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Abstract— Recent developments in human-robot interaction
brings about higher requirements for robot navigation. Existing
Simultaneous Localization and Mapping (SLAM) algorithms
face open challenges for navigation in complex dynamic en-
vironments due to presumptions of static environments or
exceeding computational limitations. In this paper, we pro-
pose a robust graph SLAM formuation exploring Expectation
Maximization algorithms to characterize landmark mobility
while establishing the estimations of robot trajectory and the
map. We evaluate the performance of existing robust SLAM
algorithms as baselines, and validate the improvement of our
new framework against datasets of dynamic environments with
moving landmarks.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is a cen-

tral problem for autonomous robots to navigate and perform

mobile manipulation tasks. Graph SLAM formulates it as

an inference problem on a factor graph. In the factor graph,

spatial measurements are the observed factor nodes as con-

straints between variable nodes of landmark locations and

robot poses. The goal of the inference problem is to obtain

the maximum likelihood estimate of the joint probability

of the graph, which becomes the geometrically consistent

estimate of the robot’s trajectory and the map. This maximum

likelihood estimate on factor graphs can be solved by belief

propagation [15], or more recently, by numerical methods

after converting into a nonlinear squares [4], [5], [8].

Problems arise in SLAM loop closing when factors in-

correctly link unrelated variable nodes. Such false positives

effectively create wormholes between spatially distant lo-

cations and, thus, collapse and distort the map geometry.

In pose graphs, loop closures specify spatial connections

between arbitrary poses representing previously visited lo-

cations. However, front-end filtering systems often wrongly

connect random poses as loop closures. In landmark-based

graphs, the data association process can also easily obtain

wrong visual feature correspondences, connecting landmarks

to the wrong poses. This necessitates robust approaches to

SLAM.

SLAM also faces considerable open challenges for dy-

namic environments. Typical SLAM techniques in the liter-

ature are designed for unmanned navigation in uninhabited

areas, thus mostly assume static environments with stationary

landmarks and loop closures. However, recent human-robot

interaction research has seen more applications of navigation

in populated, crowded, or social environments where people
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Fig. 1: Estimating the map and trajectory (blue) on the Victoria Park dataset [4] given

landmarks corrupted by simulated movement (black circle) of associated observations

(yellow) and GPS ground truth (red). (Top row) the estimation obtained by conventional

graph optimization given N=2 (left) and N=5 (right) landmarks corrupted by movement.

(Bottom row) the result of mobility-robust map estimation of the same data using our

proposed method. Note that stationary landmarks are not shown, and GPS is unavailable

at several locations.

and furniture moving around is the major characteristics. If

the landmarks are moving, the current localization is either

kidnapped by the movement, or resulting in distorted maps.

In this paper, we present an approach to minimize the

effects of moving landmarks, by treating them as outliers, in

graph-based SLAM to improve the effectiveness of SLAM

in dynamic environments. We propose a mobility-robustified

SLAM model that includes a mobility variable over land-

marks in the joint probability to scale the effect of a landmark

in relation to how stationary it is in space. This mobility

variable relates the belief of landmark positions with their

measurements, and diminishes moving outlier landmarks

within a measurement function (equation 4). Effectively, this

mobility variables scale the covariances of Gaussian distribu-

tions to loosen the constraints of mobile landmarks such that

their motion will push this distribution towards uniformity.

An EM-based algorithm, as well as an incremental version, is

proposed to infer the mobility scaling and estimate the pose

trajectory of a robot with respect to a mobility-robustified

objective function. Results of our mobility-robustified SLAM



are shown respect to the Victoria Park [4] and Alcazar of

Seville [10] datasets.

II. RELATED WORK

Graph SLAM has multiple highly efficient optimization

solutions. iSAM [4] converts the graph SLAM maximum

likelihood estimate into a non-linear least squares optimiza-

tion problem. The factor graph is incrementally solved by

numerical methods, obtaining real-time performance and

Bayesian smoothing accuracy. These optimization techniques

show the effectiveness of the factor graph formulation of the

SLAM problem, and we base our formulation on similar

formulations.

A known solution to SLAM in dynamic environments

is to maintain two occupancy maps modeling the dynamic

and static parts of the environment [14]. By differentiating

dynamic and static parts of the environment with different

representation, this method is capable of mapping and local-

ization in dynamic environments over time. An alternative

approach of dealing with moving objects in dynamic en-

vironments is combining SLAM with object detection and

tracking. Wang et al. [13] proposed a Bayesian framework

to solve the SLAM together with object motion modeling

by sophisticated object detection and tracking and data

association algorithms. In this approach, object detection and

tracking is used as a preprocessing front-end to filter out

moving objects.

Robust SLAM techniques have been proposed to solve

front-end outlier problems without relying on pre-filtering.

Some use robust objective functions or robust representation

of observations. Dynamic Covariance Scaling [1] adds a

robust kernel factor to regularize the Mahalanobis errors in

the Gaussian distributions of landmark observations. Max-

Mixture [7] enhances factor potentials with a clever repre-

sentation for mixtures of Gaussians in place of a unimodal

Gaussian distribution. This kind of approaches still assume

sources of errors being mostly perceptual aliasing in wrong

loop closures, without regard to environmental movement.

Unless modeled explicitly in factor potentials, these methods

will have difficulty in handling the movement of landmarks.

Front-end outliers and dynamic elements can also be

addressed through identifying mobility as part of the back-

end graph optimization framework. Haehnel et al. [3] and

Rogers et al. [11] extend graphical model formulations with

a latent indicator variable to infer whether a landmark is

mobile. EM algorithms are used to iteratively infer these

latent landmark mobility variables in the graphical model

and estimate the optimal SLAM solution. The switchable

constraints [12] approach allows the optimizer to naturally

change the topological structure of the problem during the

optimization itself using switch variables as a multiplicative

scaling factor on the information matrix associated with

that constraint. However, these EM based algorithms lack

the robustness provided by previous techniques. Further, an

observation-based indicator only models the observation it

associates with and will not characterize the mobility of

landmarks which associate with multiple observations.
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Fig. 2: Graphical Model Formulation. Dark nodes are observed.

III. MODEL: AUGMENTED GRAPH SLAM

Following [4] we formulate the SLAM problem in graph-

ical models as in Figure 2. Specifically, the robot states (as

position and orientation over time in map coordinates) are

denoted by X = {xi} with i ∈ 0, . . . T , the landmark

locations in map coordinates by L = {lj} with j ∈
1, . . . , N , the control inputs for movement by U = {ui}
for i ∈ 1, . . . , T and the landmark measurements in robot

coordinates by Z = {zk} with k ∈ 1, . . . ,K. In addition

to the classical graph SLAM formulation, we augment the

representation of landmarks with a set of N scalar latent

parameters W = {wj} with j ∈ 1, . . . , N . At each time

k, the measurement zk corresponds to robot pose xik ,

landmark ljk , and latent variable wjk , where ik associates

robot poses with measurements, and jk associates landmarks

with measurements.

In considering dynamic environments, W models the

mobility of each landmark about whether it is capable of

movement or not without considering extra kinematics, and

robustify the observation term of the model in Equation

4. Through W , corrupted measurements associated with

moving landmarks are suitably eliminated as outliers from

the mapping process. It may be appealing to model a dynam-

ically moving object as a sequence of variables. However, it

is shown in the following that the scalar mobility variables

are adequate enough to eliminate moving landmarks from

graph optimization.

According to the proposed graphical model, we give the

joint probability of all variables and measurements as:

P (X,L,U, Z,W ) ∝
∏

i

P (xi|xi−1,ui)
∏

k

P (zk|xik , ljk , wjk). (1)

Then the maximum likelihood (ML) estimate of the un-

observed poses X and landmarks L given observations Z,

known controls U , and the current latent parameters W are

defined as

X∗, L∗ = argmax
X,L

P (X,L,U, Z,W ). (2)

To calculate the ML estimate, the objective is linearized

and converted into a linear least squares problem in this

form argminδ ||Aδ − b||2 by algebraic manipulation, and



then optimized using different numerical methods. Derivation

with more details is provided in appendix A.

Using a Gaussian representation with the latent extension,

the sensor model, the process model and measurement equa-

tion are defined as

xi = fi(xi−1,ui) + ηi

zk = hk(xik , ljk) + θk

(3)

where ηi and θk are noise terms which follow zero-mean

Gaussian distribution with covariance matrices Γi and Σk.

With this formulation, the second part of the joint probability

1 is augmented with the mobility indicator. In addition we

also apply a robust kernel vk to the observation term, then

the conditional probability of zk is defined as an augmented

Gaussian distribution:

P (zk|xik , ljk , wjk) ∝ exp(−wjk µ̃
T
kΣ

−1
k µ̃k),

µ̃k = vk(hk(xik , ljk)− zk)
(4)

where wjk represents the likelihood of being static for

landmark ljk associated with measurement zk at time k,

and vk is the robust scaling factor associated with each

landmark observation representing whether the measurement

is an inlier. When wjk or vk approaches zero, the effect is

equivalent to making the covariance of the Gaussian very

large, effectively rendering the distribution uniform and the

constraint represented by the distribution of no impact on the

graph optimization process. Note that wjk can be negative

because the formulation given here is proportional to a

normalizing constant.

IV. ALGORITHMS

Following the notation in section III, we introduce the

Expectation Maximization (EM) algorithms for estimating

w with robustified objective function to learn the mobility of

landmarks and estimate the robot trajectory and the map.

A. Estimation of Latent Parameters

As described in [11], in Equation 4, the hidden variables

wk must be estimated from multiple observations of each

landmark. In the M step, we select the optimal w which

maximizes the joint likelihood. However there is a trivial

solution to the likelihood maximization which sets wk = 0
for all k, we penalize the log-likelihood objective in Equation

5 with Lagrange multiplier which act as priors of the latent

landmark mobility variables:

Obj(Z,X,L,W ) =
∑

k

[

−wjk(µ̃
T
kΣ

−1
k µ̃k)

]

− 1

2
λ(1−w)T (1−w) (5)

where µ̃k = vk(hk(xik , ljk)− zk) is the robustified predic-

tion error of observation k obtained from the E step, and

wjk is the weight to estimate for landmark l = jk associated

with the k-th observation. We equate the derivative of the

objective function with respect to wl to zero, and maximize

the log likelihood, then for each wl we get

wl = 1− 1

λ

∑

k∈Kl

µ̃T
kΣ

−1
k µ̃k (6)

where Kl is the set of measurements of landmark l, and

λ is an assigned constant parameter to trade off the penalty.

Larger λ will penalize more against the number of landmarks

being mobile wk = 0 for any k.

B. Graph SLAM Optimization

In the E step, we use the estimated latent parameters to

obtain minimum variance results with graph optimization

methods. We employ the standard approach of graph op-

timization as in [5], with our augmentation to the objective

by introducing landmark mobility indicators wjk and obser-

vation robust kernel vk. Specifically, we want to compute the

maximum likelihood estimate of the robust objective

X∗, L∗ = argmax
X,L

{− log p(X,L,U, Z,W )}

= argmax
X,L

{
M
∑

i=1

||fi(xi−1,ui)− xi||2Γi

+
K
∑

k=1

wjk ||vk(hk(xik , ljk)− zk)||2Σk

+

K
∑

k=1

||1− vk||2Ξk
}

(7)

where the ||.||Σ term denotes the Mahalanobis distance with

covariance Σ. The penalty term ||1 − vk||2Ξk
here is the

switching prior introduced in [12]. Note that in this step,

w is fixed and the penalty term with respect to wk in the

objective for estimating w becomes a constant, thus it does

not appear in the objective function.

Here we apply the Dynamic Covariance Scaling[1] kernel

vk to each individual observation k. The factor vk for

observation k is given as:

vk = min

{

1,
2Φ

Φ + wjkµ
T
kΣ

−1
k µk

}

(8)

where µk = hk(xik , ljk) − zk is the original prediction

error of observation k. The DCS kernel is shown to result

in an upper bound specified by Φ for the second part of the

objective function. By specifying the upper bound Φ for all

robust edges, v dynamically scales the information matrices

of all edges each iteration within the graph optimization

process, and replaces the covariances of outliers with large

ones making it near uniform. Φ is chosen as 1 in our

implementation as suggested by its author.

With some derivation (Appendix section), the optimization

problem can be formed as a standard least-squares problem:

δ∗ = argmax
δ

||Aδ − b||2 (9)

The algorithm, while reliable as shown in experiments

in [3], is possible to have variants modified for real-time



updates. In our current implementation we perform batch

optimization. We need to rerun the EM algorithm if new

measurements are observed. Incremental implementation of

the framework is subject for future work.

C. Incremental Optimization

We introduce the theoretical basis for an incremental

implementation of the EM algorithm for the problem. As

suggested in [6], if the joint probability is fully factorized

with regards to the examples, as is in our case, we can use

the following algorithm for update in the E and M step while

preserving the correctness:

a) E step: In equation 7, if we have one new observa-

tion zK+1 at time K + 1, then

x∗

iK+1
, l∗jK+1

= argmax
xiK+1

,ljK+1

{
∑

i

||fi(xi−1,ui)− xi)||2Γi

+
K+1
∑

k=1

wjk ||vk(hk(xik , ljk)− zk)||2Σk

+

K+1
∑

k=1

||1− vk||2Ξk
}

(10)

and equation 10 can also be written in the form of 9, but

with less parameters. So, the incremental E step becomes

• Choose one observation term k to be updated, such as

k = K + 1
• Set x

(t)
ip

= x
(t−1)
ip

, l
(t)
jp

= l
(t−1)
jp

for p 6= k

• Set xik , ljk according to equation 7 in equation 9’s

form.

b) M step: The same step as introduced in section IV-

A, using the derivation in equation 6.

With this incremental EM algorithm, the E step can be

much faster since the optimization problem has less param-

eters. Also, after several iterations, we may use the model to

update the parameters by adding more observations, without

the need to run the EM algorithm on all the observations

again.

V. EXPERIMENTS

We implemented our method as discussed previously and

compared the result with various alternative approaches.

Our implementation is based on the graph optimization

framework g2o [5], and we programmed a plug-in type

library in C++ to represent our modified objective function

while reusing the Gauss-Newton optimization functionality.

The type library exposes properties of the edges including

the error metric, reweighted information matrix, and robust

Mahalanobis distance function.

A. Datasets

The first dataset is the commonly compared landmark-

based dataset Victoria Park released with iSAM [4]. We

apply different types of simulated corruption to the dataset to

generate multiple synthesized datasets to evaluate the effect

on different approaches. For the purpose of evaluating perfor-

mance against moving landmarks, several other commonly

used datasets are not suitable because they are pose-only

graphs without landmarks. The Victoria Park dataset of 2-

D odometry and landmark observations contains 6969 robot

poses, 6968 odometry measurements, 151 landmarks, and

3640 landmark measurements obtained.

The second dataset is based on a set of real world data

collected in crowded environment at the Alcazar of Seville

with a lot of tourists [10]. The original datasets provide

wheel odometry, stereo images, and laser scans. In the indoor

GPS denied environment, the provided ground truth map and

trajectory are built using a non-linear batch optimization-

based SLAM method with an approximate accuracy of 20

cm. We extract potentially moving landmarks from a indoor

subset of this dataset through a standard pipeline of feature

detection and extraction, feature correspondence, and stereo

estimation of keypoint depth implemented with OpenCV [2]

and ROS [9]. Due to lack of visual detection of loop closure,

we also add in a loop closure obtained from laser scans

instead of image data at the start-end point. This dataset tests

the typical scenario of visual SLAM with wheel odometry.

The extracted dataset consists of 4892 robot poses, 5808

measurements, and 13454 measurements.

B. Prior Methods with Moving Landmarks

In the first test, we evaluate the performance of the state-

of-the-art robust SLAM method, a implementation of Max-

Mixture [7], given dynamic landmark measurements. Max-

Mixture is a robust extension to classical graph SLAM

using Gaussian mixture in factor representation, that is,

xi =
∑

c φcN (µc,Σc) for component c and weight φc, with

observations being components, also similarly for zi. Max-

Mixture uses a max function to approximate and efficiently

evaluate the sum of Gaussians. It is well-known for its

capability of handling a large amount of incorrect loop

closures, but it is untested against moving landmarks, and

this experiment can be representative to other approaches in

the robust SLAM literature.

We apply different perturbations to all observations associ-

ated with a certain landmark which has the most observations

associated in the dataset, and study the different effects of the

perturbations on the optimal estimate of the trajectory and

the map of all landmarks obtained by Max-Mixture graph

SLAM. The Victoria Park dataset contains 2-D odometry and

landmark observations. As shown in Figure 3 the left plot

is the control group without perturbation, and is accurate to

the ground truth. A single southward bias is applied to all

observations of the landmark in the middle plot, simulating

sensory outliers. A temporally increasing bias is applied to

all observations of the landmark in the right plot, simulating

a southward moving landmark.

As the middle plot shows, Max-Mixture is still capable

of handling noise of large bias or spurious loop closures

introduced by simulated sensory fault. It correctly rejects

outlier landmark observations and recovers the position of

the perturbed landmark. However, it completely fails to
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Fig. 3: The optimal estimates of the trajectory and landmark positions obtained by Max-Mixture graph SLAM on the Victoria Park dataset. Left: low convergence uncertainty

(measured by objective value). Middle: high convergence uncertainty because of rejection of outlier observations of landmark 249. Right: low convergence uncertainty, no outlier

detected by Max-Mixture.

reject any unlikely landmark observations and largely dis-

torts the resulting trajectory when given moving landmark

measurements. An explanation for this is that each clique of

landmarks with coherent motion forms a plausible reference

frame for related observations. Inference based on each

independent reference frame will reach plausible estimate of

robot trajectory and the map, however robust SLAM methods

which assume stationary landmarks will average over a sum

of different reference frames and lead to wrong conclusions.

C. Comparison with Prior Methods

To benchmark the robustness of the proposed approach and

to show its correctness and feasibility, we use the Victoria

Park dataset that has been used in a number of publications

before. The dataset consists of pose graphs in 2D and

contain several thousand poses and landmark constraints.

We corrupted the data by setting landmark “249” (circled in

red) in a constant northward movement, where its eventual

position is roughly 7 meters north of its original location.

We chose landmark “249” due to the relatively large amount

of observations associated with this particular landmark in

the dataset. We expect the more observations there are on

a landmark, the greater its movement would corrupt the

final optimization results and the more possible that existing

robust SLAM methods would fail.

We compare the results of Dynamic Covariance Scaling

robust kernel as discussed in our formulation, and also the

SLAM with EM approach proposed in [11]. Figure 4 shows

the results for DCS, standard EM, and our approach. As

shown in the figure, robust observations alone are unable to

handle moving landmarks. Because observation-based robust

methods do not characterize the mobility of the landmark, its

effect on associated observations and assume independence

between observations, which is not the case for moving

landmarks. A moving landmark will cause associated ob-

servations to be inconsistent in a plausible way such that a

subgroup of the observations might be able to converge to a

local minimum but the rest of the observations would distort

the result elsewhere.

Normal SLAM with EM was proposed in [11] for datasets

with very large movement. Their formulation is similar with

ours except it is without the robust factor vk. As shown in

Figure 4, the resulting trajectory is distorted. One explanation
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Fig. 4: Dataset corrupted by the landmark with small movement on the Victoria Park
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Fig. 5: Dataset corrupted by the landmark with large movement on the Victoria Park

dataset

for this is from the characteristics of the datasets. In their

paper, they investigated datasets containing landmarks moved

from one room to another room over a long period of time.

Such long-duration mobility is not the case in the Victoria

Part dataset, where the motion of the landmark is relatively

small and continuous. In fact, the motion of the corrupted

landmark is doubled and normal EM is able to learn the

mobility correctly.

Our robust back-end however, is able to converge to a



correct solution in a few iterations. Our result is also verified

by examining the learned parameters wjk and vk of all land-

marks, which is close to zero for the actual outlier landmarks,

thus correctly deactivating associated corrupted observations.

The improvement is explained by our utilization of the robust

kernel to make the EM algorithms reliably learn the mobility

indicators of the landmarks correctly identify the actual

moving landmarks. Thus our approach is able to obtain the

best results in both situations.

In Figures 6 and 7, the result also shows additionally

comparison of different methods on the Alcazar of Seville

dataset. As can be seen, the trajectory estimation obtained

with only robust observations using DCS kernel is signifi-

cantly distorted. Our method is able to recover the trajectory

approximately. The estimated trajectory does not completely

converge on the ground truth trajectory due to less than

full coverage of extracted landmarks and limited accuracy

in depth estimation.
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VI. DISCUSSION AND FUTURE WORK

We have shown the basic efficacy of our approach, but the

evaluation is far from being comprehensive. The performance

under different percentage of randomly generated outliers,

and different sources and types of datasets including 3-D

datasets are needed for a complete understanding of the

performance in our approach. Due to the different nature

of source of errors of moving landmarks than spurious

loop closure, the effect of different numbers of observations

associated with landmarks also needs to be taken into account

for systematic evaluation.

We have examined the theoretical basis for the incremental

variant of the EM algorithms. Considering the fast conver-

gence of our batch EM algorithm it might be possible to in-

tegrate the incremental algorithm into the graph optimization

process without loss of the correctness of the EM algorithms,

and making our approach suitable for real-time update.

In our formulation, there are pre-defined parameters λ

for penalizing against removing too many landmarks, which

is essentially a decision boundary, and Φ for the robust

kernel. The appropriate method to choose the parameters

and their sensitivity to environmental factors and dataset

characteristics need to be examined. There are multiple

robust SLAM methods proposing different penalty terms

which derive into these parameters. A comparison of the

alternative choices of penalty terms is also necessary.

VII. CONCLUSION

This paper proposed a new method to characterize and

identify the mobility of potentially moving landmarks by

using the EM algorithms with robust kernel. The feasibility

of the proposed approach was shown and evaluated on syn-

thesized datasets from a standard dataset. We compared with

existing state-of-the-art methods and showed that observation

based robust methods are unable to handle moving landmarks

while EM alone without robust kernel does not deal with

small continuous movement robustly. We also propose an

incremental variant of our approach which will be suitable

for real-time incremental update in future implementation.

APPENDIX

A. SLAM as a Least Squares Problem

For completeness of the paper, we review how to form

the SLAM optimization problem as a least squares problem,

following the derivation in [4]. Recall that in equation 7,

we need to solve a quadratic program, however we may

approximate the terms with first order polynomials. For the

process term,

fi(xi−1,ui)− xi

≈fi(x
0
i−1,ui) + F i−1

i δxi−1 − (x0
i + δxi)

=F i−1
i δxi−1 +Gi

iδxi − ai

(11)

where I is the identity and

F i−1
i =

∂fi(xi−1,ui)

∂xi−1
|x0

i−1
,

Gi
i = −I, (Identity matrix)

ai = x0
i − fi(x

0
i−1,ui).



For the measurement term:

hk(xik , ljk)− zk

≈hk(x
0
ik
, l0jk) +Hik

k δxik + J
jk
k δljk − zk

=Hik
k δxik + J

jk
k δljk − ck

(12)

where,

Hik
k =

∂hk(xik , ljk)

∂xik

|(x0
ik

,l0
jk

),

J
jk
k =

∂hk(xik , ljk)

∂ljk
|(x0

ik
,l0

jk
),

ck = zk − hk(x
0
ik
, l0jk)

Therefore, the optimization problem thus becomes

δθ∗ = argminδθ{
M
∑

i=1

||F i−1
i δxi−1 +Gi

iδxi − ai||2Γi

+
K
∑

k=1

wjk ||vk(Hik
k δxik + J

jk
k δljk − ck)||2Σk

}

(13)

To rewrite the Mahalanobis norm, notice that

||e||2
Γ
= eTΓ−1e = ||Γ−T/2e||2 (14)

Therefore, we can collect all the Jacobian matrices multi-

plied by either Γ
−T/2
i or vkw

1/2
jk

Σ
−T/2
k , specifically,

δθ∗ =argmin
δθ

{
M
∑

i=1

||Γ−T/2
i F i−1

i δxi−1 + Γ
−T/2
i Gi

iδxi − Γ
−T/2
i ai||2

+

K
∑

k=1

||vk
√
wjkΣ

−T/2
k Hik

k δxik

+ vk
√
wjkΣ

−T/2
k J

jk
k δljk − vk

√
wjkΣ

−T/2
k ck||2}

(15)

We concatenate the matrices F ,G,H,J in block form

into a square matrix A, δx, δl into δθ, and a and c into the

residual vector b to then obtain the standard least squares

problem:

δθ∗ = argmin
δθ

||Aδθ − b||2 (16)
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