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Abstract Researchers have approached the problem of concept
drift in several ways. The systems they have developed
To cope with concept drift, we paired a stable online have adjusted and decayed weights (e.g., [14]), main-
learner with a reactive one. A stable learner predicts based tained and then modified partially learned models (e.g.,
on all of its experience, whereas a reactive learner predict [6, 17]), maintained previously encountered examples,(e.g
based on its experience over a short, recent window of time.[17]), and maintained and consulted multiple models (e.g.,
The method opaired learningises differences in accuracy [2, 7, 9, 15, 16]). Our work falls into this final category.
between the two learners over this window to determine  Rather than using an ensemble of unweighted or
when to replace the current stable learner, since the sta- weighted batch learners (e.qg., [15, 16]) or one of weighted
ble learner performs worse than does the reactive learner online learners (e.g., [2, 7, 9]), we paired a stable online
when the target concept changes. While the method usesearner with a reactive one. The stable learner predicts
the reactive learner as an indicator of drift, it uses the-sta based on all of its experience. The reactive learner pre-
ble learner to predict, since the stable learner performis be dicts based on its experience over a short, recent window
ter than does the reactive learner when acquiring a target of time. The novel idea is to use the interplay between
concept. Experimental results support these assertioss. W these two learners and their differences in accuracy to cope
evaluated the method by making direct comparisons to dy-with concept drift. The stable learner outperforms the re-
namic weighted majority, accuracy weighted ensemble, andactive learner when acquiring a target concept, but the re-
streaming ensemble algorithnsgA) using two synthetic  active learner outperforms the stable learner in the period
problems, the Stagger concepts and i concepts, and  after the target concept changes. Indeed, when the reactive
three real-world data sets: meeting scheduling, eledyici learner outperforms the stable learner over a short window
prediction, and malware detection. Results suggest that, 0 of time, then the method gaired learningreplaces the

these problems, paired learners outperformed or performed stable learner’s knowledge with that of the reactive learne
comparably to methods more costly in time and space. The pair then continue to learn.

To evaluate paired learners, we conducted an empirical
evaluation using five problems that have appeared previ-
1. Introduction ously in the literature: the Stagger concepts [14, 17], the
SEA concepts [15], thecAap data set [2, 12], electricity
Researchers designing algorithms to cope with conceptprediction [5], and malware detection [8]. We compared
drift have long acknowledged the importance of balanc- the paired learners to four methods: a single base learner,
ing reactivity and stability.Concept driftrefers to an on-  streaming ensemble algorithm [15], dynamic weighted ma-
line learning task in which the target concept changes overjority [9], and accuracy weighted ensemble [16]. Results
time. Learners for such tasks must be reactive so they adapsuggest that, on the five problems, paired learners outper-
quickly to a new target concept, but they must also be sta-formed or performed comparably to learners more costly in
ble when acquiring a target concept so as not to be affectedime and space. In some cases, these methods required be-
by problems typical of online learning, such as ordering ef- tween 10 and 50 base learners to obtain high accuracy on
fects. A learner that is too reactive may have difficulty ac- the problems considered, but our method used two. Iron-
quiring any target concept, whereas one that is too stable ically, for one problem, we obtained the best performance
may be overly burdened by knowledge of a previous con- for two methods when their ensembles had two members.
ceptto learn a new one. We find the notion of paired learning appealing because



of how directly the method addresses desiderata for learncross-validation. It then derives a weight for the classifie
ers for concept drift: reactivity and stability. While pess using either costs or mean-squared error; our implementa-
in all algorithms—in weighting procedures, in maintaining tion uses the latterawe then evaluates each member of
alternative hypotheses, in storing previous examples fromthe ensemble on the new batch and adjusts its weight. It
the stream—paired learning achieves these desiderata exforms a new ensemble by storing the highest-weighted
plicitly by using a reactive learner and a stable learner. We classifiers.AWE predicts the weighted-majority prediction
anticipate that the method’s simplicity and the clarityribp of the members of the ensemble. Using credit-card fraud
vides will give researchers additional insight into thelpro  data and a shifting hyperplane of their own design, the au-
lem of learning concepts that change over time. Indeed,thors conducted an extensive evaluation that includedyusin
since paired learning stands in marked contrast to recentlyawe with naive Bayes as the base learner.

proposed ensemble methods that require upwards of 50 base Other learners for concept drift include Stagger [14], the
learners to achieve high accuracy on commonly used dateFLORA systems [17], winnow [2, 10], weighted majority [2,
sets, the outcome of this study has implications not only for 11], the concept-drifting very fast decision tree learr@y [
the design of algorithms for concept drift, but also for the additive experts [71,ultra-fast forest of trees [4], and online
problems used to evaluate such algorithms. rank [1].

2. Related work 3. An algorithm for paired learning

Researchers have introduced a number of ensemble A paired learner (Algorithm 1) consists of the stable
methods for concept drift. We review those algorithms in- learnersS that predicts based on all of its experience and
cluded in our experimental study, which we selected be- the reactive learneR,, that predicts based on its most re-
cause, like paired learning, the base learners train on dif-Ce€nt experience over a window of length It usesS to
ferent sequences of examples from the stream. The streamPredict and useg,, as a lagging indicator of drift. Input to
ing ensemble algorithm [15], o8EA, maintains a fixed- the algorithm (line 1) is a collection df training examples,
capacity, unweighted collection of, batch learnerssea  the window’s lengthw, and the threshold for creating a
builds a classifier using a batch pexamples. In addition ~ New stable learner. To classify an instance, the algorithm
to the classifiers in the ensemble, it maintains two classi- UsesS’s prediction as its prediction (lines 9 & 10). Learn-
fiers in reserve(;, constructed from the current batch, and iNg entails passing a new example to the learning elements
C;_1, constructed from the previous batch. If space exists of S and R, (lines 22 & 23). To cope with concept drift,
in the ensemble, thesea addsC;_;. Otherwise,SEA re- attimet, if S incorrectly classifies an example aftg, cor-
places a poorer performing classifier in the ensemble withrectly classifies it (line 12), then the paired learner séts b
C,_1, as measured on the current batch, provided that sucHn the circular listC' of w bits (line 13); otherwise, it unsets
a classifier existsSEA predicts the majority prediction of ~the bit (line 15). If the proportion of bits set i@l surpasses
the members of the ensemble. Usity.5 [13] as the base  the threshold (line 17), then the paired learner replaces
learner, the authors evaluatega on a problem of their de- ~ With a new stable learner (line 18) and sets its initial cqgice
sign, which we refer to as thesta concepts.” description to that oz, (line 19). It also clears the bits of

Dynamic weighted majority [9], obwM, maintains a  C (line 20).
dynamically sized, weighted collection of online learners A learner for concept drift must incorporate new exam-
It predicts based on a weighted-majority vote of the learn- Ples into its model when the target concept is stable and
ers’ predictions and decreases the weights of those learner’eplace an outdated model or portions of the model when
that predict incorrectly. If the algorithm’s global pretian ~ the target concept changes. We designed the algorithm for

is incorrect, then it adds a new online learner to the ensem-Paired learning to detect change by comparing the perfor-
ble. Also, it removes a learner if its weight falls below a mance of a stable learner to that of a reactive one. Since the

threshold. Consequently, the size of the ensemblean only difference between the two is that the stable learner ha
vary. Its parametey specifies the period over whichiit trains  l€arned from all examples since the last replacement and the
the members of the ensemble, but does not update weight&eactive learner has learned from themost recent exam-

or add or remove learners. The authors evaluatest with ples, when the reactive learner outperforms the stable one,
naive Bayes as the base learner on the Stagger concepts [14f suggests that the examples older than w areharming
and on thesea concepts [15]. (See Section 4). the performance of the ensemble.

Accuracy-weighted ensemble [16], awE, maintains The method attempts to determine a recent point in the
a fixed-capacity, weighted collection of batch learners. ~ data stream at which the target concept changed so the
AWE builds a classifier from a batch plexamples and com- 1This method is similar toww; in practice, we have found thatvm

putes the error rate of the classifier on the examples usingecan perform better, so we used it in this study.



learner can focus on acquiring a new model with the most Algorithm 1 Paired Learner
recently received examples. To do so, however, we discov- 3. |nput: {Z;, ;)7 ,, w, 0
ered through pilot studies that it is not sufficient to coesid
only the accuracy of and R,, on the lastw examples. To
illustrate, consider the case in whi¢hcorrectly classifies
the firsts examples, misclassifies the nékexamples, and
R,, does the opposite (i.e., classifies the figsincorrectly,
and classifies the nex¥} correctly). BothS and R,, have
an accuracy of 50% over the window, but their comparative
performance indicates that the accuracysaé decreasing for t—1toT do
and the accuracy ak,, is increasing. This suggests that gs — S.Classify(Z;)
the target concept may have changed, but accuracy gives nd®  OUtput ys .
information to this effect. 1: g « Ry Classify(7)

To identify such situations, paired learning measures 12 it §s # ye ANyr =y, then

2. {#,y: }1_,: training data

w: window size for the reactive learner

. 0: threshold for creating a new stable learner
Let S be a stable learner

Let R,, be aw-reactive learner
: Let C be a circular list ofw bits, each initially0

©eNOAR AW

how frequentlyS misclassifies an example th&t, classi- 1% C.set(t)

fies correctly over the last examples. If this event occurs 14 else

frequently enough oven, then the method replacéswith 15: (Cj'..lfmset(t)
16:  endi

R,, and learning continues. This replacement mechanism is

advantageous because it preserveéswhatR,, has learned

from the lastw examples, and as a consequence, the method!®:
19:

can useS immediately to classify observations. Crucially,

in contrast to methods that accumulate batches of examples2:

17.  if 6 < C.proportionOfSetBits() then

S «— new StableLearner()
S «— R,,.getConceptDescription()
C.unsetAll()

paired learning can apply this mechanism at any point in the 2% end if .

stream. 22: S.Traln.(l’t, yt)
Note that one can use any online algorithm as a base23  fw-Train(zt, ;)

learner for paired learning. For this study, we used naive 24_end for

Bayes, which we discuss in the next section.

it is general and works for all learners (batch and online). A
disadvantage is that running time increases wittbut this
is also true foiSEA [15] andAwE [16] and the parametex

The second version uses as the reactive learner what
we call aretractable learner for it can unlearn an exam-
. ; ) . ple. The retractable learner also maintainexamples, but
for each attribute given the class. For symbolic a“”h!“es when a new example arrives, the learner retracts the last ex-
it stores frequency counts of each value. For numeric at'ample in the window from the model, removes the example

tributes, it stores the sum of the values and the sum ofg. 1o Window and then adds the new example to the
the squared values, under an assumption of normality. Themodel and to the,window

learning element estimates these distributions fromitrgin
data. Given the instancg the performance element uses
the distributions to compute prior and conditional probabi
ities for each class?(C;) andP(z;|C;), assumes attributes
are conditionally independent, and uses Bayes' rule to pre-
dict the most probable clags

3.1. Paired learner with naive Bayes

We implemented a paired learner using an online ver-
sion of naive Bayes\B) as the base learner. As its concept
description,NB stores distributions for each clags;, and

For naive Bayes, these operations are easy and efficient
to implement and involves subtracting and adding counts
and values from and to the appropriate distributions. An
advantage of the retractable learner is that it is signifigan
faster than the first version. (We discuss timing and com-
plexity issues in Sections 5.1 and 5.2.) The disadvantage is

n that it is not general, for not all online methods will have
C = argmax P(C}) H P(z;|C;) . a retractable version. Both versions perform identicaily i
Ci j=1 terms of accuracy and require the same amount of memory.

We refer to this learner a&L-NB, and we implemented
two versions usingvekA [18]. Both implementations use
as the stable learner the online versiornef but their re-
active learners are different. The first rebuilds the legsne To evaluate paired learning for concept drift, we con-
model with the arrival of each new training example from it ducted a number of experiments involving three other en-
and lastv—1 examples. An advantage of this scheme is that semble methods for concept drift and five problems and data

4. Experimental study



sets that have appeared previously in the literature. For th

base learner, as mentioned, we implemented an online ver- Table 1. Results for the Stagger concepts.
sion of NB. For ensemble methods, we implemengath Measures are average normalized area under
[15], pwM [9], and AwE [16]. To identify an ensemble the curve (AUC) after the first drift point and
method and base learner, we write the method’s name fol- 95% confidence intervals.

lowed by the base learner’s name. For exampkea-NB

refers toSEA with NB as the base learner. Learner and Parameters AUC

For the purpose of experimentation, the choice of naive NB, on each concept 0.930.007
Bayes as the base learner is an important sge.[15] and DWM-NB,p=1,m =5  0.868t0.007
AWE [16] use batch methods as their base learners, whereas PL-NB,f =.1,w =6 0.865t0.010
paired learners andwm [9] use online methods. When AWE-NB,p =10, m =5  0.808:0.010
evaluating and comparing ensemble methods, it is impor- SEA-NB,p=8,m=2  0.732:0.011

tant to control for confounding experimental factors due to NB, on all examples 0.5180.011

the base learners. The advantage of using naive Bayes is
that its batch and online versions produce the same model
from a given set of training examples irrespective of their
order, since the addition operations that update its model

are commutatlye. . . . ) target concept isize= mediumyv size= large.
In the following sections, we organize discussion around While this may seem like a simple problem, we must

Emblims and gqta SEI,S’ wh|ch| we selec;tled becalfjse theMote that the first target concept is conjunctive, the second
aved gfen _llj_f]e n Iprewogs evaluations ot learners t?r CONis disjunctive, and the third is internally disjunctives(j.one
cept dritt. e malware data set Is an exception, but we attribute takes multiple values). Moreover, the first and se

included it as another example of a real-world data set. ond target concepts share only one positive example, and
The real-world data sets have no ground truth, so we can-

K lai b h  drif so it is almost a concept reversal. Crucially, it is not al-
not make strong claims about the presence or type of dri t'Ways the size of the feature space or the number of exam-

although correlational evidence suggests that the drops inples that makes a learning problem difficult. A number of

Eerfo(rjmqnce for th@AP:al‘ta set corres;l)o;d dtoh serEestt)er researchers have used this problem to evaluate methods of
oundaries [12]. Nonetheless, we concluded that the en'conceptdrift (e.g., [7, 9, 14, 17]).

efit of evaluating the methods on these real-world data sets
justified their inclusion.

For the next 40 time steps, the target conceptabr =
greenv shape= circle. And for the last 40 time steps, the

At each time step, one presents a single, random exam-

ple to the learner and then tests it on a set of 100 random
We present only the best r_esults for each mgthod, ar?dexamples. We evaluated each algorithm using this protocol,

determined the best performing parameters using a grldrepeated 50 times. We measured accuracy on the test set

search. W? searched over two parameter; by dEfInIngand computed average accuracy and 95% confidence inter-
ranges and increments for each method and its parameters ;s at each time step

We ran the methods on all comblnathns of these param- We also computed the average normalized area under the

Berformance curvesa(C) after the first drift point (with
95% confidence intervals). We computedc using the
?rapezoid rule on adjacent pairs of accuracies and normal-
ized by dividing by the total area of the region. The ar-

under the performance curve, as described in the follow-
ing sections. To better understand the parameter space, w
plotted three-dimensional graphs and used this informatio

to expand the grid over which we searched if it seemed thateas under the entirety of the curves were similar, but we

performance might improve. Nz_iturally, we make no cla_lms chose to computeuc after the first drift point because most
th.at these pargmeters are optimal, bUt. they are consistent,» ners perform well on the first concept, and we are most
with those published .prewously..ln one mgtance, we found interested in performance after drift occurs. Althougic
better parameter settings than did the original authors. is a convenient measure, it may not represent important as-
pects of performance, such as slope and asymptote, and so
4.1. Stagger concepts we center discussion on the plots of the performance curves.
Figure 1 shows the effect of paired learning on naive
The Stagger concepts [14, 17] consist of three attributes,Bayes’ performance. We compared-NB to NB trained on
each taking three values, and three target concepts peglsent all examples and on examples of each individual concept.
over 120 time steps. The attributes and their values areThese latter two conditions represent the worst- and best-
shapee {triangle, circle, rectanglé, color € {red, green,  case scenarios, respectively. The areas under these curves
blue}, andsizee {small, medium, large For the first 40  appear in Table 1rL-NB (with anAuc of .865) performed
time steps, the target conceptisior = red A size= small almost as well asiB trained on each individual concept



(with anAuc of .914) and performed much better than did

NB trained on all examples (with axuc of .516). . 100

That the paired learner outperformed the base learner g i
trained on all examples is not surprising, but one must keep § 80 i
in mind that, compared to the base learner, which is a sta- 3 70 ]
ble learner, the paired learner adds only a reactive learner g 9 i
and basic control policies for replacing the stable ledsner g %0 i
knowledge with that of the reactive learner. We found these g 40 i
results encouraging and supportive of our approach. g 30 Naive Beroas, @ A= ]

Figure 2 shows the best performancesHoiNB, DWM- ig | Naive Ba);/es on All Examme; 7777777 i

NB, SEA-NB, andAWE-NB. In terms of accuracypL-NB 0o 20
performed comparably towM-NB, the best performing

method overall.Awe-NB and SEA-NB did not perform as

well asPL-NB on this problem because they had to waitto ~ Figure 1. Results for PL-NB on the Stagger
accumulate examples into a batch before learning. Observe concepts. Measures are accuracy with 95%
the “stair steps” in their performance curves. Smaller&alu confidence intervals.

for p did not improve performance. Also, notice tissa-

NB performed best when its ensemble had two members.

40 60 80 100 120
Time Step (1)

100
4.2. seA concepts S 90, :
E 80 " g ]
To evaluatesea, Street and Kim [15] introduced what S 70 1 1
we call thesea concepts, which consist of four target con- § 60 ]
cepts presented over 50,000 time steps. The target concept ¢ 50 ]
changes every 12,500 time steps, and one generates a sin- &  40r P,'__NB’ 0= lw=6 —— |
gle test set for eacbonceptconsisting of 2,500 examples. £ 30 - DWEMA-I?I\IBB, p= é,mf g ******* ]
There is 10% class noise for the training examples, and we 201 AV?,E_,\]B’ b":‘m’,?; 5 ]
evaluated the learners every 100 time steps. Each example 10 ‘ : : ‘ ‘
. . . : 0 20 40 60 80 100 120
consists of numeric attributes € [0,10],fori =1,...,3. Time Step ()
The target concepts are hyperplanes, such ghat + if P
x1 + a2 < 0, whered € {7,8,9,9.5} for each of the four Figure 2. Results for PL-NB, SEA-NB, DWM-
target concepts, respectively; otherwiges= —. Thus,z3 NB, and AWE-NB on the Stagger concepts.

is an irrelevant attribute. We conducted 10 trials and aver- Measures are accuracy with 95% confidence
aged accuracy on the test set. We also computed the average intervals.

normalized area under the curve after the first drift point.
We computed 95% confidence intervals for both measures.
(Several researchers have used a shifting hyperplanelto eva

100

uate learners for concept drift [6, 7, 9, 15, 16].) .

Table 2 presents the learners, their parameters, and their & 90 i
Aucs with 95% confidence intervals. In Figure 3, we § 80 | E
present results fopL-NB, NB trained on all examples, and § 70l i
NB trained on the examples of each individual concept. < |
NB performed as well as didB trained on each concept. As s 99r i
shown in Figure 4, all of the methods performed well. There ?% 50 ¢ ‘ ]
is virtually no difference in the performances pi-Ng, £ a0l Nave E;"\;,Eéeorz, Qgéngr?é’em ,,,,,, i
SEA-NB, andnB trained on each concept (see Table 2). No- 30 L__Naive Bayes on All Examples — -
tice, however, thabwm-NB performed well, but required 0 12500 25000 37500 50000
50 base learners to achieve this performance, whereas Time Step (1)

NB required only two. AlsoSEA-NB with two base learners ,

resulted in notably better performance on this task than tha ~ Figure 3. Results for PL-NB on the SEA con-
reported by Street and Kim [15]. Indeed, tsaA-NB and cepts. Measures are accuracy with 95% con-
AWE-NB performed best with two members in their ensem-  fidence intervals.

bles is supportive of our approach.
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Figure 4. Results for PL-NB, SEA-NB, DWM-
NB, and AWE-NB on the SEA concepts. Mea-
sures are accuracy with 95% confidence in-
tervals.
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Figure 5. Accuracy on the duration task for
PL-NB, NB, and DWM-NB. Measures are aver-
ages of the previous 100 predictions.
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Figure 6. Accuracy on the duration task for
PL-NB, SEA-NB, and AWE-NB. Measures are
averages of the previous 100 predictions.

Table 2. Results for the SEA concepts. Mea-
sures are average normalized area under the
curve (AUC) after the first drift point and 95%

confidence intervals.

Learner and Parameters AUC
PL-NB,f = .03, w =500  0.972+0.003
SEA-NB, p = 500, m = 2 0.971-0.002
NB, on each concept 0.9%D.001
DWM-NB, p =50, m =50 0.969+0.002
AWE-NB,p = 500, m =2  0.966+0.002
NB, on all examples 0.8900.002

4.3. Calendar scheduling

For a real-world application, we evaluated the meth-
ods on the calendar-apprenticeap) data set [2, 12], a
calendar-scheduling task. Based on a subset of 34 sym-
bolic attributes, the task is to predict a user’s preferdace
a meeting’s location, duration, start time, and day of week.
There are 12 attributes for location, 11 for duration, 15 for
start time, and 16 for day of week. We processed online the
1,685 examples for User 1 by testing on each new example,
measuring accuracy, and then using it to train each learner.

We present the results for tleap data set in Table 3.
Overall,pPL-NB performed comparably towM-NB and out-
performed the other methodswm-NB performed slightly
better than didPL-NB in terms of accuracy, but required 20
base learners to do so. Not only didvm require more
memory than dideL-NB, but also it required considerably
more time, since it trained each of the 20 learners in the
ensemble on each new instance.

Figure 5 shows the performance curves on the duration
task forpL-NB, NB, andDwM-NB, and Figure 6 shows these
curves forPL-NB, AWE-NB, andSEA-NB. We suspect that
PL-NB, NB, and DwM-NB had an advantage on this task
since they immediately learned from each new example, in-
stead of accumulating examples into a batch, assdid
NB andAwWE-NB. We did try smaller ensembles and shorter
periods for these learners, but the settings did not produce
higher accuracy on this task.

4.4. Electricity prediction

The electricity-prediction data set consists of 45,312 ex-
amples collected at 30-minute intervals between 7 May
1996 and 5 December 1998 [5]. The task is to predict
whether the price of electricity will go up or down based on
five numeric attributes: the day of the week, the 30-minute
period of the day, the demand for electricity in New South



Table 3. Accuracy on the CAP data set using 1,685 examples for User 1.

L PL-NB SEA-NB DWM-NB AWE-NB
PredictionTask NB  p_ 9/ _ 19 5 —30,m=2 p—1,m=20 p=25m—5
Location 62.93 66.16 58.95 66.90 58.36
Duration 63.25 65.13 59.29 65.90 59.56
Start Time 33.24 38.19 27.07 38.87 27.31
Day of Week | 52.29 51.48 40.95 51.70 40.58
Average 52.92 55.24 46.57 55.84 46.17
90
Table 4. Results for the electricity-prediction <
task. Measures are accuracy averaged over < 80 A
45,312 predictions. § 70 ]
(5]
< 60 1
Learner and Parameters  Accuracy (%) g
DWM-NB,p=1,m =5 82.81 g 50 - \ 1
PL-NB,f = .8, w =1 81.26 g_f 40| SEANBp=72,m=5 |
AWE-NB,p = 18, m =5 65.84 AWE-NB,p=18,m=5
SEA-NB,p =72,m =5 64.89 30 Naive Bayes-7----
NB 62.34 0 10000 20000 30000 40000 50000

Time Step (t)

Figure 7. Results for the electricity-prediction
task. Measures are accuracy averaged over

Wales, the demand in Victoria, and the amount of electricity  ipe previous 2,352 predictions.

to be transferred between the two. Roughly 39% of the ex-
amples have unknown values for either demand in Victoria

or the transfer amount. 4.5. M alware detection
To evaluate the methods, we processed the examples on-

line in their temporal order by testing on a new example,  The malware-detection task involves determining
measuring accuracy, and then training on the example. Wewhethern-grams extracted from executables are from a
computed average accuracy, which we present in Table 4penign executable or a malicious executable [9]. There
and we produced performance curves by plotting the av-are 3,622 examples, and each consists of 500 Boolean
erage accuracy of the previous 2,352 predictions. Theseattributes indicating the presence or absence of a 4-gram of
curves appear in Figure 7. bytes. We processed the examples online by shuffling the
As one can seePL-NB performed almost as well as order of the examples, testing on each example, measuring
pwM-NB did on this task. Both achieved overall accura- accuracy, and training on the example. We repeated this
cies above 80%. Both required reactive parameter settingsprocess 200 times for each of the five methods.
w = 1 for pL-NB andp = 1 for bwm-NB. (For PL- In Table 5, we present average accuracy, and Figure 8
NB, sincew = 1, # was irrelevant.) SEA-NB and AWE- shows performance curves for the five methods. As shown,
NB, again, may have been disadvantaged on this task beall of the methods performed comparably, utNB was
cause they accumulated examples into a batch for learnimore efficientin terms of space. Notice tis&#A-NB, DWM-
ing. Indeed, if the environment changes quickly enough, it NB, andAwE-NB maintained 10 base learners and theas-
may change before such a learner can produce a new batcNB andAWE-NB each accumulated a batch of 50 examples
for learning. One could reduce the size of the batch, butfor learning. In contraskL-NB maintained 2 base learners
such a reduction may result in poor performing classifiers. and only 9 examples.

Although bwMm-NB performed slightly better than diel- We found it interesting thatL-NB andNB achieved the
NB, PL-NB maintained only two learners, wheraagm-NB same accuracy on this problem. Subsequent analysis con-
maintained five. Finally, notice the large dip wB's per- firmed that, over the 200 trial®L-NB never replaced its

formance around time step 38,000. The methods designedtable classifier, and so the two methods produced identical
for concept drift were either unaffected (e.ggA-NB and results. While this suggests an absence of drift and sam-
AWE-NB) or affected little (e.g.pL-NB and DWM-NB) by pling effects, we consider it a positive outcome that, orhsuc
the phenomenon that produced this dropiBis accuracy. a task,pL-NB performed no worse than did its base learner.
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Figure 10. Number of replacements for PL-NB
on the Stagger concepts over 50 runs.

Table 5. Results for the malware-detection
task. Measures are accuracy with 95% con-
fidence intervals

Learner and Parameters Accuracy (%)
NB 87.4+0.1
PL-NB,0 = 2, w =9 87.4+0.1
DWM-NB, p = 50, m = 10 87.2£0.1
SEA-NB,p = 50, m = 10 86.0+0.2
AWE-NB, p = 50, m = 10 85.740.2

5. Analysisand discussion

The paired learner is one of the most direct and efficient
algorithms proposed thus far for coping with concept drift.
It consists of two online learners, a stable learner and a re-
active learner. The paired learner uses the stable learner’
prediction as its global prediction. The algorithm creates
new stable learner when, over a short window of time, the
reactive learner is correct and the stable learner in iecorr
sufficiently often. The method performed comparably to or
better than other ensemble methods designed for concept
drift on five different problems, and generally did so in less
time and space.

Paired learners performed well on the problems consid-
ered because its combination of stable and reactive learner
is an accurate lagging indicator of concept drift. To sup-
port this assertion, we consider the algorithm’s perforogan
on the Stagger concepts, which allows for careful analysis.
Figure 9 shows the accuracy over 50 runsofNB, win-
dowedNB, andNB trained on all examples. Clearly, the
standard version afB trained on all examples cannot cope
with changes in the target concept and performs poorly af-
ter the first drift point. In contrast, the windowed version
of NB is too reactive and learns a model with only limited
accuracy. However, both versions have advantages for dif-
ferent parts of the problem. The standard version is better a
learning stable (i.e., individual) concepts (see Figuraddl
the reactive version is better at learning immediatelyrafte
drift point.

We contend that a reactive learner outperforming a sta-
ble learner is rareunlessdrift has occurred. Our experi-
mental results support this assertion, but to illustrattngr,
Figure 10 shows the number of times tiratNB replaced
S at each time step on the Stagger concepts. Note that if
a replacement occurs at time stgpthen the new stable
learnerS will learn from the examples received from time
stept — w + 1 onward. The optimal replacement times for
w = 6 on the Stagger concepts are- 46 andt = 86 (with
no other replacements). As one can s&eNB tended to
replaceS around these optimal times. If the paired learner
replacesS near these times, then it should classify subse-



guent examples more accurately. Figures 1, 9, and 10 showb.3. Resultswith other baselearners

that PL-NB more closely approached optimal replacement

performance on the third target concept than on the second, As we have mentioned, one can use any online learner
which resulted in accuracy closer to that of the base learneffor paired learning. We have evaluated paired learning with

trained on each concept.

5.1. Timing results

To characterize the relative running times of the meth-

other base learners, such as Hoeffding trees,(an on-
line method for building decision trees [3]. On the Stagger
conceptspwM-HT (p = 1, m = 10) achieved amuc of
.851, butPL-HT had anauc of .835. On thecAP data set,
DWM-HT (p = 1,m = 10) achieved 50.68%, whereas-

ods in our study, we measured combined training and test-HT (§ = .4, w = 12) obtained 55.83%. On the malware data

ing times on theseA concepts, the most time-consuming

set,PL-HT (f = .2,w = 9) obtained 90.3%, whereasA-

task considered. All problem and learning parameters arei48 (p = 50, m = 10) achieved 92.9%T alone achieved
the same as those reported in Section 4.2. We performed®2.9%, andAwe-J48 (p = 50, m = 10) achieved 92.7%.

the evaluations on a workstation with a two-core, 2.84GH
Intel Pentiumb cpu with 3.5GB of RAM using Sun’s Java
Runtime Environment 6 andEkA version 3.5.7.

For pL-NB, the average running time for five trials was
59.8 seconds. WhepL-NB used a retractable learner for

(348 is the implementation af4.5 [13] inwEKA [18].)

As before, the paired learner achieved higher or compa-
rable accuracy, while requiring less time and space than the
other methods. We plan to expand our study to include ad-
ditional ensemble methods, base learners, and data sets in

R, rather than retraining, the average running time was an effort to better characterize and understand tradeiroffs
12.3 seconds. The average running time over five trials for performance between paired learning and other methods for

AWE-NB was 24.5 seconds, f®@EA-NB was 29.5 seconds,

and forbwM-NB was 204.9 seconds. These timing results

are consistent with those we observed for other problems.
5.2. Complexity analysis

Let f(n) be the running time required to train a base
learner onn examples, and leg(n) be the running time
required for that base learner to classifgbservations. The
time to train a paired learner eanexamples i®(n - f(w)+
n - g(1)), wherew is the size ofR,,’s window. If the base
learner retracts examples, then the time require@(is -
f(1) +n-g(1)). The time to classify: instances for both
versions ig0(n - g(1)).

For SEA, the training time isO(% - f(p) + % - g(p)),
and the classification time i©(mn - g(1)), wherem is
the number of experts in the ensemble, and the num-
ber of examples in each batch. Fopwwm, the training
timeO(mn - f(1) + mn - g(1)), whereas the classification
time is O(mn - g(1)). Finally, for AwEg, training requires
O(% - feu(p) + 7% - g(p)), where f(n) is the time re-
quired to train the base learner arexamples using cross-
validation. Its classification time i9(mn - g(1)).

In terms of space, iff(n) is the space required for a
base learner to store a model built fromexamples, then
the space required for paired learning(gf(n) + w).
DwM requiresO(m - f(n)), and SEA and AWE require
O(m- f(p)+p). We should note that the bound fowm is

concept drift.
5.4. Robustnessto noise and varying drift points

We conducted two additional experiments that were in-
teresting, but require further study, and we plan to report
more detailed conclusions in future publications. Fitstly
we were concerned that the paired learner would be more
sensitive to noise than woulslea, DwMm, and AWE, even
though we saw no such sensitivity to the 10% noise present
in the SEA concepts and in other problems. To investigate,
we varied the level of class noise from 0% to 70% in in-
crements of 10% for both the Stagger concepts and e
concepts, measurimgc. As expected, the performance of
all of the methods decreased with increasing noise, but they
degraded at roughly the same rate, suggestingrhats
was equally robust to noise.

Secondly, we were interested in the extent to which the
relationship between the parameter settings of the algo-
rithms and the drift points of the problems affected accu-
racy. In evaluations, critical parameters, such as w, are
often factors of the problem’s drift points, which could in-
fluence a method’s overall accuracy. We investigated by se-
lecting the Stagger concepts [14] and varying over all com-
binations of drift points in{20,...,60} for the first drift
point and in{60, . .., 100} for the second. (The drift points
for the Stagger concepts are 41 and 81.) WemamiB and
the other methods, and the accuracy of these methods was

overly pessimistic for base learners with models that grow generally consistent across all combinations of drift pgin
with n. bwM dynamically adds and removes learners, and The relatively short periods between the drift points may

so it is unlikely that any base learner will learn from all

have been insufficient to produce a measurable effect, and

examples. However, this bound is accurate for base learnersve plan to study this issue further with other problems.

with constant memory, such as naive Bayes.

We contend that the paired learner is of less concern



in this regard since its window slides. Moreover, compo- [2] A. Blum. Empirical support for winnow and weighted-

nents of the paired learner are not “dormant” as some are in majority algorithms: Results on a calendar scheduling do-
SEA, DWM, andAWE. For examplepwm does not update main. Machine Learning26:5-23, 1997.
weights or add or remove experts during its period, sina [3] P. Domingos and G. Hulten. ~Mining high-speed data

streams. IfProceedings of the Sixth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Min-
ing, pages 71-80. ACM Press, New York, NY, 2000.

andAwWE accumulate examples during periods to build new
classifiers. We intend to develop further this experimedt an

report its results elsewhere. [4] J. Gama, P. Medas, and P. Rodrigues. Learning decision
trees from dynamic data streamsAroceedings of the 2005
6. Concluding remarks ACM Symposium on Applied Computing (SAC-20p&yes

573-577. ACM Press, New York, NY, 2005.
[5] M. Harries, C. Sammut, and K. Horn. Extracting hidden

We_ introducgd the notion of a paired learner, vyhich uses context.Machine Learning32(2):101-126, 1998.
the difference in performance between a reactive learner [g] G. Hulten, L. Spencer, and P. Domingos. Mining time-
and a stable learner to cope with concept drift. It has a changing data streams. Rroceedings of the Seventh ACM
minimal ensemble in that it maintains and trains only two SIGKDD International Conference on Knowledge Discov-
learners, in contrast to other ensemble methods that use an ery and Data Miningpages 97-106. ACM Press, New York,
unweighted or weighted collection of batch learners or a NY, 2001.

[7] J. Z. Kolter and M. A. Maloof. Using additive expert en-

We anticipate that the method's directness and the clar- ~ S€mPles to cope with concept drift. Rroceedings of the
Twenty-second International Conference on Machine Learn-

ity it provides will give researchers further insight intoet ing, pages 449—456. ACM Press, New York, NY, 2005
problem of learning concepts that change over time. We (g 3.7 Kolter and M. A. Maloof. Learning to detect and clas-

weighted collection of online learners.

hope the outcome of this study has implications not only for sify malicious executables in the wildlournal of Machine
the design of algorithms for concept drift, but also for the Learning Research7:2721-2744, 2006.

problems used to evaluate such algorithms. Results on five [9] J. Z. Kolter and M. A. Maloof. Dynamic weighted major-
previously published problems suggest that paired learner ity: An ensemble method for drifting conceptdournal of
perform comparably to or better thawm, SEA, andAwE, Machine Learning ResearcB:2755-2790, 2007.

[10] N. Littlestone. Learning quickly when irrelevant éutes

while requiring less time and space.
q g P abound: A new linear-threshold algorithfalachine Learn-

Questions remain about ensemble methods for concept ing, 2:285-318, 1988.
drift. We hope to better understand the problems for which [11] N. Littlestone and M. K. Warmuth. The weighted major-
large weighted and unweighted ensembles are warranted, ity aigorithm. Information and Computatiqri.08:212—261,
although it is not clear if problems or data sets presently ex 1994,
ist to support such an investigation. We also plan to study [12] T. M. Mitchell, R. Caruana, D. Freitag, J. McDermott,dan
further the properties of reactive learners and their use as D. Zabowski. Experience with a learning personal assistant
indicators of concept drift. We will expand our empirical Communications of the ACN37(7):80-91, 1994.
investigation to include single-model methods for concept [13] J- R QuinlanC4.5: Programs for Machine Learningor-

. . . gan Kaufmann, San Francisco, CA, 1993.
drift, such as winnow and Stagger, and other instance gen-r14)

J. C. Schlimmer and R. H. Granger. Beyond incremental
erators, such as that used to evaluate. We have already processing: Tracking concept drift. Proceedings of the

begun to characterize how paired learners and other meth-  Fifth National Conference on Artificial Intelligencpages
ods respond to varying drift points and varying amounts of 502-507. AAAI Press, Menlo Park, CA, 1986.
class noise; preliminary results are encouraging. [15] W. N. Street and Y. Kim. A streaming ensemble algorithm

(SEA) for large-scale classification. Proceedings of the
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