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As governments, non-profit organizations, researchers, and
corporations collect data on social phenomena, opportuni-
ties have emerged for data science applications that can
benefit society. However, modeling these types of complex,
real-world phenomena requires new tools to address inher-
ent computational challenges. Social data is intrinsically
relational, noisy, partially observed, and large scale, and
it is composed of both continuous and discrete informa-
tion. Probabilistic soft logic (PSL) [3, 5] is a general-purpose
framework we are developing to solve these challenges.

Since the value of social data is in the networks of re-
lationships they describe, models for social data should be
rich enough to capture the intricate dependency structures
among unknown variables. These models should be proba-
bilistic so that they are robust to the inconsistencies caused
by randomness in the real world while able to capture rele-
vant patterns therein. Further, many variable values may be
latent, i.e., not be available for model training, whether be-
cause they are inherently unobservable or simply impractical
to observe. So, we need methods for learning that support
training with latent variables. Finally, because social data
is large-scale and contains both discrete and continuous val-
ues, we need models that are scalable and support mixtures
of discrete and continuous information.

PSL is a declarative language for defining probabilistic
models that meet all of these requirements. PSL models
are defined as a set of logical rules, each of which describes
a common dependency in the data. These rules form tem-
plates over entities and relationships in data, enabling inter-
pretable PSL models to reason about complex dependency
structures induced by rich, natural networks. For example,
in order to detect events in social media, posts and users of-
ten have to be accurately geolocated, i.e., identified as being
posted from or referring to a particular geographic location.
A simple PSL rule for geolocation of social-media posts is

2.0 : PostMentionsEntity(P,E) ∧ IsLocation(E) →
HasLocation(P,E) .

The rule relates sets of three first-order atoms, such as HasLo-
cation(P,E), via probabilistic dependencies for each post
P and named entity E. Although the rule certainly does not
always hold, PSL will combine it with other rules probabil-
isitically to make predictions. Each rule is annotated with a
non-negative weight, indicating how strongly the rule should
hold in the data. To construct a ground model for specific
data, each rule is grounded out by replacing the logical vari-
ables in the first-order atoms with constants from the data
to construct a set of rules containing only ground atoms.

PSL treats the truth values of ground atoms as continuous
variables in the [0, 1] interval, using soft logic relaxations of
Boolean logic. This continuous representation easily incor-
porates naturally continuous quantities into its logic-based
dependencies, allowing PSL to model and predict both con-
tinuous and discrete information by treating the soft truth
values as either truly continuous quantities or confidences
in discrete predictions. The resulting continuous-variable
models are probability densities over the possible contin-
uous truth-value assignments to the ground atoms. Each
ground rule induced by a data set contributes a hinge-loss
potential function to the graphical model, measuring how far
the rule is from being logically satisfied for different assign-
ments of truth values to the ground atoms. These models
are members of a powerful class of graphical models known
as hinge-loss Markov random fields [2], which admit effi-
cient inference and learning in fully-labeled settings as well
as partially labeled settings with latent variables.

This intuitive modeling language, backed by scalable ma-
chine learning algorithms, makes PSL a flexible tool for
social-data applications with the potential for positive im-
pacts. Figure 1 shows an example PSL program for detecting
disease outbreaks from social-media posts. The goal is to in-
fer the prevalence of diseases in different locations for a given
dictionary of locations and diseases from a corpus of social
media posts. The first two rules geolocate posts. The atom
PostMentionsEntity(P,E) can be grounded with substi-
tutions via entity recognition on the collection of posts, and
IsLocation(E) can be grounded by substituting from the
dictionary of locations. PostIsGeotagged(P,GT ) can be
grounded by extracting any available latitude and longitude
geotags from posts, and GeotagInLocation(GT,L) can be
grounded via a mapping from geotags to the dictionary of lo-
cations. HasLocation(P,L) is unobserved, so the first two
rules will be used to infer locations for posts. The locations
of posts will then be combined with mentions of diseases in
the third rule to infer disease prevalence based on disease
mentions. The fourth rule propagates disease prevalence
to nearby locations, where Close(L1, L2) is a continuous-
valued measure of how geographically close locations are,
making this rule propagate disease prevalence more strongly
to nearby locations. Finally, the fifth rule acts as prior in-
formation, indicating that lower disease prevalence should
be preferred in the absence of additional evidence. As addi-
tional evidence accumulates, the prior will have less influence
on the prediction, and higher prevalence will be predicted.

Previous applications of PSL include detection of events
such as disease outbreaks and civil unrest from social me-



2.0 : PostMentionsEntity(P,E) ∧ IsLocation(E) → HasLocation(P,E)

10.0 : PostIsGeotagged(P,GT ) ∧GeotagInLocation(GT,L) → HasLocation(P,L)

5.0 : PostMentionsDisease(P,D) ∧HasLocation(P,L) → HasDisease(L,D)

1.0 : HasDisease(L1, D) ∧ Close(L1, L2) → HasDisease(L2, D)

0.5 : ¬HasDisease(L,D)

Figure 1: A sample PSL program for disease-outbreak detection using social media.

dia [6], modeling different types of student engagement in
massive open online courses (MOOCs) as latent variables in
order to predict outcomes [7], identification of latent group
affiliation in social media [1], and predicting trust in social
networks [4]. In all of these applications, PSL is applied to
social data to make predictions that can have positive im-
pacts. In future work, we are eager to apply PSL to new
social-good applications.

We have implemented an open-source software package
for the PSL framework1. The code is written in Java, so it
is portable to a variety of platforms. A Groovy front-end
layer is also implemented, allowing users to mix Java and a
domain-specific language for easily defining PSL rules and
constraints. The PSL package uses a relational-database
backend for fast grounding of models. A variety of learning
algorithms are included for supervised and semi-supervised
learning. We also have implemented an especially scalable
algorithm for inference that lazily constructs ground PSL
models as it becomes necessary to actually reason about
non-zero truth assignments to ground atoms. In relational
domains, in which many possible relations do not actually
exist, this can greatly improve scalability. The entire pack-
age is licensed under the Apache 2.0 license.

In addition to exploring new applications, we are actively
researching a number of methodological directions toward
making PSL more powerful. We are investigating fast learn-
ing algorithms for training from large-scale data that exploit
the efficient and convex form of PSL inference. We seek to
extend our preliminary work on distributed computation for
PSL inference via vertex programming. We are also devel-
oping new learning algorithms that are able to learn PSL
rules from data, i.e., structure learning. Another area we
are investigating is using PSL as a decision-support system,
helping to target positive interventions by modeling causal
relationships. Finally, we are designing methods for learning
and inference in streaming settings, in which the model and
predictions must be continually—and efficiently—updated
as new data arrives.

We have described PSL and some of its qualities that make
it well suited to innovative applications of social data with
the potential for positive social impacts. PSL’s intuitive
modeling language and scalable algorithms enable it to work
with large-scale social data. With our ongoing research in
both algorithms and applications, we are eager to apply PSL
to new social-good problems.

1http://psl.cs.umd.edu
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