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Abstract

We give an algorithm requiringO(c1/ǫ2n) time to find anǫ-optimal traveling salesman

tour in the shortest-path metric defined by an undirected planar graph with nonnegative edge-

lengths. For the case of all lengths equal to 1, the time required isO(c1/ǫn).

1 Introduction

The traveling salesman problem is often the first problem researchers use to test a new optimiza-

tion technique [32]. In a metric space, atour is a cycle(v0 v2 . . . vn−1) of the points of the

metric space, and the weight of the tour is the sum
∑n

i=0 dist(vi, v(i+1) mod n), where dist(u, v)

is the distance betweenu andv. The goal is to find the minimum-weight tour. The problem is

MAXSNP-hard [36, 37] in arbitrary metric spaces, and the best approximation ratio known, that

proved by Christofides[14], is 1.5. For the shortest-path metric of an unweighted planar graph

(one in which every edge has weight one), Grigni, Koutsoupias, and Papadimitriou [23] gave an

algorithm that requiresnO(1/ǫ) to find a1 + ǫ-optimal tour. Thus for fixedǫ, the algorithm runs

in polynomial time. Such a family of polynomial-time algorithms is called anapproximation

scheme.

Arora, Grigni, Karger, Klein, and Woloszyn [5] subsequently gave a polynomial-time approx-

imation scheme for the more general problem in which the planar graph’s edges have arbitrary

∗A preliminary version was published inProceedings of the IEEE Symposium on Foundations of Computer

Science(2005), pp. 647–656.
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nonnegative weights. Their algorithm requiresnO(ǫ−2) time. Both algorithms are somewhat com-

plicated, and involve a recursive decomposition using new planar-separator lemmata. The latter

paper introduced the idea of using aspannerresult to handle edge-weights.

Arora [3] and Mitchell [34] had shown that a PTAS exists forEuclidean TSP(i.e., the subcase

in which the points lie inℜ2 and distance is measured using the Euclidean metric). This PTAS

finds anǫ-optimal tour innO(1/ǫ) time. Arora [4, 2] improved the running time of his algorithm

to O(n · (log n)O(1/ǫ)), using randomization. Finally, Rao and Smith [38] gave a PTAS for the

two-dimensional Euclidean case that takes timeO(ǫ−O(ǫ)n+n log n). (Their algorithm also used

a spanner result.) The latter two approximation schemes aresaid to beefficientpolynomial-time

approximation schemes (EPTAS) because the time can be bounded by a function ofǫ times a

polynomial function ofn. Thus for an EPTAS, the degree of the polynomial does not growwith

1/ǫ.

In view of the fact that anǫ-optimal tour can be found in the Euclidean case in time that is

polynomial with a fixed degree, independent ofǫ, it seems natural to ask whether the same holds

true for the planar case. In this paper, we answer this question.

Theorem 1 There is an algorithm that, for anyǫ > 0 and any planar graphG with nonnegative

edge-weights, finds a1+ ǫ-optimal tour. The running time isO(c1/ǫ2n) wherec is a constant. For

the special case where all weights are 1, a similar algorithmrequiresO(c1/ǫn) time.

Marx [33] subsequently showed that the running time for the unit-weight case is essentially opti-

mal under a widely held complexity assumption.

1.1 Other related work

In a seminal paper, Baker [6] gives a method for obtaining PTASs for a variety of optimization

problems in planar graphs, e.g. maximum-weight independent set and minimum-weight vertex

cover. The resulting algorithms are linear time (for fixedǫ). The key idea (interpreted in modern

parlance) is to turn a problem in a planar graph to a problem ina graph with bounded treewidth.

Grigni and Sissokho ([24], building on [25]) have given a quasipolynomial approximation

scheme for weighted TSP in minor-excluded graphs. This paper proved a spanner result for

minor-excluded graphs. Berger, Czumaj, Grigni, and Zhao ([7], building on [16]) give a PTAS

for the problem of finding a minimum-weight 2-edge-connected spanning multi-subgraph1 of

an edge-weighted planar graph, and a quasipolynomial approximation scheme for finding a

1Duplicate edges of the input graph are allowed in the solution.
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minimum-weight 2-edge-connected or biconnected spanningsubgraph2 of an edge-weighted pla-

nar graph. This paper introduced a new spanner construction.

Demaine and Hajiaghayi [17] describe a framework for PTASs that is based on the notion of

bidimensionality. They derive approximation schemes for subclasses of minor-excluded graphs

that involve turning the input graph into a low-treewidth graph. Their results apply to graphs that

are not planar. Their framework can be viewed as a way to generalize Baker’s approach so as to

derive algorithms for nonlocal problems, such as feedback vertex set and connected dominating

set. For planar graphs in particular, they derive EPTASs forseveral unit-weight problems. In

relation to their framework, our result is an example of how one can more thoroughly exploit

planarity to derive a fast and simple EPTAS.

For a positive numbers, ans-spanner of a graphG is a subgraph ofG that approximately

preserves the node-to-node distances ofG: for any pairu, v of nodes ofG, the distance in the

subgraph must be at mosts times the distance inG. There is a vast literature on spanner construc-

tions. In this paper, we require a construction for1 + ǫ-spanners of planar graphs. Henceforth,

for brevity we use the termspannerand omit mention of the parameter1 + ǫ.

1.2 The approach

The TSP approximation scheme consists of the following steps.

Spanner step: Delete some edges of the input graph while approximately preserving the optimal

value.3

Slicing step Using breadth-first search in the planar dual together with ashifting argument, iden-

tify subgraphs (calledslices). The weight of edges belonging to more than one slice is at

most1/k times the weight of the graph, and each connected component of each slice has a

spanning tree of depth at mostk + 1, wherek is a parameter.

Dynamic-programming step: Use dynamic programming to find an optimal solution in each

connected component of each slice.

Combining step: The union of the tours found in the previous step comprises a tour for the

original graph.

The time required by the dynamic-programming step is exponential in k. We show that there is a

choice ofk that depends only onǫ for which the resulting tour is nearly optimal.

2No duplicates are allowed.
3This was the also the first step in [5] and subsequently in, e.g., [24] and one of the algorithms of [7].
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In the preliminary version of this paper [30], a slightly different algorithm was described. In

the second step, a procedure calledthinningwas applied to the planar dual of the graph. Thinning

involves deleting edges; thinning the planar dual corresponds tocontractingedges in the primal.

Thinning in either the primal or the dual results in a graph with small branch-width. The method

of thinning in the dual graph is novel, though quite simple. One nice way to formulate the result

is as follows:

For any positive integerk, there is a partition of the edges of a planar graph intok

sets such that contracting the edges in any one of the sets yields a graph with bounded

treewidth (where the bound depends onk).

This formulation of the result is due to Demaine, Hajiaghayi, and Mohar [19], who learned of

this result from the preliminary version of this paper and subsequently generalized the result to

apply to graphs of any bounded genus.

Because of the potential applicability of the planar resultand of its role in subsequent devel-

opments, we provide a proof in Section 7

The approach used in this version of the paper to formulate the TSP approximation scheme,

which we callslicing, emerged from joint work with Borradaile and Mathieu [10, 11]. This

formulation does not require the algorithm to perform any contractions, which leads to a simpler

algorithm.

The general approach used for TSP has proved useful in obtaining approximation schemes

for other problems in planar graphs, including minimum-weight two-edge-connected spanning

multi-subgraph,4 TSP on a subset of the nodes [31], minimum-weight two-edge-connected span-

ning subgraph [8], and Steiner tree [10]. As mentioned above, the basic technique has been

generalized [19] to apply to bounded-genus graphs, giving rise to new approximation schemes

for such graphs.

1.3 Spanner step

The spanner step requires an algorithm that, given an-node planar graphG0 with edge-weights

and given a parameterǫ, deletes edges so as to obtain a graphG such that

S1: weight(G) ≤ ρǫ · OPT(G0)

S2: OPT(G) ≤ (1 + ǫ)OPT(G0), and

where OPT(G) is the value of the optimum for input graphG, and weight(G) is the sum of

weights of edges inG.

4An O(c1/ǫ
n) algorithm for this problem can be obtained from the TSP algorithm by modifying the dynamic

program.
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We refer to the first step asspanner stepbecause of the connection tos-spanners. Ans-

spannerof a graphG0 is a subgraphG of G0 with the same set of nodes, such that, for any pair

u, v of nodes, theu-to-v distance inG is at mosts times theu-to-v distance inG0. As discussed

in Lemma 9, to achieve Property S2 in the case of TSP, it suffices thatG be a1 + ǫ-spanner of

G0. In Section 3, we discuss a spanner construction that also achieves Property S1.

An n-node planar graphG0 with no parallel edges or self-loops has at most3n edges. For

unit-weight edges, OPT(G0) is at leastn, so weight(G0) ≤ ρǫOPT(G0) holds forρǫ=3. In this

sense, a trivial spanner result suffices for the unit-weightcase.

We remark that Properties S1 and S2 can be considered for optimization problems other than

TSP, and indeed for problems where a traditionals-spanner would not suffice. We propose use of

the termspanner resultto refer more generally to a construction achieving Properties S1 and S2.

We have obtained such constructions for two other problems in planar graphs, leading to approx-

imation schemes for these problems. The first problem [31] isa generalization of the problem

studied here; the tour must visit a specified subset of nodes of the input graph (not necessarily all

the nodes). The second problem [10] is Steiner tree, in whichone seeks a minimum-weight tree

spanning a specified subset of nodes.

2 Preliminaries

In this section, we describe the basic definitions and results on planar embeddings and planar

duals. Most of the material is standard in concept, but the notation may be unfamiliar, and we

also introduce a variant of contraction that we callcompression, and state some related results.

In Subsection 2.5, we give some definitions and results that help us reformulate the TSP.

For a rooted treeT and a nodev that is not the root ofT , theparent edgeof v is the edge of

T that connectsv to its parent.

2.1 Combinatorial embeddings

The traditional geometric definition of planar embeddings involves drawings of a graph on the

plane. Proofs and algorithms become simpler when one uses analternative definition of embed-

ded planar graphs, a combinatorial definition. See [35].

The idea of a combinatorial embedding was implicit in the work of Heffter [27]. Edmonds [21]

first made the idea explicit, and Youngs [46] formalized the idea. A combinatorial embedding

is sometimes called arotation system. The idea is to represent at each node the arrangement of

edges around that node, as illustrated in Figure 1.
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Figure 1: The first figure shows an undirected planar graph embedded in the plane, with its

edges labeled. Therotation corresponding to the top-left node is the permutation cycle(a b e),

indicating that the edgesa, b, ande are incident to that node, and are arranged counterclockwise

around that node in the ordera, b, e. Similarly, the rotation in the middle node is(e f g h).The

second figure shows the same undirected graph but with darts instead of edges. There are two

oppositely directed darts for each (undirected) edge. The darts corresponding to edgee are〈e, 1〉

and 〈e,−1〉. The rotation corresponding to a node consists of the darts that point away from

the node. Thus the rotation corresponding to the top-left node is(〈a, 1〉 〈b,−1〉 〈e,−1〉). The

rotation corresponding to the middle node is(〈e, 1〉 〈f, 1〉 〈g, 1〉 〈h, 1〉) .
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However, it is convenient to represent at each node not just which edges are incident to the

node and in what order, but more specifically which ends of which edges are incident to the node.

For example, ife is a self-loop (an edge whose endpoints are the same), the edgee would appear

twice in the arrangement of incident edges, and it is helpfulto be able to distinguish these two

occurrences. We will refer to the ends of an edge as itsdarts, as we explain next.

For any given finite setE, we can interpretE as a set of edges, and we defineE × {±1}

to be the corresponding set ofdarts. For each edgee, the darts ofe, namely〈e, 1〉 and〈e,−1〉,

represent the two opposite orientations ofe. The edge of〈e, i〉 is e. We define rev(·) (rev is

short forreverse) to be the function that takes each dart to the correspondingdart in the opposite

direction: rev(〈e, i〉) = 〈e,−i〉.

We define an embedded graph onE to be a pairG = 〈π, E〉 whereπ is a permutation of the

darts ofE. The permutation cycles ofπ are called thenodesof G. Note that nodes are defined in

terms of edges, rather than the other way round. This definition precludes isolated nodes. Each

nodev is a permutation cycle(d1 d2 . . . dk).

For a graphG, we useV (G), E(G), andD(G) to denote the node-set, the edge-set, and the

dart-set ofG. We use the same notation for subgraphs ofG.

For a dartd of G, we define the tail ofd in G, denoted tailG(d), to be the permutation cycle

of π containingd. (We may omit the subscript when doing so creates no ambiguity.) We define

headG(d) = tailG(rev(d)). The tail and head of a dartd are called theendpointsof d, and also

the endpoints of the edge ofd.

A walkof darts inG is a sequenced1 . . . dk of darts such that, fori = 2, . . . , k, headG(di−1) =

tail(di).5 The start of the walk is tailG(d1) and theend is headG(dk). It is a closedwalk if in

addition headG(dk) = tailG(d1). It is a simple path/cycle (cycle if closed, path if not) if no

node occurs twice as the head of a dart. The walk, path, or cycle is said to contain an edgee

if it contains a dart ofe. It is said to contain a nodev if v is the head or tail of some dart in

the sequence. We define rev(d1 . . . dk) = rev(dk) . . . rev(d1). A walk/path whose start isu and

whose end isv is called au-to-v walk/path.

To define the faces of the embedded graph, we define another permutationπ∗ of the set of

darts by composingπ with rev: π∗ = π ◦ rev. Then thefacesof the embedded graph〈π, E〉

are defined to be the permutation cycles ofπ∗. (See Figure 2.) Note that a face ofG can be

interpreted as a closed walk inG.

Note that this definition diverges from the traditional geometric definition of faces in the

case of a disconnected graph. In that case, according to the definition considered here, for each

5Note that, even though we are concerned with undirected graphs, we use (directed) darts in our definition of

walks because they provide more information about the structure of the walks.
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connected component there will be a different external face. (In fact, this is necessary if one

wishes to preserve the desirable property that the dual of the dual is the primal.)

2.2 Planarity

We say that an embeddingπ of a graphG is planar if it satisfies Euler’s formula:n−m+φ = 2κ,

wheren=number of nodes,m=number of edges,φ=number of faces, andκ=number of connected

components. In this case, we sayG = 〈π, E〉 is aplanar embedded graph. We say a graph is a

planar graphif there is a planar embedding for it.6 Finding a planar embedding for a planar graph

is a well-studied problem, and linear-time algorithms are known.7, so we assume throughout

this paper that every planar graph comes equipped with an embedding. It follows from Euler’s

formula that ann-node planar graph with no parallel edges hasO(n) edges.

2.3 Duality

The dual of a connected embedded graphG = 〈π, E〉 is defined to be the embedded graph

G∗ = 〈π∗, E〉. The permutation cycles ofπ∗ are the faces ofG. (See Figure 3.) According to

this definition, the edge set of the dual is identical to the edge set of the original graph (called the

primal). This identification of primal edges and dual edges is mathematically and notationally

convenient (albeit sometimes confusing).

Since rev◦ rev is the identity,(π∗)∗ = π, we obtain the following.

Proposition 1 G∗∗ = G.

It can be shown that the dual of a connected graph is connected. It follows that the connected

components ofG∗ correspond one-to-one with the connected components ofG. Hence ifG

satisfies Euler’s formula then so doesG∗. Thus the dual of a planar embedded graph is a planar

embedded graph.8

Let T be a spanning tree ofG. For an edgee 6∈ T , there is a unique simple cycle consisting of

e and the unique path inT between the endpoints ofe. This cycle is called theelementary cycle

of e with respect toT in G.

6For the purpose of the current result, all we need is that every graph embeddable on an orientable surface of

genus zero has a combinatorial embedding that satisfies Euler’s formula. However, it is known (see, .e.g, [35]) more

generally that for any graph embedded on a closed, orientable surface, the corresponding combinatorial embedding

determines the geometric embedding up to homeomorphism.
7The first was due to Hopcroft and Tarjan [29]. See [12] for a discussion of later work.
8For disconnected graphs, this definition of dual diverges from the geometric definition in that it assigns multiple

dual nodes to a single region of the sphere/plane. Accordingto the geometric definition, the dual of a graph is always

connected. However, choosing that definition means giving up, for example, the nice property thatG∗∗ = G.
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b,1
a,1

c,1

v

Figure 2: The figure on the left shows the dart representationof part of a graph. We can trace out

the face containing the dart〈a, 1〉 as follows. First apply rev, obtaining the dart〈a,−1〉 emanating

from the nodev. Next, applyπ, obtaining〈b, 1〉, the dart after〈a,−1〉 in the permutation cycle

corresponding tov. This shows that〈b, 1〉 is the successor to〈a, 1〉 in the face. We apply the

same process to〈b, 1〉, obtaining its successor〈c, 1〉 and that dart’s successor in turn,〈a, 1〉.

The face (permutation cycle ofπ ◦ rev) is thus(〈a, 1〉 〈b, 1〉 〈c, 1〉). The figure on the right

shows the corresponding fragment of the dual graph. There isa dual node corresponding to

the face discussed above. The permutation cycle corresponding to this dual node is exactly the

permutation cycle comprising the face:(〈a, 1〉 〈b, 1〉 〈c, 1〉). However, we follow the convention

of drawing the dual in such a way that the permutation cycle gives theclockwiseorder of darts.

This convention helps when drawing the dual superimposed onthe primal, for it enables us to

draw primal and dual edges at approximately right angles to one another, as shown in Figure 3.

The convention does not affect the dual graph as a mathematical object, only its depiction.
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c

d
e

a
b

Figure 3: The first figure shows a graph (the solid nodes and edges) and, superimposed, its planar

dual (the open nodes and dashed edges).

For a spanning treeT of G, we denote byT ∗ the set of edges ofG that are not inT . The

following is a classical result.

Proposition 2 If G is a planar embedded graph andT is a spanning tree ofG, thenT ∗ is a

spanning tree ofG∗.

We refer toT ∗ as the tree dual toT .

If S ⊆ V (G), we useΓG(S) to denote the set of edgese such that inG the edgee has one

endpoint inS and one endpoint not inS. A set of this form is called acut of G. Note that

ΓG(S) = ΓG(V (G) − S).

If S is connected inG andV (G) − S is connected inG, we callΓG(S) abond.

Proposition 3 If G is a planar embedded graph, the edges of a bond inG form a simple cycle in

G∗ and vice versa.

It follows from Proposition 3 that every simple cycleC in G defines a bipartition of the faces

of G; namely the bipartition(S, V (G) − S) whereE(C) = ΓG∗(S).
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Let f∞ be a face ofG. We callf∞ the infinite faceby analogy to geometric embeddings. For

combinatorial embeddings, the choice is arbitrary.9

We say the simple cycleC enclosesa facef with respect tof∞ if f belongs to the setS such

thatE(C) = ΓG∗(S) andf∞ 6∈ S. We say thatC encloses an edge with respect tof∞ if the edge

belongs to a face enclosed byC, and that it strictly encloses the edge if in addition the edge does

not belong toC.

Lemma 4 Let G be a connected planar embedded graph, letT be a rooted spanning tree ofG,

let v be a nonroot node ofT , and lete be the parent edge ofv. Then the elementary cycle ofe in

G∗ with respect toT ∗ consists of the edges ofΓG(descendents ofv in T ).

Proof: Removinge fromT breaksT into two connected components, one containing the descen-

dents ofv in T , and one containing the non-descendents. It follows that the cutΓG(descendents ofv in T )

is a bond, and therefore, by Proposition 3, the edges in that cut form a simple cycleC in G∗. The

only edge ofE(T ) belonging toE(C) is e, soC consists ofe together with a simple path of

edges not inE(T ) connecting the endpoints ofe in G∗. The edges not inE(T ) are inE(T ∗), so

the simple path is a simple path inT ∗. This proves the lemma.

2.4 Deletion and compression

We discuss two ways of removing edges from an embedded graph,deleting and compressing,

both of which preserve the embedding (and preserve planarity). Compressing an edge is very

similar to the operation of contracting the edge (the difference arises when the edge is a self-

loop).

Deletingan edgee of an embedded graphG = 〈π, E〉 is an operation that produces the graph

G′ = 〈π′, E ′〉 whereE ′ = E − {e} and, for each dart ofE ′,

π′[d] =






π[π[π[d]]] if π[d] andπ[π[d]] are the darts ofe

π[π[d]] if π[d] is a dart ofe butπ[π[d]] is not

π[d] otherwise

For a setS of edges, we denote byG − S the embedded graph obtained by deleting the edges of

S. The order of deletion does not affect the final embedded graph. It is easy to see that deletion

preserves planarity.

Proposition 5 An edgee is a self-loop ofG iff it is a cut-edge ofG∗.

9For geometric intuition, consider that a planar graph can beembedded on the surface of a sphere. According to

this embedding, every face is finite.
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Figure 4: Three examples of compression. The graph with solid edges and solid nodes is the

primal. The graph with dashed edges and open nodes is the dual. The edge being compressed is

signified by a heavy line.

We define edgecompressionto be deletion in the dual. That is, compressing an edgee

of G is an operation that produces the graph(G∗ − {e})∗. We denote the result asG/{e}.

Since deletion preserves planarity and the dual of a planar embedded graph is a plane graph,

compression preserves planarity. The operations of deletion and compression commute.

Figure 4 illustrates the effect of edge compression on the underlying graph in three examples.

If e is not a self-loop inG then the effect of compressinge in G is to contracte as shown in the

top left diagram. The thick line represents the edge to compress. Ife is a self-loop inG, so a

cut-edge inG∗, and is not the only edge incident to either of its endpoints in G∗ then the effect

is to duplicatev, as shown in the bottom left diagram; one copy has as its incident edges those

edges that inG are incident tov and strictly enclosed bye (with respect to some designated face

f∞) and the other copy has as its incident edges those edges thatin G are incident tov and not

enclosed bye (and not equal toe). If e is a self-loop inG and is the only edge incident to one of

its endpoints inG∗, the effect is to deletee.

2.5 Preliminaries related to TSP

For an assignment weight(·) of nonnegative weights to the edges ofG and a setS of edges, define

weight(S) =
∑
{weight(e) : e ∈ S}. For a subgraphH, define weight(H) = weight(E(H)).

For the metric space of shortest paths in a graph, a tour corresponds to a closed walk in the

graph that visits every node. The weight of the tour is the sumof weights of the edges comprising
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Figure 5: The light walk forms a crossing configuration with the bold walk.

the walk, counting multiplicities. For a connected graphG, let OPT(G, weight) be the minimum

weight of such a tour. (We omit the second argument when doingso creates no ambiguity.)

Lemma 6 For any walkW in a graph, there is a walkW ′ that visits the same nodes asW , such

that every edge used byW ′ is used byW , and occurs at most twice inW ′.

Proof: Let W be a closed walk inG, and suppose some dartd occurs at least twice inW . Write

W = W1 d W2 d. ThenW1 rev(W2) is a closed walk ofG that visits the same nodes asW but

uses dartd fewer times. Repeating this step yields the lemma.

Lemma 6 shows that, in seeking the minimum-weight walk visiting a given set of nodes, we

can restrict ourselves to considering walks in which each edge occurs at most twice.

Let W be a walk, and letP = a W b andQ = c W d be walks that are identical except

for their first and last darts. Letc′ be the successor ofc in Q and letd′ be the predecessor ofd

in Q. We sayQ forms acrossing configurationwith P (see Figure 5) if the permutation cycle

at head(c) induces the cycle(c c′ rev(a)) and the permutation cycle at tail(d) induces the cycle

(rev(d′) b d).

We say a walkP crossesa walkQ if a subwalk ofP and a subwalk ofQ form a crossing

configuration. The following folklore result was used by Arora et al. in [5].

Proposition 7 For any tour in a planar graph, there exists a tour that visitsthe same nodes and

comprises the same darts in the same multiplicities, and does not cross itself.
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Proof: SupposeŴ = W1 a W b W2 c W d is a closed walk wherec W d forms a crossing

configuration witha W b. Thend W1 a rev(c W2 b) rev(W ) W is a closed walk visiting the same

nodes and comprising the same darts in the same multiplicities, and with one fewer crossing

configurations.

Proposition 7 shows that we can restrict our attention to non-self-crossing walks.

An Eulerian graphis a graphG with the following properties.

• G is connected, and

• every node ofG has even degree.

Perhaps the best-known result in graph theory is the following:

Proposition 8 A graphG is Eulerian iff there is a walk inG in which each edge occurs exactly

once.

Such a walk is called an Eulerian cycle. There is a linear-time algorithm that, given an Eulerian

graph, finds an Eulerian cycle.

A graphH is amulti-subgraphof G if H can be obtained from a subgraph ofG by duplicating

some edges. We call it abi-subgraphif the maximum multiplicity of any edge is at most two.

It follows from the Eulerian characterization that finding aminimum-weight tour in a graph

G is equivalent to finding a minimum-weight Eulerian multi-subgraph ofG that includes every

node ofG. Lemma 6 shows that furthermore it suffices to find a minimum-weight Eulerian

bi-subgraph that includes every node.

We slightly generalize the notion of Eulerian multi-subgraph to handle disconnected graphs.

For a possibly disconnected graphG, we sayH is a multi-Eulerian multi-subgraphof G if for

each connected componentK of G there is a connected component ofH that is an Eulerian

multi-subgraph ofK. For a disconnected graph, define OPT(G, weight) to be the sum over

connected componentsK of OPT(K, weight). Then OPT(G, weight) is the minimum weight of

a multi-Eulerian multi-subgraph ofG.

3 Spanner

Althöffer, Das, Dobkin, Joseph, and Soares [1] considereda simple and general procedure for

producing a spanner in a (not necessarily planar) graphG0: start with an empty graphG, consider

the edges ofG0 in increasing order of weight, and add an edge toG if the edge’s weight was

much smaller than the minimum-weight path inG0 between its endpoints. They did not address
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the exact running time of the procedure, but it clearly consists ofO(n) iterations, each involving a

shortest-path computation. For planar graphs, therefore,it runs inO(n2) time [28]. They proved

several results about the size and weight of the resulting spanner, including the following result

that is specific to planar graphs.

Theorem 2 (Althöffer et al.) For any planar graphG0 with edge-weights and anyǫ > 0, there

is an edge subgraphG such that

A1: weight(G) ≤ (1 + 2ǫ−1)MST (G0), whereMST (G0) is the weight of the minimum span-

ning tree ofG0, and

A2: for every pair of nodesu andv,

minimum weight of au-to-v path inG (1)

≤ (1 + ǫ) · minimum weight of au-to-v path inG0

Lemma 9 Properties A1 and A2 imply Properties S1 and S2 of Section 1.3with ρǫ = 1 + 2ǫ−1.

Proof: Because a tour includes a spanning tree,MST (G) ≤ OPT(G). Hence Property A1

implies that Property S1 of Section 1.3 is achieved withρǫ = 1 + 2ǫ−1.

Now we show that Property A2 implies Property S2, i.e. that OPT(G) ≤ (1 + ǫ0)OPT(G0).

(This argument was used in [5].) LetT0 be an optimal tour ofG0. For each edgeuv of T0 that is

not inG, there is au-to-v path inG of weight at most(1 + ǫ)weight(uv); replaceuv in T0 with

that path. The result of all the replacements is a tourT1 whose weight is at most1 + ǫ times that

of T0. This shows OPT(G) ≤ (1 + ǫ) OPT(G0).

By exploiting planarity, we can give an algorithm that runs in linear time but that can be shown

(using the same analysis technique used by Althöffer et al.) to achieve the same properties.

Theorem 3 There is a linear-time algorithm that, given a planar graphG0 with edge-weights

and anyǫ > 0, outputs an edge subgraphG with Properties A1 and A2.

The algorithm is as follows.

defineSPANNER(G0 , ǫ):

let x[·] be an array of numbers, indexed by edges

find a minimum spanning treeT of G0

assignx[e] := weight(e) for each edgee of T

initialize S := {edges ofT}
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Figure 6: Diagram showing part of dual tree (in light edges) and primal tree (in dark edges) and

primal nontree edges (dashed):e2 ande4 are child edges ofe in the dual tree. The facefe is

indicated.

let T ∗ be the dual tree, rooted at the infinite face

for each edgee of T ∗, in order from leaves to root

let fe be the face ofG0 whose parent edge inT ∗ is e

let e=e0, e1, . . . , es be the sequence of edges comprisingfe

xomit :=
∑s

i=1 x[ei]

if xomit > (1 + ǫ)weight(e)

then adde to S and assignx[e] := weight(e)

else assignx[e] := xomit

returnS

The minimum spanning tree ofG0 can be found in linear time using the algorithm of Cheriton

and Tarjan [13].

Now we address correctness of the procedure. Say an edgee is acceptedwhene is assigned

to S, andrejectedif e is considered but not assigned toS.

Lemma 10 In the for-loop iteration in whiche is considered, for every other edgeei of fe, x[ei]

has been assigned a number.

Proof: The facefe has only one parent edge inT ∗, and it ise. For every other edgeei of fe,

eitherei belongs toT or ei is a child edge offe in T ∗.
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For any edgee of G0 not inT ,

• let Ĝe denote the subgraph ofG0 consisting of accepted edges together withe,

• let f̂e denote the face of̂Ge that containse and enclosesfe,

• let Ŵe denote the walk formed by the sequence of edges comprisingf̂e not includinge

itself, and

• let Pe =





e if e is accepted

Ŵe otherwise

Note that each of̂We andPe has the same endpoints ase. For an edgee of T , definePe = e. The

basic argument of the following lemma comes from [1].

Lemma 11 For any edgee of G0, not inT ,

1. every edge of̂fe is either inT or is a descendent ofe in T ∗, and

2. Ŵe = Pe1
· · · Pes

, wheree1 . . . es is the walk consisting of the edges comprisingfe other

thane.

Proof: by induction. Consider the case in whiche is a leaf-edge ofT ∗. Let f be the corre-

sponding leaf-node inG∗
0. Becausef is a leaf, the only incident edge that is inT ∗ is e itself, so

e1, . . . , es belong toT . All these edges are accepted, proving Part 1. To prove Part 2, note that

We = e1 · · · es and thatPei
= ei for i = 1, . . . , s. Thus the lemma holds fore.

Consider the case wheree is not a leaf. LetĜe+ be the subgraph ofG0 consisting of accepted

edges together withe, e1, . . . , es. For eachei, recall thatf̂ei
is the face ofĜei

that containsei and

enclosesfei
. We claim thatf̂ei

is also a face of̂Ge+. To prove the claim, note that̂Gei
can be

obtained fromĜe+ by deleting a subset of{e, e1, . . . , es} − {ei}. None of these edges are edges

of T or descendents inT ∗ of ei, so, by Part 1 of the inductive hypothesis, none belongs tof̂ei
.

Note thatĜe can be obtained from̂Ge+ by deleting those edges amonge1, . . . , es that are

rejected. By the claim, each such deletion replaces a rejected edgeei in fe with the walkŴei
.

This together with the definition ofPei
proves Part 2. By Part 1 of the inductive hypothesis, every

edge in eacĥWei
is an edge ofT or a descendent ofei in T and hence a descendent ofe as well.

This proves Part 1.

Lemma 12 In the for-loop iteration that considerse,

• the value assigned toxomit is weight(Ŵe), and
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• the value assigned tox[e] is weight(Pe).

Proof: The proof is by induction. By Lemma 10, the edgese1, . . . , es are considered before

e. By the inductive hypothesis,x[ei] = weight(Pe). By Lemma 11, weight(Ŵe) =
∑s

i=1 x[ei],

which proves the first statement. The second statement follows by definition ofPe.

Corollary 13 For each edgee, weight(Pe) ≤ (1 + ǫ)weight(e).

Proof: If e is accepted,Pe = e so the statement holds trivially. Supposee is rejected. By the

conditional in the algorithm, in the iteration consideringe, the value assigned toxomit was at most

(1 + ǫ)weight(e). By the first part of Lemma 12, weight(Ŵe) and therefore weight(Pe) are at

most(1 + ǫ)weight(e).

Corollary 14 The graph of accepted edges satisfies Property A2.

Proof: For any pair of nodesu andv, letP be the shortestu-to-v path inG0. For each edgee of

P ,there is a walkPe consisting of accepted edges between the endpoints ofe. By Corollary 13,

weight(Pe) ≤ (1 + ǫ)weight(e). Replacing each edgee of P with Pe therefore yields a walk of

weight at most
∑

e∈P (1 + ǫ)weight(e), which is at most(1 + ǫ)weight(P ).

Lemma 15 At any time during the algorithm’s execution, the weight of the infinite face in the

graph consisting of accepted edges is at most

2 · MST (G0) − ǫ · weight(accepted edges not inT )

Proof: The proof is by induction. Before the for-loop commences, the graph of accepted edges

is T , the minimum spanning tree ofG0. Hence the weight of the infinite face is exactly2 ·

MST (G0), so the lemma’s statement holds for this time. Consider a for-loop iteration, and lete

be the edge being considered. Ife is not accepted, there is no change to the set of accepted edges,

so the lemma’s statement continues to hold.

Supposee is accepted. LetGafter be the subgraph consisting of edges accepted so far, and let

Gbefore = Gafter − {e}. Note thatGafter can be obtained from̂Ge by deleting edges that will be

accepted in the future. By the leaves-to-root ordering, none of the deleted edges are descendents

of e in T ∗. By Part 1 of Lemma 11, therefore,̂fe is a face ofGafter. Let g be the other face of

Gafter that containse.

We claim thatg is the infinite face ofGafter. To prove the claim, note thatGafter can be obtained

from G0 by deleting edges that have already been rejected and edges not yet considered. By the
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leaves-to-root ordering,e’s proper ancestors inT ∗ have not yet been considered, so they are

among the edges deleted. These deletions are contractions in the dual. The root ofT ∗ is the

infinite face, so the contractions result ing being the infinite face.

Note thatGbeforecan be obtained fromGafter by deletinge. This deletion replacese in the face

g with Ŵe. This shows that

weight of infinite face inGbefore− weight of infinite face inGafter

= weight(Ŵe) − weight(e)

> (1 + ǫ)weight(e) − weight(e) becausee was accepted

= ǫ · weight(e)

which shows that the lemma’s statement continues to hold.

Corollary 16 The graphG of accepted edges satisfies Property A1.

Proof: By Lemma 15, the weight of the infinite face in the graph consisting of all accepted edges

is at most

2 · MST (G0) − ǫ · weight(accepted edges not inT )

so weight(accepted edges not inT ) ≤ 2ǫ−1 · MST (G0). Since weight(T ) = MST (G0), it

follows that the weight of all accepted edges is at most(1 + 2ǫ−1)MST (G0).

This completes the proof of Theorem 3.

4 Slices

Let G be a connected planar embedded graph and let weight(·) be an edge-weight assignment.

Let k be a parameter. Recall thatG∗ denotes the planar dual ofG. Let f∞ be the infinite face

of G, which is a vertex ofG∗. Define thelevel of a nodev of G∗ to be its breadth-first-search

distance inG∗ from f∞, i.e. the minimum number of edges in anf∞-to-v path inG∗. Define the

level of an edgee to beℓ if one endpoint has levelℓ and the other endpoint has levelℓ + 1.

For j = 0, 1, . . . , k − 1, let Sj denote the set of edgese whose levels are congruent toj mod

k. Let t = minargjweight(Sj), and letS = St. We obtain the following bound.

weight(S) ≤ (1/k) weight(G) (2)

For i = 0, 1, 2, . . . , let Ei be the set of edgese having at least one endpoint with level in the

range(t + (i − 1)k, t + ik]. We defineslice i of G to be the subgraph ofG (the primal graph)
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consisting of the edgesEi. Note that an edge ofG belongs to two distinct slices only if the edge

belongs toS.

The theorem below shows that the total weight of optimal tours in the slices exceeds the

weight of the optimal tour ofG by at most twice the weight ofS.

Theorem 4
∑

i OPT(slicei) ≤ 2 weight(S) + OPT(G).

The next theorem states that the planar dual of each slice hasa low-depth spanning tree.

Theorem 5 For i = 0, 1, 2, . . . , each connected component of the planar dual of slicei has a

rooted spanning tree of depth at mostk + 1.

In the rest of this section, we prove Theorems 4 and 5.

The following lemma is illustrated in Figure 7.

Lemma 17 For i = 1, 2, 3, . . . , the edges of levelt + (i − 1)k form a setAi of simple cycles in

G with the following properties:

1. The cycles are edge-disjoint.

2. Every face is enclosed by at most one of the cycles.

3. A faceu of G is enclosed by one of the cycles iff in the dual graphG∗ the nodeu has level

greater thant + (i − 1)k.

Proof: Let T be a breadth-first-search tree ofG∗ rooted atf∞. For i = 1, 2, . . . , let Ki be

the set of connected components of the subgraph ofG∗ consisting of nodes whose levels exceed

t + (i − 1)k. Let Ai = {ΓG∗(V (K)) : K ∈ Ki}.

Let K be a connected component inKi. For any nodev not inK, if v is notf∞ thenv has a

parentp whose level is one less than that ofv. If p’s level is at mostt + (i − 1)k thenp is not in

K; if p’s level is greater thant + (i− 1)k then so isv’s, so if p were inK thenv would also be in

K, a contradiction. Thusp is not inK. By induction,G∗ contains av-to-f∞ path that avoidsK,

proving that the nodes ofG∗ not inK are connected, soΓG∗(V (K)) is a bond. By Proposition 3,

the edges ofΓG∗(V (K)) form a simple cycleCK in G. The faces enclosed byCK are the nodes

of K.

Consider two componentsK1, K2 ∈ Ki. SinceV (K1) andV (K2) are disjoint, the faces

enclosed byCK1
are disjoint from the faces enclosed byCK2

. Furthermore, forj = 1, 2, an edge

belongs toCKj
if in G∗ the edge connects a node ofKj to a node at levelt + (i − 1)k, which

shows thatCK1
andCK2

are edge-disjoint.
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Figure 7: Cycles inAi andAi+1 are shown. Note that the cycles ofAi+1 are enclosed within

cycles ofAi. In the figure on the bottom, the dual edges corresponding to cycles in Ai are

indicated by thick lines.
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Lemma 18 Let A1, . . . be the set of cycles from Lemma 17. Fori ≥ 1, an edgee of G belongs

to slicei iff e is enclosed by some cycle inAi and not strictly enclosed by any cycle inAi+1. An

edgee belongs to slice 0 iffe is not strictly enclosed by any cycle inA1.

Proof: By definitions of slice and dual, fori ≥ 1, an edgee belongs to slicei iff e belongs

to a facef whose level inG∗ is in (t + (i − 1)k, t + ik]. By Lemma 17, the level off is in

(t + (i − 1)k, t + ik] iff f is enclosed by a cycle inAi and not by a cycle inAi+1. The lemma

follows by the definition of a cycle enclosing an edge. The case of slice 0 is similar.

We say a subgraph isevenif every node has even degree.

Lemma 19 Let R be an Eulerian multi-subgraph ofG, let C be a simple cycle ofG, and letX

be the set of nodes enclosed byC. There is a subset̂C of the edges ofC such that

1. weight(Ĉ) ≤ 1
2
weight(C), and

2. each connected component ofR − ΓG(X) ∪ Ĉ is even.

For a graphG, a nodev, and a setA of edges, we definedegG(v, A) to be the number of

edges inA that inG are incident tov,

Proof: BecauseR is Eulerian,deg(v, R) is even for every nodev, so
∑
{deg(v, R) : v ∈ V (C)}

is even. The closed walk (Eulerian cycle) corresponding toR entersX the same number of times

as it leaves, so|R∩ΓG(X)| is even. It follows that
∑
{deg(v, R−ΓG(X)) : v ∈ V (C)} is even.

Hence the setY = {v ∈ V (C) : deg(v, R − ΓG(X)) is odd} has even cardinality.

Write C = P1 . . . P|Y | where eachPi is a path whose endpoints belong toY and whose

internal nodes do not. Let̂C denote the set of edges inP1, P3, P5, . . . , P|Y |−1 or the set of edges

in P2, P4, P6, . . . , P|Y |, whichever has less weight. This choice ensures Property 1 in the lemma’s

statement. Also, for each vertexv ∈ V (C), deg(v, Ĉ) is odd iff v ∈ Y , which proves Property 2.

Lemma 20 For somei ≥ 1, letW denote the set of nodes on cyclesC ∈ Ai. Two nodes ofW are

connected via a path in slicei iff they are connected via a path consists only of edges belonging

to cyclesC in Ai

Proof: For two nodesx, y ∈ W , let P be thex-to-y path in slicei that uses the fewest edges

not belonging to cyclesC ∈ Ai. Assume for a contradiction thatP contains some edgee that

does not belong to a cycleC ∈ Ai. Let P̂ be the maximal subpath ofP that containse but whose

internal nodes do not belong toW .
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By Lemma 18,e is strictly enclosed by some cycleC ∈ Ai. Since no internal node of̂P

belongs toW , every edge of̂P must be enclosed by the same cycleC. But then the endpoints

of P̂ must belong to that same cycleC. Consequently,̂P can be replaced by a subpath ofC,

contradicting the choice ofP .

Now we can prove Theorems 4 and 5.

Proof of Theorem 4: Let M be the multiset of edges comprising the optimal tour ofG. Then

M is an Eulerian bisubgraph ofG. Let Mi denote the submultiset ofM consisting of edges in

slicei. To prove Theorem 4, we will show that, for each slicei, there is a multisetDi of edges of

slicei such thatMi ∪ Di is an Eulerian multi-subgraph of slicei, i.e.

1. every node of slicei has even degree with respect toMi ∪ Di, and

2. for every connected componentK of slicei, there is a corresponding connected component

of Mi ∪ Di that visits all nodes ofK.

We ensure that
∑

i weight(Di) ≤ 2 weight(S).

We buildDi in three steps. The first two steps address achieving Property 1. By Lemma 18,

slicei consists of the edges enclosed by cycles ofAi and not strictly enclosed by cycles ofAi+1.

If v belongs to no cycle in eitherAi or Ai+1, then every edge ofM incident tov belongs toMi,

sodeg(v, Mi) is already even.

In step one, we address the case of nodesv belonging to cycles inAi. For each cycleC ∈ Ai,

we apply Lemma 19 toM andC, obtaining an edge-subsetĈ ⊆ E(C), and we includêC in Di.

This change affects the degree of a nodev only if v belongs to some cycleC ∈ Ai. Such a node

v has even degree with respect to those edges ofM ∪ Ĉ that are enclosed inC. Summing over

all cyclesC ∈ Ai, the node has even degree with respect to those edges ofM ∪
⋃
{Ĉ : C ∈ Ai}

that belong to slicei.

In step two, we address the case of nodesv belonging to cycles inAi+1. Because the infinite

face of a planar embedded graph can be chosen arbitrarily (and by definition ofenclosed), we can

apply Lemma 19 to each cycleC ∈ Ai+1 and to the setX of nodesnot strictly enclosed byC,

obtaining a set̂C of edges such thatdeg(v, R − ΓG(X) ∪ Ĉ) is even for each nodev of C. We

include each set̂C in Di. As before, this change affects the degree of a nodev only if v belongs

to some cycleC ∈ Ai+1, and ensures that such a nodev has even degree with respect to those

edges ofM ∪
⋃
{Ĉ : C ∈ Ai+1} that belong to slicei.

In step three, we address Property 2. For eachC ∈ Ai, we addE(C) to Di. This does not

change the parity of any node’s degree. Letv1 andv2 be two nodes in slicei. For j = 1, 2,

it follow from Lemma 18 thatvj is enclosed by some cycleCj ∈ Ai. Let w be a node on the
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boundary of the infinite face. LetPj be avj-to-w path using edges ofM , and letP̂j be a maximal

prefix of Pj consisting of edges enclosed byCj. Sincew is not strictly enclosed byCj, P̂j must

end at a nodewj of Cj.

Supposev1 andv2 belong to the same connected componentK of slice i. Thenw1 andw2

also belong toK. By Lemma 20, there is aw1-to-w2 path using only edges of{E(C) : C ∈ Ai},

and hence using only edges ofDi. Combining this path witĥP1 andP̂2, we obtain a path using

only edges ofM ∪ Di that belong to slicei. This proves Property 2.

Finally, we bound
∑

i weight(Di). The cyclesC ∈ Ai consist of edges having levelt+(i−1)k,

so
∑

i

∑
{weight(C) : C ∈ Ai} = weight(S)

The weight added to
⋃

Di in each of steps one and two is at most
∑

i
1
2

∑
{weight(C) : C ∈ Ai}.

The weight added in step three is
∑

i

∑
{weight(C) : C ∈ Ai}. The total is at most2 weight(S).

This completes the proof of Theorem 4.

Proof of Theorem 5: Let K be a connected component of slicei wherei ≥ 1. By Lemmas 18,

slice i can be obtained fromG by (i) deleting edges properly enclosed by cycles ofAi+1 and

(ii) deleting edges not enclosed by cycles ofAi. For each cycleC ∈ Ai+1, deleting the edges

properly enclosed byC merges the faces enclosed byC into a single face. LetD be the set

of edges not enclosed by cycles ofAi. Deleting the edges inD corresponds in the planar dual

G∗ to compressing edges both of whose endpoints have levels at most t + (i − 1)k. Let T be

the breadth-first-search tree ofG∗, and consider the effect of these operations onT . Recall that

compressing a non-self-loop edge is equivalent to contracting. First, in the planar dual, compress

all the edges ofT that are inD. Because these edges form a subtree ofT , none is a self-loop, so

these compressions are contractions. For each (dual) nodev having level at mostt + (i − 1)k,

there is a path inT consisting of edges ofD from v to the root, so the contractions merge all

these nodes into a single noder̂. Let T̂ be the set of edges ofT that remain.

Each face of slicei that was a face ofG had distance at mostt + ik from the root inT , and

hence has distance at most(t + ik)− (t + (i− 1)k) from the root̂r in T̂ . Each face arising from

deleting edges properly enclosed by cycles ofAi+1 is adjacent in the dual to some node that had

been at levelt + ik, and hence has distance at mostk + 1 from r̂.

Each of the remaining edges ofD is now a self-loop with common endpointr̂. Compressing

these edges in the dual might in general splitr̂ into multiple nodes corresponding to multiple

connected components in the primal graph. However, each connected component retains its own

low-depth spanning tree. This completes the proof of Theorem 5.
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5 TSP algorithm

Now we describe the TSP algorithm.

Let G0 be the input planar embedded graph, and let weight(·) be the input edge-weight as-

signment.

Step 1 (Spanner Step): Let ǫ0 be the desired accuracy. Defineǫ = ǫ0/2. Obtain a subgraphG

of G0 that has Properties S1 and S2 of Section 1.3.

Step 2 (Slicing Step): Use breadth-first search in the planar dual to find the slices as described

in Section 4, withk = 2ǫ−1ρǫ, whereρǫ is the multiplier in Property S1. For each slice, for each

connected component of that slice, the planar dual has a spanning tree of depth at mostk + 1.

Step 3 (Dynamic programming): For each slice, for each connected component of that slice,

find a minimum-weight Eulerian multi-subgraph of that component

Step 4: Combine the multi-subgraphs to obtain an Eulerian multi-subgraph ofG, then turn it

into a tour ofG.

5.1 Running time

Let n be the number of nodes in the input graphG0. AssumeG0 has no parallel edges, so it has

O(n) edges. For unit-weight graphs, Step 1 is trivial:G = G0 andρǫ is a constant. For arbitrary

weights, Theorem 3 gives anO(n) algorithm achievingρǫ = 1 + 2ǫ−1. Steps 2 and 4 takeO(n)

time.

As for Step 3, Cook and Seymour observe [15] that TSP can be solved in a graph of bounded

branchwidth. In Section 7, we state a theorem, due to Tamaki [45], that shows that each slice has

branch-width at most2k + 3.

Because Cook and Seymour do not formally describe or analyzetheir dynamic program, in

Section 6 we describe a dynamic program that can be used in Step 3. This dynamic program

exploits planarity to get a running time ofO(ckn′) for a graph of sizen′ (wherec is a constant).

Summing over all connected components of all slices, the running time for Step 3 isO(ckn). The

choice ofk yields a running time ofO(d1/ǫn) for unit-weight graphs andO(d1/ǫ2n) for arbitrary

weights, whered is a constant.
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5.2 Correctness

Theorem 6 The algorithm finds a tour of weight at most(1 + ǫ0)OPT(G0).

Proof: The tours found in Step 3 are connected and jointly visit all nodes, so their union is

connected and spans all nodes. Every nodev has even degree with respect to every tour that

contains it, sov has even degree with respect to the multiset union of these tours. Thus the

multiset union is Eulerian. The Eulerian characterization(Proposition 8) implies that the union

can be transformed into a tour.

The weight of the tour is
∑

i OPT(slicei), which by Theorem 4 is at most OPT(G)+2 weight(S).

To complete the proof of Theorem 6, we bound these two terms. Property S2 states that OPT(G) ≤

(1 + ǫ)OPT(G0). Observe that

2 weight(S) ≤ (2/k) weight(G) by (2)

≤ ǫρ−1
ǫ weight(G) by choice ofk

≤ ǫ · OPT(G0) by Property S1

Sinceǫ0 = 2ǫ, this completes the proof of Theorem 6.

6 Solving TSP in a planar embedded graph with bounded dual

radius

In this section we describe an algorithm that, given an edge-weighted planar embedded graphH,

a low-depth spanning tree ofH∗, and a setR of nodes, finds an minimum-weight walkW such

thatR ⊆ V (W ). To find an optimal tour,R is set toV (H). Rather than describe the algorithm for

this special case, we describe the algorithm for the more general case because doing so requires

very little change.

Theorem 7 There is an algorithm that, given a planar embedded graphH without parallel

edges, an edge-weight assignment forH, a subsetR of nodes ofH, and a spanning treeT ∗

of H∗ in which every simple path has length at mostℓ, finds a minimum-weight connected even

multi-subgraph ofH that visits all nodes inR. The algorithm takes timeO(cℓ|V (H)|) for some

constantc.

First we show how to reduce the problem to the case in which thedegree of the input graph

is bounded by three. Then we show how to solve this case using dynamic programming.
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6.1 Reduction to degree three

Lemma 21 LetH be a graph, letW be an even connected multi-subgraph ofH, and lete be an

edge ofH. ThenW − {e} is an even connected multi-subgraph ofH/{e}.

Proof: Since the edges ofW are connected inH, the edges ofW −{e} are connected inH/{e}.

For every nodev that is not an endpoint ofe in H, the degree ofv in H/{e} with respect to

W − {e} equals the degree ofv in H with respect toW . Let u1 andu2 be the endpoints ofe

in H. These nodes are coalesced inH/{e} to form a single node whose degree with respect to

W − {e} is

2∑

i=1

(degH(ui, W ) − |W ∩ {e}|) = degH(u1, W ) + degH(u2, W ) − 2|W ∩ {e}|

Since each of the terms on the right-hand side is even, the sumis even.

Lemma 22 Let H be a graph, lete be an edge ofH, and letW be an even connected multi-

subgraph ofH/{e}. Then one ofW , W∪{e}, W∪{e}∪{e} is an even connected multi-subgraph

of H.

Proof: Trivial if e is a self-loop. Otherwise, letu1 andu2 be the endpoints ofe in H. These nodes

are coalesced inH/{e} to form a nodev. SincedegH/{e}(v, W ) is even,
∑2

i=1 degH(ui, W ) is

even.

Case 1:degH(u1, W ) is odd. ThendegH(u2, W ) is also odd, and there are edges inW

incident tou1. HencedegH(ui, W ∪ {e}) is even fori = 1 and 2, andW ∪ {e} is connected.

Case 2: degH(u1, W ) is even but at least one edge ofW is incident tou1 or u2. Then

degH(u2, W ) is also even, sodegH(ui, W ∪{e}∪{e}) is even fori = 1 and 2, andW ∪{e}∪{e}

is connected.

Case 3: No edge ofW is incident tou1 or u2. Then inH/{e} no path inW passes throughv,

so the fact thatW is connected inH/{e} implies thatW is connected inH. ClearlydegH(ui, W )

is even fori = 1 and 2.

Now we give the reduction to the degree-three case.

Step 1: Triangulate the faces ofH∗ by adding zero-weight artificial edges until every face has

size at most three. LetA be the set of artificial edges added. LetĤ∗ be the resulting planar

embedded graph.

Step 2: H can be obtained from̂H by contracting the artificial edges, which merges some nodes.

Let R̂ =
⋃

v∈R{nodes ofĤ merged to formv}.
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Step 3: Let W be a minimum-weight connected even multi-subgraph ofĤ that visits all nodes of

R̂.

Step 4: ReturnW − A.

Lemma 23 W − A is a minimum-weight even multi-subgraph visiting all nodesof R.

Proof: By repeated application of Lemma 22, using the fact that the artificial edges have zero

weight. we infer OPT(Ĥ) ≤ OPT(H). Therefore weight(W ) ≤ OPT(H). By repeated applica-

tion of Lemma 21, we infer thatW − A is an even connected multi-subgraph ofH that visits all

nodes ofR.

6.2 Overview of dynamic program

Now we describe how to find an optimal tour ofĤ visiting all nodes ofR̂. The graphH∗ has a

rooted spanning treeT ∗ in which every simple path has at mostℓ edges, and̂H∗ is obtained from

H∗ by adding edges, soT ∗ is also a spanning tree of̂H. Because every face of̂H∗ is a triangle,

Ĥ has degree at most three. LetT̂ be the set of edges of̂H not inT ∗. ThenT̂ is a spanning tree

of Ĥ and hence has degree at most three. RootT̂ at a noder of degree 1 inT̂ . The dynamic

program will work upT̂ from the leaves to the root. For each edge ofT̂ , the dynamic program

will construct a table. The value of OPT(Ĥ) will be be computed from the table associated with

the edge connecting the root to its child. Once the value of OPT(Ĥ) is known, the tour itself

can be constructed in a post-processing phase by working down from the root to the leaves. (The

post-processing is straightforward, and we do not describeit here.)

6.3 Terminology

Before giving a detailed description of the tables, we need to introduce some terminology.

Traversals Let ΓĤ(S) be a cut. We say a nonempty, dart-disjoint setP of walks in Ĥ is a

traversal ofS in Ĥ if

• the start node and end node of each path are not inS,

• the internal nodes of each path are inS.

It follows that the first and last darts of each path belong toΓĤ(S)., i.e. that each is a dart of

some edge inΓĤ(S).
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Define

weight(P) =
∑

{weight(d) : d ∈ P, d not a dart ofΓĤ(S)}

+
1

2

∑
{weight(d) : d ∈ P, d a dart ofΓĤ(S)}

Configurations A configurationK of a cutΓĤ(S) is a nonempty set of ordered pairs〈, di, dj〉

of darts ofΓĤ(S) such that the head ofdi and the tail ofdj belong toS, and such that each dart

of ΓĤ(S) occurs at most once in each position. The number of configurations is at most(2η)!,

whereη = |ΓĤ(S)|.

If S is connected inĤ then the embedding determines a cyclic ordering of the edgesof

ΓĤ(S), say(e1 · · · eη). In this case, we say that a configuration iscrossingif it includes a dart

pair corresponding to the pair〈ep, eq〉 of edges and also a dart pair corresponding to the pair

〈er, es〉 of edges, wherep < r < q < s. A Catalan bound shows that the number of noncrossing

configurations is2O(η). This is where planarity is used in the dynamic program.10

For a configurationK, define weight(K) to be the sum of the weights of the darts inK.11

Let C1, . . . , Cd be cuts in a graph, and letK1, . . . , Kd be corresponding configurations. A

subtour is a sequenced0, . . . , db−1 such that, forj = 0, . . . , b − 1, the pair〈dj, d(j+1) mod b〉

belongs to some configuration. We sayK1, . . . , Kd areconsistentif for each pairCi, Cj of cuts,

each dart represented in bothCi andCj occurs in bothKi andKj or occurs in neither, and if

there is no subtour.

Define

κ(P) = {〈first dart ofP, last dart ofP 〉 : P ∈ P}

6.4 Definition of the tables

In this subsection we describe the tables produced by the dynamic program. For each edgee of

T̂ , let ve denote the child endpoint ofe, and letDe denote the descendents ofve. By Lemma 4,

the edges comprisingΓĤ(De) are exactly the edges comprising the elementary cycle ofe in Ĥ∗

with respect toT ∗. We denote this cycle byCe. (See Figure 8.) That elementary cycle consists

of e together with a simple path inT ∗ between the endpoints ofe. The cycle therefore contains

at mostℓ + 1 edges. This shows|ΓĤ(De)| ≤ ℓ + 1.

10For a discussion of Catalan numbers, see any text on combinatorics, e.g. [43]. Noncrossing configurations and

a Catalan bound were used in a dynamic program for TSP by Aroraet al. [5]. Concurrent with the appearance of a

preliminary version of this paper, Dorn et al. [20] published an extended abstract discussing planar-graph algorithms

that also exploited Catalan-type bounds and noncrossing matchings.
11The weight of a dart is the weight of the corresponding edge.
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e1 2e
ve

e

v

Figure 8: A subgraph arising in the dynamic program. The edgee, the child nodeve, and the child

edgese1 ande2 are labeled. The dark edges are tree edges. On the right is thesame subgraph

with some edges of the dual graph also shown. Note that the edges ofΓ({descendents ofve})

form an elementary cycle in the dual, as do the edges ofΓ({descendents ofe1}) and the edges of

Γ({descendents ofe2}).

For a cutΓĤ(S) of Ĥ whereS is connected in̂H, for a configurationK of ΓĤ(S), define

MS(K) = min{weight(P) : κ(P) = K,

P is a traversal ofS, and

S ∩ R̂ ⊆ V (P)}

We show in Corollary 27 that, for each edgee of T , the dynamic program will construct a table

TABe, indexed by the noncrossing configurationsK of ΓĤ(De), such that TABe[K] = MDe
(K).

For the root edgêe of T (the edge ofT incident tor), each edge ofΓĤ(Dê) is incident to the

rootr. It follows that every traversal ofDê defines a tour of̂H using each dart at most once, and

vice versa. By Proposition 7, there is an optimal tour that isnoncrossing. Hence

OPT(Ĥ)

= min{Mê(K) +
1

2
weight(K) : K a configuration ofCê}

because only half the weight of each edge ofK is counted inMê(K). Sincer has degree at most

three,Cê hasO(1) configurations. Thus OPT(Ĥ) can be computed inO(1) time from the table

TAB ê.
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6.5 The recurrence relation

Let e be an edge of the treêT , and lete1, . . . , es be its child edges (s ≤ 2). Let D0 = {ve}. For

i = 1, . . . , s, let Di = Dei
. Note thatDe is the disjoint union

⋃s
i=0 Di. For i = 0, 1, . . . , s, let Ci

denoteΓĤ(Di).

A traversalP of De inducesa traversalPi of Di for i = 0, 1 . . . , s as follows: for each path

P ∈ P, breakP into subpaths at the nodes ofP that are not inDi, and retain only those dartsd

such that at least one endpoint ofd is in Di. The remaining subpaths form a traversal ofDi. The

following lemma is immediate.

Lemma 24 LetP be a traversal ofDe, and letP0, . . . ,Ps be the traversals thatP induces for

D0, . . . , Ds. Then

weight(P) =
s∑

i=0

weight(Pi)

andκ(P), κ(P0), κ(P1), . . . , κ(Ps) are consistent.

Lemma 25 For traversalsP0, . . . ,Ps of D0, . . . , Ds, if K is a configuration ofCe such that

K, κ(P0), . . . , κ(Ps) are consistent then there is a traversalP of Ce that inducesP0, . . . ,Ps

such thatκ(P) = K.

Proof: By gluing together paths from differentPi’s that have a common dart, one constructs

paths whose start and end darts are inΓ(De). The consistency condition ensures that the glueing

can be completed, and that the start and end darts are represented inK.

Corollary 26 For any configurationK of Ce,

MDe
(K) = min{

s∑

i=0

MDi
(Ki) : K, K0, . . . , Ks are consistent}

Proof: To show that the left-hand side is at most the right-hand side, fix consistent configurations

K, K0, . . . , Ks. For i = 0, . . . , let Pi be the traversal achieving the minimum in the definition of

MDi
(Ki). (If there is no such traversal, the right-hand side is infinity.) By Lemma 25, there is a

traversalP of De that inducesP0, . . . , Ps. It follows thatDe ∩ R̂ ⊆ V (P).

By the first part of Lemma 24, weight(P) =
∑s

i=0 weight(Pi), soMDe
(K) ≤

∑s
i=0 MDi

(Ki).

To show that the right-hand side is at most the left-hand side, letK be a configuration such that

MDe
(K) is finite, and letP be the traversal achieving the minimum in the definition ofMDe

(K).

Let P0, . . . ,Ps be the traversals thatP induces forD0, . . . , Ds. It follows from Lemma 24 that

the right-hand side is at most weight(P).
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6.6 The dynamic program

We now give a recursive algorithm TSP-DP(e) that for each edgee of T populates the table

TABe.
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define TSP-DP(e):

1 lete1, . . . , es be the child edges ofe (s ≤ 2)

2 for i = 1, . . . , s,

3 recursively call TSP-DP(ei).

4 initialize each entry of TABe to ∞.

5 for each consistent tuple(K, K0, K1, . . . , Ks)

of configurations ofΓ(De), Γ({ve}), Γ(De1
), . . . , Γ(Des

)

6 TABe[K] := min{TABe[K] ,

M{ve}(K0) +
∑k

i=1 TABei
[Ki]}

Note that in Step 6,M{ve}(K0) can be computed directly inO(1) time. The correctness of

the algorithm follows from Corollary 26 by induction.

Corollary 27 (Correctness ofTSP-DP) For each edgee of T , for each noncrossing configura-

tion K of Ce, TABe[K] = MDe
(K).

6.7 Analysis of the dynamic program

In Step 5, each of the cutsΓ(De1
), . . . , Γ(Des

) has size at mostℓ+1, so hasO(cℓ) configurations

for a constantc. The cutΓ({ve}) has size at most three, ands ≤ 2, so the number of tuples in

Step 5 isO(dℓ) for a constantd. Thus each invocation of TSP-DP requiresO(dℓ) time. The

number of invocations is|V (Ĥ)| − 1, so the entire dynamic program takes timeO(dℓ|V (Ĥ)|).

Combined with the reduction of Subsection 6.1, this completes the proof of Theorem 7.

7 Achieving low branch-width by contracting edges

Branch-width is a graph measure akin to (and within a constant factor of) tree-width. (We will

review the definition presently.) Many computational graphproblems that are NP-hard for gen-

eral graphs can be solved for graphs with bounded branch-width. The approach used for TSP

in this paper can be used for other problems as well. The purpose of this section is to present a

result that facilitates broader application of the approach:

Theorem 8 There is a linear-time algorithm that, for any planar graphG and integerk, finds

a decompositionS0, . . . , Sk−1 of the edges ofG such that, fori = 0, 1, 2, . . . , k − 1, the graph

obtained fromG by contracting the edges ofSi has branch-width at most2(k + 2).
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The analogous theorem with contraction replaced by deletion was implicit in the work of

Baker [6] and made explicit by Demaine, Hajiaghayi, and Karabayashi [18], who proved a ver-

sion forH-minor free graphs.

An easy but useful consequence of Theorem 8 is as follows.

Corollary 28 There is a linear-time algorithm, that, for any planar graphG, edge-weight as-

signment weight(·), and integerk, finds a setS of edges of weight at most(1/k)weight(G) whose

contraction yields a graph of branch-width at most2(k + 2).

Before proving Theorem 8, we review the definition of branch-width given by Seymour and

Thomas. For a graphG and a setX of edges,∂(X) denotes the set of nodesv of G such that at

least one edge incident tov is in X and at least one is not. Two setscrossif neither contains the

other and they are not disjoint.

For a finite setX , acarvingof X is a familyC of subsets ofX such that

1. ∅,X 6∈ C,

2. no two members ofC cross, and

3. C is maximal subject to 1 and 2.

Let G be a graph. LetC be a carving ofE(G). The branch-width ofC in G is maxX∈C |∂(X)|.

Thebranch-widthof G is the minimum, over all carvingsC of E(G), of the width ofC.

The following lemma is implicit in Baker’s approach [6], andthe idea has been used several

times since then (e.g. [9, 22, 26])

Lemma 29 (Thinning Algorithm) There is a linear-time algorithm that, for any planar embed-

ded graphG and integerk, finds a decomposition of the edges into subsetsS0, . . . , Sk−1 such that,

for i = 0, 1, 2, . . . , k − 1, there is a planar embedded graphHi with the following properties:

1. Hi has the same edges asG.

2. Each connected component ofHi has a spanning tree of depth at mostk.

3. Hi − Si = G − Si.

Proof: Assume without loss of generality thatG is connected. For some noder,define thelevel

of a nodev of G to be its breadth-first-search distance fromr, i.e. the minimum number of edges

in anr-to-v path inG. Define thelevelof an edgee to bei if one endpoint has distancei from r

and the other endpoint has distancei + 1.
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For i = 0, 1, . . . , k − 1, let Si denote the set of edgese whose levels are congruent toi mod

k.

For i = 0, 1, . . . , k − 1 and forj = 0, 1, 2, . . ., let H
(j)
i be the graph obtained fromG by

deleting all nodes at distances greater thanjk + i, and contracting every edgee of the breadth-

first-search treeT whose level is less than(j − 1)k + i. The contractions coalesce into a single

root all nodes at distances less than or equal to(j − 1)k + i. (Forj = 0, there is already a single

root, namelyr.) Since every node ofG that remains inH(j)
i had distance at mostjk + i in G,

it follows that (A) in H
(j)
i every node has distance at mostk from the root. Moreover, (B) the

graphH
(j)
i − {edges at level(j − 1)k + i in G} is exactly the subgraph ofG induced by nodes

with levels in((j − 1)k + i, jk + i].

Let Hi be the disjoint union ofH(0)
i , H

(1)
i , H

(2)
i , . . .. Property 2 follows from A. Property 3

follows from B. Property 1 follows from Property 3 and the definition of Si.

We first give a technical lemma, then we state a result of Tamaki [45], and then prove Theo-

rem 8.

Lemma 30 LetG be a planar embedded graph and lete be a self-loop inG. Every biconnected

component ofG except{e} is a biconnected component ofG/{e}.

Proof: Let v be the common endpoint ofe. Any path inG that containse must pass throughe,

so the only simple cycle inG that containse is the cycle consisting solely ofe. Any path inG

from an edge enclosed bye to an edge not enclosed bye must pass throughv. Hence a simple

cycleC in G cannot include both an edge strictly enclosed bye and an edge not enclosed bye.

Assume without loss of generality thatC consists only of edges strictly enclosed bye. Any two

such edges incident to a common node inG are also incident to a common node inG/{e}, which

proves thatC is a simple cycle inG/{e}.

For a planar embedded graphG, Tamaki [45] definedV F (G) to be the node-face incidence

graph, i.e. the planar embedded bipartite graph whose node set is the union of the node set ofG

and the face set ofG, and where there is an edge between a node and a face if the nodeis on the

boundary of the face. Tamaki proved the following theorem.

Theorem 9 (Tamaki) There is a linear-time algorithm that, given a planar embedded graphG

and a rooted spanning treeT of V F (G), outputs a branch-decomposition ofG whose width is at

most the height ofT .
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Proof of Theorem 8: Apply Lemma 29 toG∗ to find a decomposition of the edges into subsets

L0, . . . , Lk−1 such that, for eachi, there is a planar embedded graphH∗
i such thatH∗

i − Li =

G∗ −Li and each connected component ofH∗
i has a spanning tree of depth at mostk. The nodes

of H∗
i are faces ofHi, soV F (Hi) has a spanning tree of depth at most2k + 1. By Tamaki’s

result, therefore,Hi has branch-width at most2k + 1. It is known [41] that contraction does not

increase branch-width. HenceHi/Li has branch-width at most2k+1. SinceH∗
i −Li = G∗−Li,

we haveHi/Li = G/Li, so we have shown thatG/Li has branch-width at most2k + 1.

Consider the process of obtainingG/Li by compressing the edges ofLi one by one in an order

that postpones compressing self-loops until only self-loops remain to be compressed. (Recall that

a self-loop corresponds in the dual to cut-edges, so this corresponds in the dual to first deleting

only non-cut-edges.)

Let Si be the set of edgese of Li such thate was not a self-loop when it was compressed,

and letL′
i be the remaining edges ofLi. ThenG/Si is obtained fromG by contractingthe edges

of Si, andG/Li is obtained fromG/Si by compressing the edges ofL′
i. By Lemma 30, every

biconnected component ofG/Si is a biconnected component ofG/Li. Since the branch-width of

a graph is at most 1 more than the maximum of the branch-widthsof its biconnected components

(assuming at least one such component has more than one edge), it follows that that branch-width

of G/Si is at most one plus the branch-width ofG/Li.
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