JOURNAL OF ALGORITHMS 14, 331-343 (1993)

Parallelism, Preprocessing, and Reachability:
A Hybrid Algorithm for Directed Graphs*

Puicip N. KLEINT

Brown University, Providence, Rhode Island 02912
Received March 1989; accepted November 19, 1991

The problem of reachability in a directed graph has resisted attempts at efficient
parallelization. Only for fairly dense graphs can we efficiently achieve significant
parallel speedups, using known methods. We describe a technique allowing signifi-
cant parallel speedup even for moderately sparse graphs, following a sequential
preprocessing step in which a representation of the graph is created. « 1993
Academic Press, [nc.

1. INTRODUCTION

In this paper we demonstrate the usefulness of preprocessing a graph in
order to enable reachability queries to be processed quickly in parallel.
Parallel processing offers potentially vast improvements in computational
performance. However, in applying parallel processing to specific prob-
lems, we encounter a serious obstacle: for some problems, even the best of
known algorithms permit only a very small speedup in relation to the
number of processors used. That is, while potentially we can reduce the
time for solving a problem by a factor of p when p processors are used, in
fact the speedup factor may be closer to \/E or less. Indeed, for some

*A preliminary version of this paper has appeared in the Proceedings of the AMS-TMS-
SIAM Joint Summer Research Conference on Graphs and Algorithms, July 1987, published
as “Graphs and Algorithms™” (R. Bruce Richter, Ed.), Vol. 89 of the AMS Contemporary
Mathematics series.

"Author’s research supported by an ONR Graduate Fellowship, by AT&T Bell Laborato-
ries, and by Air Force Contract AFOSR-86-(00)78. Additional support provided by ONR
Grant N0OOQ14-88-K-0243 at Harvard University. Work done while author was at MIT and
subsequently at Harvard University.

331

0196-6774 /93 $5.00
Copyright © 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.

332 PHILIP N. KLEIN

problems, to achieve even a moderate speedup seems to require an
enormous number of processors.

In this paper, we propose a way of coping with the apparent limitations
of “pure” parallelism. We introduce the notion of a “hybrid” algorithm, in
which a sequential preprocessing stage prepares the way for fast parallel
processing of queries. We give such an algorithm for the problem of
directed reachability in a graph; our new algorithm makes use of a new
decomposition of a directed graph,

We define the directed reachability problem as follows: Let G be a
directed graph with n nodes and m arcs. For a given set .S of nodes of G,
find the set T of nodes reachable in G from nodes of §. We call § the set
of “sources,” and 7T the set of “targets.” While this problem has a simple
linear-time sequential solution (time O(m + n)), it has so far proved
difficult to parallelize efficiently.

This problem or closely related problems arise in connection with
diverse other problems. In artificial intelligence, a basic operation arising
in semantic network manipulation is identifying the lowest common ances-
tors of some nodes. In combinatorial optimization, finding an augmenting
path while solving a matching or flow problem is e¢ssentially finding a path
in a directed graph. In databases, handling recursive queries can be
reduced to finding paths between nodes in a directed graph,

Two approaches to the directed reachability problem are known, paral-
lel transitive closure and parallel breadth-first search. There is a parallel
algorithm for computing the transitive closure of G in O(log® n) time.
However, this algorithm seems to require about n* processors for all
practical purposes; while asymptotically better algorithms exist, the associ-
ated constants are huge. Moreover, even supposing the transitive closure
was already computed, merely reading enough of its entries to answer a
query requires (n*) operations. Hence this approach is not efficient in
comparison to the O(m + n) time sequential solution: very many proces-
sors are needed in relation to the speed-up achieved.

On the other hand, a parallel version of breadth-first traversal of the
graph G, starting at the nodes of §, can, over a sequence of stages,
identify all the reachable nodes. Initially, we mark the nodes in S. In each
stage, we consider the set of arcs leaving newly marked nodes, and mark
the nodes they enter, until the stage at which no additional nodes are
marked. The number of stages needed is Q(n) in the worst case,
so the use of parallelism cannot guarantce a speedup of more than
O((n + m)/n). Thus for moderately sparse graphs, this method fails to be
useful in the worst case.

We propose a two-part solution. First, the graph G is preprocessed
sequentially, and a representation of G is created. The representation
depends on the number p of processors we intend to use. Our technique

PREPROCESSING FOR DIGRAPH REACHABILITY 333

works only for values of p < (m/n)\/fn—. The preprocessing takes O(np)
time to build the representation. Once the representation exists, we can
use p processors to answer queries of the form “given sources S, find
targets T in O((n + m)/p) parallel time. The approach incorporates a
trade-off between speed of processing a query and compactness of the
representation of G. The storage required by the representation is O(n +
m + n’p/m), which is optimal when p < m?*/n®. The method for han-
dling a query is simple enough to be potentially quite practical.

For simplicity of presentation, we assume as our model of parallel
computation the CRCW P-RAM, in which we charge constant time for
concurrent reads and writes accessing a common random-access memory.
However, it is easy to achieve O(m /p) time when concurrent reads and
writes are disallowed, as long as p < (m /n log n)Vm .

1.1. Relation to Other Work

Our method relies on a compressed representation of a partially or-
dered set { poset) consisting of a small number of chains. This representa-
tion has been known since at least the work of Hiraguchi [5, 7] on the
dimension of a poset. Jagadish [6], in work done independently and
concurrently with ours, has rediscovered essentially this representation
and proposes its use in handling database queries. However, not every
poset can be decomposed into a small number of chains, and in the worst
case such a “compressed” representation is in fact no smaller than the
ordinary transitive closure, even for sparse graphs.

The key to our result is our observation that every poset can be
decomposed into a small number of chains and a small number of
antichains. We observe, furthermore, that a poset consisting of a small
number of antichains can be searched quickly in parallel. Thus it is by
balancing the use of two techniques, one for chains and one for antichains,
that we achieve our result.

A line of research that resembles ours in spirit but differs in the
problem considered, the techniques employed, and the result obtained is
that of Gambosi, Nesetfil, and Talamo [4). They describe technigues for
preprocessing a directed acyclic graph (dag) in order to facilitate sequen-
tially searching for a path between two given nodes. They characterize
dags by certain representability parameters and express the time required
to answer a path query using their method in terms of the length of the
path and the values of these parameters, For some special classes of dags,
the parameters are small and the algorithm performs well; in the worst
case, however, it is no better than using the transitive closure, even for
sparse graphs.

334 PHILIP N. KLEIN
2. PREPROCESSING

We assume henceforth for simplicity that the number m of arcs of G is
at least the number n of nodes, minus one. If m is less than #» — 1, the
underlying graph is disconnected, and we can independently consider each
connected component.

In this section, we describe our method for sequentially preprocessing
the graph. The time required for preprocessing is O(np), where p is the
number of processors to be used in answering queries.

2.1. Eliminating Cycles

First we reduce the problem to the case in which G is acyclic. Given any
directed graph G, we find the strongly connected components of G and
obtain a graph G from G by contracting each strongly connected compo-
nent to a node. The strongly connected components of & can be com-
puted in O(n + m) sequential time using an algorithm of Tarjan [9].

For any node v of G, let & denote the node of G corresponding to the
strongly connected component of G containing v. Now, given a set S of
sources in G, let s = {f: v € 8§} If T is the corresponding set of targets in
G,let T={v: & € T}. Then T is the set of targets corresponding to S in
the original graph G. The correctness of this reduction follows immedi-
ately from the definition of strongly connected components.

We therefore assume henceforth that G is a directed acyclic graph, or
dag. Hence G defines a partial order on its nodes, namely ¢ < w if w is
reachable from ov. Let £2(G) denote the partially ordered set (V(G), <)
that the dag G thus defines on its nodes.

2.2. The Antichain-Chain Decomposition

We review some terminology of partially ordered sets, or posets. For a
poset #= (V, <), the poset &' = (V', <')is a subposet of Z if V' C V
and for every pair of nodes v,w € V', we have v <'w iff v <w. A chain
is a set of nodes every two of which are related by < . The nodes in a
chain can be totally ordered: v < v, < ‘- < .. An antichain is a set of
nodes no two of which are related. A chain cover is a partition of the
nodes into chains; an antichain cover is a partition of the nodes into
antichains. Clearly, the size of any chain cover is at least the size of any
antichain, because each chain can cover at most one element of the
antichain. Similarly, the size of any antichain cover is at least the size of
any chain. In fact, we have the following theorem.

DiLworTH’s THEOREM (2. In any partially ordered set (poset), the size
of the smallest chain cover equals the size of the largest antichain.

PREPROCESSING FOR DIGRAPH REACHABILITY 335

The following theorem is well known. It appears, for example, as
Proposition 8.15 on page 398 of [1]. We include a proof because we must
implement the proof as part of the preprocessing.

DuaL ofF DiLworTH's THEOREM. In any poset &P, the size of the
smallest antichain cover equals the size of the largest chain.

Proof. For each node v, let the rank r(v) of v be the number of nodes
in the longest chain ending at v. Let k be the maximum rank of a node in
&, Then for each 1 < i < k, the set of nodes of rank { is an antichain, so
we have an antichain cover of size k. Since the size of any antichain cover
is at least the size of any chain, it follows that we have found a minimum-
size antichain cover and a maximum-size chain. 0O

An inductive characterization of rank for a poset Z(G) is as follows:
when all nodes of rank 1 through j are deleted, a remaining node is rank
j + 1 if and only if it now has no incoming arcs. This characterization
suggests a sequential algorithm that, given a dag G, finds the ranks of
PLG) in O(m + n) time.

The algorithm we give is slightly more general in that it handles any
subposet 92’ of F(G). We represent the subposet by assigning a flag
deleted [v] to each node v. The value of deleted [v] is false for each node
v in the subposet, and true otherwise. For notational convenience, add the
node L and the arcs (L, v) for each v in G, and set deleted[L] = false.
The algorithm is given in Fig. 1. It places all nodes of rank r in the list L,
and computes the maximum rank. The algorithm simultaneously con-
structs a table f[-] such that, for each node v of rank more than one, f[v]
is the penultimate node of a longest chain ending at ».

R1 Let Lg:= {1}, arnd let 7 := 0. For each n;)rdenz-r‘, rarssign to d[v] the indegree of ».

R2 Copy L :=L,.

R3 While L is not empty, remove a node v from L, and consider each arc (v, w) in turn.
Reduce d[w] by 1. If d[w] thereby becomes zero, then ...

v if deleted[v} = false

flv] if deleted[v] = true
R5 If deleted|w] = false, put w on the list L, 4y of rank r + 1 nodes. Otherwise, put w on
the list L.

R4 Set flw] := {

R6 U L,y is not empty, set r:= r+ 1, and go to step 2. Otherwise, r is the maximum rank.

Fic. 1. Algorithm for finding the ranks of nodes of a subposet &’ of £(G).

336 PHILIP N. KLEIN

To find a maximum-size chain, let k be the maximum rank, and let be
a node on the list L,. Then &, f{6], fIfI21,..., F¥7'[#] traces backwards
along a k-node path from a rank 1 node to .

The following corollary, which follows from either Dilworth’s theorem
or its dual, is the basis for our representation of dags:

CoroLLary 2.1. Forany 1 <s < n, an n-element poset can be decom-
posed into at most s chains, each of size |n/s), and at most [n/s| — 1
antichains.

Proof. If the poset has a chain of size [n /s], remove it. [terate this step
until ali remaining chains are of size less than [n/s], so, by the dual of
Dilworth’s theorem, the poset remaining has an antichain cover of size less
than [n/s]. Since each iteration removes [n/s] elements, at most s
iterations are needed. O

Derintrion. A decomposition of an r-element poset & into sets
&, €, ..., ¢, is called an antichain—chain decomposition if €,,..., €, are
chains of size at most [n/s], and & is the union of at most [n/s] — 1
antichains.

To preprocess a dag G, we let p be the desired number of processors
and we define the parameter s by s = (n — 1)p/m. By our assumption,
stated at the beginning of Section 2, m > n — 1, and so s < p. Next, we
find an antichain—-chain decomposition &7, €, ..., ¢, of the poset FP(G)
defined by G. To find such a decomposition, we implement the proof of
Corollary 2.1, using the procedure described above. Each iteration consists
of finding the ranks of the poset corresponding to the current graph (and
the table f[-]), and then identifying a chain of size [n /s| and deleting the
nodes in this chain. After at most s iterations, there is no chain of this
size. Thus the decomposition can be found in O(sm) sequential time. In
the next subsection, we discuss further processing of the subposet %’ of
A(G) induced on the node-set €, U -+ U £,

2.3. Processing of the Chains: The Earliest-Entry Table

Next we describe a table that facilitates reachability queries for a dag
whose poset has a small chain cover.

DEFINITION. A top element of a poset & is an element T that is
bigger than all other elements of the poset. For any poset & with a top
element T, for a chain &€ of &2, and for any node u of &2, we define u’s

PREPROCESSING FOR DIGRAPH REACHABILITY 337

earliest entry into € to be the minimum node x in €U {T} reachable
from . The minimum is well defined because €U { T} is a chain.

Given that u’s earliest entry into < is x, we can determine exactly
which nodes ¢ in the same chain € are reachable from x; namely, 1 is
reachable if and only if ¢ > x.

Earlier, we derived a poset Z(G) from the dag G, and decomposed
() into some antichains and s chains €,,..., €, of size at most [n /s].
Let & be the subposet of ?(G) induced by the union of the s chains.
That is, the elements of &?" are the elements of the s chains, and the
order relation of #’ is simply the order relation of %(G) restricted to
the elements of #?'. For notational convenience, add a top element T to
P’ Let ' =1 + L€ be the number of elements of ",

To preprocess &', we compute an »’ X s table R[-,] that is a
generalization of the transitive closure of G'. For each element u of &',
and each i € {l,...,s}, let Rlu,i] be u’s earliest entry into €. We call
this table the earliest-entry table. 1t requires O(n's) storage.

We also compute two n’-element tables: we let chain{u] be the index j
of the chain €, in which u appears, and we let rank[u] be the rank of 1 in
that chain. Let rank{ T] = #'.

The earliest-entry table R[-, -], chain table chain[-], and rank table
rank[-] can be used to determine reachability between any two nodes u
and w of &’. Namely, u < w if and only if rank(x) < rank(w), where
x = Rlu, chain(w)]}.

The above approach to representing reachability is derived directly from
a theorem in the dimension theory of posets stating that a poset with
largest antichain of size w has dimension at most ». Dimension theory is
concerned with the compactness of representation of a poset as the
intersection of total orders. See [7] for a survey. Also, Jagadish [6]
independently considered the use of a Dilworth decomposition for more
efficiently computing and more compactly representing the transitive
closure of a directed graph, specifically in application to handling recur-
sive database queries.

The tables chain{-] and rank{] can easily be computed from the chain
decomposition of &', For each node w of G that does not appear in the
chain decomposition, let chain{w] = 0. We next observe that the earliest-
entry table can be computed in O(sm) sequential time. In particular, for
each chain ¢, we show how in O(m) time one can compute all the entries
Rlv,] of the table for v € ¢, 1 <i <s. To do this, we avoid explicitly
computing the poset 9?’, and instead we work directly from the dag G.

Suppose the chain v’j consisted of a single node u. We could use, say,
directed depth-first traversal of the dag G rooted at u to identify all the
nodes ¢ of G reachable from «. We maintain an s-clement table gl -],

338 PHILIP N. KLEIN

i Initially, unmark all nodes, and set Rfug 1. i] = T fori=1,...,s.
2 Foré =k k-1,.... 1, do

3 Initialize p[i]:= Rlvegr 1] fori=1... (s

4 Call the recursive procedure V{STT(vy).
|15 Copy Riw, i) :=plilfori=1,.... s,
5 py Rlwe i) := pli]

Fii. 2. The algorithm Process-Cuain for filling out the earliest-entry table.

initialized to T . Whenever we visit a node ¢ such that chainle] =i # 0,
we compare rank{¢] to rank[p[{]]; if it is less, we set p[i] := 0. When the
traversal is finished, p[-] will be the minimum node of ¢, U { T} reachable
from u.

To achieve O(m) time, depth-first search marks each node as it visits it,
and avoids visiting a node that has previously been marked. Thus it avoids
redundant search. To process a chain ¢, = (v, < v, < -+ <.} consist-
ing of more than one nodc, we imitate this idea. We start with a
depth-first traversal rooted at v,, and visit all nodes reachable from ¢,
maintaining our table p[-]. Next, we continue by performing a depth-first
traversal rooted at v, | without first removing the marks placed on nodes
by the first depth-first traversal. Thus in the second traversal we avoid
visiting nodes already visited in the first. Since v, is reachable from v, _,,
every node visited in the first traversal is reachable from v, _,. The
information we need about these nodes is conveniently summarized in the
table pl-], so there is no reason to visit them again. The process continues
in this fashion, considering the nodes of the chain {fj in reverse order.

We now give a more formal description. Let €, be the chain v, <
< v,. For notational convenience, let v, ., denote T . The algorithm for
processing the chain ¢ appears in Fig. 2. The subroutine Visit(¢) is
shown in Fig. 3.

The time required by the above algorithm is dominated by the time for
step 4. Use of the marks to truncate the depth-first search ensures that no

V1 Mark » as having been visited.
V2 If chain(v) = i # 0 and rank[v] < rank[p(i]], then set p[¢] := v.

V3 For each outgoing arc (v, w), if w is not already marked, call VisiT(w).

Fic. 3. The recursive subroutine Visit(¢') for visiting reachable nodes.

PREPROCESSING FOR DIGRAPH REACHABILITY 339

arc is explored more than once during the execution of the above proce-
dure. Hence the total time spent in step 4 is O(m).

We now consider correctness of the procedure. For i =k, k —1,...,1,
let W, be the set of nodes w visited during iteration i of step 4. (Let
W, ={ThH. It can be shown by a simple backwards induction on
[<k + 1 that the set of nodes reachable from v, is W, U W, , U --- U
W, ..and thatfori = 1,...,s, Rlv,, i]is the minimum node w in ¢, U { T}
reachable from v,

3. ANSWERING A QUERY

3.1. Using the Earliest-Entry Table

In this section, we give a parallel method for answering a reachability
query for a poset with a small chain cover, using the earliest-entry table
defined in Subsection 2.3. In particular, we consider the poset &’ with a
chain cover consisting of s chains &, ..., €, of size at most [n /s].

Consider a single chain ¢, and a subset § of the nodes of ¢,. The
nodes of ¢, reachable from nodes in S are exactly the nodes v > x,
where x is the minimum node in §. Thus for purposes of reachability, we
may as well replace the entire set § with the single node x.

More generally, suppose S is a subset of the nodes of chains £,..., €.
Let x, be the minimum node in SN & for i = 1,...,s. We may as well
replace the set § with the s-element set {x,,..., x,}. Since each chain &

has size at most [n/s], the node x; can easily be found in O(n/s) time by
scanning up the chain ¢, in order until a node of § is encountered. Hence
the set {x,,..., x,} can be found in O(n/s) time using p > s Processors.

Now for each chain &), the minimum node y, reachable from any of the
nodes x,,..., x, is just the minimum of the earliest entries of x,..., x,
into €. That is, using the earliest-entry table, we have y; = min{R[x,, jI:
i=1,...,s}. We can find the minimum in each chain ¢ in a two-step
process. First we mark all the earliest entries of nodes x, into chains ¢.
Since there are s’ pairs (x;,), this step requires a total of O(s?)
operations. We evenly divide the set of such pairs among the p processors
and let each processor be responsible for [s?/p] marking operations.

In the second step, we scan up each chain € until a marked node is
encountered; the first marked node encountered in ¢ is designated y,.
Since each chain has O(n/s) elements, scanning a single chain takes
O(n/s) time. In order that the scans all take place in parallel, we first
assign each chain to a processor; since s < p, enough processors are
available. In summary, the set {y,,..., y,} can be found in O(s%/p + n/s)
time using p processors.

340 PHILIP N. KLEIN

Finally, to find the set T, of all reachable nodes in the chain €, we let
T; be the set of nodes in the chain that have rank at least that of y,. These
nodes can be marked by yet another scan up the chain (starting at yi)
taking O(n/s) time. The set T=T, U --- U T, of all reachable nodes
can be determined in O(n/s) time using p processors.

The total time for the above procedure is O(s?/p + n/s) using p
processors. We now consider correctness. Suppose ¢ € ¢, is a node of §
and a node w € ¢, is reachable from v. By definition of x,, x; < v. Since
v < w, certainly x, < w, so x/s carliest entry R[x,, j] into ¢ is < w.
Hence the minimum earliest entry y; is < w, so w € T,. This argument
shows that T contains all nodes reachable from nodes in S.

3.2. Solving the Directed Reachability Problem on a Union
of Antichains

In Subsection 2.2 we showed that the nodes of a dag G could be
decomposed into a set .27 and a poset %’ such that o7 consists of at most
n/s antichains, and the poset &' consists of at most s chains. In
Subsection 3.1, we described a parallel solution to the directed reachabil-
ity problem for &#’. In this section, we consider the same problem as
applied to the subgraph G of G induced by &7.

Observe that a directed path cannot contain two nodes in a single
aptichain. Since G consists of at most /s antichains, any directed path in
G contains at most n /s nodes. Recall the method of “parallel breadth-first
search” sketched in the introduction: start by marking the nodes in S; in
each stage, consider the arcs leaving qewly marked nodes and mark the
nodes they enter. If there is a path in G from x to y, the path contains at
most n/s nodes, so n/s stages of parallel breadth-first search are suffi-
cient to identify all reachable nodes.

Let m,; be the number of arcs considered in stage ¢, for i = 1,...,n/s.
Each arc is considered at most once (immediately after the node it leaves
has been marked), so ¥.m, is no more than m, the number of arcs in G.
The number of operations needed to carry out stage i is O(m,). With p
processors available, therefore, stage i can be carried out in O(m,/p)
time. Summing over all stages yields O(m/p + n/s) parallel time to solve
the directed reachability problem on G.

One might object that the above analysis has omitted the time to assign
arcs to processors in a way that balances the work. In fact, we can carry
out such load-balancing during the preprocessing. Using the notion of
ranks outlined in Subsection 2.2, we can choose an assignment of arcs to
processors that will work regardless of the choice of S. I describe this
assignment below. The key to the assignment is the following property of

PREPROCESSING FOR DIGRAPH REACHABILITY 341

partitioning into ranks: if a rank ¢/ node is reachable from another node, it
is reachable via a path of length at most .

Let M, be the set of arcs leaving nodesof rank i, fori = 1,...,n/s — 1.
During preprocessing, we evenly divide up the arcs of M, among the p
processors, for each i. Now to answer a query, we first mark the nodes of
S and then carry out a modified version of breadth-first search in which, in
stage i, we consider the set M, of arcs. Each processor considers one by
one the arcs of M, assigned to it; for each such arc, the processor marks
the arc’s head if the arc’s tail is already marked. It 1s easy to verify that,
after stage I, the set of marked nodes consists of nodes of §, together with

all nodes of rank < i reachable from nodes of §.

3.3. Combining the Techniques

In this subsection, we observe that the techniques used in Subsections
3.1 and 3.2 may be combined to yield a solution for the dag . Suppose we
have found an antichain—chain decomposition A4, ¢,,..., ¢ of G as
described in Subsection 2.2, we have preprocessed the poset &' induced
by the chains, forming the earliest-entry table, and we have preprocessed
the graph ¢ induced on the antichains &, choosing an assignment of arcs
to processors.

Suppose we are given a set § of sources to process. We write § =
S U 859 where §° consists of “antichain’ nodes, i.e., nodes in &7, and S°¢
consists of “chain nodes,” nodes appearing in some ¢,. The algorithm
consists of an “antichain’ step, a “chain” step, and a final “antichain”
step, with transitional steps in between:

Step 1 (antichain step). Apply the technique of Subsection 3.2 to find
the set T, of nodes reachable from §“ via paths entirely in G.

Step 2 (transitional step). Consider the set of arcs from antichain
nodes to chain nodes, marking each chain node that is the head of an arc
whose tail is an antichain node in 7. Let §’ be the set of chain nodes thus
marked.

Step 3 (chain step). Apply the technique of Subsection 3.1 to find the
set T, of nodes reachable from S U S (e, T, ={v € ¥ u < for
some u € §° U S’}

Step 4 (transitional step). Consider the set of arcs from chain nodes to
antichain nodes, marking each antichain node that is the head of an arc
whose tail is a chain node in T,. Let $” be the set of antichain nodes thus
marked.

Step 5 (antichain step). Apply the technique of Subsection 3.2 to §7,
yielding a set T, of antichain nodes. We returntheset T =7, U T, U T;.

342 PHILIP N. KLEIN

We now consider the correctness of the above procedure for computing
the set T of targets from the given set S of sources. It is easy to see that
every node in T is in fact reachable from a node in S. To see that every
reachable node w 1s in 7, let v,v,...v, = w be any directed path in G,
where v, belongs to $. If this path consists entirely of nodes of &7, then w
is in T,. Suppose therefore that the path contains at least one node not in
&, let v; be the first such node, and let v; be the last. If i = 1 then
v, € 8. 1f i > 1 then v,_, € T, after step 1, so v, € §' after step 2. In
either case v; € §° U §". Since v; < v; in the poset &’ induced on the
chain nodes, we have that v; € T, after step 3. If v; = w, we are done;
otherwise, step 4 ensures that v;,; € §”, and hence step 5 ensures that
weT,.

Next we consider the complexity of the procedure. Steps 1 and 5 take
O(m/p + n/s) time using p processors. Each of steps 2 and 4 is essen-
tially a single stage of parallel breadth-first search and hence takes
O(m /p) time. Step 3 takes O(n/s + s2/p) time using p Pprocessors.
(Recall that p > s.) Hence the procedure takes O(m/p + n/s + s*/p)
time using p processors.

In order that the procedure take time Q(m /p), we need to choose s so
that n/s = O(m/p) and s? < m. We can achieve this when p < m'”/n
by choosing s = (n — 1)p/m. With this valid of s, the storage needed for
the results of preprocessing is O(m + ns), or equivalently O(m + np/m),
which is optimal when p < (m/n)*.

We evidently have a greater range of choice for our speedup p when
the graph is denser. This is not surprising; both of the algorithms de-
scribed in the Introduction, computing transitive closure and parallel
breadth-first search, make better use of parallelism when the input graph
is very dense. In contrast to these two algorithms, however, our algorithm
can achieve optimal speedup of O(yn) no matter how sparse the graphs
(although for very sparse graphs, the storage is not optimal). Moreover, for
even moderately sparse graphs, say m = n'?, we can achieve optimal
speedup by a factor of = n**—and optimal storage as well if the speedup
is no more than n®.

4. CoNncLUDING REMARKS

We have presented a method for representing a directed graph in a way
that permits fast parallel answers to reachability queries. Preprocessing is
proposed as a way of coping with our current inability to efficiently solve
the general, unpreprocessed problem in parallel.

The method can be extended to handle reachability in a graph slightly
different from the original, preprocessed graph G. That is, given a set § of

PREPROCESSING FOR DIGRAPH REACHABILITY 343

sources, a set E of arcs to be added, and a set F of arcs to be removed, we
can in O(m /p + |E| + |F)) parallel time find the set T of nodes reachable
from nodes of § in the graph G U E — F.

This extension to handling a slightly modified graph suggests the follow-
ing open question: can updates to the graph representation be efficiently
carried out in parallel? That is, can the representation be dynamically
modified?

We have presented a hybrid algorithm for the directed reachability
problem. Hybrid algorithms may exist for other problems as well. One
candidate is 0-1 node-weighted matching: Given a graph G and a subset
S of its nodes, find a matching in & that saturates as many of the nodes of
S as possible. We observe that using the Gallai-Edmonds Structure
Theorem, one can reduce the problem to the special case in which G 1s
bipartite and has positive surplus [8].

ACKNOWLEDGMENTS

Thanks to David Shmoys for advising me during this research. Thanks to Ramesh Patil for
suggesting the problem. Thanks to Mike Saks for noting that Corollary 2.1, which was
originally proved using Dilworth’s theorem, could be proved using the dual of Dilworth’s
theorem. thereby simplifving the preprocessing. Thanks to Bruce Maggs for a helpful
discussion.

REFERENCES

—

. M. AeneR, “Combinatorial Theory,” Springer-Verlag, New York, 1979,
. R. P. Duworti, A decomposition theorem for partially ordered sets, Ann. of Math. 51
(1950), 161-166.

3. L. R. Forp, Jr. ann D. R, FuLkerson, “Flows in Networks,” Princeton Univ. Press,
Princeton, NJ, 1962.

4, G. Gamiosy, J. NeserRu., anp M. Tavramo, Posets, Boolean representations, and quick
path searching, in “Proceedings, ICALP 87" (T. Ottman, Ed.), Lecture Notes in Com-
puter Science, Vol. 267, pp. 404-424, Springer-Veriag, New York, 1987

3. Hiracucti, On the dimension of orders, Sci. Rep. Kanazawa Unic. 4 (1955), 1-20.

6. H. V. Jacapish, A compressed transitive closure technique for efficient fixed-point query
processing, manuscript, AT&T Bell Labs, Murray Hill, NJ, 1987.

7. D. KeLLy anp W, T. TroTTER, Dimension theory for posets, in “Ordered Sets: Proceed-
ings of the NATO Advanced Study Institute held at Banff, Canada, 1981”
(1. Rival, Ed.), pp. 171-211, Reidel, Boston, 1982.

8. L. LovAsz anp M. D. PLummer, “Matching Theory,” Akad. Kiado, Budapest, 1986.

9. R. Tarian, Depth-first search and linear graph algorithms, SIAM J. Comput. 1, No. 2

(1972), t46-160.

(%)

