. We show in this subsection how to implement CHAINPAIR(i, j)
to run in time O((|Ci | + |Cj |) log n). It then follows that the time complexity of the
all-pairs algorithm is O(np log n).

Suppose each time before we call CHAINPAIR(i, j), we have the hump tree for I ∪
J ∪ K −, where

I = DECOMP(Ci),

J = DECOMP([−, pred(end(Cj))]),

K − =

H ∈

⋃
1≤k≤p
k �=i, j

DECOMP(Ck): c(H) < 0

 .

It follows from Section 3.4 that the first call to MINHEIGHT(v, w) can be computed in time
O(log n), since only one �(i) need be considered. In each of the remaining iterations
of the repeat-loop, we either replace v with pred(v) or replace w with pred(w). The
remaining lemma guarantees that to compute each of the following MINHEIGHT(v, w),
we need only try v as the cutpoint of Ci .

LEMMA 4.1. Consider any iteration of the repeat-loop in CHAINPAIR(i, j). When the
algorithm computes h = MINHEIGHT(v, w), v is the only cutpoint of Ci that could make
h zero.

PROOF. By definition of CHAINPAIR(), when computing MINHEIGHT(v, w),
firstj (succi (v)) always succeeds w in Cj . Assume for a contradiction that u is a node
succeeding v in Ci such that there is a cut � of G where �(i) = u, �(j) = w, and
hj (G[�]) = 0. It follows that u → w and thus succi (v) → w. This contradicts the fact
that firstj (succi (v)) succeeds w in Cj .

THEOREM 4.2. Suppose G is as in Theorem 3.5. The compact representation of the
relation “v precedes w in some valid subschedules” can be constructed in O(np log n)

time and O(n) space.

PROOF. Note that in each iteration of the repeat-loop, either v or w is moved by one
position. Since the costs of v and w are ±1, by the first hump decomposition property the

Detecting Race Conditions in Parallel Programs that Use Semaphores 337

number of humps updated in I ∪ J ∪K − between two consecutive iterations is a constant.
Thus, each execution of MINHEIGHT(v, w) takes only time O(log n). Since the number
of iterations of the repeat-loop is O(|Ci | + |Cj |), each execution of CHAINPAIR(i, j)
takes time

O((|Ci | + |Cj |) × log n).(7)

It remains to show how to build the hump tree efficiently for each execution of
CHAINPAIR(i, j).

The very first hump tree can be constructed in time

O(n).(8)

Consider the moment when CHAINPAIR(i, j) is just finished and the all-pairs algorithm
is about to call CHAINPAIR(i1, j1). Since all humps in I ∪ J have been deleted during
the execution of CHAINPAIR(i, j), the current T is the hump tree for the N -humps
in
⋃

1≤k≤p;k �=i, j DECOMP(Ck). In order to obtain the hump tree for CHAINPAIR(i1, j1),
we have to add the N -humps in DECOMP(Ci) ∪ DECOMP(Cj), delete the N -humps in
DECOMP(Cj1) from T , and then insert the humps in

{H ∈ DECOMP(Ci1): c(H) ≥ 0} ∪ DECOMP([−, pred(end(Cj1))])

to T . The hump decomposition can be done in time

O(|Ci | + |Cj | + |Ci1 | + |Cj1 |).(9)

The insertion and deletion of humps can be done in time

O((
√

|Ci | +√|Cj | +√|Ci1 | +√|Cj1 |) × log n).(10)

By (7), (8), (9), and (10), the overall time complexity of the all-pairs algorithm is

O(n) +
∑

1≤i, j≤p

(O(|Ci | + |Cj |) + O(
√

|Ci | +√|Cj |)

× log n + O(|Ci | + |Cj |) × log n),

which is O(np log n).

5. NP-Completeness. In this section we sketch the proof for the following theorem.

THEOREM 5.1. The race-condition detection problem for a parallel program that uses
more than one semaphore is NP-complete.

The proof is by reduction from the NP-complete uniform-cost SMMCC problem, where
the node costs are restricted to ±1 [6]. The reduction has three steps. Given an SMMCC
problem for a uniform-cost graph G0 of n nodes, we construct O(log n) chain graphs

338 P. N. Klein, H.-I Lu, and R. H. B. Netzer

with n + 2 semaphores. The first step of the reduction shows that the SMMCC problem
for G0 can be reduced to determining whether each of those O(log n) chain graphs has
a valid schedule. The second step shows that each of those O(log n) chain graphs can
be simulated by a chain graph with only two semaphores. In other words, the simulated
chain graph has a valid schedule if and only if the simulating chain graph has a valid
schedule. The last step shows that the simulating chain graph has a valid schedule if and
only if v → w, for some v and w, in the same chain graph. We elaborate the details of
the reduction in the Appendix.

Acknowledgments. We thank the anonymous referees for their helpful remarks that
significantly improved the presentation of the paper.

Appendix. Let G be a chain graph. Each node of G is an operation on a semaphore.
An operation on semaphore S is either +S, incrementing the value of S by one, or −S,
decrementing the value of S by one. A subschedule of G is valid if the value of each
semaphore is always nonpositive during the execution of the subschedule. Let v and w

be two nodes of G. If there exists a subschedule of G in which v precedes w, then we
say v → w. Clearly, determining whether v → w is in NP. If G is allowed to use more
than one semaphore, then we prove the NP-hardness by a three-step reduction from the
uniform-cost SMMCC problem.

A.1. First Step. Let G0 be an acyclic directed graph of n nodes, v1, v2, . . . , vn . The cost
of each node is either +1 or −1. Suppose we would like to know whether h(G0) ≤ �.
We construct a chain graph G1 composed of 2n + 2 chains of operations on n + 2
semaphores, and argue that G1 has a valid schedule if and only if h(G0) ≤ �. Note that
0 ≤ h(G0) ≤ n. Therefore, h(G0) can be obtained by O(log n) queries of whether a
chain graph of n + 2 semaphores has a valid schedule.

Let n+ be the number of nodes with positive costs. Let n− be the number of nodes
with negative costs. Clearly, n+−n− is the sum of node costs of G0. Let di be the number
of outgoing arcs of G0 from vi . The n + 2 semaphores for G1 are S1, S2, . . . , Sn, Sα, Sβ .
Let the 2n + 2 chains of G1 be C1, . . . , Cn+1, and C ′

1, . . . , C ′
n+1, all initially empty.

We construct G1 from G0 by the procedure CONSTRUCT() in Figure 9, which runs in
polynomial time. Without loss of generality we can assume that �−n++n−, the number in
the penultimate statement of the procedure CONSTRUCT, is nonnegative, since otherwise
h(G0) > � is immediately concluded.

An example is shown in Figure 10. The intuition is as follows. The (only) operation
for Sα in Ci corresponds to vi , where the “sign” of Sα reflects the cost of vi . We use the
first n semaphores, S1, . . . , Sn , to enforce the execution of these n operations for Sα to
obey the precedence constraints imposed by G0. In Figure 10, for instance, in order to
reach the −Sα in C4, we have to unlock the +S2 (and +S3, +S5) in the same chain first.
Since the only −S2 is after the +Sα in C2, we know the +Sα in C2 must be executed
before the −Sα in C4.

The −Sβ’s at the end of C1, . . . , Cn are to ensure that as long as the last +Sβ in Cn+1

is executed, all operations in C1, . . . , Cn are already executed. The function of those �

Detecting Race Conditions in Parallel Programs that Use Semaphores 339

CONSTRUCT(G0)

1 For i := 1 to n do
2 For j := 1 to n do
3 If vjvi is an arc of G0 then
4 Append a +Sj to Ci .
5 If the cost of vi is +1 then
6 Append a +Sα to Ci .
7 else (i.e., the cost of vi is −1)
8 Append a −Sα to Ci .
9 Append a +Sα and −Sα to C ′

i .
10 Append di copies of −Si to Ci .
11 Append a −Sβ to Ci .
12 Append n copies of +Sβ to Cn+1.
13 Append � − n+ + n− copies of +Sα to Cn+1.
14 Append � copies of −Sα to C ′

n+1.

Fig. 9. The procedure constructs a chain graph G1 such that G1 has a valid schedule if and only if h(G0) ≤ �.

copies of −Sα in C ′
n+1 is clear: the larger �, the easier for G1 to have a valid schedule.

The purpose of the +Sα, −Sα pairs in C ′
1, . . . , C ′

n and those �−n+ +n− copies of +Sα’s
at the end of Cn+1 will become clear as we proceed. Basically they are used to ensure that
G1 has some kind of “pairwise” schedule, as long as G1 has a valid schedule. One can
verify that there are the same number of +Si ’s and −Si ’s in G1, for each 1 ≤ i ≤ n + 2.

For the rest of the subsection, we prove that h(G0) ≤ � if and only if G1 has a valid
schedule. An implication of the following proofs is that G1 has a valid schedule if and
only if it has a valid schedule executable by some procedure PAIRWISE, which will be
given in the proofs.

Fig. 10. An example for the first step of the reduction. Suppose we would like to determine whether h(G0) ≤ 2,
where G0 is the graph on top. We then construct, by CONSTRUCT, the chain graph G1 at the bottom. Note that
there are one +Sα at the end of C6 and two −Sα in C ′

6, according to the last two statements of CONSTRUCT. It
follows from Lemmas A.1(1) and A.2 that that exists a valid schedule of the chains at the bottom if and only
if the height of the graph on the top is at most two.

340 P. N. Klein, H.-I Lu, and R. H. B. Netzer

LEMMA A.1.

1. If G1 has a valid subschedule containing the last +Sα of Cn+1, then h(G0) ≤ �.
2. If G1 has a valid schedule, then h(G0) ≤ �.

PROOF. Clearly, it suffices to prove the first statement, since the second statement
follows immediately from the first statement.

Let X be a valid subschedule of G1 as described in the lemma. We show h(G0) ≤ �.
Let Oi be the operation of Sα in Ci . Since X is valid and contains the last +Sα of Cn+1, X
must contain all the operations in C1, . . . , Cn . Therefore, every Oi , 1 ≤ i ≤ n, is in X .

Suppose the order of those Oi ’s in X is Ok1 , Ok2 , . . . , Okn . By the definition of
CONSTRUCT, if vj is reachable from vi in G0, then Oj does not precede Oi in X . It
follows that the sequence Y = vk1vk2 · · · vkn is a schedule of G0. Therefore, it suffices to
show h(Y) ≤ �.

Assume h(Y) > � for a contradiction. If we count only those Oi ’s as the operations
for Sα in X , then the maximum value of Sα would be greater than � during the execution
of X . Note that there are � + n− other −Sα’s in C ′

1, . . . , C ′
n+1, which are the only hope

for bringing the maximum value of Sα down to zero. By the construction of C ′
1, . . . , C ′

n ,
however, we know n− of those −Sα’s have to be preceded in X by n other +Sα’s. It
follows that even if we count all operations for Sα together, the maximum value of Sα

would be greater than zero during the execution of X . This contradicts the fact that X is
a valid schedule of G1.

LEMMA A.2. If h(G0) ≤ �, then G1 has a valid schedule.

PROOF. Let Y = vk1vk2 · · · vkn be a schedule of G0 with h(Y) ≤ �. Let mi be the sum
of costs of vk1 , . . . , vki . Clearly, mn = n+ − n−, which is the sum of node costs of G0.
Since h(Y) ≤ �, we know that mi ≤ � for every 1 ≤ i ≤ n. We claim that G1 can be
executed by the procedure PAIRWISE in Figure 11.

Note that in the schedule of G1 executed by PAIRWISE, each operation −Si is im-
mediately followed by an operation +Si . Not every chain graph has such a “pairwise”
schedule, however, we show that G1 does. We first show that the first for-loop of PAIRWISE

can be finished for G1. Specifically, suppose the following claim holds:

CLAIM. For each 1 ≤ i ≤ n, the i th iteration of the first for-loop of PAIRWISE can be
executed for G1. Furthermore, after executing the i th iteration,

• the remaining operations in Cki are dki copies of −Ski ’s followed by a +Sβ ; and
• there are � − mi copies of −Sα’s available in C ′

1, . . . , C ′
n+1.

It is then not hard to see that after the execution of the first for-loop of PAIRWISE, the
remaining operation in each Ci is a −Sβ . Therefore, the second for-loop of PAIRWISE

can be finished, since there are n copies of +Sβ’s available in Cn+1.
By Lemma A.1, we know that after executing the first For-loop, the number of −Sα’s

in C ′
1, . . . , C ′

n+1 is � − mn , which is equal to the number of +Sα’s at the end of Cn+1.
Therefore, the last for-loop of PAIRWISE can be finished. The lemma is proved.

Detecting Race Conditions in Parallel Programs that Use Semaphores 341

Procedure PAIRWISE

1 For k := k1, k2, . . . , kn do
2 For j := 1 to n do
3 If vjvk is an arc of G0 then
4 Execute a −Sk in Cj .
5 Execute the +Sk in Ck .
6 If Ok = +Sα then
7 Execute one of the −Sα’s
8 in C ′

1, C ′
2, . . . , C ′

n+1.
9 Execute the +Sα in Ck .
10 else (i.e., Ok = −Sα)
11 Execute the −Sα in Ck .
12 Execute the +Sα in C ′

k .
13 For i := 1 to n do
14 Execute the −Sβ in Ci .
15 Execute a +Sβ in Cn+1.
16 For i := 1 to � − mn do
17 Execute a −Sα in C ′

1, . . . , C ′
n+1.

18 Execute a +Sα in Cn+1.

Fig. 11. Procedure PAIRWISE.

It remains to prove the above claim by induction on i . For convenience we abbreviate
ki to k for the rest of the proof. When i = 1, we know vk does not have any incoming
arcs from other nodes. Therefore, the for-loop with index j in the first iteration does not
execute any operation. We then consider the if-statement.

• If Ok = −Sα , then c(vk) = −1, and thus m1 = −1. There is a +Sα in C ′
k by the

definition of CONSTRUCT. We can execute the else-part of the if-statement without
problem. Since the second operation in C ′

k is a −Sα , these two steps increase the
number of −Sα’s available in C ′

1, . . . , C ′
n+1 by one.

• If Ok = +Sα , then c(vk) = 1, and thus m1 = 1. Since vk is the first node in Y , h(Y) is
at least one, and thus � ≥ 1. We can therefore execute the then-part of the if-statement
without problem. The number of −Sα’s available in C ′

1, . . . , C ′
n+1 is decreased by one.

Clearly, after executing the first iteration, in which the only executed operation in Ck is
Ok , the remaining operations in Ck are exactly as that described in the claim. Note that
before executing the first iteration, the number of available −Sα’s is � by the definition of
CONSTRUCT. Therefore, after executing the first iteration, the number of available −Sα’s
is exactly � − m1. This confirms the inductive basis.

Let i ′ be an integer with 1 < i ′ ≤ n. Assume that the claim holds for every 1 ≤ i < i ′.
We show it holds for i = i ′. Consider the i th iteration. Note that for every j such that vjvk

is an arc of G0, Oj must have been executed. By the inductive hypothesis we know those
dj copies of −Sj ’s are already available before executing the i th iteration. Therefore, the
for-loop with index j will proceed without problem, since there are exactly dj copies of

342 P. N. Klein, H.-I Lu, and R. H. B. Netzer

+Sj ’s in G1 by the definition of CONSTRUCT. We then consider the if-statement:

• If Ok = −Sα , then mi = mi−1 − 1. We know there is a +Sα in C ′
k . Thus, the else-part

can proceed without problem. Since the second operation in C ′
k is a −Sα , these two

steps increase the number of available −Sα’s in C ′
1, . . . , C ′

n+1 by one.
• If Ok = +Sα , then mi = mi−1 + 1. The inductive hypothesis says that the number of

−Sα’s available in C ′
1, . . . , C ′

n+1 is � − mi−1 before executing the i th iteration. That
number is at least one since � − mi−1 − 1 = � − mi ≥ 0. Therefore, the then-part of
the if-statement can be executed without problem. The number of available −Sα’s in
C ′

1, . . . , C ′
n+1 is decreased by one.

Therefore, the i th iteration can be executed, and thus the remaining operations in Ck are
as required.

It follows from the inductive hypothesis that the number of available −Sα’s in
C ′

1, . . . , C ′
n+1 is � − mi−1. By the above case analysis we see that the number is ex-

actly � − mi after executing the i th iteration. The claim is proved.

If G1 has a valid schedule, then by Lemma A.1(2) we know h(G0) ≤ �. It then follows
from the proof of Lemma A.2 that G1 has a valid schedule executable by PAIRWISE.
Therefore, we have the following lemma.

LEMMA A.3. G1 has a valid schedule if and only if G1 has a valid schedule executable
by PAIRWISE.

A.2. Second Step. In this subsection we show that the G1 constructed in the first step
can be simulated by another chain graph G2, which uses only two semaphores, T1 and
T2. G2 has 2n + 3 chains. The first chain, denoted C0, is composed of two −T1’s and
two −T2’s. The remaining 2n + 2 chains are obtained from those of G1 as follows. We
replace every operation −Si (and +Si) by a unit −Ui (and +Ui) for each 1 ≤ i ≤ n + 2.
Each unit, −Ui or +Ui , is a sequence of operations on T1 and T2, as shown in Figure 12.
We also denote those 2n + 2 chains of G2 by C1, . . . , Cn+1 and C ′

1, . . . , C ′
n+1. Clearly,

G2 can be constructed in polynomial time.
Note that the sequence of operations in each unit is arranged such that only a −Ui and

a +Ui can “unlock” each other. To be more specific, suppose each of T1 and T2 has initial

Fig. 12. The sequence of operations for a −Ui is at the left and that for a +Ui is at the right, for any 1 ≤ i ≤ n+2.

Detecting Race Conditions in Parallel Programs that Use Semaphores 343

value −2, which will be the case if the four operations in C0 are executed. Consider a
graph Uij for some 1 ≤ i, j ≤ n + 2 composed of two units, −Ui and +Uj , each forms
a single chain. One can easily verify that Uij has a valid schedule if i = j . Moreover,
after executing all the operations of Uii, the values of T1 and T2 go back to −2.

We claim that G1 has a valid schedule if and only if G2 has a valid schedule. The
only-if part is straightforward. Suppose G1 has a valid schedule. By Lemma A.3, G1 has
a valid schedule executable by PAIRWISE. Note that we can execute the four operations of
C0 first, which decrease the value of both semaphores down to −2. Clearly, the remaining
2n + 2 chains of units can be completely pairwisely executed by following the sequence
of corresponding operations in G1 executed by PAIRWISE. Therefore, G2 has a valid
schedule.

It takes some added work to prove the other direction of the above claim. A unit is
active if its third operation is executed. A unit is finished (and thus inactive) if its fifth-
to-last operation is executed. Suppose G2 has a valid schedule. Consider the sequence
of the units of G2 that become active in the valid schedule. It follows from the following
lemma that the corresponding sequence of operations of G1 is a valid schedule of G1. In
fact it is “pairwise”, since in the schedule each −Si is immediately followed by a +Si .

LEMMA A.4. Consider the execution of a valid subschedule.

1. When there is no active unit, the next unit that becomes active must be a −Ui for
some 1 ≤ i ≤ n + 2.

2. Before that active −Ui is finished, a +Ui must become active.
3. No unit will become active unless these two active units are finished.

PROOF. At the beginning of the valid schedule, no unit is active. We show the first
statement of the lemma holds. At this moment there are two −T1’s and two −T2’s
available (in C0). They are our only hope for activating any unit, since each unit is
guarded by two +T1’s and two +T2’s. Assume for a contradiction that the first unit
becoming active is a +Ui for some 1 ≤ i ≤ n + 2. Note that as soon as the first +Ui

becomes active, at least two +T1’s are already executed. Since at most two −T1’s are
executed so far, there is no way to activate any other unit. The execution thus cannot
proceed.

When the first unit −Ui becomes active, one can see that the second statement of the
lemma holds by verifying the following:

• The active −Ui will not be finished unless another unit becomes active, since otherwise
the execution will be blocked by some +T2’s.

• The next active unit must be a +Uj for some 1 ≤ j ≤ n + 2, since otherwise the
execution will be blocked by some +T2’s.

• If i < j , the execution will be blocked by some +T1’s. If i > j , then the execution
will be blocked by some +T2’s. Therefore, the next active unit must be a +Ui .

When those two units are active, in order to activate other units, we can only hope
for the −T1’s at the end of the active +Ui . In order to reach those −T1’s, the preceding
consecutive +T2’s must be penetrated. Hence, at least two −T2’s at the end of the active
−Ui must be executed first. Therefore, those two active units −Ui and +Ui must be

344 P. N. Klein, H.-I Lu, and R. H. B. Netzer

finished before any other unit becomes active. This confirms the third statement of the
lemma.

Note that as soon as the active +Ui is finished (and so must be the active −Ui),
the situation is exactly the same as the situation at the very beginning of the execution.
Namely we have two −T1’s and two −T2’s available, which are again our only hope for
activating any other units. Therefore, all the above argument follows inductively. The
lemma is proved.

A.3. Third Step. Let v be the first operation of the C0 in G2. Let w be the last operation
of the Cn+1 in G2. We claim that v → w if and only if G2 has a valid schedule. Note
that v is always the first node in any valid subschedule of G2. The if-part of the claim
holds trivially. It remains to prove the only-if-part of the claim.

Let X be a valid subschedule of G2 in which v precedes w. Consider the sequence
of the units of G2 that become active while executing X . It follows from Lemma A.4
that the corresponding sequence of operations of G1 is a valid subschedule of G1, which
definitely contains the last +Sα of the Cn+1 in G1. Therefore, G1 has a valid schedule
by Lemmas A.1(2) and A.2. Finally it follows from the claim in Section A.2 that G2 has
a valid schedule.

References

[1] H. M. Abdel-Wahab. Scheduling with Application to Register Allocation and Deadlock Problems. Ph.D.
thesis, University of Waterloo, 1976.

[2] H. M. Abdel-Wahab and T. Kameda. Scheduling to minimize maximum cumulative cost subject to
series-parallel precedence constraints. Operations Research, 26(1):141–158, 1978.

[3] H. M. Abdel-Wahab and T. Kameda. On strictly optimal schedules for the cumulative cost-optimal
scheduling problem. Computing, 24:61–86, 1980.

[4] P. A. Emrath, S. Ghosh, and D. A. Padua. Event synchronization analysis for debugging parallel pro-
grams. In Proceedings of Supercomputing, pages 580–588, Reno, NV, 1989.

[5] P. A. Emrath, S. Ghosh, and D. A. Padua. Detecting nondeterminacy in parallel programs. IEEE Software,
9(1):69–77, 1992.

[6] M. R. Garey and D. S. Johnson. Computers and Intractability—A Guide to the Theory of NP-
Completeness. Freeman, San Francisco, CA, 1979.

[7] K.-S. Ha, E.-K. Ryu, and K.-Y. Yoo. Space-efficient first race detection in shared memory programs
with nested parallelism. In J. Fagerholm, J. Haataja, J. Järvinen, M. Lyly, P. Råback, and V. Savolainen,
editors, Proceedings of the 6th International Conference on Applied Parallel Computing and Advanced
Scientific Computing, pages 253–263, Espoo, Finland, 2002. Lecture Notes in Computer Science 2367,
Springer-Verlag, Berlin.

[8] D. P. Helmbold and C. E. McDowell. A Class of Synchronization Operations that Permit Efficient Race
Detection. Technical Report UCSC-CRL-93-29, University of California at Santa Cruz, 1993.

[9] D. P. Helmbold and C. E. McDowell. A taxonomy of race conditions. Journal of Parallel and Distributed
Computing, 33:159–164, 1996.

[10] D. P. Helmbold, C. E. McDowell, and J.-Z. Wang. Analyzing traces with anonymous synchronization.
In Proceedings of the International Conference on Parallel Processing, pages II70–II77, St. Charles,
IL, August 1990.

[11] A. Itzkovitz, A. Schuster, and O. Zeev-Ben-Mordehai. Toward integration of data race detection in dsm
systems. Journal of Parallel and Distributed Computing, 59(2):180–203, 1999.

[12] P. N. Klein, H.-I Lu, and R. H. B. Netzer. Race-condition detection in parallel computation with
semaphores. In J. Dı́az and M. Serna, editors, Proceedings of the 4th Annual European Symposium

Detecting Race Conditions in Parallel Programs that Use Semaphores 345

on Algorithms, pages 445–459, Barcelona, Spain, 1996. Lecture Notes in Computer Science 1136,
Springer-Verlag, Berlin.

[13] H.-I Lu, P. N. Klein, and R. H. B. Netzer. Detecting race conditions in parallel programs that use one
semaphore. In F. K. H. A. Dehne, J.-R. Sack, N. Santoro, and S. Whitesides, editors, Proceedings of the
3rd Workshop on Algorithms and Data Structures, pages 471–482, Montréal, Canada, 1993. Lecture
Notes in Computer Science 709, Springer-Verlag, Berlin.

[14] R. H. B. Netzer and S. Ghosh. Efficient race condition detection for shared-memory programs with
post/wait synchronization. In Proceedings of the International Conference on Parallel Processing,
pages II242–II246, St. Charles, IL, August 1992.

[15] R. H. B. Netzer and B. P. Miller. On the complexity of event ordering for shared-memory parallel
program executions. In Proceedings of the International Conference on Parallel Processing, pages
II93–II97, August 1990.

[16] R. H. B. Netzer and B. P. Miller. What are race conditions? Some issues and formalizations. ACM
Letters on Programming Languages and Systems, 1(1):74–88, 1992.

[17] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: a dynamic data race detector
for multithreaded programs. ACM Transactions on Computer Systems, 15(4):391–411, 1997.

[18] M. L. Simmons, A. H. Hayes, J. S. Brown, and D. A. Reed, editors. Debugging and Performance Tuning
for Parallel Computing Systems. IEEE Computer Society Press, Los Alamitos, CA, 1996.

