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|. MRFs with Logical Dependencies

Consider MAP inference in a Markov random field (MRF)

argmax w ' ¢(x)

where each variable is Boolean, each parameter is non-negative, and each
potential is defined by the truth value of a logical clause:
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We refer to such MRFs as logical MRFs.
MAP Inference in logical MRFs is NP-hard. [Garey et al., 1976]

We provide rounding guarantees for message-passing
approximate MAP inference for logical MRFs
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Examples of Dependencies in Logical MRFs

|. Implications
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2. Submodular functions
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3. Supermodular functions
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2. Approximate MAP Inference for Logical MRFs

We consider two main approaches to approximate MAP inference:
|. Local consistency relaxations

Introduce marginal distributions over variable and potential states,
then constrain them to only be locally consistent
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Advantage: Admits highly scalable message-passing algorithms
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2. MAX SAT relaxations

View as instance of MAX SAT, and relax as an LP that bounds
expected truth value [Goemans and Williamson, 1994]
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using the method of conditional probabilities

Advantage: Gives discrete solutions of guaranteed 3/4 quality

3. Equivalence Analysis

Theorem: For any logical MREF, the first-order local consistency relaxation of MAP
inference is equivalent to the MAX SAT relaxation of Goemans and Williamson [1994].

Proof Technique:

Analyze the local consistency relaxation as a hierarchical optimization:

max b where
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Use the Karush-Kuhn-Tucker conditions to find value of qgj(u) for any setting of t:
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4. Practical Implications

The equivalence of the two relaxations means that
the advantages of each can be combined into a
single technique:

|. Solve the local consistency relaxation with any
of a number of scalable message-passing
algorithms

2. Find a discrete solution of 3/4 quality by
applying the rounding procedure of
Goemans and Williamson [1994] to the
optimal pseudomarginals ™.

Scalable message-passing algorithms for finding t*
include subgradient dual decomposition, the
alternating direction method of multipliers (ADMM),
and proximal methods
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