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Abstract

We give a randomizedO(n polylog n)-time approxima-
tion scheme for the Steiner forest problem in the Eu-
clidean plane. For every fixedǫ > 0 and givenn terminals
in the plane with connection requests between some pairs
of terminals, our scheme finds a(1 + ǫ)-approximation to
the minimum-length forest that connects every requested
pair of terminals.

1 Introduction

1.1 Result and background

In the Steiner forest problem, we are givenn pairs ofter-
minals(si, ti). The goal is to find a minimum-cost forest
F such that every pair of terminals is connected by a path
in F . We consider the problem where the terminals are in
the Euclidean plane. The solution may use points (called
Steiner points) in the plane that are not in the terminal
set. The cost of a forest (path or graph) is given by the
sum of its edge lengths in theℓ2 metric and is denoted by
length(·). Our main result is:

Theorem 1.1. There is a randomizedO(n polylog n)-
time approximation scheme for the Steiner forest problem
in the Euclidean plane.

There is a vast literature on algorithms for problems in
the Euclidean plane. This work builds on the approxi-
mation scheme for geometric problems, such as Traveling
Salesman and Steiner tree, due to Arora [2]. (See [12]
for a digest.) Similar techniques were suggested by
Mitchell [8] and improved by Rao and Smith for the
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Steiner tree and TSP problems [9]. Concerning approx-
imation schemes, in addition to the work of Arora and
Mitchell, others have built on similar ideas (e.g. [4, 7]).

The Steiner forest problem, a generalization of the
Steiner tree problem, is NP-hard [6] and max-SNP com-
plete [5, 10] in general graphs and high-dimensional
Euclidean space [11]. Therefore, no PTAS exists for
these problems. The 2-approximation algorithm due to
Agrawal, Klein and Ravi [1] can be adapted to Euclidean
problems by restricting the Steiner points to lie on a suffi-
ciently fine grid and converting the problem into a graph
problem. Prior to this work, no Steiner forest algorithm
was known that took advantage of the Euclidean plane to
get a better approximation ratio.

1.2 Recursive dissection

In Arora’s paradigm, the feasible space is recursively de-
composed bydissection squaresusing a randomized vari-
ant of the quadtree (Figure 1). The dissection is a 4-ary
tree whose root is a square box enclosing the input ter-
minals, whose widthL is twice the width of the smallest
square box enclosing the terminals, and whose lower left-
hand corner of the root box is translated from the lower
left-hand corner of the bounding box by(−a,−b), where
a andb are chosen uniformly at random from the range
[0, L/2). Each node in the tree corresponds to adissection
square. Each square is dissected into four child squares of
equal area by one vertical and one horizontaldissection
line each spanning the breadth of the parent square. This
process continues until each square contains at most one
terminal (or multiple terminals having the same coordi-
nates).

Feasible solutions are restricted to using a small num-
ber ofportalson the boundary of each dissection square.
A Structure Theorem states that there is a near-optimal
solution that obeys these restrictions. The final solution
is found by a dynamic program guided by the recursive
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Figure 1: The shifted quad-tree dissection. The shaded
box is the bounding box of the terminals.

decomposition.
In the problems considered by Arora, the solutions are

connected. However, the solution to a Steiner forest prob-
lem is in general disconnected, since only paired termi-
nals are required to be connected. It is not knowna pri-
ori how the connected components partition the terminal
pairs. For that reason, maintaining feasibility in the dy-
namic program requires a table that is is exponential in the
number of terminal pairs. In fact, Arora states [3] that his
approach yields an approximation scheme whose running
time is exponential in the number of sets of terminals.

Nevertheless, here we use Arora’s approach to get an
approximation scheme whose running time is polynomial
in the number of sets of terminals. How so? We require
further structural restrictions on the set of feasible solu-
tions in order to limit the size of the dynamic program-
ming table (see Section 2.6).

1.3 Small dynamic programming table

We will use Arora’s approach of a random recursive dis-
section. Arora shows (ie. for Steiner tree) that the opti-
mal solution can be perturbed (while increasing the length
only slightly) so that, for each box of the recursive dissec-
tion, the solution within the box interacts weakly and in
a controlled way with the solution outside the box. In
particular, the perturbed solution crosses the boundary of
the box only a constant number of times, and only at an
O(1)-sized subset ofO(log n) selected points, calledpor-
tals. The optimal solution that has this property can be
found using dynamic programming.

Unfortunately, for Steiner forest those restrictions are
not sufficient: maintaining feasibility constraints cannot
be done with a polynomially-sized dynamic program. To
see why, suppose the solution uses only 2 portals between
adjacent dissection squaresRE andRW . In order to com-
bine the solutions inRW andRE in the dynamic program
into a feasible solution inRW ∪RE , we need to know, for
each pair(s, t) of terminals withs ∈ RW andt ∈ RE ,
which portal connectss andt (Figure 2(a)). This requires

2n configurations in the dynamic programming table.

(a)

(b)

RW RE

RW RE

Figure 2: Why maintaining feasibility is not trivially
polynomial-sized.

To circumvent the problem in this example, the idea is
to decomposeRW andRE into twozones, one for each of
the two portals. All terminals in a common zone use the
assigned portal. Thus, instead of keeping track of each
terminal’s choice of portal individually, the dynamic pro-
gram can simply memorize the decomposition ofRW and
of RE into zones: this will be sufficient to check feasibil-
ity when combining solutions of the subproblems forRW

and forRE . We encode a zone by its boundary. In order
to obtain a polynomial-size dynamic program, we prove
that we may restrict ourselves to zones whose boundaries
have a compact description (Figure 2(b), shaded regions):
an encoding by a constant-size string over a 3-letter al-
phabet. The zones are described more accurately in Sec-
tion 2.6, and the necessary property is formalized in The-
orem 3.2.

2 The algorithm

The input to the algorithm is a setQ of terminal pairs. Let
n be the number of terminals in all pairs inQ. Let d be
the maximum distance between a terminal pair.

2.1 Step 1: Partition

We start by finding a partition of the terminals according
to the following lemma.

Lemma 2.1. There exists a partition ofQ into indepen-
dent instancesQ1, Q2, . . ., such that the optimal solution



is the disjoint union of optimal solutions for eachQi, and
such that in eachQi the maximum distance between two
terminals is at mostn2d.

Proof. Consider a minimal set of terminal pair require-
ments, such that satisfying them implies (by transitivity)
that all requirements inQ are satisfied. There are at most
n such requirements, and each can be satisfied at cost at
mostd, soOPT < nd. Thus, if two terminalsu andv
are at distance greater thannd, they must be in different
connected components ofOPT. Define a graph that has
an edge between terminalsu and v if and only if their
distance is less thannd, and partition then terminals ac-
cording to the connected components of that graph. For
any terminal pair(u, v), u andv must be in the same con-
nected component, and the optimal solution must be the
disjoint union of the optimal solutions of the subproblems
induced by the pairs in each part of the partition: we have
reduced the problem to independent instances correspond-
ing to the connected components, as desired. By construc-
tion, two terminals in the same connected component are
at distance at mostn2d.

2.2 Step 2: Perturb

As in Arora’s scheme, we now perturb the terminals to
lie on a grid. The grid is chosen to be fine enough so the
perturbation does not affect the length of the solution by
much.

We define the granularity of the grid (distance between
consecutive vertical or consecutive horizontal lines) as:

δ =
dǫ

8n
. (1)

Move each terminal to the nearest point that is the cen-
ter of a grid cell. Call the new instance theshifted in-
stance.

Lemma 2.2. A solution for the unshifted instance can be
perturbed to one for the shifted instance, and vice versa,
while increasing length by at mostǫ/4 times the optimum
for the unshifted instance.

Proof. Let F be the optimal solution to the unshifted in-
stance. For a single terminal, the shift (and therefore, the
additional length required) is at most2δ. The total in-
crease in length is therefore at most2δni for Qi, summing
to 2δn which is at most(ǫ/4)OPT by definition ofδ and
sinced ≤ OPT.

Of course, the converse construction also increases the
length by at most2δn.

2.3 Step 3: Scale

Scale all coordinates of terminals ofQ by 4
δ
. The grid

used in the previous step is now the grid of lines of equa-
tion x = 4j or y = 4j, andOPT is scaled by4

δ
. Call

the new instance thescaledinstance. In the shifted and
scaled instance the terminals have integer coordinates of
the form4j + 2. For a set of line segmentsF and a grid
line ℓ, let t(F, ℓ) denote the number of timesF crossesℓ.

Lemma 2.3. There is a solution to the shifted and scaled
instance of length(1 + ǫ

2 )OPT that satisfies
∑

ℓt(F, ℓ) ≤ 2OPT (2)

where the sum is over all grid lines.

Proof. Let F be the optimal solution to the shifted (but
not scaled) instance. There are at mostn − 1 Steiner
points. Move each Steiner point to the nearest center of
a grid cell. As in Lemma 2.2, this adds length at most
ǫ
4OPT. Combined with the error given by Lemma 2.2,
this results inǫ

2OPT additional length.
Now scale the shifted solution by4

δ
. The minimum dis-

tance between Steiner points and terminals is 4. An edge
of lengths contributes at most

√
2s + 2 to the left-hand

side. Sinces ≥ 4,
√

2s + 2 ≤ 2s. Summing over all the
edges proves the lemma.

2.4 Step 4: Dissect

Let Di be the size of the smallest square box bounding
those points, in the shifted and scaled instance obtained
from Q, that correspond to points ofQi. Let Li be the
smallest power of 2 greater than or equal to2Di. As de-
scribed in section 1.2, we perform a randomized dissec-
tion of the bounding box such that the root square has size
Li × Li. This can be done inO(n log n) time [?].

By Lemma 2.1, we haveDi ≤ n2d(4/δ) = 32n3/ǫ.
ThusLi = O(n3/ǫ). Since the recursive dissection stops,
at worst, when the dissection square has width 4, the quad-
tree must have depthO(log n).

From now on we focus on just one subproblem asso-
ciated toQi for somei. In order to avoid carrying over
subscriptsQi, Li, ni throughout the paper, from now on
we will drop the subscript and consider an instance given
by Q, L, andn.

2.5 Step 5: Portals

For each dissection squareR, for each sideS of R desig-
natem + 1 equally spaced points alongS (including the
corners) asportalsof R where

m is smallest power of 2 greater than4ǫ−1 log L. (3)



soR has4m portals.
A portal of ani-square is called ani-portal, and a cor-

ner of such a square is called ani-corner.
For a set of geometric points,X , |X | denotes the num-

ber of connected components inX . When we refer to a
component ofX , we mean a connected component ofX .
For a subsetS of a line, letclosure(S) denote the mini-
mum connected subset of the line spanningS.

The first part of the following lemma uses a technique
of Arora. We require an additional property not used by
Arora. We use a parameterρ whose value is selected in
Equation (5).

Lemma 2.4. There is a solutionF having expected length
at most(1 + 1

2ǫ)OPT such that each dissection squareR
satisfies the following two properties:

Boundary Components Property For each sideS of R,
F ∩ S has at mostρ non-corner components.1

Portal Property Each component ofF ∩ ∂R contains a
portal ofR.

Moreover, there is a finite setY ⊂ F ∩ {dissection lines}
of points and a functionφ(·) such that for eachy ∈ Y ,
φ(y) is a dissection line intersectingy,

∑
ℓ|F ∩ ℓ \ {y ∈ Y : φ(y) 6= ℓ}| ≤ 2OPT (4)

and, for any dissection squareR whose boundary con-
tains a pointy ∈ Y , φ(y) is a line boundingR.

Proof. Let F0 be the solution guaranteed by Lemma 2.3.
To establish the first property, we augmentF = F0 using
the following procedure:

SATISFYBOUNDARYCOMPONENTS:
For each dissection lineℓ,

for j = log L down to depth(ℓ),
for each sideS of everyj-square withS ⊆ ℓ,

if |{non-corner components ofF ∩ S}| > ρ,
addclosure(F ∩ S) to F .

This procedure establishes the Boundary Components
Property. Consider a dissection squareR and a dissection
line ℓ containing a sideS of R. The iteration involvingℓ
andj = depth(R) ensures that there are at mostρ compo-
nents ofF ∩S not including the endpoints ofS, which are
corners ofR. Note that an iteration involving a perpendic-
ular line ℓ could add a single-point component toF ∩ S
only if depth(ℓ) ≤ depth(R), which means that the single
point is at a corner ofR (and hence does not count to-
wards the Boundary Components Property). Such a point
is a depth(ℓ)-portal (by Step 5), so we get:

1a component that does not include a corner ofR

Claim 2.5. Single-point connected components ofF ∩
ℓ added by SATISFYBOUNDARYCOMPONENTS are
depth(ℓ)-portals.

We analyze the expected increase in length resulting
from SATISFYBOUNDARYCOMPONENTS. Within an it-
erationℓ of the outer loop, and an iterationj of the sec-
ond loop, letcℓ,j denote the number of executions of
the last stepadd closure(F ∩ S) to F : length(S) =
L/2j. Since each such execution reduces the number
of connected components ofF ∩ ℓ by at leastρ, and
the number of connected components initially ist(F0, ℓ),
we have

∑
j≥depth(ℓ) cℓ,j ≤ t(F0,ℓ)

ρ
. The increase in

length due to one iteration of the outer loop is at most∑
j≥depth(ℓ) cℓ,j

L
2j . Since Prob[depth(ℓ) = i] = 2i/L,

the expected increase in length due to one iteration of the
outer loop is

∑
i

2i

L

∑
j≥i cℓ,j

L
2j ≤ ∑

j
cℓ,j

2j

∑
i≤j 2i ≤∑

j 2 · cℓ,j ≤ 2ρ−1t(F0, ℓ) Summing over all dissection
lines, and using Equation (2), we infer that the total in-
crease is at most4ρ−1OPT which is at most14ǫOPT
when

ρ = 16ǫ−1. (5)

We further augmentF to achieve the Portal Property:

SATISFYPORTAL:
For each dissection lineℓ,

for each portal-free componentK of F ∩ ℓ,
extendK to the nearest non-corner depth(ℓ)-portal.

Using the fact that ani/2-portal is also ani-portal, we
infer that the Portal Property is satisfied.

We analyze the increase in length due to SATISFYPOR-
TAL . Consider a dissection lineℓ. By Claim 2.5, we
only add non-zero length toF for non-corner compo-
nents. The number of length additions is therefore at most
t(F0, ℓ). The length per iteration of the inner loop is at
mostL/2depth(ℓ)m. The total increase in length per outer-
loop iteration is at mostt(F0, ℓ)L/2depth(ℓ)m.

Since Prob[depth(ℓ) = i] = 2i/L, the expected in-
crease in length due to this iteration of the first loop is∑log L

i
2i

L
t(F0, ℓ)

L
2im

= 1
m

t(F0, ℓ) log L. Using Equa-
tions (2) and (3), we infer that the total increase is at most
1
4 ǫOPT.

Now we address the second part of the lemma and de-
fine the setY and the functionφ(·). Consider a dissection
line ℓ. Each addition of a segment ofℓ to F either joins
two components ofF ∩ℓ or extends one component. Such
additions therefore do not increase the number of compo-
nents ofF ∩ ℓ. SetY will account for all other compo-
nents, giving Equation (4).

As we have seen, we may add a segmentS of some
dissection lineℓ′ perpendicular toℓ that containsℓ ∩ ℓ′.



If at the end of both procedures{ℓ ∩ ℓ′} is a connected
component ofF ∩ ℓ, we addℓ ∩ ℓ′ to Y and assignφ(ℓ ∩
ℓ′) = ℓ′.

Refer to Figure 3 for an illustration of the following.
Let R be a dissection region whose boundary contains
ℓ ∩ ℓ′ and suppose, for a contradiction to the definition
of φ(ℓ ∩ ℓ′), that ℓ′ does not boundR. Thenℓ bounds
R, so depth(ℓ) ≤ depth(R) < depth(ℓ′). Thenℓ ∩ ℓ′ is
a depth(ℓ′)-corner.S could be added by either SATISFY-
PORTAL or SATISFYBOUNDARYCOMPONENTS. In both
cases,S must be a portion of the boundary of a square
R′ contained byR. The pointℓ ∩ ℓ′ must be a corner
of R′, but neither SATISFYPORTAL nor SATISFYBOUND-
ARYCOMPONENTSadds a corner orR′ to the forest.ℓ

R ℓ'
R'

S

Figure 3: Illustrating the proof of Lemma 2.4.

2.6 Step 6: Dynamic program

We use more parameters that are functions ofǫ only: η
andγ. Their exact values will be defined in Equations (9)
and (13), respectively (γ is a power of two).

Let R be a dissection square. DivideR into a regular
γ × γ grid of cells. We say thatR is the owner of its
cells. Sinceγ andL are powers of2, eachcell of the grid
is either coincident with a dissection square or is smaller
than the leaf dissection squares. Azoneof R is a set of
cells ofR whose union is simply connected. We equate a
zone with the set of points in the cells comprising it.

A configurationfor R is a set of pairs(P, Z) whereP is
a subset of portals ofR andZ is a zone ofR. The config-
uration iscompactif the number of portals, summed over
all pairs, is at most4(ρ + 1) and the sum of the lengths of
the zone boundaries is at most(η + 1)length(∂R).

A subsolutionfor R is a setF of points ofR consisting
of a finite number of line segments, with the property that,
for any terminalt in R, F connectst to its mate or to∂R.
Thelengthof F is the sum of lengths of the line segments
comprising it.

For a configurationC and a subsolutionF , we sayF
andC arecompatibleif the following condition holds: for
each connected componentK of F that intersects∂R,
there is a pair(P, Z) ∈ C such that

• K spansP ,
• each connected component ofK∩∂R contains a portal
p ∈ P , and

• for each terminalt contained inK, t is in Z.

See Figure 4

Figure 4: A compact configuration (round portals, grey
zones) and compatible subsolution (square terminals,
black forest).

In the dynamic program, we build a tableTR[·], indexed
by compact configurations, for each dissection squareR.
The goal of is to populate these tables so thatTR[C] is the
minimum length of a subsolution forR that is compatible
with C. We claim that, for eachR, the number of compact
configurations is small. Each zone can be specified by its
boundary: a path following the edges of theγ × γ grid.
This path is given by a start location and a string over the
three-letter alphabet, ({left, right, straight}). Sinceη and
γ are constants, the total length of all these strings is a
constant. Since the number of portals in a configuration is
constant, the number of zones is constant. The number of
ways of choosing a setsP of portals for a configuration
is bounded bymO(1). Sincem = O(log n), the total
number of compact configurations is polylogarithmic.

Since the depth of the quad-tree isO(log n), there are
O(n log n) dissection squares. The running time of the
dynamic program is thereforeO(n logξ n) whereξ de-
pends onǫ. We omit further details of the dynamic pro-
gram.



3 Structure Theorem

It remains to show that the dynamic program finds a solu-
tion that is not too much longer thanOPT.

Theorem 3.1. For a random shift(a, b), with probability
at least one half, there is a solutionF of length at most
(1+ǫ)OPT such that, for each dissection squareR, there
is a compact configurationC of R that is compatible with
F ∩ R.

To prove Theorem 3.1, we use Theorem 3.2, which as-
serts the existence of a solutionF with properties that im-
ply the existence of compact compatible configurations.
The expected amount by which length(F ) exceedsOPT
is 1

2ǫOPT. By Markov’s Inequality, the total increase is
at mostǫ OPT with probability at least one-half.

The argument for the following is a straightforward ex-
tension of the argument used in [4] for Steiner tree, and is
analogous to Lemma 4 of [2].

For the next result, we use new techniques (though we
draw on the analysis technique of [2]).

Theorem 3.2. There is a solutionF with expected length
(1+ 1

2ǫ)OPT that satisfies the Boundary Components and
Portal Properties and such that each dissection squareR
satisfies the following

Zone Property There is a setZR of openly disjoint2

zones ofR such that:

1.
∑

Z∈ZR
length(∂Z \ ∂R) ≤ η length(∂R);

2. for everyZ ∈ ZR, for any two terminalst1, t2 ∈ Z
that are connected byF to ∂R, t1 and t2 are con-
nected inF ;

3. for every terminalt ∈ F that is connected to∂R,
t ∈ Z ∈ ZR.

To prove Theorem 3.2, we start with a solutionF that
satisfies the properties of Lemma 2.4. Recall that a zone
is the union of a set of simply connected cells.

Let C be a cell ofR. We sayC is happywith respect to
F if there is at most one connected component ofF that
touches both∂R andC. We use the following procedure
to make every cell happy and every dissection square sat-
isfy the Zone Property. The depth of a square (ie. a cell)R
that is smaller than the leaf dissection squares is the depth
should the dissection be continued beyond1 × 1 squares.
We likewise define the depths of the sides of such cells.

2sharing only boundary points.

(a) (b) (c)

Figure 5: The three cases (up to symmetry) of augmenting
R.

SATISFYZONE:
While there is an unhappy cell or a dissection square

violating the Zone Property,
1 letR be a smallest such square.
2 LetA = {sidesS of R : depth(S) ≥ depth(R) or

S ∩ F 6= ∅}.
3 AddA to F .

Adding A to F for a squareR is calledaugmentingR.
The choice ofA is illustrated in Figure 5. In cases (a)
and (b), the augmentationA is not all of ∂R so is open
at the ends. In (a),F intersects neither of the sides ofR
that have depth less than that ofR, so the augmentationA
consists only of the two sides having depth equal to that
of R. In (b), one of the low-depth sides intersectsF , so it
belongs toA. In (c), both low-depth sides intersectF , so
A is all of ∂R.

It is easy to prove the following.

Lemma 3.3. Suppose that, at some time in the execu-
tion of SATISFYZONE, dissection squareR is augmented.
Then for the remainder of the procedure,R has the

Augmentation Property F ∩ ∂R is connected.

SupposeR is a dissection square such thatF ∩ ∂R has
at most one connected component. It is easy to see that
R cannot be an unhappy cell. Furthermore, the singleton
set{{all cells ofR}} satisfies parts 1 and 2 of the Zone
Property. It follows that SATISFYZONE terminates, and
that, when it terminates, the Zone Property holds for every
dissection square.

Next we show that SATISFYZONEpreserves the proper-
ties of Lemma 2.4. Consider an iteration in which a square
R is augmented. LetR′ be a square that satisfies the
Boundary Components and Portal Properties before this
iteration. LetL = ∂R∩∂R′. If L consists at most of a sin-
gle point then this point is a corner of bothR andR′ and
R′ continues to satisfy these properties. Otherwise, let
S′ be a side ofR′ that intersects∂R at more than a single
point. If F∩S′∩∂R had at least one connected component
before Step 2 thenF ∩S′∩∂R has at most one connected
component afterwards. Suppose therefore thatF∩S′∩∂R



was empty before the iteration. If depth(R′) ≥ depth(R)
then after the step eitherF ∩ S′ ∩ ∂R is still empty or
S′ ⊂ F . If depth(R′) < depth(R) then, as illustrated in
Figure 5, we ensures thatA avoidsS′, soF ∩ S′ ∩ ∂R
remains empty. In all cases, the Boundary Components
Property and the Portal Property continue to hold forS′.

The remainder of the paper is devoted to bounding the
increase in the length ofF due to SATISFYZONE. Let
Fi be the forest at the start of theith iteration and letRi

denote the dissection square selected in theith iteration.

Lemma 3.4. For anyi < j, Rj is not contained inRi.

Proof. We sketch the proof by contradiction: IfRj is con-
tained inRi, thenRj must have been an unhappy cell or
a Zone-Property-violating dissection square at the start of
the ith iteration. This contradicts thatRi is the smallest
such square.

Lemma 3.5. The increase in length ofF due to iterations
of SATISFYZONE whereR violates the Zone Property is
at most14ǫ OPT.

Proof. We inductively defineF̂i. For the base,̂F1 = F1.
If Ri violates the Zone Property inFi thenF̂i+1 = (F̂i \
Ri) ∪ ∂Ri, otherwiseF̂i+1 = F̂i. In the former case, we
will show that

length(∂Ri) < ǫ
4(1+ 1

2
ǫ)

length(F̂i ∩ (Ri − ∂Ri)) (6)

Note thatA ⊆ ∂Ri, so we are over-accounting for the
length added during the augmentation ofRi. We charge
this length to the portion of̂Fi strictly enclosed byRi

and will not charge to this length again (since this part
is removed inF̂i+1). See Figure 6:F̂i+1 is made of
the boundary ofRi and the thick parts of̂Fi. So we get

ǫ
4(1+ 1

2
ǫ)

(length(F̂i) − length(F̂i+1)) > length(∂Ri).

R
i

F
i

Figure 6: Charging for Zone Property violations.

Since length(F̂1) ≤ length(F1) ≤ (1 + 1
2ǫ)OPT, we

infer that the total increase in length due to iterations
whereR violates the Zone Property is at most1

4ǫ OPT.

It remains to show that Equation (6) holds.
Let K1, . . . , Kq be the connected components ofF̂i ∩

(Ri \ ∂Ri) that touch∂R. Fork = 1, . . . , q, let Ck be the
set of cells ofRi that intersectKk. Let Zk be the points
in the union of the cells inCk together with the points that
are surrounded by cells inCk (ie. the points in the “holes”
of Ck). It follows thatZk is a simply connected union of
cells: Zk is a zone. LetZRi

= {Z1, . . . , Zq}. We will
argue thatZRi

satisfies the second and third parts of the
Zone Property with respect to the forestFi.

Consider the setR of dissection squares that are con-
tained in R and that were augmented due to a Zone-
Property violation before iterationi. Let R̄ be a maximal
subset ofR such that everyR ∈ R̄ is strictly contained
by no square inR. By the definition ofF̂i, we get:

Claim 3.6. For everyR ∈ R̄, ∂R ⊆ F̂i.

For someR ∈ R̄, letx be a point inR that is connected
to ∂Ri by Fi. LetP be anx-to-∂Ri path inFi. Since this
path must intersect∂R, we have:

Claim 3.7. If x ∈ R ∈ R̄ is connected to∂Ri byFi, then
x is connected to∂R by F̂i.

Let x be a point inRi that is connected to∂Ri by Fi.
If x ∈ Kk for somek, thenx is in some zone inZRi

.
Otherwisex must be a point inR for someR ∈ R̄. By
Lemma 3.7,x is connected to∂R for someR ∈ R̄. By
Lemma 3.6,∂R ⊆ F̂i and∂R is connected to∂Ri: x is in
some zone inZRi

. It follows thatZRi
satisfies the third

part of the Zone Property.
Supposex ∈ Zk is connected to∂Ri by Fi. If x ∈

R ∈ R̄, then by Lemma 3.7,x is connected to∂R and by
Lemma 3.6,∂R ∈ F̂i. Suppose, then, thatx ∈ F̂i. Let C
be the cell that containsx. Since every cell ofRi is happy,
C is happy and there is at most one connected component
that intersects bothC and∂R. This connected component
must includex sincex ∈ F̂i, x ∈ Kk. We get:

Claim 3.8. For anyk and for a pointx ∈ Zk, if Fi con-
nectsx to ∂Ri, thenFi connectsx to Kk.

It follows thatZRi
satisfies the second part of the Zone

Property.
Let B be the boundary of the zones not including∂Ri.

That is,B = ∪Z∈ZRi
length(∂Z − ∂Ri) (and if a point

belongs to the boundary of two zones it is counted twice).
SinceRi violates the Zone Property with respect toFi,
andZRi

is a set of zones that satisfies the second and third
parts of the Zone Property with respect toFi, ZRi

must
violate part one of the Zone Property:

length(B) > η · length(∂Ri) (7)



We give an upper bound for length(B). Consider all the
cellsC that contribute toB. Say that a cellC is traversed
by F̂i if any pair of opposite sides ofC are connected by
F̂i ∩ (C \ ∂R). PartitionC into three sets: the setCT of
cells that are traversed; the setCN,B of cells that are not
traversed and are adjacent to∂R and the remaining cells
CN,I .

At most three sides of each cell contributes to
∪Z∈ZRi

∂Z \ ∂Ri. It follows that the contribution to

length(B) by CT is at most3length(F̂i ∩ (Ri \ ∂R))
and the contribution to length(B) by CN,B is at most
3length(∂Ri). Now consider a cellC ∈ CN,I . There
is a pointx ∈ C that is connected to∂Ri by F̂i. Let P
be anx-to-∂Ri path. Consider the setD of eight cells
surroundingC. P must enter and leave this set of eight
cells in order to reach∂Ri thereby travelling a distance
equal to the width of the cell. LetQ be the portion of path
P that is used to travel this distance and charge the≤ 3
sides ofC that contribute toB to Q. Q is charged to at
most 8 times. So the contribution length(B) by CN,I is at
most24 length(F̂i ∩ (Ri \ ∂R)). We get

length(B) ≤ 27 length(F̂i ∩ (Ri \ ∂R)) + 3 length(∂Ri)
(8)

We choose

η = 3 + 27 · 4 ǫ−1(1 +
1

2
ǫ). (9)

Equation (6) is obtained by combining Equations (7), (8)
and (9), completing the proof of Lemma 3.5.

Lemma 3.9. The expected increase in length ofF due to
iterations ofSATISFYZONE whereRi is an unhappy cell
is at most14ǫ OPT.

Proof. Throughout this proof, we consider iterations of
the procedure SATISFYZONE that make a cellC = Ri

happy. We will show that the expected length of the union
of the boundaries of all such cells is at mostǫ

2 OPT. The
length added per iteration is at most

length(∂C) =
1

γ
length(∂B) =

4L

γ2j
, (10)

where the owner ofC is aj-squareB.
For the accounting we define three setsXℓ, Yℓ, andZℓ

for each dissection lineℓ. When augmentingC, we chose
a dissection line boundingB (C ’s owner) and charge the
additional length to an element ofXℓ ∪ Yℓ ∪ Zℓ in such a
way that each element is charged at most once. The sets

are defined as follows:

Kℓ = F1 ∩ ℓ \ {y ∈ Y : φ(y) 6= ℓ}
Eℓ = {endpoints of components inKℓ}
Sℓ = {sideS of R : R a dissection square, S ⊂ ℓ ∩ F1}
Xℓ = {ℓ} × Kℓ,
Yℓ = {ℓ} × Eℓ × {−, +} × {2, 3, 4}
Zℓ = {ℓ} × Sℓ × {−, +} × {2, 3, 4}

Before describing the charging scheme, we show that
it lets us bound the expected increase in length. There
are two methods of charging. The first uses the obser-
vation that making a cell happy reduces the number of
components in the forest. This will account for charges
to elements in setsXℓ andYℓ. The definition relies on
the setKℓ whose size is bounded by Equation (4). The
second method compares the length added to some length
already in the forest, and in particular a side ofB. This
will account for charges toZℓ.

First consider charges to setsXℓ and Yℓ. Let cℓ,j

be the number of chargings involving a dissection line
ℓ and a j-squareB. By (10), the total increase in
length charged to lineℓ is at most

∑
j≥depth(ℓ) cℓ,j

4L
γ2j .

Since Prob[depth(ℓ) = i] = 2i/L (since we only con-
sider owners of cells which are dissection squares), the
expected increase in length is

∑
i

2i

L

∑
j≥i cℓ,j

4L
γ2j ≤

4
γ

∑
j

cℓ,j

2j

∑
i≤j 2i ≤ 8

γ

∑
j cℓ,j. We will show that each

element ofXℓ ∪ Yℓ is charged at most once, giving an ex-
pected increase in length of at most8

γ

∑
ℓ |Xℓ| + |Yℓ| ≤

8
γ

∑
ℓ |Kℓ| + 6|Eℓ| ≤ 8

γ

∑
ℓ 13|Kℓ|. Using Equation (4),

this is at most
208
γ

OPT. (11)

When charging the addition of∂C to F to a 4-
tuple (ℓ, S, H, ∆) of Zℓ, we will show thatS is a side
of B: the length added is at most4

γ
length(S). We

will also show that the charging guarantees that, for
any dissection lineℓ and any pair(H, ∆), if there are
charges to(ℓ, S1, H, ∆), (ℓ, S2, H, ∆), . . . , (ℓ, St, H, ∆)
then S1, S2, . . . , St are openly disjoint. Consequently,∑t

j length(Lj) ≤ length(F1 ∩ ℓ). Summing over all dis-
section linesℓ and all six pairs(H, D), the total length
added toF by all such charges is at most

24

γ

∑

ℓ

length(F1 ∩ ℓ) ≤ 24

γ
(1 + ǫ)OPT. (12)

Combining Equations (11) and (12) and choosing

γ = 928ǫ−1(1 + ǫ), (13)

we bound the expected increase in length by1
4ǫ OPT.

Now we give details for the charging scheme. We main-
tain labels of the connected components ofF ∩ ℓ, for all



dissection linesℓ. We maintain the invariant that two com-
ponents have the same label if and only ifF connects
them. Initially the label of a component is the compo-
nent itself. These labels are used for charging to elements
of Xℓ.

Let K1, . . . , Kq be the connected components ofFi

that touch both∂B andC. BecauseC is unhappy,q > 1.
For j = 1, . . . , q, we choose a pair(ℓj , K̂j) whereℓj is a
line boundingB andK̂j = Kj ∩ ℓj and prefer to use the
same dissection line twice, if at all possible. (We avoid a
choice such thatKj = {y} for y ∈ Y andφ(y) 6= ℓj.)
We use case analysis.

Case 1: ℓj1 = ℓj2 for somej1 6= j2. Let ℓ = ℓj1 .
In this case we will charge to an element ofXℓ. By the
invariant,K̂j1 andK̂j2 have different labels. We charge
to (ℓ, K̂j1) and change the labelling by replacing every
occurrence of the label of̂Kj1 with the label ofK̂j2 . This
ensures that each element ofXℓ is charged only once.

Case 2: ℓ1, . . . , ℓq are all distinct. Choose two dis-
tinct linesℓj1 andℓj2 with depth(ℓj1) ≥ depth(ℓj2). Let
ℓ = ℓj1 . Count sides going counterclockwise aroundR,
starting at the side corresponding toℓ and ending at the
side corresponding toellj2. The count∆ is 2,3, or 4, be-
causeℓ 6= ℓj2 . Let H = + if ℓ is horizontal andB is
in the north or ifℓ is vertical andB is in the east and let
H = − otherwise. LetS = B ∩ ℓ. If S 6⊆ F1, we charge
to an element(ℓ, z, H, ∆) of Yℓ wherez is an endpoint of
K̂j1 that is an internal point ofS. If S ⊆ F1, we charge
to an element(ℓ, S, H, ∆) of Zℓ.

In the remainder of the proof, we argue that the charges
in Case 2 are distinct. Assume for a contradiction that
there are two charges to some tuple(ℓ, z, H, D) ∈ Yℓ or
that a pair{(ℓ, S1, H, D), (ℓ, S2, H, D)} ⊂ Zℓ is charged
whereS1 andS2 are not internally disjoint. LetB1 andB2

be the dissection squares (ie. the owners of the unhappy
cells) involved in the two charges (possiblyB1 = B2)
Without loss of generality,B1 is the first square involved.
Both B1 andB2 are bounded byℓ, and are in the same
half-space ofℓ (as accounted byH). Hence one ofB1

andB2 contains the other. By Lemma 3.4,B2 contains
B1.

For each charge, there was another line containing a
component involved in the merge. Forj = 1, 2, let ℓj be
another line involved in the charge involved inBj . Since
the charges have the same count∆, the linesℓ1 andℓ2 are
parallel.

Supposeℓ1 = ℓ2. In making a cellC1 of B1 happy, the
components intersecting bothC1 and∂B1 are unified to
componentK. Later, a cellC2 of B2 is unhappy, andK
is a component intersecting bothC2 andB2 andK inter-
sects bothℓ andℓ2. There must be another componentK ′

that intersects one ofℓ andℓ2: this is an opportunity to
charge according to Case 1, a contradiction.

Supposeℓ1 6= ℓ2. Since the lines are parallel, the
count∆ is the same, andB2 containsB1, depth(ℓ1) >
depth(ℓ2). By the choice ofℓ, depth(ℓ) ≥ depth(ℓ1), soℓ
cannot boundB2, a contradiction.

4 Open problems

As in [2], it seems likely that this technique will extend to
any constant-dimension Euclidean space and can be de-
randomized (while increasing the running time). Recently
polynomial-time approximation schemes have been given
for subset-TSP [?] and Steiner tree [?, ?] in planar graphs,
using ideas inspired from their geometric counterparts. It
would be interesting to see if Steiner forest can also be
approximated in planar graphs.
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