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The equivalence of the two relaxations means that
the advantages of each can be combined into a 
single technique:

     1. Solve the local consistency relaxation with any
        of a number of scalable message-passing
        algorithms

     2. Find a discrete solution of 3/4 quality by
        applying the rounding procedure of
        Goemans and Williamson [1994] to the
        optimal pseudomarginals     .

Scalable message-passing algorithms for finding    
include subgradient dual decomposition, the 
alternating direction method of multipliers (ADMM), 
and proximal methods

4.  Practical Implications

Theorem: For any logical MRF, the first-order local consistency relaxation of MAP 
inference is equivalent to the MAX SAT relaxation of Goemans and Williamson [1994].

Proof Technique: 

     Analyze the local consistency relaxation as a hierarchical optimization:

     Use the Karush-Kuhn-Tucker conditions to find value of            for any setting of    :

3.  Equivalence Analysis

2.  Approximate MAP Inference for Logical MRFs

1.  MRFs with Logical Dependencies
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Consider MAP inference in a Markov random field (MRF)

where each variable is Boolean, each parameter is non-negative, and each 
potential is defined by the truth value of a logical clause:

We refer to such MRFs as logical MRFs.

MAP Inference in logical MRFs is NP-hard. [Garey et al., 1976]

We provide rounding guarantees for message-passing 
approximate MAP inference for logical MRFs

Examples of Dependencies in Logical MRFs

     1. Implications

 
     2. Submodular functions

     3. Supermodular functions

argmax
x

w�φ(x)

φj(x) �




�

i∈I+
j

xi



 ∨




�

i∈I−
j

¬xi





φa(x) � ¬x1 ∨ x2 φb(x) � x1 ∨ ¬x2

We consider two main approaches to approximate MAP inference:

     1. Local consistency relaxations

          Introduce marginal distributions over variable and potential states,
          then constrain them to only be locally consistent

          Advantage:  Admits highly scalable message-passing algorithms

     2. MAX SAT relaxations

          View as instance of MAX SAT, and relax as an LP that bounds
          expected truth value [Goemans and Williamson, 1994]

          Advantage:  Gives discrete solutions of guaranteed 3/4 quality
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using the method of conditional probabilities
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