
Steiner tree in planar graphs: An O(n log n)
approximation scheme with singly-exponential

dependence on epsilon

Glencora Borradaile⋆, Philip N. Klein⋆⋆, and Claire Mathieu

Brown University, Providence RI 02912, USA.
{glencora,philip,claire}@cs.brown.edu

Abstract. We give an algorithm that, for any ǫ > 0, any undirected
planar graph G, and any set S of nodes of G, computes a (1+ ǫ)-optimal
Steiner tree in G that spans the nodes of S. The algorithm takes time
O(2poly(1/ǫ)n log n).

1 Introduction

The Steiner problem in graphs is a fundamental and well-studied optimiza-
tion problem: given a graph with edge lengths and a set of terminals, find a
minimum-length connected subgraph that includes all the terminals. The prob-
lem is NP-hard [11] (even in planar graphs [8]) and is max SNP-complete in gen-
eral graphs [5]. Much work [22, 14, 24, 23, 15, 26, 2, 25, 17, 12, 10, 21] has gone into
obtaining constant-factor approximation algorithms. There has also been work
[1, 16, 20] on approximation schemes for the case of Euclidean plane (or more
generally low-dimensional Euclidean space). In [6], we gave an O(n log n) ap-
proximation scheme for Steiner tree in planar graphs; more precisely, we showed
that for any ǫ > 0, there is an O(n log n) algorithm that returns a solution whose
length is at most 1 + ǫ times optimal. However, the constant factor for this al-
gorithm is triply exponential in 1/ǫ. In this paper, we give another O(n log n)
approximation scheme, one for which the constant factor is singly exponential
in a polynomial in 1/ǫ:

Theorem 1. For any ǫ > 0, there is an algorithm that, given a planar graph G
with edge lengths and a set S of vertices of G, finds a Steiner tree that spans S
and whose length is at most 1 + ǫ times the length of the optimal Steiner tree
spanning S. The running time is O(2poly(1/ǫ)n + n log n) where n is the number
of vertices of G.

The previous approximation scheme fit into a framework given in [13]. What the
framework required to yield an approximation scheme (and what was provided
in [6]) was a kind of “spanner” result: an algorithm that, for a planar graph Gin

⋆ Supported by a Kanellakis Fellowship and a Brown University Dissertation Fellow-
ship.

⋆⋆ Partially supported by NSF Grant CCF-0635089.



and set of terminals Q, would return a “short” subgraph of Gin that approx-
imately preserved the value of the optimum. The approximation scheme then
follows rather directly from the framework. However, the spanner result had a
doubly-exponential dependence on 1/ǫ, which led to the triply-exponential de-
pendence of the final approximation scheme’s running time.

We overcome this deficiency using two ideas. One of the exponentials came
from a theorem in which we showed how to reduce the complexity of a subtree
of the optimal Steiner tree without increasing its cost too much. In this paper,
we prove the same theorem but with a polynomial instead of an exponential
(see Theorem 4). This idea by itself, if plugged back into [6], would yield doubly
exponential dependence on 1/ǫ.

The other idea is more global, and perhaps will turn out to be more generally
applicable for obtaining approximation schemes in planar graphs. The first step
of the spanner construction consisted of finding a short grid-like subgraph MG
of the input graph Gin that contains every terminal. In this paper, we use the
term brick to refer the subgraph consisting of a face of MG and the subgraph of
Gin embedded inside it.

In the new approximation scheme, we also start by finding MG. We then
decompose MG into “parcels” with short boundaries such that each parcel has
low carving-width (a relative of tree-width). Of course, MG is not the original
graph; it is missing the bricks. We add back the bricks but connect them to
MG via a small number of “portal edges”. We add some new terminals and, for
each parcel-plus-bricks, find an optimal Steiner tree using dynamic programming
(exploiting the low carving-width of the parcel and the small number of portal
edges). We prove that the union of all these trees is not much longer than the
optimal Steiner tree in the original graph. The base case for the dynamic program
uses an exact algorithm by Erickson et al. [7] for the special case where all
terminals are on the boundary of an embedded planar graph. We summarize
their result in the following theorem:

Theorem 2. [7] Let G be a planar embedded graph and Q be a set of k terminals
that all lie on the boundary of a single face. Then there is an algorithm1 to find
an optimal Steiner tree of Q in G in time O(nk3 + (n log n)k2).

We can replace the term n log n by n using the linear-time planarity-exploiting
shortest-path algorithm of [9], obtaining a running time of O(nk3).

1.1 Notation

We assume without loss of generality that the input graph Gin is planar embed-
ded and has degree at most three. The input graph has positive edge-lengths
ℓ (·). For a set A of edges, we use ℓ (A) to denote

∑
e∈A ℓ (e). We take Q as the

set of terminal vertices.

1 This algorithm has been generalized by Bern [3] and by Bern and Bienstock [4] to
handle some additional special cases, e.g. where the terminals lie on a constant num-
ber of faces. Provan [19, 18] used the same approach to give exact and approximate
algorithms for some geometric special cases.



For notational convenience, we prove a slightly weaker version of main theo-
rem (Theorem 1). We show that, for any ǫ > 0, there is an O(n log n) algorithm
to find a Steiner tree whose length is at most (1 + cǫ)OPT(Gin, Q), where c is
a constant and OPT(G, Q) denotes the length of the Steiner minimal tree that
spans Q in graph G. To prove Theorem 1, for any given ǭ > 0, we set ǫ = ǭ/c
and invoke the algorithm.

The boundary of a face of a planar embedded graph is the set of edges adjacent
to the face; it does not always form a simple cycle (Figure 2(a)). The boundary
∂H of a planar embedded graph H is the set of edges bounding the infinite face.
An edge is strictly enclosed by the boundary of H if the edge belongs to H but
not to ∂H .

Graphs are identified with sets of edges, thus a subgraph H of a graph G is
also considered a subset of the edges of G. The set of vertices that are endpoints
of edges in H is denoted V (H). For a tree T and vertices x, y ∈ V (T ), we denote
the unique simple x-to-y path in T by T [x, y]. In particular, if T is a path then
T [x, y] is the x-to-y subpath. We denote the length of the shortest x-to-y path
in G as distG(x, y).

For a connected planar embedded graph G, there is another connected planar
embedded graph denoted G∗. The faces of G are the vertices of G∗; the edges of
the two graphs are identified. We refer to G as the primal graph and to G∗ as
the dual.

2 Algorithm

2.1 Mortar Graph

We first find a connected grid-like subgraph of the input graph Gin, based on
the set Q of terminals and the given precision ǫ. The O(n log n)-construction
is given in [6]. We call the subgraph the mortar graph and denote it MG (see
Figure 1(b)). The mortar graph spans every terminal in Q and has length at
most 5ǫ−1 ·OPT(Gin, Q). We defer the remaining properties of MG to Section 3,
where they are needed for the proof of correctness.

Step 1: Construct the mortar graph, MG.

2.2 Bricks

Each face f of the mortar graph that strictly encloses at least one edge of Gin

defines a graph called a brick. The brick consists of the edges of Gin that are
enclosed by the boundary ∂f of f . This boundary is a cycle of edges, possibly
with repetition if some edges occur twice in the boundary (an example of such
a situation is shown on Figure 2). We duplicate the repeated edges as follows:

Cut the original graph Gin along ∂f , duplicating the edges you cut along
(and replicating the vertices), and define the brick to be the subgraph of Gin

embedded inside that cycle, including the boundary edges according to their



(a) (b) (c)

(d) (e)

Fig. 1. (a) A fragment of an input graph Gin. The bold edges belong to the mortar
graph MG, the corresponding fragment of which is shown in (b). The corresponding
bricks are shown in (c), and the corresponding fragment of the portal-connected graph,
B+(MG), appears in (d). The portal edges are grey. (e) B+(MG) with the bricks con-
tracted to brick vertices.

multiplicity in ∂f . That is, if an edge occurs twice in the boundary of the face,
then there are two copies of that edge in the corresponding brick.

Step 2: Compute the set of bricks, B.

It is easy to see that Step 2 takes O(n).
The boundary ∂B of a brick B is the simple cycle of boundary edges. The

corresponding face of MG is called the mortar boundary of B. Each edge of
the mortar graph occurs at most twice in the disjoint union of the boundaries
of the bricks. Since we defined bricks corresponding only to non-empty faces,
every brick contains at least one edge not belonging to MG. Figure 1(c) is an
example of the set of bricks corresponding to the mortar graph of Figure 1(b).
The construction of a brick is illustrated in Figures 2(a) and (b).

(a) (b) (c)

Fig. 2. Construction of a brick: (a) The boundary of a face f of MG is a cycle of edges
(thick edges), possibly with repetition (i.e. an edge can occur twice in the boundary).
The light edges are those in the interior of f in Gin. (b) We obtain the corresponding
brick via Step 2. The resulting brick B has boundary ∂B. (c) A brick, copied.



2.3 Portals

For portal selection, we use a parameter θ(ǫ) = 2α(ǫ)5ǫ−2 that depends on a
value α(ǫ) that in turn comes out of Theorem 3. Portals are selected greedily as
in [6] to satisfy:

Property 1. For any vertex x on ∂B, there is a portal y such that the x-to-y
subpath of ∂B has length at most ℓ (∂B)/θ.

Step 3: For each brick B, designate θ vertices of ∂B as portals.

We additionally require that one portal be the endpoint of an edge that is strictly
enclosed in the brick (this, in addition to the assumption that our input graph is
degree three, allows us to build a binary recursion tree for the dynamic program).

2.4 Portal-connected graph and the operation B
+

In preparation for stating our Structure Theorem, we define an operation called
brick insertion. For any subgraph MG of G, we derive a planar embedded graph
B+(G) as follows. For each face f of G corresponding to a brick B, embed a copy
of B inside the face f , and, for each portal vertex v of B, connect v in the brick
to the corresponding vertex in f , using a zero-length artificial edge (Figure 2(c)).
We refer to the artificial edges as portal edges. This step is illustrated in Fig-
ure 1(d). We refer to B+(MG) as the portal-connected graph, and we denote it
by B+(MG). Intuitively, this graph is almost the same as the input graph Gin,
except that artificial cost-zero separations have been added so that paths that
connect vertices strictly enclosed by faces of the mortar graph to outside vertices
are forced to go through the portals.

If a vertex of MG is a terminal of Q, we do not consider its copy on the brick
to be a terminal vertex. Thus a brick has no terminals; this helps in the design
of the dynamic program (Section 2.7).

The following lemma follows directly from the fact that each portal edge in
B+(MG) connects a vertex of a brick to the corresponding vertex of MG.

Lemma 1. If A is a connected subgraph of B+(MG) that spans Q, then A −
{portal edges} is a connected subgraph of Gin that spans Q.

The following theorem, proved in Section 3, is central to the proof of correct-
ness of the spanner construction and the approximation scheme. Indeed, taken
together, Lemma 1 and Theorem 3 provide a reduction from the Steiner tree
problem on Gin to the Steiner tree problem on B+(MG).

Theorem 3 (Structure Theorem). There exists a constant θ(ǫ) depending
polynomially on 1/ǫ such that, for any choice of portals satisfying the Coverage
Property, the corresponding portal-connected graph B+(MG) satisfies

OPT(B+(MG), Q) ≤ (1 + cǫ)OPT(Gin, Q)

where c is an absolute constant.



2.5 Parcels

First we further decompose MG into subgraphs called parcels, using an integer
parameter η(ǫ) = ǫ−2.

Step 4(a): Do breadth-first search in the planar dual MG∗ starting from r.

Define the level of a vertex of MG∗ (face of MG) as its distance from r. Let Ei

denote the set of edges whose two endpoints are at levels i and i + 1.

Step 4(b): For k = 0, 1, . . . , η − 1, let Ek = Ek ∪ Ek+η ∪ Ek+2η ∪ . . ..
Let k∗ be the index that minimizes ℓ (Ek).

Let Y denote the set of connected components of MG∗ − Ek∗ . For each Y ∈ Y,
let HY denote the subgraph of MG consisting of the boundaries of faces in V (Y )
The set of parcels of MG is H = {HY : Y ∈ Y}.

Step 4(c): Find the set H of parcels of MG.

Lemma 2. The parcel decomposition has the following two properties:
Radius Property: The planar dual of each parcel has a spanning tree of depth at
most η + 1.
Boundary-Length Property: The sum of the lengths of the boundaries of the
parcels is at most 2ℓ (MG)/η.

2.6 New terminals

The next step is to select the new terminals. These new terminals will ensure that
the Steiner trees we find later will combine to form a connected subgraph. The
parcel-boundary length property ensures that connecting to these new terminals
does not increase the lengths of the optimal parcel solutions by much.

Step 5: For each parcel H and for each connected component C of the bound-
ary of H , if B+(MG) − V (C) disconnects some terminals, then designate a
vertex of C as a new terminal.

Note that the new terminals are vertices of the mortar graph, not of the bricks.
We omit the O(n) implementation of Step 5.

Lemma 3. The new terminals have the following two properties:
Spannable Property: Let T be a tree in B+(MG) that spans the original terminals
and let H be a parcel. Then T∪{parcel boundary edges} contains a tree in B+(H)
that spans the original and new terminals in H.
Connecting Property: For each parcel H that contains a terminal, let TH be a
tree in B+(H) spanning the original and new terminals belonging to H. Then⋃

H TH is a connected subgraph of B+(MG).



2.7 Optimal solution within the parcels

Step 6: For each parcel H , if H contains an original or new terminal then find
an optimal Steiner tree in B+(H) spanning the original and new terminals
in H .

This step is solved by a O(cθηm)-time dynamic programming algorithm where
m is the number of edges in H and c is a constant. We briefly sketch the idea.
Lemma 2 states that the planar dual of H has a spanning tree T ∗ of depth at
most η+1. When we apply B+ to H (inserting the bricks), we connect each brick
to the corresponding face boundary using at most θ portal edges. Suppose we
then contract the bricks in B+(H), turning them into brick vertices as shown in
Figure 1(e). Each brick vertex is connected to MG by at most θ portal edges. In
the dual, these portal edges form a cycle encircling the brick vertex. Add to T ∗

all these edges except the one that in the primal graph is incident to an internal
brick edge. Let T̂ ∗ be the resulting spanning tree. Its depth is at most θ(η + 1).

Let T̂ be the set of edges in the contracted graph that do not belong to T̂ ∗. A
classical result in planarity states that the complement of a spanning tree of the
dual is a spanning tree of the primal, so T̂ is a spanning tree of the primal. The
(primal) input graph had degree three. For each brick, T̂ has one edge connecting
the brick vertex to a vertex v of the mortar graph. In the input graph there was
an edge incident to v that is no longer present in the contracted graphs, so T̂
has degree at most three.

Root T̂ at a non-brick-vertex of degree at most two, and use the rooted tree
to guide a dynamic-programming algorithm for Steiner tree in B+(H). For each

vertex v of T̂ , the subtree rooted at v corresponds to a subgraph of B+(H) (re-
place each brick vertex by the corresponding brick). We show that this subgraph
connects with the rest of B+(H) via few edges. Suppose v is not the root, and
let e be the edge connecting v to its parent. In the dual, e is not an edge of
T̂ ∗, so it forms a cycle with the simple path in T̂ ∗ between its endpoints. Since
T̂ ∗ has depth at most θ(η + 1). the cycle has at most 2θ(η + 1) + 1 edges. This
shows that, in the primal, the subgraph connects to the rest of B+(H) via at
most 2θ(η + 1) + 1 edges, which enables us to do dynamic programming. Each
vertex corresponds to a subproblem. The size of the table for this subproblem
is d2θ(η+1)+1 where d is a constant. Because each vertex of T̂ has at most two
children, only two subproblems need to be combined at a time. If v is a brick
vertex, then v is a leaf in T̂ , and the subproblem corresponding to v can be
solved used the algorithm of Erickson et al. (Theorem 2).

Step 7: Take the union of the edge-sets of all the Steiner trees found in Step 6
(not including portal edges), together with the edges of S, and return the
connected component containing the terminals.

This completes the description of the approximation scheme. Lemma 3 shows
that the output is a feasible solution. Lemmas 2 and 3, together with the
definition of η, show that the length of the output solution is at most (1 +



dǫ)OPT(B+(MG), Q), and is therefore (by Theorem 3) at most (1 + dǫ)(1 +
cǫ)OPT(Gin, Q).

3 Proof of the Structure Theorem (Theorem 3)

The construction of what we here call a brick decomposition was given in [6].
Step (i) of the construction involved cutting open the input graph along a 2-
approximate Steiner tree, obtaining a graph G1. Step (ii) used shortest paths
to decompose G1 into “strips.” Step (iii) found some shortest paths within each
strip, and Step (iv) designated some of the shortest paths found in Step (iii)
as supercolumns. For this paper, we define the mortar graph MG of Gin to be
the planar embedded subgraph consisting of (A) the edges of the 2-approximate
Steiner tree of Step (i), (B) the edges of the shortest paths used in Step (ii),
and (C) the edges of the supercolumns. The choice of supercolumns in Step (iv)
involves a parameter κ; choosing κ(ǫ) = 8ǫ−2(1 + ǫ−1) yields Lemma 5 (below).
In [6], we showed the following properties:

Lemma 4. The boundary of a brick B, in counterclockwise order, is the con-
catenation of four paths WB ∪ SB ∪ EB ∪ NB such that:

1. Every terminal of Q that is in B is on NB or on SB.
2. NB and SB are ǫ-short.
3. V (SB) has a κ-element subset {s0, . . . , sκ} (in left-to-right order) where for

any i and any vertex x ∈ SB[si, si+1), distSB
(x, si) < ǫdistB(x, NB).

Lemma 5. Summing over all bricks B,
∑

B ℓ (EB) + ℓ (WB) ≤ ǫ OPT(Gin, Q).

3.1 Structural Property of Bricks

This decomposition into bricks is useful because there exists a near-optimal
Steiner tree that crosses the boundary of each face of MG a small number of
times. For H a subgraph of a graph G and P a path in H , a joining vertex of
H with P is a vertex of P that is the endpoint of an edge of H − P .

Theorem 4 (Structural Property of Bricks). Let B be a plane graph with
boundary N ∪E ∪ S ∪W and satisfying the brick properties of Lemma 4. Let F
be a set of edges of B. There is a forest F̃ of B with the following properties:

1. If two vertices of N ∪ S are connected in F then they are connected in F̃ .
2. The number of joining vertices of F with both N and S is at most α(ǫ).
3. ℓ (F̃ ) ≤ (1 + cǫ)ℓ (F ).

In the above, α(ǫ) = o(ǫ−5.5) and c is a fixed constant.

“N”, “E”, “S”, and “W” stand for north, east, south, and west.
In [6], the analogous theorem appeared as Theorem 3.1 with α(ǫ) = 2poly(1/ǫ)

instead. In order to prove Theorem 4, we use the following lemmas.



Lemma 6. Let G be a planar embedded graph, let P be an ǫ-short path that is
a subpath of the boundary ∂G of G, and let T be a tree in G rooted at a vertex
r whose leaves are exactly V (T ) ∩ V (P ). There is another tree T̂ rooted at r

spanning V (T )∩ V (P ) whose total length is at most (1 + c1 · ǫ)ℓ(T ) such that T̂
has at most c2 · ǫ−1.45 joining vertices with P .

Proof. Following [6], as long as there is a vertex u with at least 3 children, do
this: choosing u to be closest to the root, replace the subtree rooted at u with
(1) the minimal subpath P ′ of P containing all leaves of that subtree, and (2)
the shortest u-to-P ′ path. The resulting tree T ′ has ℓ (T ′) ≤ (1 + ǫ)ℓ (T ).

Define the level of a vertex v to be the number of degree-3 vertices on the
r-to-v path of T ′. Let U be the set of degree-3 vertices having level k (we will
choose k later). A super-edge is a maximal descending path in T ′ whose internal
vertices have degree 2, and its level is the level of its first vertex.

For each u ∈ U , replace the subtree T ′

u of T ′ rooted at u with another tree
T ′′

u rooted at u that is the union of the shortest subpath Pu of P spanning the
vertices of T ′

u ∩ P and the shortest u-to-Pu path (Figure 3.1(a)). Let T ′′ be the
result. Analysis is as follows.

For a degree-3 vertex u, let Qu be the path in T ′ between u’s leftmost and
rightmost descendent leaves. For each i, let Ei =

⋃{Qu : u has level i}, and let
Li =

⋃{level-i super-edges} − Ei−1. See Figure 3.1 (b). Let Si = ∪∞

j=iLj.

(a) Q uRe u
P u

(b)

r
P

Fig. 3. (a) Solid line is
Qu, dashed line is R, dot-
ted line is Pu. Root of
tree shown is u, and left
child edge is e.(b) Bold
edges: E1, dotted edges:
L2.

Let k′ be the first level i for which ℓ (Li) ≤ ℓ (Si+2) (if there is no such level,
let k′ = ∞). Let k = min

(
k′,

⌈
logΦ(

√
5(1/ǫ − 1))

⌉)
, where Φ is the golden ratio.

Since k ≤ ⌈logΦ(
√

5(1/ǫ+1))⌉, the number of level-k vertices is ≤ 2k ≤ 11 ·ǫ−1.45

(for ǫ < 1), which leads to the bound on joining vertices. It remains to show that
ℓ (T ′′) ≤ (1 + ǫ)ℓ (T ′).

Let u be a vertex in level k. Let e be the unique super-edge in Lk whose
parent is u (as illustrated in Figure 3.1 (a). Let R be the path from u to P that
traverses e and subsequently uses only edges of Ek+1 − Ek.

ℓ (T ′′

u ) = ℓ (Pu) + distG(u, Pu) ≤ (1 + ǫ)ℓ (Qu) + ℓ (R) (1)

Case 1: k = k′. Sk+2 is disjoint from Qu and R, so the RHS of (1) is at most
(1+ ǫ)[ℓ (T ′

u)+ ℓ (e)− ℓ (Sk+2∩T ′

u)] < (1+ ǫ)[ℓ (T ′

u)+ ℓ (Lk ∩T ′

u)− ℓ (Sk+2∩T ′

u)].



Summing over all level-i vertices u, ℓ (T ′′) < (1 + ǫ)[ℓ (T ′) + ℓ (Lk)− ℓ (Sk+2)] <
(1 + ǫ)ℓ (T ′) since ℓ (Lk) ≤ ℓ (Sk+2).

Case 2: k 6= k′. The RHS of (1) is ≤ (1 + ǫ)ℓ (Qu ∪ R) + ℓ (e) ≤ (1 +
ǫ)ℓ (T ′

u) + ℓ (e). Summing over all u ∈ U , ℓ (T ′′) ≤ (1 + ǫ)ℓ (T ′) + ℓ (Lk) ≤
(1 + ǫ)ℓ (T ′) + ℓ (Sk). Note that Si is the disjoint union of Li and Si+1, so
ℓ(Si) = ℓ (Li) + ℓ (Si+1). Since ℓ (Li) > ℓ (Si+2) for every i ≤ k, we have ℓ(Si) ≥
ℓ (Si+2) + ℓ (Si+1). It follows that ℓ (S1) ≥ kth Fibonacci number · ℓ (Sk). Then
by choice of k, ℓ (Sk) ≤ ǫℓ (S1) ≤ ǫℓ (T ′). ⊓⊔

Lemma 7. Let G be a planar embedded graph and let T be a tree in G with
leaves on an ǫ-short path P that is a subpath of the boundary ∂G of G. Let p and
q be two vertices of T . There is another tree T̂ spanning p, q, and the vertices
of T ∩ P whose total length is at most (1 + c1 · ǫ)ℓ(T ) such that T̂ has at most
c2 · ǫ−2.45 joining vertices with P .

The proof for Lemma 7 can be derived from the section titled Achieving the
Third Property in [6]. It builds on Lemma 6.

Proof idea for Theorem 4. We use the term bases to refer to the vertices s0, . . . , sk

of Part 3 of Lemma 4. We select S-to-N paths P0, P1, . . ., modifying F as we go,
as follows. (Let F ′ denote the modified F .)

Assume inductively that Pi has been selected, and let xi be its first vertex.
Let Si be the subpath of S going west from xi to the first base encountered.
Note that ℓ (Si) ≤ ǫℓ (Pi). We add Si to F , possibly creating cycles. To fix this,
remove an edge not in Pi ∪Si from a cycle until no cycles remain. Next, let Pi+1

be the eastmost S-to-N path in F that starts from a vertex west of xi and that
is vertex-disjoint from Pi ∪ Si. By acyclicity, there is at most one path Qi from
a vertex of Pi+1 to a vertex of Pi ∪ Si. If there is such a path, designate its first
vertex as a connector of Pi+1 and its last vertex as a hub of Pi. Note that the
hub has the following property: in the component of F ′ −Qi − Qi−1 containing
Pi, every S-to-N path goes through the hub. If there is no such path Qi, we
define Qi = ∅ and arbitrarily select as the hub of Pi any vertex satisfying that
property.



Next, we transform F ′, obtaining another forest F ′′. For each i, consider the
component of F ′ −Qi −Qi−1 that contains Pi. Decompose this component into
two trees: the southern tree consists of the paths from the hub to vertices in S,
and the northern tree consists of the paths from the hub to vertices in N . We
apply Lemma 6 to whichever of these trees does not contain a connector (taking
r=the hub), and we apply Lemma 7 to whichever does contain a connector
(taking p=the hub and q=the connector). ⊓⊔

3.2 Completion of the proof of Theorem 3

The Structure Theorem (Theorem 3) states that OPT(B+(MG), Q) ≤ (1 +
cǫ)OPT(Gin, Q). We now give the proof using Theorem 4.

Proof. We start from an optimal solution T to the Steiner tree problem in Gin

and gradually transform it into a solution T̂ to the Steiner tree problem in
B+(MG), while approximately preserving its length. First, let T1 be the union
of T with the east and west boundaries (EB and WB) for every brick B in G.
Using Lemma 5, we have ℓ (T1) ≤ OPT + ǫOPT(Gin, Q). Remove edges (other
than east/west boundary edges) to break cycles.

Next, apply Theorem 4 to the subgraph of T1 that is contained in each brick,
obtaining T2 such that ℓ (T2) ≤ (1 + c′ǫ)ℓ (T1).

Next, we must obtain a solution in B+(MG). Let T a
2 be the set of brick-

boundary edges of T1, and let T b
2 the other edges of T2. Let T3 be the set of edges

of B+(MG) consisting of (a) the edges of MG corresponding to edges of T a
3 , and

(b) the edges of T b
3 . Note that T3 is not a connected subgraph of B+(MG). A path

in T2 might pass from the interior of a brick to the boundary; the corresponding
sequence of edges in T3 would have a gap: the “path” would stop at a vertex
of the brick boundary, and resume at the corresponding vertex of the mortar
boundary. To close the gap, we must add paths connecting each to the nearest
portal vertex associated with that brick and then add the corresponding portal
edge. The resulting graph T4 is connected.

It remains to bound the length of all these detours. For brick B, the distance
to the nearest portal is at most ℓ (∂B)/θ, so the length of the detour is at most
2ℓ (∂B)/θ. By Theorem 4, the number of detours for this brick is at most α, so
the length of all these detours is at most 2αℓ (∂B)/θ. Summing over all bricks
and using the bound from Section 2.1 on the length of the mortar graph, we
obtain a bound of 10αǫ−1 · OPT(Gin, Q)/θ. The choice of θ ensures that this is
at most ǫ · opt(Gin, Q)/θ.

⊓⊔

References

1. S. Arora. Polynomial-time approximation schemes for euclidean TSP and other
geometric problems. JACM, 45(5):753–782, 1998.

2. P. Berman and V. Ramaiyer. Improved approximations for the Steiner tree prob-
lem. J. Alg., 17:381–408, 1994.



3. M. Bern. Faster exact algorithms for Steiner trees in planar networks. Networks,
20:109–120, 1990.

4. M. Bern and D. Bienstock. Polynomially solvable special cases of the Steiner
problem in planar networks. Ann. Op. Res., 33:405–418, 1991.

5. M. Bern and P. Plassmann. The Steiner problem with edge lengths 1 and 2. IPL,
32:171–176, 1989.

6. G. Borradaile, C. Kenyon-Mathieu, and P. Klein. A polynomial-time approxima-
tion scheme for Steiner tree in planar graphs. In 18th SODA, pages 1285–1294,
2007.

7. R. Erickson, C. Monma, and A. Veinott. Send-and-split method for minimum-
concave-cost network flows. Math. Op. Res., 12:634–664, 1987.

8. M. Garey and D. Johnson. The rectilinear Steiner tree problem is NP-complete.
SIAM J. Appl. Math., 32(4):826–834, 1977.

9. M. Henzinger, P. Klein, S. Rao, and S. Subramanian. Faster shortest-path algo-
rithms for planar graphs. J. Comput. System Sci., 55(1):3–23, 1997.

10. S. Hougardy and H. J. Prömel. A 1.598 approximation algorithm for the Steiner
problem in graphs. In 10th SODA, pages 448–453, 1999.

11. R. Karp. On the computational complexity of combinatorial problems. Networks,
5:45–68, 1975.

12. M. Karpinski and A. Zelikovsky. New approximation algorithms for the Steiner
tree problem. Journal of Combinatorial Optimization, 1:47–65, 1997.

13. P. Klein. A linear-time approximation scheme for planar weighted TSP. In 46th

FOCS, pages 647–647, 2005.
14. L. Kou, G. Markowsky, , and L. Berman. A fast algorithm for Steiner trees. Acta

Informatica, 15:141–145, 1981.
15. K. Mehlhorn. Approximation algorithm for the Steiner problem in graphs. IPL,

27(3):125–128, 1988.
16. J. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A sim-

ple polynomial-time approximation scheme for geometric tsp, k-mst, and related
problems. SIAM J. Comput., 28(4):1298–1309, 1999.

17. H. J. Prömel and A. Steger. RNC approximation algorithms for the Steiner prob-
lem. In 39th STOC, pages 559–570, 1997.

18. J. Provan. An approximation scheme for finding Steiner trees with obstacles. SIAM

J. Comput., 17(920-934), 1988.
19. J. Provan. Convexity and the Steiner tree problem. Networks, 18:55–72, 1988.
20. S. Rao and W. Smith. Approximating geometrical graphs via ”spanners” and

”banyans”. In 30th STOC, pages 540–550, 1998.
21. G. Robins and A. Zelikovsky. Tighter bounds for graph Steiner tree approximation.

SIAM J. Discret. Math., 19(1):122–134, 2005.
22. H. Takahashi and A. Matsuyama. An approximate solution for the Steiner problem

in graphs. Mathematica Japonicae, 24:571–577, 1980.
23. P. Widmayer. A fast approximation algorithm for Steiner’s problem in graphs.

In Graph-Theoretic Concepts in Computer Science, volume 246 of LNCS, pages
17–28. Springer Verlag, 1986.

24. Y. Wu, P. Widmayer, and C. Wong. A faster approximation algorithm for the
Steiner problem in graphs. Acta informatica, 23(2):223–229, 1986.

25. A. Zelikovsky. Better approximation bounds for the network and Euclidean Steiner
tree problems. Technical Report CS-96-06, University of Virginia, 1994.

26. A. Zelikovsky. An 11/6-approximation algorithm for the network Steiner problem.
Algorithmica, 9:463–470, 1999.


