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This Talk

= Markov random fields capture rich dependencies in
structured data, but inference is NP-hard

= Relaxed inference can help, but techniques have tradeoffs

= Two approaches:

S

Local Consistency Relaxation MAX SAT Relaxation



Takeaways
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Local Consistency Relaxation MAX SAT Relaxation

= We can combine their advantages: quality guarantees
and highly scalable message-passing algorithms

= New inference algorithm for broad class of structured,
relational models



Modeling Relational Data
with
Markov Random Fields



Markov Random Fields

= Probabilistic model for high-dimensional data:

P(x) x exp (w' ¢(z))

= The random variables x represent the data, such as
whether a person has an attribute or whether a link exists

» The potentials ¢ score different configurations of the data

* The weights w scale the influence of different potentials



Markov Random Fields

= Variables and potentials form graphical structure:
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Modeling Relational Data
B L Tube)

= Many important problems
have relational structure
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= Relations in data map
to logical predicates



Logical Potentials

= One way to compactly define MRFs is with first-order

logic, e.g., Markov logic networks
[Richardson and Domingos, 2006]

5.0 : FRIENDS(X,Y ) A SMOKES(X) =—> SMOKES(Y)

= Each first-order rule is a template for potentials

- Ground out rule over relational data

- The truth table of each ground rule is a potential

- Each potential’s weight comes from the rule that templated it




Logical Potentials: Grounding
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Logical Potentials

= Let R be a set of rules, where each rule RR; has the
general form
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- Weights w; > () and sets I] and [jindex variables




MAP Inference

= MAP (maximum a posteriori) inference seeks a most-
probable assighment to the unobserved variables

= MAP inference is

argmax P(x) = argmax Z W, \/ x; \/ \/ —X;
¢ »E0U" picR iert iel;
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= This MAX SAT problem is combinatorial and NP-hard!



Relaxed
MAP Inference



Approaches to Relaxed Inference

= | ocal consistency relaxation
- Developed in probabilistic graphical models community

- ADVANTAGE: Many highly scalable algorithms available
- DISADVANTAGE: No known quality guarantees for logical MRFs

= MAX SAT relaxation ®
- Developed in randomized algorithms community %
- ADVANTAGE: Provides strong quality guarantees

- DISADVANTAGE: No algorithms designed for large-scale models

= How can we combine these advantages?



Local Consistency
Relaxation



Local Consistency Relaxation

= LCR is a popular technique for approximating MAP in MRFs
- Often simply called linear programming (LP) relaxation
- Dual decomposition solves dual to LCR objective

= | ots of work in PGM community, e.g.,
- Globerson and Jaakkola, 2007
- Wainwright and Jordan, 2008
- Sontag et al. 2008, 2012

= |dea: relax search over consistent
marginals to simpler set




Local Consistency Relaxation
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Local Consistency Relaxation
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Local Consistency Relaxation

arg imnax Z ijHj(a:j) gbj(a:j)

(97/1')61[" Rj cER T

JL : pseudomarginals over variable states &

0 : pseudomarginals over joint potential states d(x;)



MAX SAT
Relaxation



Approximate Inference

= View MAP inference as optimizing rounding probabilities

= Expected score of a clause is a weighted noisy-or function:

wj (1 [Ja-») 1] pz‘)
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= Then expected total score is

S
W = Z W (1 H(l—pz‘) sz)
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= But, arg max,, W is highly non-convex!



Approximate Inference

= |t is the products in the objective that make it non-convex
= The expected score can be lower bounded using the
relationship between arithmetic and harmonic means:

pP1+Dp2+ T Dk
! Qk > /P1D2 - Pk

= This leads to the lower bound

zwg(lnlmnpz) (1)zwjmm{zpz+zlm }
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Goemans and Williamson, 1994



Approximate Inference

» S0, we solve the linear program

arg max Z w,; min Zy@+ Z 1 —y;),
y

0,1]»
€l R;eR z61+ i€l

= |f we set Pi = Yi, a greedy rounding method will find a
(1 _ _) -optimal discrete solution
1 1 .
" If weset p;, = <—y; + — , it improves to ¥%-optimal

2 4

Goemans and Williamson, 1994



Unifying the
Relaxations



Analysis




Analysis
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Analysis

= We can now analyze each potential’s parameterized
subproblem in isolation:

oj(p) =  max w; Y 0;(x;) ¢i(x;)

ej |(63 7"") el

= Using the KKT conditions, we can find a simplified
expression for each solution based on the parameters pu:
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. Substitute back into
AnalyS]S outer objective




Analysis

= Leads to simplified, projected LCR over ft:
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Analysis

Local Consistency
Relaxation

arg max E W, N <

Zm—i- Z(l_ﬂz’)al

pelo,1]m R,ER

\zEIj ZEIj

MAX SAT
Relaxation
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Evaluation



New Algorithm: Rounded LP

= Three steps:
- Solves relaxed MAP inference problem
- Modifies pseudomarginals
- Rounds to discrete solutions

= We use the alternating direction method of multipliers

(ADMM) to implement a message-passing approach
[Glowinski and Marrocco, 1975; Gabay and Mercier, 1976]

= ADMM-based inference for MAX SAT form of problem was

originally developed for hinge-loss MRFs
[Bach et al., 2015]




Evaluation Setup

= Compared with
- MPLP
- MPLP with cycle tightening
[Globerson and Jaakkola, 2007; Sontag et al. 2008, 2012]

= MPLP uses coordinate descent dual decomposition,
so rounding not applicable

= Solved MAP in social-network opinion models with super-
and submodular features

= Measured primal score, i.e., weighted sum of satisfied
clauses




Results

= Expected scores of Rounded o —
LP are significantly better - ’§2<//
8 .
= Rounded LP’s final scores are ¢ i /@/
even better 8 °f %
5 , ¥
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= Cycle tightening has limited = /§
effect 2t 87 | % ot
/7 + Rounded LP (Exp)
/7 ©  MPLP w/ Cycles
» Rounded LP does 20% better o 2 4 6 8 10
than MPLP, and only takes 1 MPLP Primal Objective y 10°

minute for 1 million clauses




Conclusion



Conclusion

= Uniting local consistency and MAX SAT relaxation
combines the benefits of both: scalability and accuracy

Thank You!

bach®@cs.umd.edu @stevebach
= Many applications to structured and relational data:
- Social network analysis
- Bioinformatics
- Recommender systems
- Text and video understanding




