
The Two-Edge Connectivity Survivable Network
Problem in Planar Graphs

Glencora Borradaile1,� and Philip Klein2,��

1 Department of Combinatorics and Optimization, University of Waterloo
glencora@uwaterloo.ca

2 Computer Science Department, Brown University
klein@cs.brown.edu

Abstract. Consider the following problem: given a graph with edge-
weights and a subset Q of vertices, find a minimum-weight subgraph in
which there are two edge-disjoint paths connecting every pair of ver-
tices in Q. The problem is a failure-resilient analog of the Steiner tree
problem, and arises in telecommunications applications. A more general
formulation, also employed in telecommunications optimization, assigns
a number (or requirement) rv ∈ {0, 1, 2} to each vertex v in the graph;
for each pair u, v of vertices, the solution network is required to contain
min{ru, rv} edge-disjoint u-to-v paths.

We address the problem in planar graphs, considering a popular re-
laxation in which the solution is allowed to use multiple copies of the
input-graph edges (paying separately for each copy). The problem is
SNP-hard in general graphs and NP-hard in planar graphs. We give the
first polynomial-time approximation scheme in planar graphs. The run-
ning time is O(n log n).

Under the additional restriction that the requirements are in {0, 2}
for vertices on the boundary of a single face of a planar graph, we give a
linear-time algorithm to find the optimal solution.

1 Introduction

In the field of telecommunications network design, an important requirement of
networks is resilience to link failures [19]. The goal of the survivable network
problem is to find a graph that provides multiple routes between pairs of termi-
nals. In this work we focus on edge-disjoint paths, though vertex-disjoint paths
have also been the subject of research. More formally for Z a set of non-negative
integers, the input to the Z-edge connectivity problem is a weighted, undirected
graph G and an assignment of connectivity requirements rv ∈ Z to vertices v.
The goal is to find a minimum-weight subgraph such that, for each pair u, v of
vertices, the subgraph contains at least min{ru, rv} edge-disjoint u-to-v paths.
Because it is considered unlikely that two links would fail simultaneously, some
research has focused on requiring at most two paths between vertices that need
� Work done while at Brown University.

�� Supported by NSF grant CCF-0635089. Work done while visiting MIT.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 485–501, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

486 G. Borradaile and P. Klein

to be connected. There is a wealth of literature on such low-connectivity net-
work design problems. Resende and Pardalos [19] survey the literature, which
includes heuristics, structural results, polyhedral results, computational results
using cutting planes, and approximation algorithms.

This work focuses on {0, 1, 2}-edge connectivity. We consider the well-studied
relaxation wherein the solution subgraph is allowed to contain multiple copies
of each edge of the input graph. We call such a subgraph a sub-multigraph and
the weight of the edges appearing twice in the solution is counted according to
multiplicity. For two-connectivity, at most two copies of an edge are needed. This
version of the problem, like the other variants, is SNP-hard in general graphs [6].
In [3], Berger and Grigni gave a polynomial-time approximation scheme (PTAS)
for {1, 2}-edge connectivity (ie. the spanning case) in planar multigraphs. A year
later, a PTAS was given for {0, 1}-edge connectivity (that is, the Steiner tree
problem) in planar graphs. Here we give a PTAS for the {0, 1, 2}-edge connectiv-
ity (ie. the subset case) for planar multigraphs. The running time is significantly
lower than that of [3]. In the following, OPT denotes the weight of the optimal
solution to the problem at hand.

Theorem 1. Let G be a planar graph with nonnegative edge-weights and integer
requirements rv ∈ {0, 1, 2} for each vertex v. For any 0 < ε < 1, there is an
O(n log n) algorithm that finds a sub-multigraph H of G such that for every pair
u, v of vertices, there are at least min{ru, rv} edge-disjoint u-to-v paths in H.
Further, the total weight of the edges in H is at most (1 + ε)OPT.

An important special case involves finding a sub-multigraph that achieves two-
edge connectivity between a given set Q of vertices. Our approximation scheme
addresses this problem (i.e. rv = 2 for all v ∈ Q and rv = 0 for all v /∈ Q). In
addition, for the special case where the vertices of Q are on the boundary of a
common face, we give a linear-time algorithm to find the optimal solution:

Theorem 2. There is a linear-time algorithm that, given a planar embedded
graph with edge-weights and a subset Q of the vertices on the boundary of a
single face, finds a minimum-weight two-edge-connected sub-multigraph of G
spanning Q.

For ease of exposition, we will take the the face on which the vertices Q lie to
be the outermost or infinite face of the planar embedded graph. That is, the
vertices of Q lie on the boundary of the planar graph.

Both results rely on a common observation (Theorem 3, Section 2) concern-
ing the structure of two-edge connectivity between boundary vertices of planar
graphs.

1.1 Related Work

Two-edge-connected spanning subgraph. A special case that has received much
attention is the problem of finding a minimum-weight subgraph of G in which
every pair of vertices is two-connected. This problem is called two-edge-connected

The Two-Edge Connectivity Survivable Network Problem in Planar Graphs 487

spanning subgraph, and is NP-hard [8] and max-SNP complete [6] in gen-
eral graphs. Frederickson and JáJá [9] gave a 3-approximation algorithm for
this problem. The approximation ratio was improved to 2 by Khuller and
Vishkin [14]. For the unweighted case, they gave a 1.5-approximation algorithm.
Jothi, Raghavachari, and Varadarajan [13] improved the approximation ratio
to 5/4.

In planar graphs the problem is NP-hard. Berger et al. [2] and Berger and
Grigni [3] gave PTASes for the unweighted and weighted cases, respectively,
in planar graphs. In both cases, the degrees of the polynomial depend on the
desired precision ε. All the above algorithms work for the case where the output
is not allowed to duplicate edges. For the case where duplication is allowed, the
techniques of Klein [15] can be applied to obtain a linear-time approximation
scheme.

Beyond spanning. For the more general case where a subset Q of the vertices
need only be spanned, Ravi [18] showed that Frederickson and JáJá’s approach
could be generalized to give a 3-approximation algorithm (in general graphs).
Klein and Ravi [17] gave a 2-approximation for a more general problem in which
the input specifies which pairs of vertices must be connected up. This result was
greatly generalized by Williamson, Goemans, Mihail, and Vazirani [20], Goe-
mans, Goldberg, Plotkin, Shmoys, Tardos, and Williamson [10], and Jain [12].
These algorithms did not require duplication of edges.

In their recent paper on the spanning case, Berger and Grigni raise the
question of whether there is a PTAS for finding a minimum-weight two-edge-
connected subgraph of a planar graph. In this paper, we answer that question
in the affirmative, at least when edge duplications are allowed.

1.2 Notation

For a path P , P [x, y] denotes the x-to-y subpath of P for vertices x and y of P .
For paths A and B, A◦B denotes the concatenation of A and B. For a subgraph
H of a graph G, we use V (H) to denote the set of vertices in H . We similarly
use the notation V (P), etc.

We employ the usual definitions of planar embedded graphs. For a face f ,
the cycle of edges making up the boundary of f is denoted ∂f . We assume the
planar graph G is connected and is embedded in the plane, so there is a single
infinite face, and we denote its boundary by ∂G.

For a cycle C in a planar embedded graph, C[x, y] denotes an x-to-y path in
C for vertices x and y of C. There are two such paths and the choice between the
two possibilities will be disambiguated by specifying an orientation of the cycle
(clockwise or counterclockwise). A cycle C is said to enclose the faces that are
embedded inside it. C encloses an edge/vertex if the edge/vertex is embedded
inside it or on it. In the former case, C strictly encloses the edge/vertex.

See Figure 1 for an illustration of the notion of paths crossing. A cycle is
non-self-crossing if every pair of subpaths of the cycle do not cross. Two trees
are noncrossing if no path in one crosses a path of the other.

488 G. Borradaile and P. Klein

P Q

x

y

(a)

P

Q

(b) (c)

v

(d)

Fig. 1. (a) P crosses Q. (b) P and Q are noncrossing. (c) A self-crossing cycle. (d) A
non-self-crossing cycle (non-self-crossing allows for repeated vertices, i.e. v.).

1.3 Outline

In Section 2, we establish some key properties of two-edge-connectivity between
boundary vertices of a planar graph. In Section 3, we prove Theorem 2 by giving
a linear-time algorithm for the special case of finding the minimum two-edge-
connected subgraph containing a subset of the boundary vertices of a planar
embedded graph. In Section 4, we build on the results in Section 2 to give
a decomposition of solutions to the two-edge connectivity survivable network
problem in planar graphs where all terminals are on the boundary.

The remainder of the paper is devoted to proving the PTAS of Theorem 1.
The approximation scheme employs an approach used by Borradaile, Klein, and
Mathieu [5] to obtain an approximation scheme for Steiner tree. In Section 5, we
outline the approach. In particular, what is needed is a structural theorem that
states that the interaction between different parts of an optimal solution can be
restricted to be “simple” while paying only a small penalty (in relative terms)
in weight. We restate this theorem (Theorem 4) as given in [5] for the Steiner
tree problem. The corresponding theorem for two-edge connectivity (Theorem 5)
appears in Section 6. The proof draws on the results of Sections 2 and 4 and
the corresponding structure theorem for Steiner trees. Finally, in Section 7, we
briefly outline the dynamic program that is at the heart of the computation.

2 Basic Structural Properties of Boundary Connectivity

The results of this section hold for both subgraphs and sub-multigraphs. In this
section, we investigate the structure of sub-(multi)graphs of G that achieve up
to {0, 1, 2}-edge-connectivity between vertices of ∂G.

Since we are only interested in connectivity up to and including two-edge
connectivity, we define the following: for a graph H and vertices x, y, let

cH(x, y) = min{2, maximum number of edge-disjoint x-to-y paths in H}.

For two sub-multigraphs H and H ′ of a common graph G and for a subset
S of the vertices of G, we say H ′ achieves the two-connectivity of H for S if
cH′(x, y) ≥ cH(x, y) for every x, y ∈ S. We say H ′ achieves the boundary two-
connectivity of H if it achieves the two-connectivity of H for S = V (∂G).

The Two-Edge Connectivity Survivable Network Problem in Planar Graphs 489

(a)

a

c

P1 P2

Q1'

Q2'

b

d

(b)
C

x

y

P

Q

Fig. 2. (a) An illustration of the paths in Lemma 2. (b) An illustration of the proof of
Lemma 3: there are edge-disjoint x-to-y paths that do not use edges enclosed by C.

Lemma 1 (Transitivity). For any graph H, for vertices u, v, w ∈ V (H),
cH(u, w) ≥ min{cH(u, v), cH(v, w)}

Lemma 2 (Crossing). Let G be a planar embedded graph, and let its boundary
be v1v2 . . . vn . For integers 1 ≤ i < j < k < � ≤ n, for any subgraph H of G,
cH(vi, vj) ≥ min{cH(vi, vk), cH(vj , v�)}.

Proof (Sketch). For the case of connectivity two, see Figure 2(a). Given 2 edge-
disjoint a-to-c paths (P1 and P2) and 2 edge-disjoint b-to-d paths (whose prefixes
are Q′

1 and Q′
2), it is easy to construct 2 a-to-b edge-disjoint paths. The proof

for connectivity one is similar but simpler. ��

Lemma 3. Let H be a sub-(multi)graph of G and let C be a non-self-crossing
cycle of H. Let H ′ be the subgraph of H obtained by removing the edges of H
that are strictly enclosed by C. H ′ achieves the boundary 2-connectivity of H.

Proof. See Figure 2(b). Without loss of generality, let C be a simple cycle that
is clockwise according to the planar embedding. Consider two vertices x and y of
∂G. We show that there are cH(x, y) edge-disjoint x-to-y paths in H that do not
use edges strictly enclosed by C. There are two non-trivial cases: cH(x, y) = 1
and cH(x, y) = 2. We omit the former case, as the latter is illustrative.

Let P and Q be edge-disjoint x-to-y paths in H . If Q does not intersect C, then
P ′ and Q are edge-disjoint paths, neither of which has a dart strictly enclosed
by C (where P ′ is as defined above). Suppose that both P and Q intersect C.
Let xQ and yQ be vertices of Q defined as for P . Suppose these vertices are
ordered xP , xQ, yQ, yP around C. Then P [x, xP] ◦ C[xP , yQ] ◦ Q[yQ, y] and
Q[x, xQ] ◦ rev (C[yP , xQ]) ◦ P [yP , y] are edge disjoint x-to-y paths that do not
use any edges enclosed by C. This case is illustrated in Figure 2(b); other cases
follow similarly.

We have shown that we can achieve the boundary two-connectivity of H
without using any edges enclosed by a cycle of H . The lemma follows. ��

Corollary 1. Let H be a subgraph of G and let H ′ be a minimal subgraph of
H that achieves the boundary two-connectivity of H. Then in H ′ every cycle C
strictly encloses no edges.

490 G. Borradaile and P. Klein

Lemma 4. Let H be a subgraph of G. Let S be a subset of V (∂G) such that,
for every x, y ∈ S, cH(x, y) = 2. Then there is a non-self-crossing cycle C in H
such that S ⊆ V (C) and the order that C visits the vertices in S is the same as
their order along ∂G.

Proof (sketch). Assume that the vertices of S are in the order s1, s2, . . . , sk along
∂G. Let ∂G[si+1, si] denote the subpath of the boundary of G between si+1 and
si that does not go through sj for j 	= i, i + 1. Let Pi be the si-to-si+1 path in
H (taking the indices mod k) such that the cycle Pi ◦ ∂G[si+1, si] encloses only
one si-to-si+1 path (namely, Pi). One can show that Pi does not cross Pj for
any pair i, j. The cycle C = P1 ◦ P2 ◦ · · · ◦ Pk−1 has the properties required by
the lemma. ��

3 Linear-Time Exact Algorithm for a Boundary
Two-Edge-Connectivity Problem

Here we give a linear-time algorithm for the following problem: given a weighted,
planar graph G and a subset Q of the vertices of ∂G, find a minimum-weight two-
edge-connected sub-multigraph of G that spans Q. This will prove Theorem 2,
as stated in the Introduction. The algorithm whose correctness will follow from
Lemma 4, is:
Boundary2EC(G, Q)

1. Let q1, q2, . . . be the cyclic ordering of the terminals in Q along ∂G.
2. For i = 1, . . ., let Pi be the shortest qi-to-qi+1 path in G (taking the indices

mod |Q|).
3. Return the disjoint union ∪iPi.

Using the following lemma, we show that Boundary2EC can be implemented in
linear time using the linear-time shortest path algorithm for planar graphs [11].

Lemma 5. Let a, b and c be vertices ordered along the clockwise boundary ∂G
of a planar graph G. Let Ta be the shortest-path tree rooted at a. Then there is
a shortest b-to-c path in G that is enclosed by the cycle ∂G[b, c] ◦ T [c, b].

Proof (sketch). Suppose that the shortest b-to-c path P in G is not enclosed by
the cycle ∂G[b, c] ◦ T [c, b]. Then there is a subpath of P that contradicts the
shortness of T . ��

A linear-time implementation of Boundary2EC is: compute a shortest-path
tree T rooted at terminal q1 in linear time; for each i, consider the graph Gi

enclosed by Ci = ∂G[qi, qi+1] ◦ T [qi+1, qi]; compute the shortest qi-to-qi+1 path
Pi in Gi. By Lemma 5, Pi is a shortest qi-to-qi+1 path in G. Since each edge of
G appears in at most two subgraphs Gi and Gj , the paths Pi can be computed
in linear time.

We now argue that Boundary2EC finds the minimum-weight two-edge-
connected multi-subgraph of G that spans Q. Certainly Boundary2EC re-
turns a 2-edge-connected multi-subgraph that spans Q. We show that the graph

The Two-Edge Connectivity Survivable Network Problem in Planar Graphs 491

Boundary2EC finds is of minimum weight. Let H be the optimal solution. By
Lemma 4, there is a cycle C in H that visits the vertices q1, q2, . . . in order. This
cycle can be written as L1 ◦ L2 ◦ · · · where Li is a qi-to-qi+1 path. Let Pi be the
shortest qi-to-qi+1 path. Then w(P1 ◦ P2 ◦ · · ·) ≤ w(L1 ◦ L2 ◦ · · ·) ≤ w(H).

4 Decomposition Result for Boundary Connectivity

For the theorem given in this section, we have to generalize the notion of connec-
tivity requirements. Connectivity requirements so far assign an integer to each
vertex; the corresponding subgraph must ensure connectivity at least min{ru, rv}
between u and v. One can instead specify a connectivity requirements for each
pair of vertices, using a function from the set of two-element subsets of V (∂G)
(written

(
V (∂G)

2

)
) to {0, 1, 2}.

Theorem 3. Let G be a connected planar embedded graph. Let r :
(
V (∂G)

2

)
−→

{0, 1, 2} be a function specifying connectivity requirements among the boundary
vertices. There is a collection X = {X1, . . . , Xk} of subsets of V (∂G) that are
noncrossing with respect to ∂G such that a minimal subgraph H of G satis-
fies connectivity requirements r(·) iff H contains edge-disjoint non-crossing trees
T1, T2, . . . , Tk where, for each i, Ti spans Xi.

In the following we will assume for notational convenience that the boundary of
the graph G is a simple cycle; that is, a vertex appears at most once along ∂G.
Let us see why it suffices to prove the theorem with this assumption. Suppose
the boundary of G is not simple: there is a vertex v that appears at least twice
along ∂G. Partition G into two graphs G1 and G2 such that v appears exactly
once along ∂G1 and E(∂G) = E(∂G1) ∪ E(∂G2). Let x be a vertex of ∂G1 and
let y be a vertex of ∂G2. Then cG(x, y) = min{cG1(x, v), cG2 (v, y)}.

Let a1a2a3a4 · · · am be the alternating sequence of vertices and edges of ∂G
in the order in which they are encountered during a clockwise traversal. We say
{ai, ak} and {aj , a�} cross if i < j < k < �.

We start with some definitions that will lead to the definition of the sets
making up X :

– ∼2 is a relation on the vertices of ∂G: u ∼2 v if r({u, v}) = 2.
– ∼∗

2 is the transitive and crossing closure of ∼2. That is, ∼∗
2 is the minimal

superset of ∼2 such that if x ∼∗
2 y and u ∼∗

2 v and either {x, y} crosses {u, v}
or y = u, then x ∼∗

2 v.
– ∼1 is a relation on the vertices of ∂G: x ∼1 y if r({x, y}) ≥ 1. Let ∼∗

1 be the
transitive and crossing closure of ∼1.

– r∗1 :
(
V (∂G)

2

)
−→ {0, 1} is a requirement function such that r∗1({u, v}) = 1 iff

u ∼∗
1 v.

– ∼0 is a relation on the edges of ∂G: a ∼0 b if there is no set {u, v} ⊂ V (∂G)
that crosses {a, b} such that u ∼∗

2 v. It is easy to see that ∼0 is an equivalence
relation.

492 G. Borradaile and P. Klein

Let E1, . . . , E� be the equivalence classes of ∼0. For i = 1, . . . , �, let
Zi =

⋃
{endpoints of e : e ∈ Ei} ∩ V (H), and let Xi = {W ∩ Zi :

W an equivalence class of r∗1}. Let X =
⋃

i Xi, and write Xi = {X1, . . . , Xk}.
There are two parts to the proof of the theorem.

Part 1: For i = 1, . . . , k, let Ti be a tree that connects Xi where the Ti’s are edge-
disjoint. Let H =

⋃
i Ti. We will show that H satisfies the original connectivity

requirements r(·), thus proving the forward direction of the theorem. We must
show (A) if r({x, y}) = 2 then cH(x, y) = 2, and (B) if r({x, y}) = 1 then
cH(x, y) ≥ 1.

Let Y1, . . . , Y� be the equivalence classes of ∼∗
2. For each Yi, we will show that

H contains a cycle Ci through the vertices of Yi, which will prove (A). Let the
vertices of Yi be x0, x1, . . . , xp−1, numbered according to their occurrence in a
clockwise traversal of ∂G.

Claim 1: For j = 0, . . . , p − 1, there is some X ∈ X that contains xj and
xj+1 mod p.

Proof. Let e be the edge immediately after xj in clockwise traversal of ∂G, and
let e′ be the edge immediately before xj+1 mod p. Suppose there were a subset
{u, v} ⊂ V (∂G) that crosses {e, e′} such that u ∼∗

2 v. Assume without loss of
generality that u occurs after e and before e′ in clockwise traversal of ∂G. Then
v occurs after e′ and before e. It follows that one of the following must hold:
v = xj or v = xj+1 mod p or {u, v} crosses {xj , xj+1 mod p}. In each case, since
∼∗

2 is closed under crossing and transitivity, u ∼∗
2 xj , contradicting the fact that

xj and xj+1 mod p are consecutive elements of Yi. This shows that e ∼0 e′, which
shows in turn shows that xj and xj+1 mod p are in a common set Z ∈ Z. Since
r({xj , xj+1}) = 2, we infer r∗1({xj , xj+1}) = 1, so there is a set X ∈ X (with
X ⊂ Z) that contains xj and xj+1. ��

Let Pj be the xj-to-xj+1 path in T (the tree that spans X). By combining these
paths for j = 0, 1, . . . , p − 1, we obtain a cycle Ci, proving (A).

Now we prove (B). Let U1, · · · , Us be all the equivalence classes of ∼∗
2 such that

there is pair in Ui crosses {x, y} for every i. Assume that these sets are ordered
according to their distance from x along ∂G (in, say, the clockwise direction).
Let ui and vi be two distinct vertices of Ui chosen such that u1 is the vertex of
U1 closest to x along ∂G and us is the vertex of Us closest to y along ∂G. (See
Figure 3.)

If s = 0 then there are edges ex and ey adjacent to x and y respectively such
that ex ∼ ey. So x and y are in a common set Z ∈ Z. Since r({x, y}) = 1 and
x ∼∗

1 y then r∗({x, y}) = 1 and x and y are in a common set Xi ∈ X . Therefore
Ti (and hence H) contains an x-to-y path.

Suppose that s > 0. The argument is illustrated in Figure 3. Since x ∼∗
1 y and

∼∗
1 is closed under crossing, x ∼∗

1 ui for i = 1, . . . , s. Since ∼∗
1 is closed under

transitivity, ui ∼∗
1 ui+1 for j = 1, . . . , s − 1. By choice of u1, x ∼0 u1, so x and

u1 are in a common set Xi ∈ X . Therefore Ti (and hence H) contains an x-to-u1
path. Similarly H contains a us-to-y path.

The Two-Edge Connectivity Survivable Network Problem in Planar Graphs 493

x
y

u1

u2
v1 v3

v2
u3

Fig. 3. The argument for one-connectivity is illustrated. Because {x, y} crosses
{u1, u2}, a connectivity requirement arises between x and u2. Hence there is an x-to-u2

path. Moreover, for each equivalence class, there is a cycle (indicated in medium-bold)
connecting the members ui. Combining the paths with the cycles yields an x-to-y path.

By (A), H contains a ui-to-vi path for i = 1, . . . , s. For i = 1, . . . , s − 1 we
argue that H contains a ui-to-ui+1 path. Since ui ∼0 ui+1 and by the transitivity
of ∼∗

1, ui and ui+1 are in a common set Xi, so Ti contains such a path. Combining
these paths, we obtain an x-to-y path in H , proving (B) and the forward direction
of Theorem 3.

Part 2: Let H be a subgraph of G that satisfies the connectivity requirements
r(·). Assume without loss of generality that H is edge-minimal subject to this
condition. We will show how to decompose H into noncrossing, edge-disjoint
subgraphs T1, . . . , Tk, so that Ti spans Xi.

By Lemmas 1 and 2, for any vertices x, y ∈ V (∂G), if x ∼∗
2 y then cH(x, y) = 2.

As in the proof of Part 1, let Y1, . . . , Y� be the equivalence classes of ∼∗
2. For each

Yj , let Cj be the corresponding non-self-crossing cycle in H whose existence is
guaranteed by Lemma 4. By Corollary 1, Cj does not strictly enclose any edges.

Let R be the subgraph of G consisting of ∂G ∪
⋃�

j=1 Cj . Let F be the set of
faces of R other than the infinite face and the faces in the interiors of cycles Cj .
For each face f ∈ F , let Hf be the subgraph of H consisting of edges enclosed
by ∂f .

Claim 2: For distinct faces f1, f2 ∈ F , Hf1 and Hf2 are edge-disjoint.

Proof. The set of edges strictly enclosed by f1 and the set of edges enclosed by
f2 are clearly disjoint. We need to address the case of edges not strictly enclosed
by f1, i.e. edges of ∂f1. Every edge e of R belongs either to ∂G or to some cycle
Ci, so e is on the boundary of some face not in F . Hence e is on the boundary
of at most one face in F . ��

Claim 3: For any face f ∈ F and any vertices x, y ∈ V (∂f ∩∂G), if x, y ∈ X ∈ X
then Hf contains an x-to-y path.

494 G. Borradaile and P. Klein

Proof. By Lemmas 1 and 2, if x ∼∗
1 y then cH(x, y) ≥ 1. Hence H contains such

a path P . Suppose P is not a path of Hf , and consider a maximal subpath P ′

of P that is not enclosed by ∂f . By maximality, the endpoints of P ′ must lie on
∂f . Since P ′ is enclosed by ∂G, the endpoints of P ′ must lie on a subpath Q of
∂f ∩ (

⋃�
j=1 Cj). Thus Q belongs to H , and therefore to Hf . The subpath P ′ of

P can therefore be replaced by Q. Similarly replacing each such subpath yields
an x-to-y path in Hf . ��

Claim 4: Let f be a face in F , and let a, b be edges of ∂G ∩ ∂f . Then there is
some equivalence class Ei of ∼0 that contains a and b.

Proof. Assume for a contradiction that there is a subset {u, v} ⊂ V (∂G) that
crosses {a, b} such that u ∼∗

2 v. There is some subset Yj containing u and v,
and therefore some cycle Cj that passes through u and v. Since the edges of
Cj belong to R, this contradicts the fact that a and b lie on the boundary of a
common face of R. ��

Now we can complete the proof of Part 2. For i = 1, . . . , k, let Wi be the set of
faces f in F such that V (∂f) intersects Zi. By Claim 4, the Wi’s are disjoint.
Let Hi =

⋃
f∈Wi

Hf . By Claim 2, the Hi’s are edge-disjoint. By Claim 3, Hi

spans Xi. By the disjointness of the Wi’s, no path in Hi1 crosses a path in Hi2 if
i1 	= i2. Since the connectivity requirements are {0, 1}, each Hi contains a forest
Fi that satisfies the requirements r∗1(·) among vertices of Zi. The components of
Fi span the sets in Xi. The union of all these trees is a subgraph that, by Part 1,
satisfies connectivity requirements r(·). This completes the proof of Part 2 and
the reverse direction of Theorem 3.

5 A PTAS Framework for Connected Problems in Planar
Graphs

In this section, we review the approach used in [5] to give a PTAS for the Steiner
tree problem in planar graphs as we will use the same approach for this survivable
network problem.

The framework relies on an algorithm for finding a subgraph MG of G, called
the mortar graph [5]. The mortar graph spans Q and has total weight no more
than f(ε) times the minimum weight of a Steiner tree in G spanning Q (and so
has weight no more than f(ε) ·OPT where OPT denotes the optimal value of the
Steiner tree or the survivable network problem). The first step in constructing
MG is to find an approximate Steiner tree and recursively augmenting this with
short paths.

The mortar graph is a grid-like subgraph (the bold edges in Figure 4(a)). For
each cell or face of the mortar graph, the subgraph of G enclosed by that face
is called a brick (Figure 4(b)). The properties of bricks needed for this work are
summarized by the following lemma.

Lemma 6 (from Lemma 4 [5]). The boundary of a brick B, in counterclock-
wise order, is the concatenation of four paths WB ∪ SB ∪ EB ∪ NB such that:

The Two-Edge Connectivity Survivable Network Problem in Planar Graphs 495

(B1) The set of edges B \ ∂B is nonempty.
(B2) Every terminal of Q that is in B is on NB or on SB.
(B3) NB and SB are ε-short.

A path P in a graph G is ε-short if for every pair of vertices x and y on P , the
distance from x to y along P is at most (1 + ε) times the distance from x to y
in G: distP (x, y) ≤ (1 + ε)distG(x, y).

The mortar graph and the bricks are building blocks of the structural properties
required for designing an approximation scheme. In [5], it was demonstrated that
there is a near-optimal Steiner tree whose interaction with the mortar graph is
“simple”. To formalize this notion (Theorem 4), we say that there is near-optimal
Steiner tree that joins the boundary of each brick a small number of times. A
joining vertex of graph H with a path P is a vertex of P that is the endpoint of
an edge of H \P . The intersection of a tree with a brick might not be connected,
and so the theorem applies to forests inside bricks.

Theorem 4 (Structural property of bricks for {0, 1}-edge connectivity,
Theorem 4 [5]). Let B be a plane graph with boundary N ∪E∪S∪W satisfying
the brick properties of Lemma 6. Let F be a subgraph of B. There is a forest F̃
of B with the following properties:

(F1) If two vertices of N ∪S are connected in F , then they are connected in F̃ .
(F2) The number of joining vertices of F̃ with both N and S is at most α(ε).
(F3) � (F̃) ≤ (1 + cε)� (F).

In the above, α(ε) = o(ε−5.5) and c is a fixed constant.

This theorem is a key ingredient to the proof of correctness of the PTAS for
Steiner tree and will be used in proving a similar theorem (Theorem 5) for the
{0, 1, 2}-edge connectivity problem we solve here.

5.1 Approximation Scheme

The approximation scheme consists of the following steps. Only Step 5 depends
on the specifics of the optimization problem, though Step 4 depends on a constant
that comes out of the Structure Theorem for the problem.

Step 1: Find the mortar graph MG.
Step 2: Decompose MG into “parcels”, subgraphs with the following properties:

(a) Each parcel consists of the boundaries of a disjoint set of faces of MG. Since
each edge of MG belongs to the boundaries of exactly two faces, it follows
that each edge belongs to at most two parcels.

(b) The weight of all boundary edges (those edges belonging to two parcels)
is at most (1/η)weight(MG). We choose η so that this bound is
(ε/2)weight(OPT).

(c) The planar dual of each parcel has a spanning tree of depth at most η + 1.

496 G. Borradaile and P. Klein

Each parcel P corresponds to a subgraph of G, namely the subgraph consisting
of the bricks corresponding to the faces making up P . Let us refer to this sub-
graph as the filled-in version of P .
Step 3: Select a set of “artificial” terminals on the boundaries of parcels so that
for each filled-in parcel, there is a feasible (with respect to original and artifi-
cial terminals) solution whose weight is at most the parcel’s boundary plus the
weight of the intersection of OPT with the filled-in parcel, and the union over
all parcels of such feasible solutions is a feasible solution for the original graph.
Step 4: For each brick, designate as portals a constant number of vertices on
the boundary of each brick. The constant is chosen, depending on the Structure
Theorem, so that there exists a near-optimal feasible solution that is portal-
respecting, i.e. passes through a portal whenever it passes from one face of MG
to another.
Step 5: For each filled-in parcel, find a optimal portal-respecting solution. Out-
put the union of these solutions.

Step 1 can be carried out in O(n log n) time. Details are in [5,4,16]. Step 2 can
be done in linear time. It consists of doing breadth-first search in the planar dual
of MG, and then applying a “shifting” technique in the tradition of Baker [1].
Details are in [5]. Step 3 uses the fact that each parcel’s boundary consists
of edge-disjoint, noncrossing cycles. If such a cycle strictly encloses an original
terminal and does not enclose all terminals, a vertex on the cycle is designated
an artificial terminal. Under this condition, any feasible solution for the original
graph must cross the cycle; by adding the edges of the cycle, we get a feasible
solution that also spans the artificial terminal. Step 3 can be implemented in
linear time. Step 5 is achieved in linear time using dynamic programming.

Step 4 uses a simple greedy algorithm to designate portals along the boundary
∂B of a brick B so that there are at most θ + 1 portals chosen, and that each
vertex on the boundary is within distance at most weight(∂B)/θ of some portal.
We discuss the choice of θ presently.

5.2 Portal-Connected Graph

In order to make more precise the notion of a portal-respecting feasible solution,
we introduce an auxiliary graph, the portal-connected graph (PCG) of a parcel.
See Figure 4. Starting with a parcel (which consists of edges of the mortar graph),
within each face, insert a duplicate of the brick corresponding to that face, and
use artificial zero-weight edges to connect the occurrences of the portals in the
duplicate brick to the occurrences of the same vertices in the parcel.1

A path P in the filled-in parcel from a vertex x interior to a brick B to a
vertex y on the boundary of the brick B corresponds to a path P̃ in the PCG
from x to the occurrence of y in the parcel; P̃ must take a detour through an
artificial edge, and must therefore go through a portal. The increase is weight is
at most 2weight(∂B)/θ.
1 Our usage of the term PCG differs slightly from that in [5], where the PCG was

defined for the entire graph, not just a parcel.

The Two-Edge Connectivity Survivable Network Problem in Planar Graphs 497

The Structure Theorem states that the subgraph of OPT embedded strictly
inside a brick can be modified so that it touches the boundary of the brick at no
more than α(ε) vertices. Rerouting each of these connections so it occurs at a
portal incurs a weight of 2weight(∂B)/θ, for a total of 2α(ε)weight(∂B)/θ. The
sum of boundary lengths of all bricks is twice the length of the mortar graph,
which in turn is at most f(ε) times the value of OPT. The value of θ is chosen
to ensure that the total rerouting weight is at most ε times the value of OPT. In
order to find a nearly optimal solution in the filled-in parcel, therefore, it suffices
to find an optimal solution in the PCG.

Recall that the planar dual of the parcel has a spanning tree of depth η + 1.
Since each brick has at most θ + 1 portals, it follows that the planar dual of the
PCG has a spanning tree of depth at most (η + 1)(θ + 1). It follows that there
is a rooted spanning tree of the PCG (the primal) such that, for each vertex v,
there at most 2(η+1)(θ+1)+1 edges from descendents of v to non-descendents.
This spanning tree is used to guide the dynamic program (Section 7).

(a) (b) (c)

Fig. 4. The mortar graph in bold (a), the set of bricks (b), and the portal connected
graph (c)

6 Applying the PTAS Framework

Theorem 4 applies directly to the Steiner-tree problem: the intersection of a tree
with a brick is a forest and since the terminals are vertices of MG, it is enough
to maintain connectivity between vertices on the boundary of a brick. However,
for the 2-EC problem, the intersection of a solution with a brick has a more
complicated structure.

In this section we prove the following counterpart to Theorem 4 that maintains
up to 2 connectivity between vertices on the north and south boundary of a brick.

Theorem 5 (Structural property of bricks for {0, 1, 2}-edge connectiv-
ity). Let B be a plane graph with boundary N ∪E∪S∪W and satisfying the brick
properties of Lemma 6. Let H be a subgraph of B. There is another subgraph
Ĥ that is the disjoint union of three forests F̂1, F̂2, F̂3 of B with the following
properties:

(H1) Ĥ achieves the 2-connectivity of H for vertices of N ∪ S.
(H2) The number of joining vertices of Ĥ with both N and S is at most 2α(ε).
(H3) � (Ĥ) ≤ (1 + cε)� (H).

498 G. Borradaile and P. Klein

In the above, α(ε) = o(ε−5.5) and c is a fixed constant.

Proof. The theorem is proved as follows. We first show that there is a subgraph
H ′ of H that is the disjoint union of a set of trees T = {T1, T2, . . . , Tk} (where k
can be very large) such that H ′ achieves the 2-connectivity of H (Theorem 3).
We then show that we can partition this set of trees into three sets such that
the disjoint union of each set is a forest. We then apply Theorem 4 to each of
these forests, proving Theorem 5.

Let H ′ be a minimal subgraph of H such that H ′ achieves the 2-connectivity
of H for vertices on N ∪ S.

By the only-if direction of Theorem 3, H ′ is the union of a set of noncrossing
edge-disjoint trees T = {T1, T2, . . .}, where each tree Ti achieves connectivity
between a set Xi of vertices of N ∪ S. Partition T into two sets:

T1 = {Ti ∈ T such that Xi ⊆ V (N) or Xi ⊆ V (S)}.
T2 = {Ti ∈ T such that Xi has vertices in both V (N) and V (S)}.

We further partition T2 into two sets. Let Ti and Tj be two trees in T2. Since Ti

and Tj do not cross each other, if the vertices Xi∩V (S) appear before Xj ∩V (S)
along S then the vertices in Xi ∩ V (N) appear before Xj ∩ V (N) along N . It
follows that there is an ordering of the trees in T2 from left to right in the brick,
ordered according to the vertices in S to which they connect. Let TA be the set
of trees of T2 that are even-numbered in this ordering and let TB be the set that
are odd-numbered. That is, the trees in T2 alternate between TA and TB .

Any two trees in TA are separated by a tree in TB . Assume for a contradiction
that a cycle was formed by some trees in TA. Then the cycle would have to
strictly enclose an edge of a tree in TB . This contradicts Corollary 1. This shows
that the trees in TA form a forest. Similarly, the trees in TB form a forest.

Consider a tree Ti ∈ T1. We describe how to select a corresponding tree T̂i.
Suppose that Xi ⊆ V (N). Let T̂ be the minimal subpath of N that spans Xi.
The case where Xi ⊆ V (S) is analogous.

Let F̂1 be the disjoint union of {T̂ : T ∈ T1}. (That is, the multiplicity of
an edge in F̂1 is the sum of its multiplicities in {T̂ : T ∈ T1}.) . Let F̂A be the
forest guaranteed by Theorem 4 for the forest obtained by taking the union of
the trees in TA. Similarly define F̂B. Let Ĥ be the union of F̂1, F̂A, F̂B .

We show that Ĥ achieves the required properties.
It is clear from the construction that F̂1 does not have any joining vertices

with N or S. By Theorem 4, each of F̂A and F̂B has at most α(ε) joining vertices
with N ∪S. Therefore Ĥ has at most 2α(ε) joining vertices with N ∪S, proving
Property H2.

Since N and S are ε-short paths, � (F̂1) is at most 1+ε times the total length of
all trees in T1. By Theorem 4, � (F̂A) ≤ (1+cε)� (F̂A) and � (F̂B) ≤ (1+cε)� (F̂B).
It follows that � (Ĥ) ≤ (1 + cε)� (H), proving Property H3.

We now show that if two vertices of N ∪ S are 2-edge connected in H ′, then
they are 2-edge connected in Ĥ . Showing this for 1-edge connectivity is simpler;
the argument is omitted here. This will complete the proof. We were particular

The Two-Edge Connectivity Survivable Network Problem in Planar Graphs 499

in partitioning the trees into forests T1, TA, TB because applying Theorem 4 to a
tree with two edges incident to a vertex v ∈ ∂B could result in a tree with only
one edge incident v. This could remove edge connectivity.

Let a and b be vertices of N ∪ S that are 2-edge connected in H ′. Let C
be the minimal cycle 2-connecting x and y as guaranteed by Lemma 4 and
let Y = V (C ∩ (N ∪ S)). Let y1, y2, . . . , yk be the order of the vertices of Y
along the boundary of the brick. Let Xi be the set such that yi, yi+1 ∈ Xi and
Xi ⊆ V (∂B[yi, yi+1]) (as guaranteed by the construction given in Theorem 3).
There are two cases:

Y ⊆ V (N) or Y ⊆ V (S): Without loss of generality, assume that y1 is the first
vertex and yk is the last vertex of Y along N . Then X1, . . . , Xk−1 are subsets
of N . Xk may contain vertices of S. Let T̂i be a tree in F̂1 that spans Xi (for
i = 1, . . . , k − 1). Since F̂1 is the disjoint union of these trees, there is a path P

in F̂1 that visits each vertex y1, . . . , yk in order. If Xk spans a vertex of S then
Xk ∈ FA (without loss of generality). The vertices Xk are spanned by F̂A and
so there is a yk-to-y1 path Q in Ĥ that is edge disjoint from P . P ◦ Q is a cycle
such that Y ⊆ V (P ∪ Q). The vertices in Y are 2-edge connected in Ĥ .

Y ∩ V (N) 	= ∅ and Y ∩ V (S) 	= ∅ : Without loss of generality, assume that y1
and yl are the first and last vertices of Y along N . Then yk and yl+1 are the first
and last vertices of Y along S. By the argument used in the above case, there
is a path P in Ĥ that visits the vertices y1, . . . , yl in order. Likewise, there is a
path Q in Ĥ that visits the vertices yl+1, . . . , yk in order. We now argue that
there are edge-disjoint yl-to-yl+1 and yk-to-y1 paths in Ĥ by showing that Tl

(the tree corresponding to Xl) is in FA and Tk (the tree corresponding to Xk)
is in FB: by Lemma 1, there are no trees enclosed by C in H ′, so Tl and Tk are
ordered sequentially in TB. ��

7 Dynamic Program

Here we give an outline of the dynamic program used to find an optimal solution
in each filled-in parcel. As discussed at the end of Section 5.2, we use a rooted
tree such that, for each vertex v, there at most 2(η + 1)(θ + 1) + 1 edges from
descendents of v to non-descendents. Each vertex gives rise to a subproblem in
the dynamic program. Both θ and η depend polynomially on 1/ε. The interaction
between two subproblems is limited to this set of edges. Each brick in the brick
decomposition corresponds to a base case of the dynamic program. All other
base cases are trivial, corresponding to single vertices in our input graph.

For each subproblem, we consider all possible {0, 1, 2}-connectivity patterns
(or configurations) on the vertex set U . (A configuration is given by a forest with
no degree-2 vertices whose vertices correspond to 2-edge connected components
and whose edges correspond to adjacency between these components. Such a
forest corresponds to a block-cut tree of the solution it encodes.) The leaves of
the forests are identified with edges in the cut corresponding to the vertex set U .

500 G. Borradaile and P. Klein

Since there are O(θη) edges in the cut, there are at most O((θη)(θη)θη) forests
representing configurations (by way of Cayley’s formula).

It remains to show that we can solve a base case corresponding to a brick. The
number of edges between a brick and the rest of the parcel is the number of portal
edges, η, that connects the brick in the filled-in parcel. A configuration for the
brick is a set of 2-connectivity requirements between the portal edges. Given such
a set of requirements, we can use the algorithm implied by Theorem 3 to find a
set of subsets X of the portal edges such that independently connecting each set
in X will satisfy the given 2-connectivity requirements (Theorem 3). For each set
in X , we find the minimum-length Steiner tree using the algorithm of Erickson
et al. [7]. For a constant number of terminals, using the algorithm of [11], this
algorithm can be implemented to run in linear time. The resulting running time
of the dynamic program, including the dependence on ε is 2o(ε−9.5)n.

Comments

The PTAS framework used is potentially applicable to problems where (i) the
input consists of a planar graph G with edge-weights and a subset Q of the
vertices of G (we call Q the set of terminals), and where (ii) the output spans
the terminals. Steiner tree and two-edge connectivity have been solved using this
framework. The PTAS for the subset tour problem [16] (which was the inspira-
tion for this framework) can be reframed using this technique. Recently, with
David Pritchard, we have extended this work to give a PTAS for the {0, 1, . . . , k}-
edge connectivity problem in planar multigraphs. Details will follow in a longer
version.

References

1. Baker, B.: Approximation algorithms for NP-complete problems on planar graphs.
J. ACM 41(1), 153–180 (1994)

2. Berger, A., Czumaj, A., Grigni, M., Zhao, H.: Approximation schemes for mini-
mum 2-connected spanning subgraphs in weighted planar graphs. In: Brodal, G.S.,
Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 472–483. Springer, Heidelberg
(2005)

3. Berger, A., Grigni, M.: Minimum weight 2-edge-connected spanning subgraphs in
planar graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP
2007. LNCS, vol. 4596, pp. 90–101. Springer, Heidelberg (2007)

4. Borradaile, G., Kenyon-Mathieu, C., Klein, P.: A polynomial-time approximation
scheme for Steiner tree in planar graphs. In: 18th SODA, pp. 1285–1294 (2007)

5. Borradaile, G., Klein, P., Mathieu, C.: Steiner tree in planar graphs: An O(n log n)
approximation scheme with singly exponential dependence on epsilon. In: Dehne,
F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 275–286. Springer,
Heidelberg (2007)

6. Czumaj, A., Lingas, A.: On approximability of the minimum cost k-connected
spanning subgraph problem. In: 10th SODA, pp. 281–290 (1999)

7. Erickson, R., Monma, C., Veinott, A.: Send-and-split method for minimum-
concave-cost network flows. Math. Op. Res. 12, 634–664 (1987)

The Two-Edge Connectivity Survivable Network Problem in Planar Graphs 501

8. Eswaran, K., Tarjan, R.: Augmentation problems. SIAM J. Comput. 5(4), 653–665
(1976)

9. Frederickson, G., Jájá, J.: Approximation algorithms for several graph augmenta-
tion problems. SIAM J. Comput. 10(2), 270–283 (1981)

10. Goemans, M., Goldberg, A., Plotkin, S., Shmoys, D., Tardos, É., Williamson, D.:
Improved approximation algorithms for network design problems. In: 5th SODA,
pp. 223–232 (1994)

11. Henzinger, M., Klein, P., Rao, S., Subramanian, S.: Faster shortest-path algorithms
for planar graphs. J. Comput. System Sci. 55(1), 3–23 (1997)

12. Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network
problem. Combinatorica 21(1), 39–60 (2001)

13. Jothi, R., Raghavachari, B., Varadarajan, S.: A 5/4-approximation algorithm for
minimum 2-edge-connectivity. In: 14th SODA, pp. 725–734 (2003)

14. Khuller, S., Vishkin, U.: Biconnectivity approximations and graph carvings. J.
ACM 41(2), 214–235 (1994)

15. Klein, P.: A linear-time approximation scheme for planar weighted TSP. In: 46th
FOCS, pp. 647–647 (2005)

16. Klein, P.: A subset spanner for planar graphs, with application to subset TSP. In:
38th STOC, pp. 749–756 (2006)

17. Klein, P., Ravi, R.: When cycles collapse: A general approximation technique for
constraind two-connectivity problems. In: 3rd IPCO, pp. 39–55 (1993)

18. Ravi, R.: Approximation algorithms for Steiner augmentations for two-
connectivity. Technical Report TR-CS-92-21, Brown University (1992)

19. Resende, M., Pardalos, P. (eds.): Handbook of Optimization in Telecommunica-
tions. Springer, Heidelberg (2006)

20. Williamson, D., Goemans, M., Mihail, M., Vazirani, V.: A primal-dual approxi-
mation algorithm for generalized Steiner network problems. In: 35th STOC, pp.
708–717 (1993)

	The Two-Edge Connectivity Survivable Network Problem in Planar Graphs
	Introduction
	Related Work
	Notation
	Outline

	Basic Structural Properties of Boundary Connectivity
	Linear-Time Exact Algorithm for a Boundary Two-Edge-Connectivity Problem
	Decomposition Result for Boundary Connectivity
	A PTAS Framework for Connected Problems in Planar Graphs
	Approximation Scheme
	Portal-Connected Graph

	Applying the PTAS Framework
	Dynamic Program

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

