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Abstract

We introduce a new approach to learning for the common problem of link predic-
tion. Since link prediction is a structured prediction task that is naturally viewed
as a ranking problem, we propose to learn to optimize a ranking metric directly
in a large-margin structured prediction framework. This approach is appealing
because it directly encodes the desired behavior into the learning objective. We
show how to compute subgradients of the learning objective efficiently, and we
demonstrate the effectiveness of our approach on real-world networks.

1 Introduction

A fundamental problem in network analysis is link prediction, the task of predicting which nodes
in a network link to which. Link prediction differs from many other machine-learning tasks in a
number of ways. First, underlying network phenomena are intrinsically structured, e.g., the pres-
ence or absence of a link usually depends on other links in the network. Consequentially, accurate
models for link prediction should also be structured. Rather than predicting each link independently,
modeling unknown links jointly often improves predictive performance, e.g., [1, 2]. Second, it is
large scale. In a network with n nodes, there are O(n2) possible links, so models for link prediction
must be able to scale to such large prediction spaces. Third, it is best viewed as a ranking problem.
In practice, most real-world networks of interest are sparse, i.e., few of the O(n2) possible links
actually exist. This imbalance makes traditional 0-1 loss evaluation metrics and training objectives
inappropriate, because hypotheses that predict that no links exist can achieve very high accuracy. In-
stead, researchers have used ranking metrics such as area under the receiver operating characteristic
(ROC) or precision-recall curve to evaluate models for link prediction.

In this work, we introduce a new approach to learning for link prediction designed to address these
facets. We propose to directly train structured models to optimize a ranking metric within a large-
margi estimation framework [3]. While researchers have considered large-margin structured predic-
tion with 0-1 losses, e.g., [4, 5, 6, 7], large-margin ranking of independent elements, e.g., [8, 9, 10],
and large-margin collaborative filtering using matrix factorization [11], we consider general large-
margin structured prediction with a ranking loss and the unique computational challenges that arise.
We present preliminary results that demonstrate the promise of our approach.

2 Background

We first describe large-margin learning (Section 2.1), which we will later extend to learn joint rank-
ing models (Section 3). We then describe hinge-loss Markov random fields (Section 2.2), which are
a particular family of models well-suited to link prediction. We will train them in our evaluation
(Section 4) to demonstrate the effectiveness of our approach.
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2.1 Large-margin structured learning

In structured prediction tasks, such as link prediction, the goal is to predict an output Y from a
space of structures Y given input X. A common approach to learning for structured prediction is
large-margin learning, which seeks a function fλ(Y,X) that discriminates the training data by a
large margin from all other Y ∈ Y given X. We follow the common assumption that fλ(Y,X)
takes the form λ>φ(Y,X) where λ is a vector of weights to be learned, and φ is a vector of features
of the input and candidate outputs.

Since we will make predictions using argmaxY fλ(Y,X), the ground-truth state should have a
higher score than any alternate state by a large margin. Specifically, we seek weights λ such that,
for any valid output state Ỹ,

fλ(Y,X) ≥ fλ(Ỹ,X) + L(Y, Ỹ), ∀Ỹ ∈ Y .

where L(Y, Ỹ) measures the disagreement between a state Ỹ and the training data Y. Since we do
not expect all problems to be perfectly separable, we relax this constraint by penalizing its violation.
This leads to a convex learning objective for a large-margin solution

min
λ

1

2
‖λ‖2 + Cmax

Ỹ∈Y

(
fλ(Ỹ,X)− fλ(Y,X) + L(Y, Ỹ)

)
. (1)

Such structured learning objectives can be solved in a few different ways. We use an online subgra-
dient method [3], which iteratively updates the parameters by taking steps in a subgradient direction.
The subgradient at current parameter λ is

∇λ = λ+ C (φ(Y?,X)− φ(Y,X))

where
Y? = argmax

Ỹ

fλ(Ỹ,X) + L(Y, Ỹ) . (2)

Given a subgradient, we attempt to improve the objective (1) by updating according to

λ← λ− ηt∇λ,

where ηt is a decreasing step size schedule such as ηt = 1
t for the t’th iteration.

The computational challenge of large-margin learning therefore comes down to the subgradient
computation, which takes a similar form to inference itself and is often referred to as loss-augmented
inference [12]. The difficulty of solving objective (2) depends on both the scoring function fλ(Y,X)

and the loss function L(Y, Ỹ). The scoring function should be expressive, yet tractable, and the
loss function should accurately characterize more and less desirable predictions. In Section 2.2, we
describe one such scoring function well-suited to link prediction, before we show how to learn with
a ranking loss for the loss function in Section 3.

2.2 Hinge-loss Markov random fields

In this section, we give an overview of hinge-loss Markov random fields (HL-MRFs) [7]. HL-
MRFs are log-linear probabilistic graphical models parameterized by constrained hinge-loss energy
functions. The energy function is factored into hinge-loss potentials, which are functions of the
continuous variables. For completeness, a formal definition of HL-MRFs is as follows [7].

Definition 1. Let Y = (Y1, . . . , Yn) be a vector of n variables and X = (X1, . . . , Xn′) a vector of
n′ variables with joint domain D = [0, 1]n+n

′
. Let φ = (φ1, . . . , φm) be m continuous potentials

of the form
φj(Y,X) = [max {`j(Y,X), 0}]pj ,

where `j is a linear function of Y and X and pj ∈ {1, 2}. LetC = (C1, . . . , Cr) be linear constraint
functions associated with index sets denoting equality constraints E and inequality constraints I,
which define the feasible set

D̃ = { Y,X ∈ D | Ck(Y,X) = 0,∀k ∈ E , Ck(Y,X) ≥ 0,∀k ∈ I } .
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For Y,X ∈ D̃, given a vector of nonnegative free parameters, i.e., weights, λ = (λ1, . . . , λm), a
constrained hinge-loss energy function fλ is defined as

fλ(Y,X) = −
m∑
j=1

λjφj(Y,X) .

Definition 2. A hinge-loss Markov random field P over random variables Y and conditioned on
random variables X is a probability density defined as follows: if Y,X /∈ D̃, then P (Y|X) = 0; if
Y,X ∈ D̃, then

P (Y|X) =
1

Z(λ)
exp [fλ(Y,X)] , where Z(λ) =

∫
Y

exp [fλ(Y,X)] .

Inference of the most probable explanation (MPE) in HL-MRFs is a convex optimization, since
the hinge-loss potentials are each convex and the linear constraints form a convex feasible region.
The fastest known method for HL-MRF inference uses the alternating direction method of multi-
pliers (ADMM) [13], which decomposes the full objective into subproblems each with their own
copy of the variables and uses augmented Lagrangian relaxation to enforce consensus between the
independently optimized subproblems [7].

3 Learning to rank links

To train a function fλ(Y,X) to predict links in a network, we propose to use a ranking loss directly
during large-margin learning as the loss function L(Y, Ỹ). Previously in large-margin learning
for structured prediction, research has focused on loss functions that decompose over individual
components of the structure, such as the Hamming and L1 losses, e.g., [4, 5, 6, 7]. However,
since link predictions are best evaluated as rankings, we propose to learn to optimize a ranking loss
instead. A standard ranking loss is the area under the receiver operating characteristic curve (ROC),
which is defined in terms of the number of swapped pairs in a ranking. Let P be the set of links that
are labeled as existing (positive links), and let N be the set of links that are labeled as not existing
(negative links). Then,

ROC(Y, Ỹ) ≡ 1−

∣∣∣{(i, j) | Yi > Yj
∧
Ỹj > Ỹi

}∣∣∣
|P||N |

,

which can be changed to a loss function

LROC(Y, Ỹ) ≡ 1

|P||N |
∑

(i,j)|Yi>Yj

I
[
Ỹj > Ỹi

]
.

LROC(Y, Ỹ) is a combinatorial function that makes optimizing objective (2) intractable. However,
we define a more tractable convex surrogate, pseudo ROC,

LpROC(Y, Ỹ) ≡ 1

|P||N |
∑

(i,j)|Yi>Yj

max
{
0, Ỹj − Ỹi

}
.

We can now write the loss-augmented inference objective (2) specifically for this ranking loss:

argmax
Ỹ

fλ(Ỹ,X) +
1

|P||N |
∑

(i,j)|Yi>Yj

max
{
0, Ỹj − Ỹi

}
. (3)

As we explained in Section 2.1, the computational challenge of large-margin learning comes down
to optimizing this objective. Using this convex relaxation of the ROC loss augments a maximization
with a convex function, so in settings where inference is a maximization of a convex or linear func-
tion, this loss-augmented inference is no longer concave. To address this non-concavity, we propose
a procedure that is applicable to any concave energy function fλ(Ỹ,X). Useful examples include
hinge-loss Markov random fields, linear and quadratic programming relaxations of Markov random
fields, and convex variational approximations to marginal inference. Further, there are |P||N | terms
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Algorithm 1 Gradient Computation for LpROC

Input: model fλ, input X, training output Y = P +N , initial guess Ỹ

Output: Y? = argmaxỸ fλ(Ỹ,X) + LpROC(Y, Ỹ)

while not converged do
c← 0
#Pos,#Neg ← 0
Ỹ ← PessimisticSortY(Ỹ)

for Ỹi ∈ (Ỹ1, . . . , Ỹn) do
if Yi ∈ P then
ci ← −1 ·#Neg
#Pos← #Pos+ 1

end if
if Yi ∈ N then
ci ← |P| −#Pos
#Neg ← #Neg + 1

end if
end for
Ỹ ← argmaxỸ fλ(Ỹ,X) + 1

|P||N|
∑n
i=1 ciỸi

end while
Y? ← Ỹ

inLpROC(Y, Ỹ). Since link-prediction tasks are large scale, explicitly enumerating all of these terms
can be impractical. We have derived a procedure to efficiently compute the loss without having to
enumerate all pairs, collapsing the loss function to |P|+ |N | terms during optimization.

Algorithm 1 describes our procedure for optimizing objective (3). At each iteration we optimize
the energy function fλ(Ỹ,X) plus a linear approximation to the loss function LpROC(Y, Ỹ). Since
the objective is a difference of convex functions, and our linear approximation is a subgradient of
the loss function, we use the difference of convex functions (DCA) algorithm, which is guaranteed
to converge to a local optimum of the objective [14]. Since we use a linear approximation to the
piecewise-linear loss function, we are able to collapse its |P||N | terms to |P| + |N | terms, one for
each of the unknown links in the network. The coefficient ci for link Ỹi is the number of terms in
LpROC(Y, Ỹ) in which Ỹi participates that have a non-zero subgradient at the current point Ỹ, and
it is negative in sign if Yi ∈ P , i.e., Yi is a positive link, and it is positive in sign if Yi ∈ N , i.e., Yi
is a negative link.

Algorithm 1 updates the vector c of coefficients without iterating over all |P||N | terms by sorting
the elements (links) of the current point Ỹ in descending order, counting how many positive and
negative links are ahead of each link, and comparing that with how many there are at each point
in the true ranking. The operation PessimisticSortY(Ỹ) sorts elements of Ỹ in descending
order and then breaks ties in ascending order by the corresponding elements of Y. In this way, links
that are tied at the current point Ỹ are sorted such that they are in the incorrect order relative to the
true ranking. This means that, if Yi > Yj and Ỹi = Ỹj , then Ỹj will be placed before Ỹi in the sorted

list. Consequently, the loss term max
{
0, Ỹj − Ỹi

}
will be included in the linear approximation,

allowing the algorithm to consider the benefit of points where Ỹi < Ỹj .

The algorithm has converged when no elements of c are changed. At that point we compute the
updated gradient∇λ at the final point Ỹ and update the weights λ.

4 Evaluation

We test our approach on link prediction using real Web data, jointly predicting links between web
pages given only the page content. We collected web sites for the featured articles from Wikipedia1

1http://en.wikipedia.org/wiki/Wikipedia:Featured articles
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Table 1: Average area under ROC and precision-recall curves and 0-1 accuracy with different loss
functions during large-margin learning. Standard deviations are listed in parentheses. Scores statis-
tically equivalent to the best scoring method by metric are typed in bold. We label the perceptron
learner as “None” in the loss type column.

ROC P-R Acc.

pROC 0.869 (0.046) 0.601 (0.106) 0.804 (0.112)
L1 0.843 (0.047) 0.556 (0.111) 0.852 (0.086)
None 0.842 (0.049) 0.524 (0.105) 0.667 (0.145)

as listed in February 2013, which were categorized by Wikipedia into thirty distinct categories.
We encode each article’s content using a bag-of-words vector. We also use a thresholded cosine
similarity between the TF-IDF representations of pages to prune candidates for collective inference.
The goal is to learn a model that can accurately and collectively rank potential links between a set
of new articles.

We construct hinge-loss Markov random fields over link-existence variables using probabilistic soft
logic (PSL) [15, 16] to template our models. We define PSL predicates for the target link existence
(LINK), labeled Wikipedia category (HASCAT), and thresholded TF-IDF similarity (CANDIDATE),
which is true for pairs with greater than 0.4 similarity. Finally, we include a predicate (HASWORD)
for word occurrence from dictionary setW . The model is then constructed using the following rules:

wsame : HASCAT(A,C) ∧ HASCAT(B,C)→ LINK(A,B),

wanti-same : HASCAT(A,C) ∧ HASCAT(B,C)→ ¬LINK(A,B),

wdiff : HASCAT(A,C1) ∧ HASCAT(B,C2) ∧ (C1 6= C2)→ LINK(A,B),

wanti-diff : HASCAT(A,C1) ∧ HASCAT(B,C2) ∧ (C1 6= C2)→ ¬LINK(A,B),

wtriad : LINK(A,B) ∧ LINK(B,C) ∧ CANDIDATE(A,C)→ LINK(A,C),

wword
i : HASWORD(A,Wi) ∧ HASWORD(B,Wi)→ LINK(A,B),∀Wi ∈ W,

wprior : ¬LINK(A,B).

The various weighted rules in this model enable a learning algorithm to adjust how much weight
to place on links being implied by category-to-category linking tendencies (wsame, wanti-same, wdiff,
wanti-diff), transitivity (wtriad), shared-word-occurrence linking tendencies (wword), and overall prior
sparsity (wprior).

For each trial, we randomly sample two small, distinct networks each of 50 articles by snowball
sampling, i.e., a randomized breadth-first search with random jumps. We train a model on one
network and measure ranking accuracy on the other. We compare our ranking learning objective
against existing strategies for learning structured predictors: L1-loss large margin learning and a
voted-perceptron approximate maximum likelihood.

Over 30 folds, we measure the area under the ROC and precision-recall curves. The results indicate
that using pROC loss produces better rankings according to both metrics. We also measure the 0-1
accuracy when predictions are rounded (i.e., thresholded at 0.5). Recall that the sparsity of real
networks tends to make very high 0-1 accuracies trivial to achieve because predicting that no links
exist is often better than any informative estimate. Consistent with its loss function, large-margin
estimation using L1 loss scores higher accuracy at the cost of ranking quality.

5 Conclusion

In this work, we introduce a new approach to learning for link prediction. We propose learning to
optimize a ranking loss during large-margin learning and introduce a novel algorithm for comput-
ing subgradients of the resulting objective. Our preliminary experimental results are encouraging,
showing that our approach can outperform other learning methods for link prediction.
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There are many interesting directions for future work. We aim to further analyze our algorithm to
understand how well the DCA algorithm solves the subgradient calculation. Further, our method is
applicable to other models beyond hinge-loss Markov random fields, and it can be applied to other
structured ranking problems beyond link predicition.
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