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Abstract

We give an algorithm requiring(c!/<*n) time to find ane-optimal traveling salesman
tour in the shortest-path metric defined by an undirectedgplgraph with nonnegative edge-
lengths. For the case of all lengths equal to 1, the time redLiSO(cl/En).

1 Introduction

The traveling salesman problem is often the first problerearehers use to test a new optimiza-
tion technique [32]. In a metric spacetaur is a cycle(vg vo ... v,_1) of the points of the
metric space, and the weight of the tour is the surh, dist(v;, v(i+1) mod n), Where distu, v)
is the distance betweenandv. The goal is to find the minimum-weight tour. The problem is
MAXSNP-hard [36, 37] in arbitrary metric spaces, and the beproximation ratio known, that
proved by Christofides[14], is 1.5. For the shortest-pathrimef an unweighted planar graph
(one in which every edge has weight one), Grigni, Koutsoajad Papadimitriou [23] gave an
algorithm that requires®"/¢ to find al + e-optimal tour. Thus for fixed, the algorithm runs
in polynomial time. Such a family of polynomial-time algitmms is called arapproximation
scheme

Arora, Grigni, Karger, Klein, and Woloszyn [5] subsequgigidve a polynomial-time approx-
imation scheme for the more general problem in which theglgnaph’s edges have arbitrary

*A preliminary version was published iRroceedings of the IEEE Symposium on Foundations of Compute
Sciencd2005), pp. 647—-656.



nonnegative weights. Their algorithm requiré$c ) time. Both algorithms are somewhat com-
plicated, and involve a recursive decomposition using niamngr-separator lemmata. The latter
paper introduced the idea of usingpanneresult to handle edge-weights.

Arora [3] and Mitchell [34] had shown that a PTAS exists karclidean TSHi.e., the subcase
in which the points lie ifk? and distance is measured using the Euclidean metric). TIASP
finds ane-optimal tour inn°(/9 time. Arora [4, 2] improved the running time of his algorithm
to O(n - (logn)©(/9), using randomization. Finally, Rao and Smith [38] gave a 8Tér the
two-dimensional Euclidean case that takes tioie=°)n +nlogn). (Their algorithm also used
a spanner result.) The latter two approximation schemesaageto beefficientpolynomial-time
approximation schemes (EPTAS) because the time can be bdunda function ok times a
polynomial function ofn. Thus for an EPTAS, the degree of the polynomial does not gvittv
1/e.

In view of the fact that am-optimal tour can be found in the Euclidean case in time that i
polynomial with a fixed degree, independentpit seems natural to ask whether the same holds
true for the planar case. In this paper, we answer this quresti

Theorem 1 There is an algorithm that, for any> 0 and any planar grapltz with nonnegative
edge-weights, findsa+ e-optimal tour. The running time i@(c1/€2n) wherec is a constant. For
the special case where all weights are 1, a similar algoriteguiresO(c/<n) time.

Marx [33] subsequently showed that the running time for thie-weight case is essentially opti-
mal under a widely held complexity assumption.

1.1 Other related work

In a seminal paper, Baker [6] gives a method for obtaining $3#or a variety of optimization
problems in planar graphs, e.g. maximum-weight indepeinsisrand minimum-weight vertex
cover. The resulting algorithms are linear time (for fix¢dThe key idea (interpreted in modern
parlance) is to turn a problem in a planar graph to a probleangraph with bounded treewidth.
Grigni and Sissokho ([24], building on [25]) have given a sjpalynomial approximation
scheme for weighted TSP in minor-excluded graphs. Thispppeved a spanner result for
minor-excluded graphs. Berger, Czumaj, Grigni, and Zh@} Quilding on [16]) give a PTAS
for the problem of finding a minimum-weight 2-edge-conndcspanning multi-subgraprof
an edge-weighted planar graph, and a quasipolynomial gppation scheme for finding a

1Duplicate edges of the input graph are allowed in the salutio



minimum-weight 2-edge-connected or biconnected sparsibgraphof an edge-weighted pla-
nar graph. This paper introduced a new spanner construction

Demaine and Hajiaghayi [17] describe a framework for PTAfB is based on the notion of
bidimensionality They derive approximation schemes for subclasses of rexduded graphs
that involve turning the input graph into a low-treewidtlagh. Their results apply to graphs that
are not planar. Their framework can be viewed as a way to gépeBaker’s approach so as to
derive algorithms for nonlocal problems, such as feedbactex set and connected dominating
set. For planar graphs in particular, they derive EPTASsé&weral unit-weight problems. In
relation to their framework, our result is an example of have @an more thoroughly exploit
planarity to derive a fast and simple EPTAS.

For a positive numbes, an s-spanner of a grapty is a subgraph of7 that approximately
preserves the node-to-node distanceé&;pffor any pairu, v of nodes of(z, the distance in the
subgraph must be at mostimes the distance i@. There is a vast literature on spanner construc-
tions. In this paper, we require a construction fof e-spanners of planar graphs. Henceforth,
for brevity we use the terrspannerand omit mention of the parameter- e.

1.2 The approach

The TSP approximation scheme consists of the followingsstep

Spanner step: Delete some edges of the input graph while approximatelsgoung the optimal
value3

Slicing step Using breadth-first search in the planar dual together wathiing argument, iden-
tify subgraphs (calledliceg. The weight of edges belonging to more than one slice is at
most1/k times the weight of the graph, and each connected compoheatb slice has a
spanning tree of depth at most- 1, wherek is a parameter.

Dynamic-programming step: Use dynamic programming to find an optimal solution in each
connected component of each slice.

Combining step: The union of the tours found in the previous step comprisesua for the
original graph.

The time required by the dynamic-programming step is expoaldn k. We show that there is a
choice ofk that depends only onfor which the resulting tour is nearly optimal.

°No duplicates are allowed.
3This was the also the first step in [5] and subsequently in, 4] and one of the algorithms of [7].



In the preliminary version of this paper [30], a slightlyfdifent algorithm was described. In
the second step, a procedure call@dningwas applied to the planar dual of the graph. Thinning
involves deleting edges; thinning the planar dual corredpdocontractingedges in the primal.
Thinning in either the primal or the dual results in a grapthvemall branch-width. The method
of thinning in the dual graph is novel, though quite simplee®ice way to formulate the result
is as follows:

For any positive integek, there is a partition of the edges of a planar graph into
sets such that contracting the edges in any one of the séts gigraph with bounded
treewidth (where the bound dependsign

This formulation of the result is due to Demaine, Hajiaghayid Mohar [19], who learned of
this result from the preliminary version of this paper andsegquently generalized the result to
apply to graphs of any bounded genus.

Because of the potential applicability of the planar reanli of its role in subsequent devel-
opments, we provide a proof in Section 7

The approach used in this version of the paper to formulad 8P approximation scheme,
which we callslicing, emerged from joint work with Borradaile and Mathieu [10].1TThis
formulation does not require the algorithm to perform angtcactions, which leads to a simpler
algorithm.

The general approach used for TSP has proved useful in aaapproximation schemes
for other problems in planar graphs, including minimum-gteitwo-edge-connected spanning
multi-subgrapH, TSP on a subset of the nodes [31], minimum-weight two-edgeected span-
ning subgraph [8], and Steiner tree [10]. As mentioned apthwe basic technique has been
generalized [19] to apply to bounded-genus graphs, givsgto new approximation schemes
for such graphs.

1.3 Spanner step

The spanner step requires an algorithm that, givermade planar graply, with edge-weights
and given a parametey deletes edges so as to obtain a graépsuch that

S1: weightG) < p. - OPT(Gy)

S2: OPT(G) < (14 ¢)OPT(Gy), and

where OPTG) is the value of the optimum for input gragh, and weightG) is the sum of
weights of edges il

4An O(c'/n) algorithm for this problem can be obtained from the TSP algor by modifying the dynamic
program.



We refer to the first step aspanner stegpecause of the connection tespanners. Ars-
spannerof a graphG) is a subgrapli- of Gy with the same set of nodes, such that, for any pair
u, v of nodes, the:-to-v distance ini7 is at mosts times theu-to-v distance inz,. As discussed
in Lemma 9, to achieve Property S2 in the case of TSP, it ssftitcatG be al + e-spanner of
Gy. In Section 3, we discuss a spanner construction that alse\ass Property S1.

An n-node planar graphy, with no parallel edges or self-loops has at mostedges. For
unit-weight edges, ORT) is at leastr, so weightG,) < p.OPT(Gy) holds forp.=3. In this
sense, a trivial spanner result suffices for the unit-wesgise.

We remark that Properties S1 and S2 can be considered foniaption problems other than
TSP, and indeed for problems where a traditiongpanner would not suffice. We propose use of
the termspanner resulto refer more generally to a construction achieving Prope®1 and S2.
We have obtained such constructions for two other problemsanar graphs, leading to approx-
imation schemes for these problems. The first problem [3&]generalization of the problem
studied here; the tour must visit a specified subset of noldiae anput graph (not necessarily all
the nodes). The second problem [10] is Steiner tree, in whinehseeks a minimum-weight tree
spanning a specified subset of nodes.

2 Preliminaries

In this section, we describe the basic definitions and resuitplanar embeddings and planar
duals. Most of the material is standard in concept, but thatimm may be unfamiliar, and we
also introduce a variant of contraction that we @a@impressionand state some related results.
In Subsection 2.5, we give some definitions and results tatus reformulate the TSP.

For a rooted tred” and a node that is not the root of’, theparent edgef v is the edge of
T that connects to its parent.

2.1 Combinatorial embeddings

The traditional geometric definition of planar embeddingslves drawings of a graph on the
plane. Proofs and algorithms become simpler when one usa$esinative definition of embed-
ded planar graphs, a combinatorial definition. See [35].

The idea of a combinatorial embedding was implicitin thekairHeffter [27]. Edmonds [21]
first made the idea explicit, and Youngs [46] formalized ttheai. A combinatorial embedding
is sometimes called @tation systemThe idea is to represent at each node the arrangement of
edges around that node, as illustrated in Figure 1.
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Figure 1: The first figure shows an undirected planar grapheeliohdd in the plane, with its
edges labeled. Thetation corresponding to the top-left node is the permutation cyclge),
indicating that the edges b, ande are incident to that node, and are arranged countercloekwis
around that node in the order b, e. Similarly, the rotation in the middle node (s f g h).The
second figure shows the same undirected graph but with chestisaid of edges. There are two
oppositely directed darts for each (undirected) edge. Hnes dorresponding to edgere (e, 1)

and (e, —1). The rotation corresponding to a node consists of the daaispoint away from
the node. Thus the rotation corresponding to the top-lefienis ((a, 1) (b, —1) (e, —1)). The
rotation corresponding to the middle nod€ s, 1) (f, 1) (g, 1) (h,1)).

»



However, it is convenient to represent at each node not jhgthwedges are incident to the
node and in what order, but more specifically which ends ottwkdges are incident to the node.
For example, ik is a self-loop (an edge whose endpoints are the same), tlee®dguld appear
twice in the arrangement of incident edges, and it is helfgfdde able to distinguish these two
occurrences. We will refer to the ends of an edge addtts as we explain next.

For any given finite seE, we can interprefy as a set of edges, and we defifiex {41}
to be the corresponding set d&rts For each edge, the darts ok, namely(e, 1) and (e, —1),
represent the two opposite orientationsecof The edge ofe, i) is e. We define rey) (revis
short forreversé to be the function that takes each dart to the corresporahingn the opposite
direction: re\{e, i)) = (e, —1).

We define an embedded graph Brio be a pailG = (7, E) wherer is a permutation of the
darts of £. The permutation cycles af are called th@odesof . Note that nodes are defined in
terms of edges, rather than the other way round. This deimfrecludes isolated nodes. Each
nodew is a permutation cycléd; d, ... dy).

For a graphz, we useV (G), E(G), andD(G) to denote the node-set, the edge-set, and the
dart-set ofG. We use the same notation for subgraphé& of

For a dartd of GG, we define the tail ofl in GG, denoted taj}(d), to be the permutation cycle
of = containingd. (We may omit the subscript when doing so creates no ampigyie define
head;(d) = tailg(rev(d)). The tail and head of a dadtare called theendpointsof d, and also
the endpoints of the edge af

A walkof darts inGG is a sequencé, . . . d;, of darts such that, far= 2, ..., k, head;(d;,_,) =
tail(d;).> The start of the walk is tail;(d;) and theendis head;(dy,). It is aclosedwalk if in
addition head(d;) = tailg(d;). It is a simple path/cycle (cycle if closed, path if not) if no
node occurs twice as the head of a dart. The walk, path, oeg¢ydaid to contain an edge
if it contains a dart ok. It is said to contain a node if v is the head or tail of some dart in
the sequence. We define (€y...d;) = rev(dy) ...rev(d;). A walk/path whose start is and
whose end i is called au-to-v walk/path.

To define the faces of the embedded graph, we define anothautagion=* of the set of
darts by composing with rev: 7* = 7 o rev. Then thefacesof the embedded grapfr, F)
are defined to be the permutation cyclestof (See Figure 2.) Note that a face Gfcan be
interpreted as a closed walk @

Note that this definition diverges from the traditional gextric definition of faces in the
case of a disconnected graph. In that case, according teetiretdn considered here, for each

SNote that, even though we are concerned with undirectechgrape use (directed) darts in our definition of
walks because they provide more information about the streof the walks.



connected component there will be a different external.fgte fact, this is necessary if one
wishes to preserve the desirable property that the duakaddial is the primal.)

2.2 Planarity

We say that an embeddingof a graph(z is planarif it satisfies Euler’s formulan —m+¢ = 2k,
wheren=number of nodesp=number of edgeg;=number of faces, ank=number of connected
components. In this case, we sdy= (r, F) is aplanar embedded grapiWe say a graph is a
planar graphif there is a planar embedding forfitFinding a planar embedding for a planar graph
is a well-studied problem, and linear-time algorithms anewn/, so we assume throughout
this paper that every planar graph comes equipped with aredntg. It follows from Euler’s
formula that am-node planar graph with no parallel edges tés) edges.

2.3 Duality

The dual of a connected embedded grapgh= (r, E) is defined to be the embedded graph
G* = (r*, E). The permutation cycles of* are the faces of;. (See Figure 3.) According to
this definition, the edge set of the dual is identical to thgeesket of the original graph (called the
primal). This identification of primal edges and dual edges is nratieally and notationally
convenient (albeit sometimes confusing).

Since rew rev is the identity(7*)* = =, we obtain the following.

Proposition 1 G** = G.

It can be shown that the dual of a connected graph is connetitéollows that the connected
components of7* correspond one-to-one with the connected components. oHence ifG
satisfies Euler’s formula then so do@s. Thus the dual of a planar embedded graph is a planar
embedded graph.

LetT be a spanning tree ¢f. For an edge ¢ 7', there is a unique simple cycle consisting of
e and the unique path i between the endpoints ef This cycle is called thelementary cycle
of e with respect tdl" in G.

SFor the purpose of the current result, all we need is thatyeyerph embeddable on an orientable surface of
genus zero has a combinatorial embedding that satisfies'€fadlemula. However, it is known (see, .e.g, [35]) more
generally that for any graph embedded on a closed, orientalsface, the corresponding combinatorial embedding

determines the geometric embedding up to homeomorphism.
"The first was due to Hopcroft and Tarjan [29]. See [12] for @asion of later work.
8For disconnected graphs, this definition of dual divergesifthe geometric definition in that it assigns multiple

dual nodes to a single region of the sphere/plane. Accotditite geometric definition, the dual of a graph is always
connected. However, choosing that definition means givindar example, the nice property that™ = G.

8
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Figure 2: The figure on the left shows the dart representatigart of a graph. We can trace out
the face containing the dafd, 1) as follows. First apply rev, obtaining the d&it —1) emanating
from the nodev. Next, applyr, obtaining(b, 1), the dart aftea, —1) in the permutation cycle
corresponding ta. This shows thatb, 1) is the successor t:, 1) in the face. We apply the
same process t@, 1), obtaining its successdr, 1) and that dart’s successor in turfy, 1).
The face (permutation cycle of o rev) is thus({a,1) (b,1) {(c¢,1)). The figure on the right
shows the corresponding fragment of the dual graph. Thesedsal node corresponding to
the face discussed above. The permutation cycle correspptalthis dual node is exactly the
permutation cycle comprising the facgu, 1) (b,1) (¢, 1)). However, we follow the convention
of drawing the dual in such a way that the permutation cyclegtheclockwiseorder of darts.
This convention helps when drawing the dual superimposeth@primal, for it enables us to
draw primal and dual edges at approximately right anglesx@wamnother, as shown in Figure 3.
The convention does not affect the dual graph as a matheahabifect, only its depiction.



Figure 3: The first figure shows a graph (the solid nodes andspa@md, superimposed, its planar
dual (the open nodes and dashed edges).

For a spanning tre& of G, we denote byl™ the set of edges af that are not inl’. The
following is a classical result.

Proposition 2 If GG is a planar embedded graph arid is a spanning tree of7, thenT™* is a
spanning tree of+*.

We refer to7™ as the tree dual to'.

If S C V(G), we usel'¢(S) to denote the set of edgessuch that inG the edge: has one
endpoint inS and one endpoint not iiy. A set of this form is called &ut of G. Note that
L(S) =Te(V(G) - 9).

If S'is connected iy andV (G) — S is connected irt7, we calll'¢(S) abond

Proposition 3 If G is a planar embedded graph, the edges of a bor@ form a simple cycle in
G* and vice versa.

It follows from Proposition 3 that every simple cyaléin G defines a bipartition of the faces
of G; namely the bipartitioriS, V (G) — S) whereE£(C) = I'g-(5).

10



Let f., be a face of7. We call f, theinfinite faceby analogy to geometric embeddings. For
combinatorial embeddings, the choice is arbitfary.

We say the simple cycl€ encloses facef with respect tof, if f belongs to the sei such
that £(C) = I'e«(S) and f», & S. We say that” encloses an edge with respectftoif the edge
belongs to a face enclosed by and that it strictly encloses the edge if in addition theeedges
not belong taC.

Lemma 4 Let G be a connected planar embedded graph;/ldie a rooted spanning tree 6f,
let v be a nonroot node df', and lete be the parent edge of Then the elementary cycle ©oin
G* with respect tdl™* consists of the edges Bf;(descendents ofin T').

Proof: Removinge fromT" breaksI” into two connected components, one containing the descen-
dents ofv in 7', and one containing the non-descendents. It follows tleatati’; (descendents afin T')
is a bond, and therefore, by Proposition 3, the edges in thdbom a simple cycl€' in G*. The

only edge of E(T) belonging toE(C') is e, so C consists ofe together with a simple path of
edges not inF'(7") connecting the endpoints efin G*. The edges not it’(7") are inE(T*), so

the simple path is a simple pathf¥. This proves the lemma. 0

2.4 Deletion and compression

We discuss two ways of removing edges from an embedded gdapéijng and compressing,
both of which preserve the embedding (and preserve plgha@ompressing an edge is very
similar to the operation of contracting the edge (the déffexe arises when the edge is a self-
loop).

Deletingan edge: of an embedded gragh = (7, ) is an operation that produces the graph
G' = (7', E') whereE’ = FE — {e} and, for each dart of’,

w[r[n[d]]] if n[d] andn[r[d]] are the darts of
m'ld) = nw[r[d] if 7[d] is a dart ofe butr[r[d]] is not
7|[d] otherwise

For a setS of edges, we denote iy — S the embedded graph obtained by deleting the edges of
S. The order of deletion does not affect the final embeddedgrhys easy to see that deletion
preserves planarity.

Proposition 5 An edgee is a self-loop of iff it is a cut-edge of+*.

9For geometric intuition, consider that a planar graph caarnbedded on the surface of a sphere. According to
this embedding, every face is finite.
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Figure 4: Three examples of compression. The graph witld ®mlges and solid nodes is the
primal. The graph with dashed edges and open nodes is theTheedge being compressed is
signified by a heavy line.

We define edgeompressiorto be deletion in the dual. That is, compressing an edge
of G is an operation that produces the graighi — {e})*. We denote the result as/{e}.
Since deletion preserves planarity and the dual of a plamdredded graph is a plane graph,
compression preserves planarity. The operations of deleid compression commute.

Figure 4 illustrates the effect of edge compression on tlgetying graph in three examples.
If e is not a self-loop i’ then the effect of compressirgn G is to contrack as shown in the
top left diagram. The thick line represents the edge to ces®rlfe is a self-loop inG, so a
cut-edge inG*, and is not the only edge incident to either of its endpointS’ then the effect
is to duplicatev, as shown in the bottom left diagram; one copy has as itsemtiddges those
edges that if7 are incident ta and strictly enclosed by (with respect to some designated face
f~) and the other copy has as its incident edges those edgas thaire incident tav and not
enclosed by (and not equal te). If e is a self-loop inG and is the only edge incident to one of
its endpoints inG*, the effect is to delete.

2.5 Preliminaries related to TSP

For an assignment weight of nonnegative weights to the edges’véind a set of edges, define
weight(S) = >_{weighte) : e € S}. For a subgrapli/, define weightd ) = weight E(H)).

For the metric space of shortest paths in a graph, a tourspwnels to a closed walk in the
graph that visits every node. The weight of the tour is the etweights of the edges comprising

12



Figure 5: The light walk forms a crossing configuration witle bold walk.

the walk, counting multiplicities. For a connected gr&pHet OPT G, weight) be the minimum
weight of such a tour. (We omit the second argument when dsprgeates no ambiguity.)

Lemma 6 For any walklV in a graph, there is a walkl’’ that visits the same nodes Hs, such
that every edge used by’ is used by, and occurs at most twice ’.

Proof: LetWW be a closed walk id-, and suppose some ddrbccurs at least twice ii/. Write
W = W, d W, d. ThenW; rev(W,) is a closed walk of that visits the same nodes HS but
uses dartl fewer times. Repeating this step yields the lemma. 0

Lemma 6 shows that, in seeking the minimum-weight walk wigis given set of nodes, we
can restrict ourselves to considering walks in which eageeaxtcurs at most twice.

Let W be awalk, and le? = a« W b and@ = ¢ W d be walks that are identical except
for their first and last darts. Let be the successor ofin () and letd’ be the predecessor df
in Q. We say(@ forms acrossing configuratiomvith P (see Figure 5) if the permutation cycle
at headc) induces the cycléc ¢’ rev(a)) and the permutation cycle at tai) induces the cycle
(rev(d') b d).

We say a walkP crossesa walk @ if a subwalk of P and a subwalk of) form a crossing
configuration. The following folklore result was used by Aaet al. in [5].

Proposition 7 For any tour in a planar graph, there exists a tour that vishe same nodes and
comprises the same darts in the same multiplicities, ang doécross itself.

13



Proof: SupposéV = W, a W b W, ¢ W d is a closed walk where W d forms a crossing
configuration withu W b. Thend W, a rev(c Wy b) rev(W) W is a closed walk visiting the same
nodes and comprising the same darts in the same multipB¢ciind with one fewer crossing
configurations. O

Proposition 7 shows that we can restrict our attention toselficrossing walks.
An Eulerian graphis a graph’z with the following properties.

e (G is connected, and
e every node of7 has even degree.
Perhaps the best-known result in graph theory is the fofigwi

Proposition 8 A graph is Eulerian iff there is a walk itz in which each edge occurs exactly
once.

Such a walk is called an Eulerian cycle. There is a lineaetaigorithm that, given an Eulerian
graph, finds an Eulerian cycle.

A graphH is amulti-subgraphof GG if H can be obtained from a subgraph(oby duplicating
some edges. We call itla-subgraphf the maximum multiplicity of any edge is at most two.

It follows from the Eulerian characterization that findingnanimum-weight tour in a graph
G is equivalent to finding a minimum-weight Eulerian multibgwaph ofG that includes every
node of G. Lemma 6 shows that furthermore it suffices to find a minimueight Eulerian
bi-subgraph that includes every node.

We slightly generalize the notion of Eulerian multi-sulqgrdo handle disconnected graphs.
For a possibly disconnected graph we sayH is amulti-Eulerian multi-subgraptof G if for
each connected componehit of GG there is a connected component idfthat is an Eulerian
multi-subgraph ofK. For a disconnected graph, define @BTweight) to be the sum over
connected components of OPT( K, weight). Then OPTG, weight) is the minimum weight of
a multi-Eulerian multi-subgraph af.

3 Spanner

Althoffer, Das, Dobkin, Joseph, and Soares [1] considarsdnple and general procedure for
producing a spanner in a (not necessarily planar) géaplstart with an empty grapfy, consider
the edges of7, in increasing order of weight, and add an edgé&-td the edge’s weight was
much smaller than the minimum-weight pathGfy between its endpoints. They did not address

14



the exact running time of the procedure, but it clearly cstssifO(n) iterations, each involving a
shortest-path computation. For planar graphs, theretantens inO(n?) time [28]. They proved
several results about the size and weight of the resultiagrsgr, including the following result
that is specific to planar graphs.

Theorem 2 (Althoffer et al.) For any planar graphtz, with edge-weights and any> 0, there
is an edge subgrapff such that

Al: weightG) < (1 + 2¢ " )MST(Gy), whereM ST(Gy) is the weight of the minimum span-
ning tree ofGG,, and

A2: for every pair of nodes andw,

minimum weight of a-to-v path inGG (1)
< (14 ¢€) - minimum weight of a-to-v path inG,

Lemma 9 Properties A1 and A2 imply Properties S1 and S2 of SectiowittBo, = 1 + 2¢1L.

Proof: Because a tour includes a spanning tr@eS7(G) < OPT(G). Hence Property Al
implies that Property S1 of Section 1.3 is achieved with= 1 + 2¢ .

Now we show that Property A2 implies Property S2, i.e. thaT@P < (1 + ¢,)OPT(GY).
(This argument was used in [5].) L&} be an optimal tour of7,. For each edgev of Tj that is
not in G, there is au-to-v path inG of weight at mos{1 + ¢)weightuv); replaceuv in T with
that path. The result of all the replacements is a Iguwhose weight is at modt+ ¢ times that
of Ty. This shows OPTG) < (1 + €) OPT(Gy). H

By exploiting planarity, we can give an algorithm that ruméimear time but that can be shown
(using the same analysis technique used by Althoffer t@hchieve the same properties.

Theorem 3 There is a linear-time algorithm that, given a planar graply with edge-weights
and anye > 0, outputs an edge subgraghwith Properties A1 and A2.

The algorithm is as follows.

defineSPANNER G, €):
let z[-] be an array of numbers, indexed by edges
find a minimum spanning treg of G
assigne[e| := weight(e) for each edge of T
initialize S := {edges ofl'}

15



Figure 6: Diagram showing part of dual tree (in light edges) primal tree (in dark edges) and
primal nontree edges (dashed): ande,4 are child edges of in the dual tree. The facé is
indicated.

let 7* be the dual tree, rooted at the infinite face
for each edge of 7™, in order from leaves to root
let f, be the face ofr, whose parent edge ifi* ise
lete=eg, €1, ..., es be the sequence of edges comprisfpng
Tomit = 57 Z[€;]
if zomit > (1 + €)weight(e)
then adck to S and assige[e| := weight(e)
else assign[e] := Tomit
returnS

The minimum spanning tree 6f, can be found in linear time using the algorithm of Cheriton
and Tarjan [13].

Now we address correctness of the procedure. Say ancadgeceptedvhene is assigned
to S, andrejectedif e is considered but not assigned4o

Lemma 10 In the for-loop iteration in whicte is considered, for every other edgeof f., z[e;]
has been assigned a number.

Proof: The facef, has only one parent edge 1rf, and it ise. For every other edge of f,,
eithere; belongs tdl” or ¢; is a child edge of. in T™. 0
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For any edge of G, notinT,

e let G, denote the subgraph 6f, consisting of accepted edges together with

let fe denote the face af/, that containg and encloseg.,

let 1V, denote the walk formed by the sequence of edges comprjsimgt includinge
itself, and

if e is accepted
let P, = ° © _ P
W, otherwise

Note that each of’, and P, has the same endpointsad-or an edge of 7', defineP. = e. The
basic argument of the following lemma comes from [1].

Lemma 11 For any edge: of G, notinT’,
1. every edge of. is either in7 or is a descendent efin 7%, and

2. W, = P., --- P..,wheree; ... e is the walk consisting of the edges comprisfa@ther
thane.

Proof: by induction. Consider the case in whiehs a leaf-edge off*. Let f be the corre-
sponding leaf-node 7. Becausef is a leaf, the only incident edge that is’ifi is e itself, so
e1,...,es belong toT. All these edges are accepted, proving Part 1. To prove Pant@ that
W, =e --- e;and thatP,, =e; fori =1,...,s. Thus the lemma holds fer.

Consider the case whetes not a leaf. Let’;”eJr be the subgraph a¥, consisting of accepted
edges together with eq, . . . , e,. For eache;, recall thatfei is the face o(?ei that containg; and
enclosesf,,. We claim thatfei is also a face of?eJr. To prove the claim, note thﬁei can be
obtained from(., by deleting a subset dk, e1, . .., e} — {e;}. None of these edges are edges
of T or descendents ih* of ¢;, so, by Part 1 of the inductive hypothesis, none belonqéito

Note thatG, can be obtained fron,.. by deleting those edges among ..., ¢, that are
rejected. By the claim, each such deletion replaces a egjemiges; in f. with the WaIkVT/ei.
This together with the definition @?., proves Part 2. By Part 1 of the inductive hypothesis, every
edge in eachﬁ/ei is an edge of" or a descendent @f in 7" and hence a descendentecds well.
This proves Part 1. 0

Lemma 12 In the for-loop iteration that consideks

e the value assigned to,m; is Weigh(VT/E), and
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e the value assigned tge] is weight P.).

Proof: The proof is by induction. By Lemma 10, the edgss. .., e, are considered before
e. By the inductive hypothesis;[e;] = weight P.). By Lemma 11, weight?,) = >3, z[e;],
which proves the first statement. The second statementwi®ly definition ofP.. 0

Corollary 13 For each edge, weight P.) < (1 + ¢)weighte).

Proof: If e is acceptedP. = e so the statement holds trivially. Suppases rejected. By the
conditional in the algorithm, in the iteration consideringhe value assigned tQ,;; was at most
(1 + e)weight(e). By the first part of Lemma 12, weighit’.) and therefore weight.) are at
most(1 + ¢)weight(e). O

Corollary 14 The graph of accepted edges satisfies Property A2.

Proof: For any pair of nodes andv, let P be the shortesi-to-v path inGGy. For each edge of
P.there is a walkP. consisting of accepted edges between the endpoirtsB®y Corollary 13,
weight P,) < (1 + ¢)weighte). Replacing each edgeof P with P, therefore yields a walk of
weight at mosp_ .. p(1 + €)weight(e), which is at most1 + ¢)weight P). ]

Lemma 15 At any time during the algorithm’s execution, the weightha& infinite face in the
graph consisting of accepted edges is at most

2. MST(Gy) — € - weight{accepted edges not i)

Proof: The proof is by induction. Before the for-loop commences,dhaph of accepted edges
is T, the minimum spanning tree @f,. Hence the weight of the infinite face is exacily
MST(Gy), so the lemma’s statement holds for this time. Consider-éofap iteration, and let

be the edge being considerede IE not accepted, there is no change to the set of accepted,edge
so the lemma’s statement continues to hold.

Suppose: is accepted. Let7 e be the subgraph consisting of edges accepted so far, and let
Gpefore = Gater — {€}. Note thatGer can be obtained front, by deleting edges that will be
accepted in the future. By the leaves-to-root ordering enafrthe deleted edges are descendents
of e in T*. By Part 1 of Lemma 11, thereforéa is a face ofGGarer. Let g be the other face of
Gater that containg.

We claim thayy is the infinite face of7 4. TO prove the claim, note thétqer can be obtained
from GG, by deleting edges that have already been rejected and edggstitonsidered. By the
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leaves-to-root ordering;’s proper ancestors iff* have not yet been considered, so they are
among the edges deleted. These deletions are contraatidhe dual. The root of ™ is the
infinite face, so the contractions resultgmeing the infinite face.

Note thatGyefore CaN be obtained fror 44 by deletinge. This deletion replacesin the face
g with W, This shows that

weight of infinite face iNGyefore — Welight of infinite face ING afer
— weight(IV,) — weight(e)
> (1 + e)weighte) — weight(e) because was accepted
= ¢-weightle)

which shows that the lemma’s statement continues to hold. 0

Corollary 16 The graphG of accepted edges satisfies Property Al.

Proof: By Lemma 15, the weight of the infinite face in the graph cansysof all accepted edges
is at most

2- MST(Gy) — e - weight{accepted edges not i)
so weightaccepted edges notif) < 2¢ ' - MST(G,). Since weightl’) = MST(Gy), it
follows that the weight of all accepted edges is at nfost 2¢ 1) M ST (G). 0

This completes the proof of Theorem 3.

4 Slices

Let G be a connected planar embedded graph and let wejdig an edge-weight assignment.
Let £ be a parameter. Recall that denotes the planar dual 6f. Let f., be the infinite face
of G, which is a vertex ofz*. Define thelevel of a nodev of G* to be its breadth-first-search
distance inG* from f.., i.e. the minimum number of edges in #n-to-v path inG*. Define the
level of an edge to be/ if one endpoint has levéland the other endpoint has leve} 1.

Forj =0,1,...,k — 1, letS; denote the set of edgesvhose levels are congruent tonod
k. Lett = minargweight(S;), and letS = S;. We obtain the following bound.

weight S) < (1/k)weight{G) (2)

Fori =0,1,2,..., let E; be the set of edgeshaving at least one endpoint with level in the
range(t + (¢ — 1)k, t + ik]. We defineslicei of G to be the subgraph aF (the primal graph)
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consisting of the edge’;. Note that an edge d@F belongs to two distinct slices only if the edge
belongs toS.

The theorem below shows that the total weight of optimalgdarthe slices exceeds the
weight of the optimal tour of7 by at most twice the weight df.

Theorem 4 Y, OPT(slice:) < 2weightS) + OPT(G).
The next theorem states that the planar dual of each slice loas-depth spanning tree.

Theorem 5 Fori = 0,1, 2, ..., each connected component of the planar dual of slicas a
rooted spanning tree of depth at mast 1.

In the rest of this section, we prove Theorems 4 and 5.
The following lemma is illustrated in Figure 7.

Lemma 17 For: = 1,2,3, ..., the edges of level+ (i — 1)k form a setA; of simple cycles in
G with the following properties:

1. The cycles are edge-disjoint.
2. Every face is enclosed by at most one of the cycles.

3. Afaceu of G is enclosed by one of the cycles iff in the dual graptthe nodeu has level
greater thart + (i — 1)k.

Proof: LetT be a breadth-first-search tree Gf rooted atf,,. For: = 1,2,..., let ; be
the set of connected components of the subgraphafonsisting of nodes whose levels exceed
t+ (i —1k. LetA;, = {I'e:(V(K)) : K € K;}.

Let K be a connected componentki;. For any node not in K, if v is not .., thenv has a
parentp whose level is one less than thatwoflf p's level is at most + (i — 1)k thenp is not in
K if p's level is greater than+ (i — 1)k then so ig’s, so if p were in K thenv would also be in
K, a contradiction. Thug is not in K. By induction,G* contains a-to-f,, path that avoidss,
proving that the nodes @f* not in K are connected, 6.+ (V' (K)) is a bond. By Proposition 3,
the edges of - (V' (K)) form a simple cycle” in G. The faces enclosed ly; are the nodes
of K.

Consider two components’;, K, € K;. SinceV(K;) andV(K,) are disjoint, the faces
enclosed by, are disjoint from the faces enclosed ©¥,. Furthermore, foj = 1, 2, an edge
belongs taCk; if in G* the edge connects a node &f to a node at level + (i — 1)k, which
shows thatx, andC, are edge-disjoint. H
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i+1

(@)

(b)

Figure 7: Cycles in4; and A, ,; are shown. Note that the cycles 4f,; are enclosed within
cycles of 4;. In the figure on the bottom, the dual edges correspondinydtes in A; are
indicated by thick lines.
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Lemma 18 Let Ay, ... be the set of cycles from Lemma 17. For 1, an edge: of G belongs
to slice: iff e is enclosed by some cycle ) and not strictly enclosed by any cycledn, ;. An
edgee belongs to slice 0 if¢ is not strictly enclosed by any cycle .

Proof: By definitions of slice and dual, far > 1, an edge: belongs to slice iff e belongs
to a facef whose level inG* is in (t + (i — 1)k, t + ik]. By Lemma 17, the level of is in
(t+ (i — 1)k, t + k] iff fis enclosed by a cycle id; and not by a cycle iM;,;. The lemma
follows by the definition of a cycle enclosing an edge. Thesazafsslice O is similar. 0

We say a subgraph &venif every node has even degree.

Lemma 19 Let R be an Eulerian multi-subgraph @f, let C' be a simple cycle af7, and let.X
be the set of nodes enclosed®yThere is a subset of the edges of' such that

1. weightC) < iweigh(C), and
2. each connected componentit- ' (X) U C'is even.

For a graphz, a nodev, and a setA of edges, we defindeg (v, A) to be the number of

edges inA that inG are incident ta,

Proof: BecauseR is Euleriandeg(v, R) is even for every node, so}_{deg(v, R) : v € V(C)}

is even. The closed walk (Eulerian cycle) corresponding emtersX the same number of times
as itleaves, sfRNT'¢(X)|is even. It follows thap_{deg(v, R—T'¢(X)) : v € V(C)}is even.
Hence the set’ = {v € V(C) : deg(v, R — I'¢(X)) is odd} has even cardinality.

Write C' = P, ... Py where each?; is a path whose endpoints belong¥oand whose
internal nodes do not. L&t denote the set of edgesin, P, P, ..., Py, or the set of edges
in Py, Py, Fs, ..., Py, whichever has less weight. This choice ensures Propertytieilemma’s
statement. Also, for each vertexc V (C), deg(v, C) is odd iffv € Y, which proves Property 2.

O

Lemma 20 Forsome > 1, let1 denote the set of nodes on cydles A;. Two nodes ofl” are
connected via a path in slicgiff they are connected via a path consists only of edges beign
to cyclesC' in A;

Proof: For two nodest,y € W, let P be thex-to-y path in slicei that uses the fewest edges
not belonging to cycle§’ € A;. Assume for a contradiction th& contains some edgethat
does not belong to a cycl& € A;. Let P be the maximal subpath df that containg but whose
internal nodes do not belong 1.
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By Lemma 18, is strictly enclosed by some cyc& € A;. Since no internal node of
belongs tolV/, every edge of? must be enclosed by the same cy€le But then the endpoints
of P must belong to that same cyalé ConsequentlyP can be replaced by a subpath®f
contradicting the choice aP. ]

Now we can prove Theorems 4 and 5.

Proof of Theorem 4: Let M be the multiset of edges comprising the optimal tou&ofThen
M is an Eulerian bisubgraph ¢f. Let M; denote the submultiset @/ consisting of edges in
slicei. To prove Theorem 4, we will show that, for each slicthere is a multiseD; of edges of
slicei such thatV/; U D; is an Eulerian multi-subgraph of sliégei.e.

1. every node of slicéhas even degree with respectif U D;, and

2. for every connected componéiitof slicei, there is a corresponding connected component
of M; U D, that visits all nodes off .

We ensure thal; weight D;) < 2weight5).

We build D; in three steps. The first two steps address achieving PyopeBy Lemma 18,
slicei consists of the edges enclosed by cycled pand not strictly enclosed by cycles df., ;.

If v belongs to no cycle in eithet; or A;,, then every edge a¥/ incident tov belongs tal/;,
sodeg(v, M;) is already even.

In step one, we address the case of nadeslonging to cycles ii;. For each cycl€' € A;,
we apply Lemma 19 td/ andC, obtaining an edge-subsétC E(C), and we include” in D,.
This change affects the degree of a nodmly if v belongs to some cyclé€ € A;. Such a node
v has even degree with respect to those edged of C' that are enclosed i@@. Summing over
all cyclesC € A;, the node has even degree with respect to those edg\é&cﬂj{@ : Ce A}
that belong to slice.

In step two, we address the case of nodéglonging to cycles i, ;. Because the infinite
face of a planar embedded graph can be chosen arbitrarthbfadefinition ofenclosedl we can
apply Lemma 19 to each cyclé € A;,, and to the seX of nodesnot strictly enclosed by,
obtaining a se€' of edges such thateg(v, R — I';(X) U C) is even for each node of C. We
include each sef' in D;. As before, this change affects the degree of a nodely if v belongs
to some cycle” € A;,,, and ensures that such a nadbas even degree with respect to those
edges of\/ U U{@ : C € A;;1} that belong to slice.

In step three, we address Property 2. For gdch A;, we addE(C) to D;. This does not
change the parity of any node’s degree. betandwv, be two nodes in slice. Forj = 1,2,
it follow from Lemma 18 that); is enclosed by some cyclé; € A;. Letw be a node on the
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boundary of the infinite face. L&?; be av,-to-w path using edges df/, and Ietf% be a maximal
prefix of P; consisting of edges enclosed 6Yy. Sincew is not strictly enclosed by';, P; must
end at a node; of C;.

Supposey; andv, belong to the same connected compon€nf slicei. Thenw; andw,
also belong td<. By Lemma 20, there is@;-to-w, path using only edges ¢ (C) : C € A},
and hence using only edges Bf. Combining this path withP, and P, we obtain a path using
only edges of\/ U D; that belong to slice. This proves Property 2.

Finally, we bound", weight D;). The cycles” € A; consist of edges having leve} (i—1)k,
o]

> > {weightC) : C € A;} = weight(S)

The weight added tg) D; in each of steps one and two is at mp3t: >-{weightC) : C € A;}.
The weight added in step threeds > {weightC) : C' € A;}. The total is at most weight(S).
This completes the proof of Theorem 4. 0

Proof of Theorem 5: Let K be a connected component of slioghere; > 1. By Lemmas 18,
slice i can be obtained from by (i) deleting edges properly enclosed by cyclesdpf; and
(ii) deleting edges not enclosed by cyclesAf For each cycle € A;,,, deleting the edges
properly enclosed by’ merges the faces enclosed bYyinto a single face. LeD be the set
of edges not enclosed by cycles 4f. Deleting the edges iV corresponds in the planar dual
G* to compressing edges both of whose endpoints have levelsstttm (i — 1)k. Let T be
the breadth-first-search tree Gf, and consider the effect of these operationgorRecall that
compressing a non-self-loop edge is equivalent to comt@cEirst, in the planar dual, compress
all the edges of ' that are inD. Because these edges form a subtreg,ofone is a self-loop, so
these compressions are contractions. For each (dual)mnbdeing level at most + (i — 1)k,
there is a path i7" consisting of edges ab from v to the root, so the contractions merge all
these nodes into a single notleLet T be the set of edges @f that remain.

Each face of slice that was a face off had distance at most+- ik from the root in7’, and
hence has distance at mést- ik) — (¢ + (i — 1)k) from the root in 7. Each face arising from
deleting edges properly enclosed by cyclesigf, is adjacent in the dual to some node that had
been at levet + ik, and hence has distance at mbst 1 from 7.

Each of the remaining edges bfis now a self-loop with common endpoifit Compressing
these edges in the dual might in general splihto multiple nodes corresponding to multiple
connected components in the primal graph. However, eaamect&d component retains its own
low-depth spanning tree. This completes the proof of Thedse 0
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5 TSP algorithm

Now we describe the TSP algorithm.
Let Gy be the input planar embedded graph, and let weigbe the input edge-weight as-
signment.

Step 1 (Spanner Step): Lete¢, be the desired accuracy. Define- ¢,/2. Obtain a subgrapt¥
of GGy that has Properties S1 and S2 of Section 1.3.

Step 2 (Slicing Step): Use breadth-first search in the planar dual to find the sliseeacribed
in Section 4, withk = 2¢!p,, wherep, is the multiplier in Property S1. For each slice, for each
connected component of that slice, the planar dual has asppinee of depth at moét+ 1.

Step 3 (Dynamic programming): For each slice, for each connected component of that slice,
find a minimum-weight Eulerian multi-subgraph of that comenot

Step 4: Combine the multi-subgraphs to obtain an Eulerian muligsaph ofGG, then turn it
into a tour ofG.

5.1 Running time

Letn be the number of nodes in the input gra@h AssumeG, has no parallel edges, so it has
O(n) edges. For unit-weight graphs, Step 1 is trividl= G, andp, is a constant. For arbitrary
weights, Theorem 3 gives &(n) algorithm achieving. = 1 + 2¢. Steps 2 and 4 tak@(n)
time.

As for Step 3, Cook and Seymour observe [15] that TSP can bedal a graph of bounded
branchwidth. In Section 7, we state a theorem, due to Tam&ki fhat shows that each slice has
branch-width at mostk + 3.

Because Cook and Seymour do not formally describe or andéifygedynamic program, in
Section 6 we describe a dynamic program that can be used n3St&his dynamic program
exploits planarity to get a running time 6f(c*n’) for a graph of sizex’ (wherec is a constant).
Summing over all connected components of all slices, theingtime for Step 3 i©)(c*n). The
choice ofk yields a running time o©(d"/<n) for unit-weight graphs an®(d'/<*n) for arbitrary
weights, wherel is a constant.
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5.2 Correctness

Theorem 6 The algorithm finds a tour of weight at mdst+ ¢))OPT(G)).

Proof: The tours found in Step 3 are connected and jointly visit atles, so their union is
connected and spans all nodes. Every nodws even degree with respect to every tour that
contains it, saw has even degree with respect to the multiset union of thass.toThus the
multiset union is Eulerian. The Eulerian characteriza{ieroposition 8) implies that the union
can be transformed into a tour.

The weight of the tour i§°, OPT(slicei), which by Theorem 4 is at most ORT)+-2 weight(S).
To complete the proof of Theorem 6, we bound these two ternogpety S2 states that ORF) <
(14 €)OPT(Gy). Observe that

2weight'S) < (2/k)weight{G) by (2)
< ep.tweightG) by choice ofk
< e-OPT(Gy) by Property S1

Sincee, = 2¢, this completes the proof of Theorem 6. 0

6 Solving TSP in a planar embedded graph with bounded dual
radius

In this section we describe an algorithm that, given an edgigthted planar embedded grafh

a low-depth spanning tree éf*, and a sefz of nodes, finds an minimum-weight walk' such
thatk C V(). To find an optimal tourR is set tol/ (H ). Rather than describe the algorithm for
this special case, we describe the algorithm for the morergénase because doing so requires
very little change.

Theorem 7 There is an algorithm that, given a planar embedded gr&plwithout parallel
edges, an edge-weight assignment fbra subset of nodes ofH, and a spanning tre&™

of H* in which every simple path has length at mgstinds a minimum-weight connected even
multi-subgraph ofHf that visits all nodes imz. The algorithm takes tim@(c‘|V (H)|) for some
constant.

First we show how to reduce the problem to the case in whicliégeee of the input graph
is bounded by three. Then we show how to solve this case ugmangc programming.
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6.1 Reduction to degree three

Lemma 21 Let H be a graph, lelV be an even connected multi-subgraphthfand lete be an
edge of. ThenW — {e} is an even connected multi-subgraph/of{e}.

Proof: Since the edges 6 are connected i/, the edges ofl’ — {e} are connected i/ /{e}.
For every node that is not an endpoint of in H, the degree o) in H/{e} with respect to
W — {e} equals the degree afin H with respect tdV. Letu; andu, be the endpoints of
in H. These nodes are coalescedHpi{e} to form a single node whose degree with respect to
W —{e}is
2

>_(degy (ui, W) = [W N {e}]) = degy (w1, W) + deg (uz, W) — 2|W N {e}

=1

Since each of the terms on the right-hand side is even, theseven. 0

Lemma 22 Let H be a graph, lete be an edge of{/, and letlV be an even connected multi-
subgraph off/{e}. Then one oV, WU{e}, WU{e}U{e} is an even connected multi-subgraph
of H.

Proof: Trivialif e is a self-loop. Otherwise, let; andu, be the endpoints efin H. These nodes
are coalesced itf/{e} to form a nodev. Sincedegy; (v, W) is even,>7_, degy (u;, W) is
even.

Case 1:degy(ui, W) is odd. Thendeg,(uz, W) is also odd, and there are edgeslin
incident tou;. Hencedeg; (u;, W U {e}) is even fori = 1 and 2, andV U {e} is connected.

Case 2:degy(ug, W) is even but at least one edge Bf is incident tou; or us. Then
degy (uz, W) is also even, sdeg; (u;, WU{e}U{e}) isevenfori = 1 and 2, andV U{e} U{e}
is connected.

Case 3: No edge d¥ is incident tou; or us. Then inH/{e} no path inl¥ passes through,
so the fact thalV is connected irf{ /{e} implies thatl" is connected i . Clearlydeg; (u;, W)
is even for; = 1 and 2. 0

Now we give the reduction to the degree-three case.

Step 1: Triangulate the faces aff* by adding zero-weight artificial edges until every face has
size at most three. Let be the set of artificial edges added. Uét be the resulting planar
embedded graph.

Step 2: H can be obtained fronil by contracting the artificial edges, which merges some nodes
Let R = U, z{nodes ofd merged to formy}.
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Step 3: Let W be a minimum-weight connected even multi-subgrapi dhat visits all nodes of
R.
Step 4: ReturnlV — A.

Lemma 23 W — A is a minimum-weight even multi-subgraph visiting all nodeg.

Proof: By repeated application of Lemma 22, using the fact that thiczal edges have zero
weight. we infer OPTH) < OPT(H). Therefore weightV’') < OPT(H). By repeated applica-
tion of Lemma 21, we infer thdl” — A is an even connected multi-subgraphfbthat visits all
nodes ofF. 0

6.2 Overview of dynamic program

Now we describe how to find an optimal tour Bf visiting all nodes of?. The graph* has a
rooted spanning trég* in which every simple path has at m@gstdges, and{* is obtained from
H* by adding edges, sb* is also a spanning tree éf. Because every face éf* is a triangle,

H has degree at most three. L&be the set of edges @f notin7*. ThenT is a spanning tree
of A and hence has degree at most three. Hoat a node of degree 1 iril". The dynamic
program will work upT from the leaves to the root. For each edgéﬁothe dynamic program
will construct a table. The value of OPH) will be be computed from the table associated with
the edge connecting the root to its child. Once the value of @B is known, the tour itself
can be constructed in a post-processing phase by working &fom the root to the leaves. (The
post-processing is straightforward, and we do not desdriere.)

6.3 Terminology

Before giving a detailed description of the tables, we neadttoduce some terminology.

Traversals LetI';(S) be a cut. We say a nonempty, dart-disjoint Bebf walks in His a
traversal ofS in H if

¢ the start node and end node of each path are n®t in

¢ the internal nodes of each path aresin

It follows that the first and last darts of each path belond'tdS)., i.e. that each is a dart of
some edge i’ 4 (.5).
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Define

weigh{P) = > {weightd) : d € P,d notadart o ;(5)}
+% > {weight(d) : d € P,dadartofl;(5)}

Configurations A configurationk of a cutl';(.S) is a nonempty set of ordered paitsl;, d;)

of darts ofl" 4 (5) such that the head @f and the tail ofd; belong toS, and such that each dart
of I';(S) occurs at most once in each position. The number of configmsts at most2n)!,
wheren = |I';(59)].

If S is connected ind then the embedding determines a cyclic ordering of the ed§es
I'4(5), say(e; --- e,). Inthis case, we say that a configuratioriessingif it includes a dart
pair corresponding to the paie,, e,) of edges and also a dart pair corresponding to the pair
(e, es) Of edges, wherp < r < ¢ < s. A Catalan bound shows that the number of noncrossing
configurations i€°. This is where planarity is used in the dynamic progfdm.

For a configuratiork’, define weight/') to be the sum of the weights of the dartsin'?

Let C4,...,Cy be cuts in a graph, and lé{;, ..., K; be corresponding configurations. A
subtouris a sequenceé, . ..,d,—; such that, forj = 0,...,b — 1, the pair(d;, d(j+1) mod v)
belongs to some configuration. We sy, . . ., K; areconsistentf for each pairC;, C; of cuts,
each dart represented in bath and C; occurs in bothi; and K; or occurs in neither, and if
there is no subtour.

Define

k(P) = {(first dart of P, last dart ofP) : P € P}

6.4 Definition of the tables

In this subsection we describe the tables produced by thandignprogram. For each edgef

T, letv. denote the child endpoint ef and letD, denote the descendentswof By Lemma 4,
the edges comprising (D, ) are exactly the edges comprising the elementary cycleimf *
with respect tal™. We denote this cycle bg.. (See Figure 8.) That elementary cycle consists
of e together with a simple path ii* between the endpoints ef The cycle therefore contains
at most/ + 1 edges. This show$ ;(D,)| < ¢+ 1.

OFor a discussion of Catalan numbers, see any text on corobicgte.g. [43]. Noncrossing configurations and
a Catalan bound were used in a dynamic program for TSP by Ataah [5]. Concurrent with the appearance of a
preliminary version of this paper, Dorn et al. [20] publidien extended abstract discussing planar-graph algorithms

that also exploited Catalan-type bounds and noncrossinchings.
1The weight of a dart is the weight of the corresponding edge.
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Figure 8: A subgraph arising in the dynamic program. The edtie child node., and the child
edgese; ande; are labeled. The dark edges are tree edges. On the right sauthe subgraph
with some edges of the dual graph also shown. Note that theseafd’({descendents af. })
form an elementary cycle in the dual, as do the edgé¥ fdescendents of, }) and the edges of
I'({descendents af,}).

For a cutl';(.5) of H whereS is connected it for a configuratiork of I';(S5), define

Ms(K) = min{weigh{P) : x(P) =K,
P is a traversal of, and
SNRCV(P)

We show in Corollary 27 that, for each edgef 7', the dynamic program will construct a table
TAB., indexed by the noncrossing configuratidcif I'; (D. ), such that AB.[K] = Mp_ (K).

For the root edgé of 7" (the edge of" incident tor), each edge aof ; (D) is incident to the
rootr. It follows that every traversal ab; defines a tour of using each dart at most once, and
vice versa. By Proposition 7, there is an optimal tour thabiscrossing. Hence

~

OPT(H)
= min{M,(K) + %weight(K) : K aconfiguration of”; }

because only half the weight of each edgékois counted inV/;(K). Sincer has degree at most
three,C; hasO(1) configurations. Thus ORH) can be computed i®)(1) time from the table
TAB,.
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6.5 The recurrence relation

Let e be an edge of the treéB, and lete,, . . ., e, be its child edgess(< 2). Let Dy = {v.}. For
i=1,...,s letD; = D.,. Note thatD, is the disjoint unionJ;_, D,. Fori = 0,1,...,s, letC;
denotel 5 (D;).

A traversalP of D, inducesa traversalP; of D, fori = 0,1..., s as follows: for each path
P € P, breakP into subpaths at the nodes Bfthat are not inD;, and retain only those daris
such that at least one endpointdi in D;. The remaining subpaths form a traversalpf The
following lemma is immediate.

Lemma 24 Let P be a traversal ofD,, and letP,, . .., P, be the traversals th&P induces for
Dy, ..., D,. Then
weigh{P) = ) weightP;)
1=0
andx(P), k(Py), (P1), ..., k(Ps) are consistent.

Lemma 25 For traversalsP,,...,Ps of Dy, ..., D,, if K is a configuration ofC, such that
K, k(Py),...,k(Ps) are consistent then there is a traversalof C. that inducesp,, ..., P
such that(P) = K.

Proof: By gluing together paths from differef®;’s that have a common dart, one constructs
paths whose start and end darts ar€ (i, ). The consistency condition ensures that the glueing
can be completed, and that the start and end darts are refaeses . 0

Corollary 26 For any configurationk of C,,
Mp, (K) = min{)_ Mp,(K;) : K,Ko,..., K, are consisterjt
=0

Proof: To show that the left-hand side is at most the right-hand $ixleonsistent configurations
K, Ky,...,K,. Fori =0,...,letP; be the traversal achieving the minimum in the definition of
Mp,(K;). (If there is no such traversal, the right-hand side is ibfiniBy Lemma 25, there is a
traversalP of D, that induced?, ..., P,. It follows thatD, N R C V(P).

By the first part of Lemma 24, weigt®) = >;_, weight(P;), soMp_(K) < >3_, Mp,(K;).

To show that the right-hand side is at most the left-hand dl&” be a configuration such that
Mp, (K) is finite, and letP be the traversal achieving the minimum in the definitiodff_(K).
Let Py, ..., P, be the traversals tha induces forD,, ..., D,. It follows from Lemma 24 that
the right-hand side is at most weighY). 0
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6.6 The dynamic program

We now give a recursive algorithm TSP-D# that for each edge of 7" populates the table
TAB..

32



define TSP-DFe):
1 leteq,..., e, be the child edges of(s < 2)
2 fori=1,...,s,
3 recursively call TSP-DR;).
4 initialize each entry of AB. to co.
5 for each consistent tuplé(, Ky, K1, . .., Kj)

of configurations of(D.), T'({v.}), ['(De,), ..., T'(De.)
6  TAB.K|:=min{TAB.[K],

My, (Ko) + S5 TAB, [K]}

Note that in Step 6)/;,.,(/K,) can be computed directly i@ (1) time. The correctness of
the algorithm follows from Corollary 26 by induction.

Corollary 27 (Correctness of TSP-DB For each edge of T', for each noncrossing configura-
tion K of C,, TAB.[K| = Mp, (K).

6.7 Analysis of the dynamic program

In Step 5, each of the culg D,,), ..., I'(D,,) has size at mogt+ 1, so has)(c?) configurations
for a constant. The cutl'({v.}) has size at most three, ard< 2, so the number of tuples in
Step 5 isO(d") for a constantl. Thus each invocation of TSP-DP requi@éd’) time. The
number of invocations i§/(H)| — 1, so the entire dynamic program takes tif@l‘|V (H))|).
Combined with the reduction of Subsection 6.1, this congsléte proof of Theorem 7.

7 Achieving low branch-width by contracting edges

Branch-width is a graph measure akin to (and within a congéaor of) tree-width. (We will
review the definition presently.) Many computational grgpbblems that are NP-hard for gen-
eral graphs can be solved for graphs with bounded branctirwithe approach used for TSP
in this paper can be used for other problems as well. The gerpbthis section is to present a
result that facilitates broader application of the apphoac

Theorem 8 There is a linear-time algorithm that, for any planar graghand integerk, finds
a decompositiordy, . .., S,_; of the edges ofr such that, fori = 0,1,2,...,k — 1, the graph
obtained from by contracting the edges 6f has branch-width at mo&t(k + 2).
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The analogous theorem with contraction replaced by deletias implicit in the work of
Baker [6] and made explicit by Demaine, Hajiaghayi, and Kaseashi [18], who proved a ver-
sion for H-minor free graphs.

An easy but useful consequence of Theorem 8 is as follows.

Corollary 28 There is a linear-time algorithm, that, for any planar graph edge-weight as-
signment weiglit), and integetk, finds a sef5S of edges of weight at mogt/%)weigh{G) whose
contraction yields a graph of branch-width at mast: + 2).

Before proving Theorem 8, we review the definition of bramgtth given by Seymour and
Thomas. For a grapfy and a setfX of edges)(X) denotes the set of nodef G such that at
least one edge incident tois in X and at least one is not. Two set®ssif neither contains the
other and they are not disjoint.

For a finite sett’, acarvingof X" is a familyC of subsets oft’ such that

1. 0,x &C,
2. no two members af cross, and
3. Cis maximal subjectto 1 and 2.

Let G be a graph. Lef be a carving off/(G). The branch-width of in G is maxx¢c |0(X)|.
Thebranch-widthof G is the minimum, over all carvings of E(G), of the width ofC.

The following lemma is implicit in Baker’s approach [6], atite idea has been used several
times since then (e.qg. [9, 22, 26])

Lemma 29 (Thinning Algorithm) There is a linear-time algorithm that, for any planar embed-
ded graph’z and integetk, finds a decomposition of the edges into subSgts. . , S such that,
fori =0,1,2,...,k — 1, there is a planar embedded graph with the following properties:

1. H, has the same edges &s
2. Each connected component/éfhas a spanning tree of depth at mést

Proof: Assume without loss of generality th@tis connected. For some nodglefine thdevel
of a nodev of GG to be its breadth-first-search distance frome. the minimum number of edges
in anr-to-v path inG. Define thdevelof an edge: to bei if one endpoint has distanédrom r
and the other endpoint has distarnce 1.
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Fori =0,1,...,k— 1, letS; denote the set of edgesvhose levels are congruentionod

For: =0,1,...,k—1landforj = 0,1,2,..., let H}j) be the graph obtained frod by
deleting all nodes at distances greater than- i, and contracting every edgeof the breadth-
first-search tre€” whose level is less thafy — 1)k + 7. The contractions coalesce into a single
root all nodes at distances less than or equéfte 1)k + i. (Forj = 0, there is already a single
root, namelyr.) Since every node off that remains in” had distance at mogk + i in G,
it follows that (A) in Hi(j) every node has distance at masirom the root. Moreover, (B) the
grathi(j) — {edges at levelj — 1)k + i in G} is exactly the subgraph @f induced by nodes
with levelsin((j — 1)k + i, jk + 1].

Let H; be the disjoint union of7”, H", H® . ... Property 2 follows from A. Property 3
follows from B. Property 1 follows from Property 3 and the défon of S;. 0

We first give a technical lemma, then we state a result of Tapdék and then prove Theo-
rem 8.

Lemma 30 Let G be a planar embedded graph and ¢dbe a self-loop inG. Every biconnected
component ofs except{e} is a biconnected component@f {e}.

Proof: Letwv be the common endpoint ef Any path inGG that containg must pass through,
so the only simple cycle ir that containg is the cycle consisting solely ef Any path inG
from an edge enclosed kyto an edge not enclosed bymust pass through. Hence a simple
cycleC' in G cannot include both an edge strictly enclosed:land an edge not enclosed by
Assume without loss of generality th@tconsists only of edges strictly encloseddyAny two
such edges incident to a common nodé&iare also incident to a common nodedi{e}, which
proves that” is a simple cycle irG /{e}. 0

For a planar embedded graph Tamaki [45] defined” F(G) to be the node-face incidence
graph, i.e. the planar embedded bipartite graph whose reide the union of the node set 6f
and the face set a@¥, and where there is an edge between a node and a face if thesmmaléhe
boundary of the face. Tamaki proved the following theorem.

Theorem 9 (Tamaki) There is a linear-time algorithm that, given a planar embedldraphG
and a rooted spanning trég of V F'(G), outputs a branch-decomposition@fwhose width is at
most the height df".
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Proof of Theorem 8: Apply Lemma 29 ta&* to find a decomposition of the edges into subsets
Ly, ..., Li_1 such that, for eacly there is a planar embedded grafili such that — L, =

G* — L; and each connected component£jfhas a spanning tree of depth at mbsThe nodes

of H; are faces off{;, soV F'(H;) has a spanning tree of depth at mpkt+ 1. By Tamaki’s
result, thereforef{; has branch-width at mo8k + 1. It is known [41] that contraction does not
increase branch-width. Henég / L; has branch-width at mo8t + 1. SinceH; — L, = G* — L;,

we haveH,;/L; = G/L;, so we have shown th&t/ L, has branch-width at mo8t + 1.

Consider the process of obtaini6g L; by compressing the edgesibfone by one in an order
that postpones compressing self-loops until only selpto@main to be compressed. (Recall that
a self-loop corresponds in the dual to cut-edges, so thiegponds in the dual to first deleting
only non-cut-edges.)

Let S; be the set of edgesof L, such that was not a self-loop when it was compressed,
and letZ; be the remaining edges &f. ThenG/S; is obtained fronG by contractingthe edges
of S;, andG/L; is obtained from/S; by compressing the edges bf. By Lemma 30, every
biconnected component 6f/.S; is a biconnected component@f L,. Since the branch-width of
a graph is at most 1 more than the maximum of the branch-wattis biconnected components
(assuming at least one such component has more than oneig¢éigws that that branch-width
of G/S; is at most one plus the branch-width@f L;. 0
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