
An O(n log n) algorithm for maximum st-flow in a directed planar

graph

Glencora Borradaile∗ and Philip Klein

April 14, 2006

Abstract: We give the first correct O(n log n) algorithm for finding a maximum st-flow in a
directed planar graph. After a preprocessing step that consists in finding single-source shortest-
path distances in the dual, the algorithm consists of repeatedly saturating the leftmost residual
s-to-t path.

∗Partially supported by an NSERC PGS-D Fellowship

1

1 Introduction

The study of maximum st-flow in planar graphs has a long history. In 1957, Berge [3] described the uppermost-
path algorithm, which solves the problem in the special case where the source s and the sink t are adjacent
in the planar graph. (Such a graph is called an st-planar graph.) The algorithm repeatedly pushed flow
along the uppermost residual s-to-t path. This algorithm has the property that no flow is ever removed
from an arc. Since each augmentation makes at least one arc non-residual, the algorithm requires at most
m augmentations, where m is the number of arcs.

In 1979, Itai and Shiloach [14] showed that each iteration of the uppermost path algorithm could be
implemented in O(log n) time, where n is the number of nodes. Consequently, the algorithm can be carried
out in O(n log n) time (using the fact that a simple planar graph with n nodes has at most 3n arcs).

In 1991, Hassin demonstrated that a maximum st-flow in an st-planar graph G could be derived from
shortest-path distances in the planar dual G∗ of G where lengths in G∗ correspond to capacities in G. With
this insight, it can be seen that the uppermost-path algorithm can be interpreted in the planar dual as
Dijkstra’s algorithm. The fact that the uppermost path algorithm can be implemented to run in O(n log n)
time corresponds to the observation, due to Johnson [15], that Dijkstra’s algorithm could be implemented
to run in O(n log n) time by using a priority queue.

Frederickson showed later that shortest-path distances in a planar graph with nonnegative lengths could
be computed in O(n

√
log n) time, and Henzinger et al. [12] showed subsequently that the same problem could

be solved in O(n) time; combining this with Hassin’s result yields an O(n)-time algorithm for maximum
st-flow in st-planar graphs.

There remained, however, the more general and more natural problem of st-flow in a planar graph in
which s and t need not be adjacent. In 1983, Reif [18] showed that the value of the maximum st-flow
could be found in O(n log2 n) time for the special case of undirected planar graphs. In 1985, Hassin and
Johnson [10] draw on Reif’s technique to show that the flow assignment could also be found within the same
time bound, again for undirected planar graphs. The result of Henzinger et al. can be used to reimplement
these algorithms in O(n log n) time.

Still the general problem of st-flow in a planar directed graph remained open.1 In 1982, Johnson and
Venkatesan gave a divide-and-conquer algorithm that takes O(n

√
n log n). In 1989, Miller and Naor [17]

showed that the problem could be reduced to computing shortest-path distances in a graph with positive
and negatives lengths. In 1994, Henzinger et al. gave an algorithm for this problem that yielded a bound of
O(n4/3 log n log C) for max st-flow, where C is the sum of capacities. In 2001, Fakcharoenphol and Rao [6]
presented a sub-quadratic algorithm for computing shortest-path distances in a graph with positive and
negatives lengths. Combining this with Miller and Naor’s reduction implies an O(n log4 n) algorithm for
st-flow in a planar directed graph.

1.1 Weihe’s algorithm

Finally, eleven years ago, in a signature accomplishment, Weihe [22] published an O(n log n) algorithm for
planar directed maximum st-flow. It was a tour de force. The proof of correctness is quite complicated and
subtle. The algorithm, though clearly inspired by the uppermost-path algorithm, is also quite complicated.
There is a preprocessing step in which the input graph is transformed into one of a special form, one satisfying
the following three requirements.
1: Each node but the source and sink has degree exactly three;

2: there are no clockwise cycles; and

3: for each arc uv, there is a simple s-to-v path and a simple u-to-t path, both using the arc uv.
Satisfying Requirement 1 involves (i) splicing together every two successive arcs sharing an endpoint of degree
one, and (ii) replacing each node of high degree by a cycle, increasing the number of nodes to 2m, which is
at most 6n. Requirement 2 can be satisfied in O(m log n) time by using a reduction of Khuller, Naor, and
Klein [16] to computing shortest-path distances in the dual.2

1The problem of maximum st-flow in an undirected graph can be reduced to the same problem in a directed graph.
2The bound of O(m log n) comes from Dijkstra’s algorithm. The bound can be improved to O(m) time using the algorithm

of Henzinger et al. [12].

2

Requirement 3 is problematic. As Weihe points out, any arc not satisfying this requirement is useless
for st-flow, and can therefore be deleted. However, as pointed out by Biedl, Brjova, and Vinar, [4] there
is no known O(m log n)-time algorithm to delete all such arcs. They give an O(m log n)-time algorithm to
find the set of arcs for which Requirement 3 fails, but, as they point out, deleting all such arcs does not
achieve Requirement 3. In fact, they show that Ω(n) phases of deletion can be necessary. It appears that
the preprocessing step of Weihe’s algorithm therefore requires Ω(n2 log n) time using known methods.

1.2 The new result

In this paper, we give an O(n log n)-time algorithm for max st-flow in planar directed graphs. The only
relevant requirement is Requirement 2. The max-flow algorithm itself is conceptually quite simple, and is
arguably the right generalization of the uppermost-path algorithm. Here is an abstract description of our
algorithm (after preprocessing).

repeatedly augment the flow by saturating the leftmost residual s-to-t path until no such path
remains.

The correctness of this algorithm follows directly from traditional maximum-flow theory (an st-flow is
maximum if there remains no residual s-to-t path). We show that there are at most 3m iterations. We show,
furthermore, that each iteration can be implemented in O(log n) time.

In Section 2, we describe the algorithm in more detail and prove some invariants. In Section 3, we
state Theorem 3.2 and show that it implies the bound on the number of iterations. In Section 4, we prove
Theorem 3.2. In Section 5, we give the notation and terminology used throughout the paper.

2 Algorithm

Our algorithm for finding the maximum st-flow in a planar embedded graph Ginput with positive capacities
cinput is as follows:

Main algorithm:
Designate some face with t on its boundary as the infinite face, denoted f∞.
Find a circulation in Ginput with respect to which the residual graph G0 has no clockwise cycles.
Return maxflow(G0, c0, s, t).

The second step is carried out as follows [16]: in the dual graph G∗
input, interpret capacities cinput(d) as lengths

of darts, and use, e.g., Dijkstra’s algorithm to compute shortest-path distances from f∞. For each face f , let
φ[f] be the f∞-to-fdistance. Define a circulation η as follows: for each dart d, define η[d] = φ[fL] − φ[fR],
where fL and fR are the faces to the left and right of d (as you travel along d).

Next the arc set of G0 is defined as follows: for each arc a of Ginput, if η[a] = c(a) then add rev(a) as an
arc of G0, else add a itself. The capacities c(d) are defined by c(d) = cinput(d) − η[d].

In what follows, arc always refers to an arc of G0, anti-arc refers to a dart whose reverse is an arc, and
dart can be either. We use rev(d) or rev(P) to denote the reverse of a dart d or path P . We use ◦ to denote
path concatenation.

The procedure maxflow takes a planar graph G0 with no clockwise cycles such that t is on the boundary
of the infinite face. We start with an abstract description of maxflow:

Abstract version of maxflow(G0, c, s, t):
initialize f to be the st-flow of value zero.
while there is an s-to-t path that is residual with respect to f ,

saturate the leftmost such path, modifying f .
return f .

The correctness of the algorithm follows from a well-known max-flow result, that an st-flow f is maximum
iff there is no s-to-t path that is residual with respect to f . For the sake of bounding the running time, we
next give a implementation of maxflow(G0, c, s, t) as a kind of network-simplex algorithm. (Later in this
section we show that the implementation indeed implements the abstract version.) The algorithm maintains

3

a spanning tree T of the graph and the corresponding dual spanning tree T ∗. We use T [v] to refer to the
v-to-root path in T .

Implementation of maxflow(G0, c, s, t):
1 initialize f to be the st-flow of value zero.
2 initialize T to be the right-first search tree searching backwards from t.
3 let G be the graph obtained from G0 by deleting all nodes not in T .
4 initialize T ∗ to consist of the set of arcs of G not in T .
4 repeat
5 if T [s] is residual then saturate T [s], modifying f .
6 let d be the last nonresidual dart in T [s].
7 if headG∗(rev(d)) is a descendent in T ∗ of tailG∗(rev(d)) then return f .
8 let e be the parent dart in T ∗ of tailG∗(rev(d)).
9 eject e from T ∗ and insert rev(d) into T ∗.
10 eject d from T and insert e into T .

Right-first search [19] in Step 2 constructs a tree T spanning every node v that can reach t in G0, and the
path T [v] is the leftmost v-to-t path in G0. The primal tree T is represented using a dynamic tree data
structure [1, 2, 7, 20, 21], enabling Steps 5, 6, and 10 to be implemented to run in O(log n) time. The dual
tree T ∗ is represented by an Euler-tour tree data structure [13], so Steps 7, 8 and 9 can be implemented in
O(log n) time.

We refer to an iteration as a pivot step. To show that maxflow(G0, c, s, t) takes O(m log n) time, we
show that there are at most 3m pivot steps. It therefore follows that the algorithm runs in O(m log n) time.

Invariant 2.1. For every arc a, exactly one of a and rev(a) is in exactly one of T and T ∗.

Proof that the algorithm maintains the invariant: Steps 2 and 3 establish the invariant, and Steps 9 and 10
preserve it.

Invariant 2.2. T ∗ is a rooted tree whose darts are all oriented towards the root f∞.

Proof that the algorithm maintains the invariant: First we show that the invariant holds initially. It follows
from a classical result on planar graphs that, disregarding orientations, T ∗ is a spanning tree. Now we
consider orientations. Let a be any arc not in T . By construction of T , the path of arcs a ◦ T [headG(a)]
is right of T [tailG(a)]. Let z be the least common ancestor in T of headG(a) and tailG(a). Let C =
a ◦ T [headG(a), z] ◦ rev(T [tailG(a), z]). C is a simple c.c.w. cycle. The face to the left of a is enclosed by C
and the face to the right is not. a is directed out of C in G∗. Since a is the only arc on the boundary of C
that is not in T and f∞ is not enclosed by C, a points towards f∞ in T ∗.

Next, note that, in each nonterminating pivot step, headG∗(rev(d)) is not a descendent in T ∗ of tailG∗(rev(d)),
so Step 9 preserves the invariant.

Invariant 2.3. Darts in T ∗ are residual and their reverses are nonresidual.

Proof that the algorithm maintains the invariant: By construction of G0, all arc capacities are positive. Ini-
tially f is the all-zeroes st-flow, so arcs are residual and anti-arcs are nonresidual. Since T ∗ initially consists
of arcs, this shows the invariant holds initially.

In Step 6, the dart d is nonresidual so rev(d) is residual. Therefore the insertion of rev(d) into T ∗ in
Step 9 preserves the invariant.

Say a dart d is a non-tree dart if d 6∈ T and rev(d) 6∈ T .

Lemma 2.4. There is no clockwise simple cycle whose non-tree darts are residual.

Proof. Suppose for a contradiction that C was such a cycle. Let S be the set of non-tree darts in C. By
Invariant 2.1, for every dart d ∈ S, the tree T ∗ contains either d or rev(d). Since every dart in S is residual,
Invariant 2.3 implies that T ∗ contains every dart in S and the reverse of no dart in S. Since C is clockwise,
headG∗(d) is enclosed by C for every dart d in C. Since T is a tree, S contains at least one dart d. The path
T ∗[headG∗(d)] cannot exit from C but ends at f∞, a contradiction.

4

We show in the next two corollaries that the network-simplex version of maxflow implements the
abstract version.

Corollary 2.5. For every node v, there is no residual path strictly left of T [v].

Proof. Suppose P is a simple v-to-t residual path that is strictly left of T [v]. Then the cycle-space vector
δ(P)− δ(T [v]) is clockwise and nonzero. Hence it has an outermost cycle Co that is clockwise, contradicting
Lemma 2.4.

Corollary 2.6. The st-flow f returned by the algorithm is maximum.

Proof. When the algorithm terminates in Step 7, headG∗(rev(d)) is a descendent in T ∗ of tailG∗(rev(d)).
Let C be the reverse of the simple cycle formed by rev(d) with the path in T ∗ from headG∗(rev(d)) to
tailG∗(rev(d)). In the primal G, the darts of C form a directed cut Γ+

G(S). Every dart in C except d is a
non-tree dart, so the headG(d)-to-t path in T ∗ does not use any dart in C or the reverse of any dart in C.
This shows that S does not contain t. Originally there was a residual path from every node in G to t, so the
net flow across Γ+

G(S) is positive. Hence S contains s. Since every dart comprising the cut is nonresidual,
there is no residual s-to-t path.

3 Analysis

We now show that there are at most 3m pivot steps in the maxflow algorithm.

Lemma 3.1. A dart is residual when inserted into T .

Proof. Let d be the rootmost nonresidual dart in T [s]. Let e be the edge chosen by the pivot step and let b
be the corresponding dart in T ∗.

Let h = tailG∗(b). We also have that h = tailG∗(rev(d)). Let z be the least common ancestor of head(b)
and tail(b) in T . C = b ◦ T [head(b), z] ◦ rev(T [tail(b), z]) is a simple cycle. Since b is the only nontree dart
of C and since C cannot enclose f∞, C encloses h. It follows that d is in T [tail(b), z]: T [head(b), z] is not
altered by the pivot step, so b will be a dart in T after pivoting. By Invariant 2.2, b is residual.

Let d be a dart. We now have the following facts with regards to the maxflow algorithm:
Fact 1: If d is residual at time i and non-residual at time j, there was an augmentation including d at some

time between i and j.

Fact 2: If d is non-residual at time i and residual at time j, there was an augmentation including rev(d) at
some time between i and j.

Fact 3: d is residual when it is inserted into T .

Fact 4: d is non-residual when it is ejected from T .
In Section 4 we will prove the following theorem:

Theorem 3.2. If arc a belongs to an augmentation at time i and dart rev(a) belongs to an augmentation
at time j (j > i), then arc a cannot belong to an augmentation at any time after j.

Claim 3.3. An arc is ejected at most once.

Proof. Let a be an arc. a is residual at time 0. Suppose for a contradiction that a is ejected at time i1 and
at time i2 (i1 < i2).

To be ejected at time i1, it must be non-residual by Fact 4. Fact 1 implies that there was an augmentation
including a at some time k0 where 0 < k0 < i1.

To be ejected at time i2, a must have been inserted at some time j1 where i1 < j1 < i2. At time j1,
a is residual by Fact 3. By Fact 2, there was an augmentation including rev(a) at some time k1 where
i1 < k1 < j1.

Since there was an augmentation including d at time k0 and there was an augmentation including rev(a)
at time k1 > k0, a cannot be augmented after time k1 by Theorem 3.2.

Finally, to be ejected at time i2, a must be non-residual by Fact 4. By Fact 2 there was an augmentation
including d at some time k2 where j1 < k2 < i2. But a cannot be augmented after time k1. This is a
contradiction.

5

Corollary 3.4. An anti-arc is ejected at most twice.

Proof. Let d be the reverse of arc a. d is non-residual at time 0.
Suppose d is ejected at times i1 and i2. d must be inserted at time i1 < j1 < i2. By Fact 4, d is

non-residual at time i1 and by Fact 3, d is residual at time j1. By Fact 2, a must be part of an augmentation
at some time k1 where i1 < k1 < j1.

Likewise, by Fact 4, d is non-residual at time i2 and by Fact 1 d must be augmented at time k2 where
j1 < k2 < i2.

At time i2, d is out of the tree and non-residual. Since a cannot be augmented after time k2 by Claim 3.3,
d can never become residual again and so cannot be inserted or ejected again.

As a consequence of the above, we have the following theorem:

Theorem 3.5. There are at most 3m pivot steps in the maxflow algorithm.

4 Unusable Arcs

Corollary 4.1. The flow is acyclic.

Proof. If there is a clockwise flow cycle, the residual graph has a clockwise cycle of arcs, contradicting the
definition of G0. If there is a counterclockwise flow cycle, the cycle is clockwise residual, contradicting
Lemma 2.4.

Lemma 4.2 (Prohibited augmentations). The following situations are not permitted if A is a leftmost
augmentation and the given node indices are well-defined:
1: A[x, y] is right of a residual path R[x, y].

2: A[x, y] makes a clockwise cycle with residual path R[y, x].

3: A has a dart that enters a t-to-s residual path R from the right.

Proof. We prove each part separately.
1: A[s, x]◦R[x, y]◦A[y, t] is left of A. This contradicts the requirement that A is the leftmost residual path.

2: This contradicts Lemma 2.4.

3: Suppose uv is an edge of a leftmost augmentation path and suppose uv enters a t-to-s residual path R
from the right. As such, uv /∈ R and rev(uv) /∈ R. A[s, u] must intersect R at some node: certainly A[s, u]
intersects R at s. Let x be the last intersection of A[s, u] with R. Either x ∈ R(t, v) or x ∈ R(v, s]. If
x ∈ R(v, s], then A[x, v] ◦R[v, x] is a clockwise residual cycle. If x ∈ R(t, v) then R[x, v] is a residual path
that is left of A[x, v], violating the property that A is leftmost: A[s, x] ◦ R[x, v] ◦ A[v, t] is residual and is
left of A.

Definition 4.3 (Unusable Arc). An unusability witness cycle is a clockwise non-self-crossing cycle L ◦M
where L is residual and M consists entirely of arcs. We say it is an unusability witness cycle for an arc a if
a is the first dart of L. We say an arc a is unusable if there is an unusability witness cycle for a.

Lemma 4.4. Any unusability witness cycle for a can be written as Q1 ◦ Q2 ◦ R where
1: Q1 ◦ Q2 consists entirely of arcs,

2: Q2 ◦ R is residual, ,

3: a is the first arc of Q2,

4: there is flow through start(R), and

5: there is flow through end(R).

Proof. Let L ◦ M be the unusability witness cycle for a. Since G0 has no clockwise cycles, L ◦ M cannot
consist entirely of arcs. Let b be the first anti-arc of L. By Lemma 2.4, L ◦ M cannot consist entirely of
residual darts. Let c be the first nonresidual arc of M .

Let Q1 = M [tail(c), ·], let Q2 = L[·, tail(b)], and let R = L[tail(b), ·] ◦ M [·, tail(c)]. By choice of b,
L[·, tail(b)] consists entirely of arcs, so property 1 holds. By choice of c, M [·, tail(c)] is residual, so property 2
holds. Since a is the first dart of L, property 3 holds. Since b is a residual anti-arc, rev(b) carries flow, so
property 4 holds. Since c is a nonresidual arc, it carries flow, so property 5 holds.

6

Definition 4.5. For an unusable arc a, let ∆a denote the unusability witness cycle for a that encloses the
minimum number of faces (breaking ties arbitrarily). Write ∆a as Q1

a ◦Q2
a ◦Ra, and let Qa denote Q1

a ◦Q2
a.

Refer to Figure 2 for an illustration of the relation between Definitions 4.3 and 4.5.

Property 4.6. Suppose a is unusable. There is no residual path from a node in Q2
a(·, ·] to a node in Q2

that is enclosed by ∆a.

Proof. Assume for a contradiction that W is such a residual α-to-β path. Then W ◦ Q1[end(W), ·] ◦
Q2[·, start(W)] is an unusability witness cycle for a that encloses fewer faces than ∆a does.

Property 4.7. Suppose a is unusable. Q2
a belongs to a t-to-s residual path.

Proof. Since ∆a is a clockwise cycle, it cannot be residual, so Q1
a cannot be residual. Let b be the last

non-residual dart of Q1
a. b carries flow. Let Ft be any head(b)-to-t flow path and let Fs be any s-to-start(Ra)

flow path. rev(Ft) ◦ Q1
a[head(b), ·] ◦ Q2

a ◦ rev(Fs) is a residual t-to-s path.

Property 4.8. There are no flow paths enclosed by ∆a between nodes on the boundary of ∆a .

Proof. Assume for contradiction that F is such a flow path. Let α = start(F) and β = end(F). Then
C1 = ∆a[α, β] ◦ rev(F) and C2 = F ◦ ∆a[β, α] are clockwise non-self-crossing cycles, each enclosing fewer
faces than ∆a.

We will refer to the following:

Argument 1: Note that rev(F) is residual. If ∆a[α, β] were residual then C1 would be a residual clockwise
cycle, contradicting Lemma 2.4. Since all nonresidual darts of ∆a are in Q1

a, we infer that ∆a[α, β] overlaps
Q1

a.

Argument 2: Note that F consists entirely of arcs. If ∆a[β, α] consisted entirely of arcs then C2 would be
a clockwise cycle in G0, a contradiction. Since all anti-arcs of ∆a are in Ra, we infer that Ra overlaps
∆a[β, α].

There are two cases to consider:
Case 1: start(Ra) is a node of ∆a[β, α]. By Argument 1, Q1

a is not a subpath of ∆a[β, α]. If a is in ∆a[α, β]
then C1 is an unusability witness cycle enclosing fewer faces than ∆a. If a is in ∆a[β, α] then C2 is an
unusability witness cycle enclosing fewer faces than ∆a.

Case 2: start(Ra) is a node of ∆a(α, β). By Argument 2, Ra is not a subpath of ∆a[α, β], so end(Ra) is
outside ∆a[α, β]. By Argument 1, Q1

a is not a subpath of ∆a[β, α], so α is in Q1
a. Therefore the first arc

of Q2
a, which is a, is in ∆a[α, β], so C1 is an unusability witness cycle enclosing fewer faces than ∆a.

Each case contradicts the minimality condition of ∆a.

Corollary 4.9. No flow paths enter ∆a.

Proof. Since t is on the infinite face, any flow path entering ∆a must exit ∆a to reach t. Such a flow path
violates Property 4.8.

For an unusable arc a there is a start(Ra)-to-t flow path and an s-to-end(Ra) flow path by Parts 4 and 5
of Lemma 4.4,

Corollary 4.10. For an unusable arc a, any start(Ra)-to-t flow path does not intersect any s-to-end(Ra)
flow path.

Proof. Let Ft be any start(Ra)-to-t flow path and let Fs be any s-to-end(Ra) flow path. Suppose for a
contradiction that Ft and Fs share a node. Let w be the first such node in Ft. Let F ′

s be the maximal suffix
of Fs that is not internal to ∆a. By Corollary 4.9, F ′

s is the only part of Fs that is not internal to ∆a. Since
no arc of Ft is interior to ∆a, w must be a node of F ′

s.
Let F = Ft[start(Ra), w] ◦ F ′

x[w, end(Ra)]. F is a start(Ra)-to-end(Ra) flow path that is not internal to
∆a. Therefore F does not cross Ra. By Lemma 5.3, F is either right of or left of Ra.

1: If F is right of Ra, Ra ◦ rev(F) is a clockwise residual cycle, contradicting Lemma 2.4.

2: If F is left of Ra, F is also left of rev(Qa). Hence F ◦Qa is a clockwise cycle in G0, a contradiction.

7

Lemma 4.11. A leftmost augmenting path contains no unusable arcs.

Proof. Let A be the leftmost augmenting path, and assume for a contradiction that it goes through an
unusable arc a. Let Fs be a s-to-end(Ra) flow path. Let A1 = A[s, tail(a)], and let P1 = Q2

a ◦ Ra ◦ rev(Fs).
Let A2 be the maximal suffix of A1 that does not cross P1. Let P2 = P1[·, start(A2)] Then A2 ◦ P2 is a

non-self-crossing cycle, which we denote by C1. Since A2 and P2 are residual before augmentation, the cycle
C1 must be c.c.w. by Lemma 2.4.

We next define a another c.c.w. non-self-crossing cycle, C2. If P2 does not include start(Ra), define
P3 = P2 and C2 = C1. Suppose P2 includes start(Ra). Let Ft be a start(Ra)-to-t flow path and let F ′

t be
the maximal prefix of Ft that is enclosed by C1. By Corollary 4.10, end(F ′

t) does not belong to Fs. By
Corollary 4.9, the dart of Ft after F ′

t is not enclosed by ∆a. We conclude that end(F ′
t) is in A2. In this case

we define P3 = P2[·, start(F ′
t)] and C2 = F ′

t ◦ A2[end(F ′
t), ·] ◦ P3.

By Lemma 5.1, we can obtain a new c.c.w. non-self-crossing cycle C3 by combining C2 with rev(∆a)
along the common path P3. Let A3 denote a maximal prefix of A[head(a), ·] that does not cross C3. The
following cases are shown in Figure 3.

Case 1: end(A3) is on rev(F ′
t)◦Ra. Since rev(F ′

t)◦Ra is a subpath of the t-to-s residual path rev(Ft)◦Ra◦Fs,
this case contradicts Part 3 of Lemma 4.2.

Case 2: end(A3) is on Q1
a. Let A4 be the maximal suffix of A3 that is internal to ∆a. The only boundary

nodes of ∆a that are not boundary nodes of C3 are the nodes of P3. Since A3[·, start(A4)] does not leave
C3, start(A4) must be a node of P3. This case therefore contradicts Property 4.6.

Lemma 4.12 (Unusable Arc Creation). If augmentation A uses arc a in the reverse direction, a will be
unusable after augmentation.

Proof. Let a be an arc and let A be the leftmost residual path. Suppose d is a dart in A where d = rev(a).
Since a is residual in the reverse direction, a must carry flow. Let F be any s-to-head(a) flow path. Let x
be the last node of A[·, tail(a)] that is in F . Let L = rev(A[x, tail(a)]) and let M = F [x, tail(a)].

By the choice of x, L does not cross L. L is residual after augmentation and a is the first dart of L.
M consists entirely of arcs. Since rev(M) is residual before augmentation, A[x, tail(a)] must make a c.c.w.
cycle with it by Part 2 of Lemma 4.2. Therefore M ◦ L is a c.w. cycle and is an unusability witness cycle
for a.

Lemma 4.13 (Unusable Arc Persistence). Once an arc is unusable, it is always unusable.

Proof. Let a be an unusable arc and let A be the leftmost residual s-to-t path. Augmenting A can only
change the fact that Ra is residual. Assume that A and Ra share a dart.

Let b be the first dart of Ra that is in A. Let A1 be the maximal suffix of A[·, tail(b)] that is not enclosed
by ∆a. Since A cannot enter Ra from the right by Part 2 of Lemma 4.2 and since the right of Ra is enclosed
by ∆a, A1 is not a trivial path.

The following cases are illustrated in Figure 4.

Case 1: A1 = A[·, tail(b)]. Let Fs be any s-to-endRa flow path. Let A2 be the maximal suffix of A1 that does
not cross Fs. Let F ′

s = Fs[start(A2), ·]. Since start(A2) is not enclosed by ∆a, F ′
s starts outside the interior

of ∆a, and so not part of F ′
s is interior to ∆a by Property 4.8. Let C1 = F ′

s ◦ rev(Ra[tail(b), ·]) ◦ rev(A2).
By the choice of A2, C is non-self-crossing. By Part 2 of Lemma 4.2, rev(C) is c.c.w. and so C is c.w. Let
C2 be the composition of C1 and ∆a. C2 is c.w. and since the interior of C1 is disjoint from the interior
of ∆a, C2 is non-self-crossing. C1 = F ′

s ◦ Qa ◦ Ra[·, tail(c)] ◦ rev(A2) is an unusability witness cycle for a
after augmentation since rev(A2) is residual after augmentation.

Case 2: A1 6= A[·, tail(b)]. Let c be the last dart of A1 that is enclosed by ∆a. Since both Q2
a and Ra belong to

t-to-s residual paths, by Part 3 of Lemma 4.2, head(b) is on Q1
a. Let P = Q1

a[head(c), ·]◦Q2
a ◦Ra[·, tail(b)].

Since A1 does not cross P , A1 is either left of or right of P .
(a) A1 is left of P . C = A1 ◦P is a non-self-crossing c.w. cycle. Let Ft be any start(Ra)− to− t flow path

and let F ′
t be the maximal prefix of Ft that is enclosed in C. Let d be the first dart of F ′

t that is not
enclosed by C. Ft does not cross P by Property 4.8 since P is in ∆a. Ft crosses c ◦A′ from right to left
because F ′

t is enclosed by C, Ft is in no part enclosed by ∆a and c is enclosed by ∆a. But A cannot
cross Ft from left to right by Part 3 of Lemma 4.2. This is a contradiction.

8

(b) A1 is right of P . Since rev(A1) is residual after augmentation, rev(A1) ◦ P is an unusability witness
cycle for a after augmentation.

The proof of Theorem 3.2 follows from Lemmas 4.11, 4.12, and 4.13.

5 Notation and terminology

5.1 Graphs

We are concerned with directed graphs G = 〈V, A〉. For each arc a ∈ A, we define two oppositely directed
darts, one in the same orientation as a (which we sometimes identify with a) and one in the opposite
orientation. We define rev(·) to be the function that takes each dart to the corresponding dart in the
opposite direction.3 The head and tail of a dart d (written headG(d) and tailG(d)) are such that the dart is
oriented from tail to head. We may omit the subscript when doing so introduces no ambiguity.

A path of darts is a sequence d1 . . . dk such that no dart appears twice and, for i = 2, . . . , k, headG(di−1) =
tail(di). It is a cycle of darts if in addition headG(dk) = tailG(d1). A path/cycle of darts is simple if no node
occurs twice as the head of a dart in the path.

If P = d1 . . . dk is a path or cycle, we use start(P) to denote tail(d1) and we use end(P) to denote
head(dk). If x and y are nodes of P , we use P [x, y] to denote the subpath P ′ such that start(P ′) = x and
end(P ′) = y.4 We use P [x, y) to denote the path obtained from P [x, y] by deleting the last dart; P (x, y]
and P (x, y) are defined similarly. P [·, y] denotes the subpath P ′ with start(P ′) = start(P) and end(P ′) = y.
P [x, ·] is similarly defined.

If P = d1 . . . dk and Q = e1 . . . e` are paths such that end(P) = start(Q), we use P ◦ Q to denote the
path d1 . . . dke1 . . . e`.

A directed spanning tree of G is a set T of darts such that (i) every node but one (the root) is the tail
of exactly one dart, and (ii) there are no cycles. For a node v, T [v] denotes the unique path of darts in T
whose start node is v and whose end node is the root. For nodes u and v, T [u, v] denotes the unique u-to-v
path in T if v is an ancestor of v in T .

The corresponding undirected spanning tree is the set of arcs represented by darts in T .

5.2 Planar Graphs

According to the traditional, geometric definition, a planar embedding of a graph is a drawing of the graph
on the plane or on the surface of a sphere so that nodes are mapped to distinct points and arcs are mapped
to nonintersecting sets of points. A planar graph is a graph for which there exists a planar embedding. The
set of points in the plane/sphere that are not in the image of the nodes or arcs decomposes into connected
components, called faces. That is, faces are the maximal regions bounded by the embeddings of the nodes
and edges.

For an embedding on the plane, there is one infinite face. For an embedding on the sphere, an arbitrary
face can be designated as the infinite face.

Corresponding to every connected planar embedded graph G there is another connected planar embedded
graph denoted G∗. The faces of G are the nodes of G∗, and the arcs (and hence darts) of G correspond
one-to-one with those of G∗. If d is a dart of G, the tail of the corresponding dart of G∗ is the face to the
left of d, and the head is the face to the right of d. Thus intuitively the geometric orientation in G∗ of the
dart corresponding to d is obtained by rotating the embedding of d clockwise roughly 90 degrees.5

3Formally, the dart set is A × {±1}, and rev(〈a, i〉)) = 〈a,−i〉.
4Since nonsimple paths visit nodes multiple times, when we use this notation with nonsimple paths, we intend x and y to

refer to specific occurrences of nodes within the path.
5One can alternatively define embeddings and planar graphs combinatorially, without reference to topology. The idea of a

combinatorial embedding was implicit in the work of Heffter[11]. Edmonds [5] first made the idea explicit, and Youngs [23]
formalized the idea. A combinatorial embedding is sometimes called a rotation system. For connected planar graphs, the
definition can be shown to be equivalent to the usual one involving geometric embeddings.

We define a finite embedded graph to be a pair G = 〈π, A〉 where A is any given finite set, and π is a permutation of the
set of darts corresponding to A. We use V (G) to denote the orbits of π. The elements of V (G) are the nodes of G. (Note
that nodes are defined in terms of arcs, rather than the other way round.) Each orbit of a permutation is a permutation cycle
(d1 d2 . . . dk). For a dart d, we define tailG(d) to be the orbit of π containing d. We define headG(d) = tailG(rev(d)).

9

Primal and dual spanning trees A classical result on planar graphs is as follows: for an undirected
spanning tree T , the set of arcs not in T form an undirected spanning tree of the dual G∗.

5.3 Vector spaces

The arc space of a graph G = 〈V, A〉 is the vector space RA. That is, a vector α in arc space assigns a real
number α[a] to each arc a ∈ A. It is notationally convenient to interpret a vector α in arc space as assigning
real numbers to all darts. For any dart 〈a, i〉 (i = ±1), we define

α[〈a, i〉] = i · α[a]

For each arc a, we define δ(a) to be the vector in arc space that assigns 1 to a and zero to all other arcs.
That is, for any arc a′,

δ(a)[a′] =

{

1 if a′ = a
0 otherwise

For a multiset S of darts, we define δ(S) =
∑

d∈S δ(d). For a graph structure H (e.g. path or cycle), we
define δ(H) = δ(S) where S is the multiset of darts comprising H .

We equate a node v with the permutation cycle of darts whose tails are v, so δ(v) is
∑

tail(d)=v δ(d).
Similarly, we equate a face f with the permutation cycle of darts forming the counterclockwise boundary of
the face, so δ(f) is the sum of δ(d) over such darts.6

A vector η in arc space specifies a set of darts of G, namely the set of darts assigned positive values by η.
We say, for example, that a dart d is in η if η[d] > 0. We can similarly say that η contains a path or a cycle.

5.4 Circulations

The cycle space of G is the subspace of the arc space spanned by

{δ(C) : C a cycle of darts in G}

We refer to a vector in the cycle space of G as a circulation. Warning: Except as a preprocessing step in
the algorithm, circulations have nothing to do with flow in this paper.

In a planar graph, for any face f0 the set of vectors {δ(f) : f a face of G, f 6= f0} is a basis for the
cycle space of G. We conventionally take f0 to be the infinite face f∞. Therefore any circulation η can be
represented as a linear combination of these basis vectors. We use φ to denote the vector of coefficients for
this linear combination, so

η =
∑

f 6=f∞

φ[f]δ(f)

We call φ a potential assignment, and we refer to φ[f] as the potential of face f .7 We adopt the convention
that φ[f∞] is defined to be zero.

External and internal: We say a face f is external to the circulation corresponding to a potential
assignment φ if φ[f] = 0, and is internal otherwise. We say that a dart d is external if the faces to d’s left
and right are external, and we say d is internal if the faces to d’s left and right are internal. (A dart can
be neither internal nor external. In this case, the dart is contained by the circulation.) We say a node v is
external if every dart incident to v is external, and is internal if every dart incident to v is internal.

Encloses: For a cycle C, we say C encloses a face/dart/vertex if the face/dart/vertex is internal to δ(C).

To define the faces of the embedded graph, we define another permutation π∗ of the set of darts by composing π with rev():
π∗ = π ◦ rev(). Then the faces of the embedded graph 〈π, E〉 are defined to be the orbits of π∗. We say that an embedding π

of a connected graph G is planar if it satisfies Euler’s formula: n − m + φ, where n=number of nodes, m=number of arcs, and
φ=number of faces.

The dual of a connected embedded graph Gπ = 〈π, E〉 is defined to be the embedded graph G∗ = 〈π∗, E〉.
6These equatings are formal equalities when we use combinatorial embeddings.
7This use of potentials was introduced by Hassin [9] for st-planar graphs and by Miller and Naor [17] for general planar

graphs.

10

Counterclockwise (c.c.w.) and clockwise (c.w.) A circulation is counterclockwise (abbreviated c.c.w.)
if the potential of every face is nonnegative. A circulation is clockwise (abbreviated c.w.) if the potential of
every face is nonpositive. A cycle P is clockwise if δ(P) is clockwise.

Outermost cycle: For a c.c.w. circulation η, let φ be the corresponding potential assignment. Because η
is c.c.w., φ is nonnegative. Let F0 = {f : φ[f] = 0}. Let H0 be the subgraph of the dual G∗ induced by
the set F0, and let F0,∞ be the connected component in H0 that includes f∞. Let H be the subgraph of
G∗ induced by the set of faces not in F0,∞. For each connected component S of H , Γ+(S) is a simple c.c.w.
cycle, called an outermost cycle of η. Note that η assigns at least one to every dart on an outermost cycle.
The outermost cycles of a c.w. circulation are similarly defined.

5.5 The Left/Right Relation

An x-to-y path A is left of x-to-y path B if δ(A) − δ(B) is a clockwise circulation. Likewise A is right of
x-to-y path B if δ(A)− δ(B) is a counterclockwise circulation. Left of and right of are transitive properties.
An x-to-y path A is the leftmost x-to-y path in a graph if, for every x-to-y path B, A is left of B.

Crossings Let x be a node in paths A and B. Let d be the first dart of A[·, x] that is not in B. A[x, ·]
enters B on the right if the faces to the left and right of d are right of B.We likewise define entering on the
left and leaving from the left/right. Path A is said to cross path B if there is a node x in both A and B
such that A[·, x] enters B on the right and A[x, ·] leaves B on the left (or vice versa). If A and B do not
cross for any node, then they are non-crossing. A cycle is non-self-crossing if for every pair of subpaths P
and Q of the cycle, P does not cross Q. See Figure 1 for examples of these situations.

Lemma 5.1 (Composition Lemma). Let P1 ◦Q and P2 ◦ rev(Q) be c.c.w. non-self-crossing cycles. Then
P1 ◦ P2 is a non-self-crossing cycle.

Lemma 5.2. Let P and Q be two distinct simple x-to-y paths that do not cross. Every face of the graph
induced by P and Q is bounded by a single subpath of P and a single subpath of Q.

Theorem 5.3 (Non-Crossing Lemma). If P and Q are two distinct x-to-y paths that do not cross. P is
either right of or left of Q.

5.6 Flow

Given a graph G and nodes s and t, an st-flow is a vector f in arc space such that f · δ(v) = 0 for every node
except s and t.8 The value of the st-flow f is f · δ(s).

A capacity function for a graph G is a function c(·) mapping the set of darts (not the set of arcs) of G
to the real numbers. We say that an st-flow f is feasible with respect to c if f [d] ≤ c(d) for every dart d. A
maximum st-flow for a graph G and capacity function c is a feasible st-flow of maximum value.

A dart d is residual with respect to f and c if f [d] < c(d). Otherwise, d is non-residual. A path/cycle
is residual if all its darts are residual. It is well-known that a st-flow f that is feasible with respect to c is
maximum if there is no residual s-to-t path with respect to f and c.

Augmenting an st-flow f along a residual s-to-t path P means increasing f [d] by the same amount for
each dart d in P . Suppose that f is feasible with respect to c. If the amount of the increase is no more
than mind∈P c(d) − f [d] then after augmentation the st-flow f is still feasible. If the increase is exactly
mind∈P c(d) − f [d] then we say the augmentation saturates the path P . In this case, at least one dart of P
becomes nonresidual.

8As a consequence of our convention expressing the value of an arc-space vector at darts (not just arcs), we have f [d] =
−f [rev(d)], which coincides with the convention of antisymmetry introduced by Goldberg [8].

11

References

[1] Umut A. Acar, Guy E. Blelloch, Robert Harper, Jorge L. Vittes, and Shan Leung Maverick Woo.
Dynamizing static algorithms, with applications to dynamic trees and history independence. In SODA
’04: Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, pages 531–540,
Philadelphia, PA, USA, 2004. Society for Industrial and Applied Mathematics.

[2] S. Alstrup, J. Holm, K. d. Lichtenberg, and M. Thorup. Maintaining information in fully-dynamic trees
with top trees. http://arXiv.org/abs/cs/0310065, November 2003.

[3] C. Berge. Two theorems in graph theory. Proceedings of the National Academy of the Sciences of the
U.S.A., 43:842–844, 1957.

[4] Therese C. Biedl, Brona Brejova, and Tomas Vinar. Simplifying Flow Networks. In Mogens Nielsen
and Branislav Rovan, editors, Mathematical Foundations of Computer Science 2000 (MFCS), volume
1893 of Lecture Notes in Computer Science, pages 192–201, Bratislava, August 2000. Springer.

[5] Jack R. Edmonds. A combinatorial representation for polyhedral surfaces. Notices of the American
Mathematical Society, 7:646, 1960.

[6] J. Fakcharoenphol and S. Rao. Planar graphs, negative weight edges, shortest paths, near linear time.
In Proceedings of the IEEE Foundations of Computer Science, pages 232–241, 2001.

[7] Greg N. Frederickson. Ambivalent data structures for dynamic 2-edge-connectivity and k smallest
spanning trees. In IEEE Symposium on Foundations of Computer Science, pages 632–641, 1991.

[8] A. V. Goldberg. Efficient Graph Algorithms for Sequential and Parallel Computers. PhD thesis, MIT,
1987.

[9] R. Hassin. Maximum flows in (s, t) planar networks. Information Processing Letters, 13:107, 1981.

[10] R. Hassin and D. B. Johnson. An o(n log2 n) algorithm for maximum flow in undirected planar networks.
SIAM Journal on Computing, 14:612–624, 1985.

[11] L. Heffter. Uber das problem der nachbargebiete. Math. Annalen, 38:477–508, 1891.

[12] M. R. Henzinger, P. N. Klein, S. Rao, and S. Subramanian. Faster shortest-path algorithms for planar
graphs. Journal of Computer and System Sciences, 55(1):3–23, 1997.

[13] Monika R. Henzinger and Valerie King. Randomized fully dynamic graph algorithms with polylogarith-
mic time per operation. Journal of the ACM, 46(4):502–516, 1999.

[14] A. Itai and Y. Shiloach. Maximum flow in planar networks. SIAM Journal on Computing, 8:135–150,
1979.

[15] D.B. Johnson. Efficient algorithms for shortest paths in sparse graphs. Journal of the ACM, 24:1–13,
1977.

[16] S. Khuller, J. Naor, and P. Klein. The lattice structure of flow in planar graphs. SIAM Journal on
Discrete Math, 6(3):477–490, 1993.

[17] G. L. Miller and J. Naor. Flow in planar graphs with multiple sources and sinks. SIAM Journal on
Computing, 24(5):1002–1017, 1995.

[18] J. H. Reif. Minimum s-t cut of a planar undirected network in o(n log2 n) time. SIAM Journal on
Computing, 12:71–81, 1983.

[19] Heike Ripphausen-Lipa, Dorothea Wagner, and Karsten Weihe. The vertex-disjoint menger problem
in planar graphs. In SODA ’93: Proceedings of the fourth annual ACM-SIAM Symposium on Discrete
algorithms, pages 112–119, Philadelphia, PA, USA, 1993. Society for Industrial and Applied Mathemat-
ics.

12

[20] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. Journal of Computer and System
Sciences, 26(3):362–391, 1983.

[21] Robert E. Tarjan and Renato F. Werneck. Self-adjusting top trees. In Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms, pages 813–822, 2005.

[22] K. Weihe. Maximum (s, t)-flows in planar networks in o(|v|log|v|) time. Journal of Computer and
System Sciences, 55:454–476, 1997.

[23] J.W.T. Youngs. Minimal imbeddings and the genus of a graph. Journal of Mathematical Mechanic,
12:303–315, 1963.

13

Appendix: Figures

B A

x

B A

(b) (c)(a)

Figure 1: (a) A crosses B: B[·, x] enters A on the right and B[x, ·] leaves A on the left. (b) A and B are
noncrossing. (c) This is a self-crossing cycle.

L

M

(a) (b)

Q1

Q2

a

R

a

Figure 2: (a) An unusability witness cycle for arc a as given by Definition 4.3. (b) The unusability witness
cycle for arc a as given by Lemma 4.4.

14

a

A3

(a) (b) (c)

A2[end(F ′
t), ·]

Q2
a

Q1
a

Ra
Ra A3

Q1
a

F ′
t

F ′
t

Figure 3: (a) An example of a possible augmentation that uses an unusable arc, a as outlined in Lemma 4.11.
In this particular example, C3 = A2[end(F ′

t), ·] ◦ rev(Q1
a) ◦ rev(Ra) ◦ F ′

t . (b) The first counterexample as
described in Case 1 of Lemma 4.11. A cannot escape C3 via F ′

t or Ra. (c) The second counterexample as
described in Case 2 of Lemma 4.11. A cannot escape C3 via Q1

a.

Q2
a

Q1
a

b

Ra

Q2
a

Q1
a

b

Ra A2

F ′
s

(a) (b)

A1

Figure 4: Illustrations of the cases in Lemma 4.13. (a) In Case 1, Q1
a[start(A1), ·]◦Q2

a◦Ra[·, head(b)]◦rev(A1)
is the new unusability witness cycle. (b) In Case 2, F ′

s◦Q1
a◦Q2

a◦Ra[·, head(b)]◦rev(A1) is the new unusability
witness cycle.

15

