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Abstract

We propose a hierarchical segmentation algorithm that
starts with a very fine oversegmentation and gradually
merges regions using a cascade of boundary classifiers.
This approach allows the weights of region and boundary
features to adapt to the segmentation scale at which they
are applied. The stages of the cascade are trained sequen-
tially, with asymetric loss to maximize boundary recall. On
six segmentation data sets, our algorithm achieves best per-
formance under most region-quality measures, and does it
with fewer segments than the prior work. Our algorithm is
also highly competitive in a dense oversegmentation (super-
pixel) regime under boundary-based measures.

1. Introduction
A standard preprocessing step in many recognition tasks

today is to partition the input image into a set of superpix-
els: “perceptually meaningful atomic regions” [1]. In a typ-
ical vision system these number in the hundreds. Some-
times a coarser partition is used, with only tens (or perhaps
just a handful) of regions; in this regime the regions are no
longer atomic, but the hope is that they remain “perceptu-
ally meaningful”, that is, that each region does not straddle
boundaries between semantically distinct regions, such as
boundaries of an object, or occluding boundaries. Thus,
such image partition is often called oversegmentation.

Regions extracted by oversegmentation usually form a
representation of an image that is much more compact than
the original pixel grid. As long as the oversegmentation
indeed does not undersegment any region (i.e., little or no
“leakage” of true regions across oversegmentation bound-
aries), this speeds up reasoning, with little loss of accu-
racy for the downstream task, such as category-level seg-
mentation [3, 7] or depth estimation [25]. A user of o-
versegmentation algorithm has two conflicting objectives:
On the one hand, make the superpixels as large as possible,
hence reducing their number; on the other hand, preserve
true boundaries in the image, hence driving the number of
superpixels up and their size down. All the state-of-the-art

Figure 1. Example segmentations by OWT-UCM (left), Hoiem et
al. (middle) and ISCRA (right). For each image, segmentation
shown is at the scale optimal for the image (OIS) with each algo-
rithm - i.e., the best that algorithm can do for the image.

superpixel methods provide a tuning parameter that controls
this tradeoff, and the range that seems to work for a variety
of applications is 400 to 1000 superpixels.

Our goal is to re-negotiate this tradeoff, and achieve the
same, or better, level of performance as existing method-
s, but with fewer regions. We pursue the agglomerative
clustering approach: starting with a very fine partition into
small regions, gradually merge them into larger and larg-
er ones. Fundamental to this is a probabilistic model for
grouping regions. We share this basic spirit with some pre-
vious work, notably [2, 11], but introduce a number of key
innovations. Our method constructs a cascade of bound-
ary classifiers that produce increasingly coarse image par-
titions by merging regions preserved by previous stages.
Each stage employs a probabilistic model adapted to the
scale at which it operates. These models are trained with
scaled asymmetric loss, tuned automatically to optimal pre-
cision/recall behavior for the stage. This architecture, that
we call Image Segmentation by Cascaded Region Agglom-
eration (ISCRA), and the learning algorithm for training it
are the main contribution of our paper.
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We show that across six data sets, performance mea-
sures and for a broad range segmentation scale from fine
to coarse, the performance of ISCRA is superior to that of
current state-of-the-art methods. To our knowledge, it is by
far the most comprehensive evaluation of the leading ap-
proaches to superpixel extraction, and in general to image
segmentation. Some typical examples for ISCRA compared
to leading other methods are shown in Figure 1.

2. Background
There is a rich body of work on edge or boundary detec-

tion in computer vision, with the state of the art represented
by the gPb boundary detector and its variants [2]. However,
a boundary map may not correspond to a valid segmenta-
tion, since it may not provide closed contours. Below we
review related work that produces explicit partition of im-
age into regions. Note that we leave out of our discussion
here the extensive recent literature on “semantic segmenta-
tion”, i.e., category-level labeling of every pixel in the im-
age. In this paper we are only concerned with methods that
are agnostic about any category-level reasoning.

For the purpose of our discussion, we will define two
segmentation regimes. The superpixel regime correspond-
s to more than 50 segments per image. In this regime the
purpose of oversegmentation is mostly to reduce complex-
ity of representation, without sacrificing future segmenta-
tion accuracy. Therefore, the natural notion of scale for this
regime is the number of segments k; typical values of k are
in the hundreds for a moderately sized image.

Superpixels, introduced in [17], have become a staple in
vision research. Broadly, methods that produce superpixels
can be grouped into graph-based [18, 6, 14, 22], clustering
of pixels such as SLIC [1] and MeanShift [4], and curve
evolution such as Turbopixels [13] and SEEDS[21].

In contrast, the large segment regime produces fewer
than 100 segments. The appropriate number of segments
in this regime depends on the content of the image, and
specifying k is not natural. Instead, the precise meaning
of scale and the way it is controled varies between segmen-
tation methods, as described below.

In OWT-UCM [2] the oriented watershed transform on
gPb boundaries is followed by greedy merging of regions,
resulting in weighted boundary map such that thresholding
it at any level produces a valid segmentation; the value of
the threshold controls the scale. Throughout the merging
process, OWT-UCM uses the same set of weights on var-
ious features throughout the process, and thus despite the
greedy iterative nature of the merging, this is in a sense a
single stage process. In contrast, ISCRA uses a large cas-
cade of stages, with weightes learned per stage. We show in
Section 5 that this leads to performance better than that of
OWT-UCM.

The agglomerative merging segmentation algorithm

in [11], like ISCRA, starts with a fine oversegmentation,
learns a boundary probability model, applies it to merge re-
gions until the estimated probability of merging is below a
threshold. The classifier is then retrained, and applied a-
gain; their implementation includes four such stages, there-
fore defining four segmentation scales. There is a number
of differences, however: while in ISCRA we use asymmetric
loss and a universal threshold of 1

2 , in [11] the loss is sym-
metric, but the threshold is tuned in ad-hoc fashion. Conse-
quently, in ISCRA we are able to learn many more stages (60
vs. four), producing a more gradual and accurate merging
process. We show empirically that this contributes signifi-
cantly to performance.

Higher Order Correlation Clustering (HOCC) [12] al-
so starts with fine segmentation, but instead of a greedy
merging applies a “single-shot” partition over the superpix-
el graph. The scale in HOCC is controled by specifying
explicitly the number of regions, which may be a disadvan-
tage when the user would like a more adaptive scale defini-
tion like in OWT-UCM or in ISCRA.

Finally, a recently proposed method called S-
CALPEL [24] shares many similarities with our work. In
SCALPEL, a region is “grown” by applying a cascade
of greedy merging steps to an initial over-segmentation.
Similarly to ISCRA, the order of merging in each step is
determined by learning weights that reflect importance of
features at different scales. However, SCALPEL relies
heavily on class-specific shape priors for known object
classes, and its objective is to produce a set of class-specific
region proposals, that can be used in semantic image
labeling. This is in contrast to our work, which is agnostic
with respect to categorization of regions. Thus the two
methods, while sharing many of the ideas, are not directly
comparable.

An important question about any segmentation algorith-
m is how it handles multiple scales. Specifically, it is often
desirable to produce a hierarchy, in which regions obtained
at a finer scale are necessarily subregions of the regions at
a coarser scale. This is the case with OWT-UCM, the ag-
glomeration algorithm of [11], and with ISCRA, but gener-
ally not with the graph-based algorithms like [12, 18]. This
is also not the case with superpixel algorithms like SLIC,
ERS, SEEDS or Turbopixels.

Although the definitions above of the two regimes are
somewhat arbitrary, we adopt them for convenience. Still,
it seems clear that the objectives in partitioning an image
into 1000 segments vs. just ten are different, and it dictates
different evaluation protocol for these cases. Some algo-
rithms, including ISCRA, are competitive in both regimes,
as demonstrated in Section 5.



3. Problem setup
For an image Ii partitioned into a set of ki regions

Ri = {Ri,1, . . . , Ri,ki
}, we consider the set N (Ri) of all

neighboring regions. Every pair (p, q) ∈ N (Ri) is associat-
ed with a feature vector φp,q(Ii,Ri); details of this feature
representation in our implementation are in Section 5.1.1

We are also given ground truth segmentation for a set of
training images. A ground truth segmentation is provided as
a label map. We do not assume any semantically meaning-
ful labels, and the only information we get from the ground
truth is which pixels belong to the same region. We can also
have multiple ground truths for an image, for instance pro-
vided by g human labelers, as is the case in the Berkeley
Segmentation Data Set (BSDS) [16].

The set of ground truths for I allows us to label each
region pair in N (Ri), as follows. Given a single ground
truth map Gi we assign every Ri,p to the region in Gi with
the highest overlap with Ri,p. Then, if Ri,p and Ri,q are
assigned to the same region, we set yipq = 1, otherwise
yipq = 0. When multiple ground truths are available, we set
yipq to the average value of the labels assigned under each
of the ground truths. This yields yipq between 0 and 1, mea-
suring the fraction of humans who thought Ri,p and Ri,q

belong in the same region (and thus, intuitively, reflecting
the perceptual strength of the boundary).

Stacking the pairs of regions in training images
I1, . . . , IN and their labels and simplifying the indexing,
we get a set {〈φi, yi〉}ni=1. This induces a prediction
problem: given an image I and initial segmentation R,
estimate the conditional posterior probability of grouping
Pg(p, q; I,R) , P (ypq = 1 |φpq(I,R)) for every pair
(p, q) ∈ N (R). If Pg(p, q; I,R) > 1

2 we must merge Rp

and Rq and eliminate the boundary between them, other-
wise we preserve the boundary.

3.1. Greedy merging of regions

While it is possible to compute the predictions for all
pairs inN (Ri) at once, the resulting set of predictions may
suffer from inconsistencies (lack of transitivity in the pre-
dicted labels). One could tackle this problem leading to a
fairly complex optimization problem, e.g., as in [12]. In-
stead, we pursue a simpler approach: greedy merging of
regions. In each iteration, we merge the pair of regions with
the highest Pg update the features to reflect this merge, and
repeat, until no pair of current regions has Pg > 1

2 . Since
we started with a valid segmentation and coarsened it, we
remain with a valid segmentation R′. This is summarized
in Algorithm 1. Note that the update step will affect all re-
gions that were neighbors of either a or b before the merge,
but will not affect any other regions.

1For brevity, we drop dependence on image index i from notation when
this doesn’t lead to confusion.

Algorithm 1: Greedy merging MERGE(I,R,w)
Given: image I , regionsR, weights w
foreach (p, q) ∈ N (R) do Pp,q = Pg(φpq(I,R);w)
initializeR′ = R
while maxp,q Pp,q ≥ 1

2 do
(a, b) = argmaxp,q Pp,q

merge Ra ← Ra ∪Rb inR′
foreach j s.t. (a, j) ∈ N (R′) do

update φa,j(I,R′)
update Pa,j = Pg(φaj(I,R′);w)

Return:R′

3.2. Training with scaled loss

We model Pg with linear logistic regression:

Pg(p, q; I,R) = 1/
(
1 + exp

{
−wTφpq(I,R)

})
.

The model is usually trained by minimization of log-loss,
averaged over examples (which here means averaged over
region pairs in the training set). However, naive use of log-
loss fails here, because of the symmetry with which it pe-
nalizes two types of mistakes: over- and underestimating
Pg. Given a typical image with 1000 superpixels in R, on-
ly a small fraction of pairs in N (R) will be true negatives,
since most neighboring superpixels should be grouped to-
gether. A similar problem was identified in [12], leading to
a modification of Hamming loss.

Our solution is also to modify the loss: the cost of the
false positive (wrongly merged pair of regions) is multiplied
by some α. Furthermore, we scale the loss value for every
pair of regions by the length Li, in pixels, of the boundary
between the regions. This scaling reflects the higher loss
from “erasing” a long true boundary than a short one:

w∗(α) = argmin
w

1

n

n∑
i=1

Li

[
yi logPg(φi;w)

+ α(1− yi) log(1− Pg(φi;w))
] (1)

The scaled loss in (1) is convex and optimizable in the same
way as the “normal” logistic regression.

Our choice for α is driven by the following intuition: we
would like to preserve the boundary recall of the starting
segmentation as much as possible, while merging as many
regions as possible. The boundary recall REC(R, G) is de-
fined as the fraction of boundary pixels in ground truth G
recovered by the predicted boundaries in R̂, averaged over
a set of images.

The recall tends2 to behave as a monotonically increas-
ing function of α. Suppose the recall of the initial segmen-
tation is r; then, we want the lowest value of α for which

2but is not guaranteed to behave so, unless Itrain = Itune; empirical-
ly however we always observed this behavior.



the recall does not drop below r− ρ for some small ρ. This
dictates an efficient algorithm for optimizing α: start with
bracketing α between 0 and some large number, and perfor-
m binary search. We use two subsets of images: Itrain is
used to learn w∗(α) in each iteration of the binary search
as per 1, while Itune is used to evaluate average recall ob-
tained with w∗(α) on images in Itune.

4. Cascaded Region Agglomeration

When the model is trained with the scaled loss (1), with
α optimized to limit recall drop on tuning set, the merging
usually stops early, with many remaining unmerged region-
s. This is in part due to the very “cautious” model learned
with the scaled loss, and in part to the fact that once many of
the regions in the initial segmentation are merged, and the
features of their surviving neighbors are updated, the distri-
bution of the features no longer matches the one on which
we trained Pg. Color and texture histograms tend to be-
come less sparse; shape may become less convex; features
that were useless for very small regions (e.g., counts of vi-
sual words) may become useful for larger regions, etc. This
observation leads to a simple idea: re-train the model on the
new, larger regions. The second model merges some more
segments, but then it also stops. We can then train a third
model, etc., as described below.

Algorithm 2: Cascaded Segmentation
Given: Image I , initialR,weights w1, . . . ,wT

R0 ← R
for t = 1 toT do Rt ← MERGE(I,Rt−1,wt)
Return:RT

Training the cascade (Algorithm 3) is similar to the train-
ing of cascaded classifiers elsewhere, e.g., in the Viola-
Jones face detector [23]. It is also similar in spirit to the
re-training of pixel merge likelihood in [11]. One important
difference from these is that we use asymmetric loss, rather
than tune the threshold on classification. This enables us to
train a deeper cascade, and helps performance as we show
in Section 5.

Algorithm 3: Training a cascade

Given: {Ii,Ri, Gi}Ni=1, ρ > 0, T
for t = 1 toT do

sample image subsets Itrain, Itune,
s.t. Itune ∩ Itrain = ∅

Find α∗t with binary search, using Itrain, Itune, ρ
wt ← w∗(α∗t ) by Eq. (1)
foreach i ∈ {1, . . . , N} do

merge Ri ← MERGE(Ii,Ri,wt)
Return: w1, . . . ,wT

At each stage of Algorithm 3, Itrain and Itune are mu-
tually exclusive, to prevent overfitting of α. Furthermore,
at each stage these two sets are sampled independently, so
that empirical distribution of features on with stage t is a
more robust estimate of the distribution of new data. Final-
ly, note that after a few stages most of the boundaries from
earlier stages are no longer active (due to merging of their
constituent regions) and so reusing the same images carries
much less risk of overfitting.

To summarize: ISCRA starts with an initial set of small
superpixels, and propagates them through a series of stages.
At each stage some of the regions are merged using the
model learned for that stage, and the next stage receives the
resulting coarsened segmentation as its input.

Once the merging stops, we can “backtrack” and report
the segmentation at any point along the merging process.
This allows us to control the scale either by specifying the
desired number of segments (appropriate for the superpixel
regime) or by specifying the number of stages to run, which
is the natural definition of scale for ISCRA. We can also
compute the boundary map that reflect the scale at which
regions are merged: if there are T stages in ISCRA, then for
every boundary pixel in the initial segmentation, the value
of the boundary map will be t/T if it was merged after t
stages. Pixels that were not on the boundaries of initial su-
perpixels will have values zero, and pixels that survived the
last stage will have value 1. Examples of ISCRA segmenta-
tions at multiple scales, as well as the hierarchical boundary
map, are illustrated in Figure 2(right); more examples are
available in supplementary materials.

5. Experiments

Our experiments were aimed at two goals: (i) compare
ISCRA to other methods in both superpixel and large region
regimes; (ii) evaluate effect of various design choices on
performance. Below we describe a few remaining imple-
mentation details, the experimental setup and the results.

5.1. Features and training

The features we use can be grouped into three sets:

Appearance features that measure difference in the
“content” of the two regions. These include
• Color: The χ2 difference of color histograms, com-

puted for each channel in L*a*b color space, with 32
bins per channel. This yields 3 dimensions in φ.
• Texture: The χ2 difference of two segments when rep-

resenting each image using 32 textons (1 dimension).
• Geometric Context: For each of seven geometric con-

text labels [10], compute χ2 difference between his-
tograms of values for that label within the regions, with
32 bins (7 dimensions).



Figure 2. Examples of the cascaded merging by ISCRA on BSDS test images. From left: results after merging from ≈1000 superpixels
down to 250,125,50,10, the segmentation with ISCRA at the optimal scale in hindsight for the image (OIS), and the boundary strength map.

• SIFT: χ2 difference between histogram of SIFT dic-
tionary of 30 words computed for the image. We ex-
tract SIFT descriptors at a dense grid of 8 pixels, with
two patch sizes: 8 and 18 pixels, and do this for both
the gray level image and for the a and b color channels
(6 dimensions).

Shape features include region properties, area, perime-
ter, area of convex hull, eccentricity, centroid and bounding
box, Euler number etc. (19 dimensions).

Boundary features measure properties of the boundary
between the regions. We compute these as the average (per
pixel) values of gPb and of the OWT-UCM (2 dimensions).

With the addition of constant bias term for each stage,
we have in wt for stage t 39 weights. Note that αt is an
internal hyper-parameter in training; it serves to select the
wt, but needs not be reported to the user of the algorithm.

We trained 60 stages ISCRA on the 200 images in BS-
DS300 training set, using unregularized logistic regression
at each stage (see discussion in Section 4 regarding overfit-
ting). In each stage, 120 images were used as Itrain and a
subset of the rest as Itune; we set tolerance on recall drop,
used in search for optimal α, to ρ = 0.01. We also con-
strained merging in Alg. 1 to prevent repeated merging in-
volving the same region at the same stage; empirically this
improves performance, since it keeps the training data dis-
tribution from changing too much within the stage. As ini-
tial segmentation for every image (train or test) we took the
finest scale of OWT-UCM obtained for that image. Training
took approximately 5 hours on a quad-core machine; most
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Figure 3. (left) Values of α selected in training. (right) average
number of superpixels surviving each stage, over all images in all
test sets (with standard deviation bars).

of the time was spent in search for optimal α. Note that
OWT-UCM is trained on the same data, while method of
Hoiem et al is trained on a different data set. We then apply
the trained models to all the data sets without any retraining.

Figure 3(left) shows the trajectory of optimal value of α
through stages. As might be expected, this value decreases
dramatically with the average number of segments surviv-
ing the preceding stages (shown in Figure 3(right) for the
test sets). In final stages α < 1, as at that point in many of
the images there are more positive than negative examples
(i.e., merging is more likely to hurt than help).

5.2. Data sets, methods, and measures

Our experiments covered six data sets:
1. BSDS300 [16]:, 200 training images (on which ISCRA

was trained) and 100 test images. For each image 5-
10 ground truth segmentations are given. There are on
average 19.6 ground truth segments per image.

2. BSDS500 [2]: extended version of BSDS300. avg. 22
ground truth segments.



3. SBD: Stanford Background Dataset [9], 715 outdoor-
scene images. The ground truth we are using is
“layers”– labeling of distinct image regions; avg. 20.2
segments.

4. MSRC [19]: 591 images and 23 object classes. For
ground truth images, we use the cleaner and precise
version of [15]; avg. 4.6 segments.

5. VOC2012: validation set for segmentation challenge
(comp5) Pascal VOC 2012 [5]. 1499 images and 21
classes; avg. 3.4 segments.

6. NYU Depth [20]: We used the subset of the 1449 RGB
images for which dense instance-level labeling is pro-
vided; avg. 25.2 segments.

Two measures are sensible for any segmentation scale:
boundary precision vs. recall, and achievable segmenta-
tion accuracy (ASA). The latter measures, given a labeled
ground truth segmentation,3 the average per pixel accuracy
of optimal (in hindsight) labeling of the hypothesized re-
gions. See [14] for more details.

Superpixels In superpixel regime, we compare ISCRA to
SLIC, ERS, OWT-UCM, and Hoiem et al. SLIC and ERS
have been shown in [1, 14] to outperform other method-
s, including MeanShift [4], Turbopixels [13], graph-based
methods [18, 6, 22], and others [17, 8], on at least some of
the data sets, and we do not compare to those methods.

Since individual superpixels tend to be much small-
er than most ground truth regions, region-based measures
make little sense in this regime. Following the practice
in the literature, we focus on a boundary-based measures:
precision/recall, and undersegmentation error (measuring
amount of pixels “leaking” across true region boundaries)
as well as ASA.

Large segment In large segment regime, we compared
ISCRA to OWT-UCM, Hoiem et al and to HOCC, the latter
only on SBD and BSDS300, for which the authors of [12]
report results.4 Since HOCC was dominated by other meth-
ods we do not include detailed results in the tables.

Since pixel-wise errors become fairly large in this
regime, the boundary-based measures relevant for the su-
perpixel regime are no longer sensible. Instead, we focus
on region-based measures, listed below. See [2] for detailed
definitions.
• Segmentation covering, measuring average per-pixel

overlap between segments in ground truth (GT) and
the proposed segmentation.
• Probabilistic Rand Index (PRI), measuring pairwise

3In BSDS data sets no semantic labels are provided, and we assign each
ground truth region its own label.

4[12] also includes results on a subset of MSRC, not comparable to our
evaluation on the entire data set.

compatibility of pixel assignments GT and the pro-
posed segmentation.
• Variation of Information (VOI), measuring relative en-

tropy of the GT and the proposed segmentation.
With the exception of [12] the methods involved pro-

duce hierarchical segmentation, which can be used to ex-
tract a specific set of regions by specifying a scale value.
Following [2] we report the results obtained by optimizing
the scale in two ways: jointly for the entire training data set
(ODS), and separately for each test image (OIS). The latter
is a kind of oracle measuring the best achievable accura-
cy of any labeling adhering to the predicted segmentation
regions. Finally, since for some of the measures there is
a trade-off between performance and number of segments,
we report for each ODS/OIS value the average number of
segments extracted at that scale by the method in question.

5.3. Results on benchmarks

Precision-recall curves in Figure 5 show that no single
method dominates the others, however ISCRA is comptet-
itive for the top spot with OWT-UCM. Since only partial
ground truth boundaries VOC2012 and MSRC are avail-
able, we omit precision/recall curves for those data sets.

Figure 6 shows that for most data sets, ISCRA achieves
the lowest under-segmentation error for a broad range of
scales, typically for 400 superpixels and fewer. For very fine
oversegmentations, with more than 400 superpixels, ERS
tends to perform best.

Results for region measures relevant for the large seg-
ment regime are summarized in Tables 1 through 6. Across
data sets ISCRA clearly dominates other methods on cover-
ing and VOI, and is on par with OWT-UCM on PRI. While
ISCRA achieves better or equal results in most combinations
of data set/measure/scale choice, it typically does that with
many fewer segments than other methods (see superscripts
in the ODS columns), and the number of segments it obtains
is closer to that in the ground truth.

A similar effect is seen in the analysis of ASA perfor-
mance. Figure 4 shows, for ASA between 0.85 and 0.95,
the average number of segments required to get to that level
on each data set. Arguably, ASA values below 0.85 be-
come less interesting since they handicap any semantic la-
beling algorithm that might use the segmentation. Across
the board (with the exception of NYU) ISCRA achieves the
same level of ASA with significantly fewer segments than
other methods; most dramatically for ASA=0.95.

We have evaluated some of the design choices in ISCRA;
due to lack of space we only state the conclusions here, and
the detailed results are found in the supplementary material.
To assess the role played by different features, we trained
versions of ISCRA without various subsets of the features;
removal of every subset indeed hurts performance. We also
trained a variant of ISCRA in which α = 1 for all stages, and



the threshold on Pg used to stop merging is trained. This
variant, too, performs less well than ISCRA.

Covering VOI PRI
Method OIS ODS OIS ODS OIS ODS
UCM[2] 0.65 0.5923 1.54 1.6610 0.85 0.8150
Hoiem[11] 0.59 0.5517 1.70 1.8310 0.82 0.7917

ISCRA 0.66 0.6012 1.40 1.618 0.86 0.8116

Table 1. Results for large segment regime, BSDS300. OIS: opti-
mal scale per (test) image, ODS: optimal scale for entire test data
set. Superscripts: the average number of segments at the optimal
scale for each method/measure. Best results are shown in bold.

Covering VOI PRI
Method OIS ODS OIS ODS OIS ODS
UCM[2] 0.64 0.5918 1.49 1.6913 0.85 0.8359
Hoiem[11] 0.60 0.5618 1.66 1.7811 0.84 0.8118

ISCRA 0.66 0.5924 1.42 1.6010 0.85 0.8224

Table 2. Large segment regime, BSDS500. See caption of Table 1.

Covering VOI PRI
Method OIS ODS OIS ODS OIS ODS
UCM[2] 0.74 0.646 1.05 1.303 0.85 0.7812

Hoiem[11] 0.67 0.657 1.34 1.377 0.80 0.778

ISCRA 0.75 0.674 1.02 1.183 0.85 0.7714

Table 3. Large segment regime, MSRC. See caption of Table 1.

Covering VOI PRI
Method OIS ODS OIS ODS OIS ODS
UCM[2] 0.58 0.557 1.70 1.757 0.63 0.607
Hoiem[11] 0.56 0.547 1.72 1.737 0.61 0.597

ISCRA 0.57 0.565 1.64 1.655 0.62 0.605

Table 4. Large segment regime, VOC2012. See caption of Table 1.

Covering VOI PRI
Method OIS ODS OIS ODS OIS ODS
UCM[2] 0.64 0.5824 1.63 1.8811 0.89 0.8641

[11] 0.67 0.6220 1.52 1.6412 0.90 0.8720
ISCRA 0.68 0.6221 1.50 1.73 15 0.90 0.8736

Table 5. Large segment regime, SBD. See caption of Table 1.

Covering VOI PRI
Method OIS ODS OIS ODS OIS ODS
UCM[2] 0.51 0.46141 2.33 2.5234 0.90 0.88330

Hoiem[11] 0.51 0.4887 2.36 2.5028 0.89 0.88194

ISCRA 0.54 0.5062 2.21 2.3420 0.90 0.8997

Table 6. Large segment regime, NYU. See caption of Table 1.

6. Conclusions

We present ISCRA: Image Segmentation by Cascaded
Region Agglomeration. ISCRA consists of a cascade of
probabilistic models that predict the probability of group-
ing neighboring regions. It is trained in sequence, allowing
adaptation of feature weights to increasing segmentation s-
cale; when applied on an image it produces a hierarchical

segmentation, allowing the user to directly control the s-
cale and the number of resulting regions. In experimen-
tal comparison on six data sets, ISCRA is a clear winner in
region-based measures. It also is competitive in boundary-
based measures in the superpixel regime, obtaining best re-
sults for part of the range for some data sets. ISCRA tend-
s to achieve these results with fewer segments per image
than other methods, making it potentially appealing for use
as preprocessing step for semantic segmentation and other
high-level perception tasks.

As the experiments show, a major limitation on ISCRA
is its dependence on the initial segmentation. For instance,
in our experiments here, it can not obtain ASA or boundary
recall values above those of the finest scale of OWT-UCM.
We plan to investigate initialization methods that combine
fine-scale segmentations from multiple algorithms. We also
are working on designing additional features that will im-
prove accuracy of Pg estimated in later stages of ISCRA.
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Figure 4. Average number of segments to achieve desired ASA.
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Figure 5. Boundary precision-recall curves. Top right corner is ideal.
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Figure 6. Under-segmentation in superpixel regime. Lower values are better.
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