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Abstract

To cope with concept drift, we paired a stable online
learner with a reactive one. A stable learner predicts based
on all of its experience, whereas a reactive learner predicts
based on its experience over a short, recent window of time.
The method ofpaired learninguses differences in accuracy
between the two learners over this window to determine
when to replace the current stable learner, since the sta-
ble learner performs worse than does the reactive learner
when the target concept changes. While the method uses
the reactive learner as an indicator of drift, it uses the sta-
ble learner to predict, since the stable learner performs bet-
ter than does the reactive learner when acquiring a target
concept. Experimental results support these assertions. We
evaluated the method by making direct comparisons to dy-
namic weighted majority, accuracy weighted ensemble, and
streaming ensemble algorithm (SEA) using two synthetic
problems, the Stagger concepts and theSEA concepts, and
three real-world data sets: meeting scheduling, electricity
prediction, and malware detection. Results suggest that, on
these problems, paired learners outperformed or performed
comparably to methods more costly in time and space.

1. Introduction

Researchers designing algorithms to cope with concept
drift have long acknowledged the importance of balanc-
ing reactivity and stability.Concept driftrefers to an on-
line learning task in which the target concept changes over
time. Learners for such tasks must be reactive so they adapt
quickly to a new target concept, but they must also be sta-
ble when acquiring a target concept so as not to be affected
by problems typical of online learning, such as ordering ef-
fects. A learner that is too reactive may have difficulty ac-
quiring any target concept, whereas one that is too stable
may be overly burdened by knowledge of a previous con-
cept to learn a new one.

Researchers have approached the problem of concept
drift in several ways. The systems they have developed
have adjusted and decayed weights (e.g., [14]), main-
tained and then modified partially learned models (e.g.,
[6, 17]), maintained previously encountered examples (e.g.,
[17]), and maintained and consulted multiple models (e.g.,
[2, 7, 9, 15, 16]). Our work falls into this final category.

Rather than using an ensemble of unweighted or
weighted batch learners (e.g., [15, 16]) or one of weighted
online learners (e.g., [2, 7, 9]), we paired a stable online
learner with a reactive one. The stable learner predicts
based on all of its experience. The reactive learner pre-
dicts based on its experience over a short, recent window
of time. The novel idea is to use the interplay between
these two learners and their differences in accuracy to cope
with concept drift. The stable learner outperforms the re-
active learner when acquiring a target concept, but the re-
active learner outperforms the stable learner in the period
after the target concept changes. Indeed, when the reactive
learner outperforms the stable learner over a short window
of time, then the method ofpaired learningreplaces the
stable learner’s knowledge with that of the reactive learner.
The pair then continue to learn.

To evaluate paired learners, we conducted an empirical
evaluation using five problems that have appeared previ-
ously in the literature: the Stagger concepts [14, 17], the
SEA concepts [15], theCAP data set [2, 12], electricity
prediction [5], and malware detection [8]. We compared
the paired learners to four methods: a single base learner,
streaming ensemble algorithm [15], dynamic weighted ma-
jority [9], and accuracy weighted ensemble [16]. Results
suggest that, on the five problems, paired learners outper-
formed or performed comparably to learners more costly in
time and space. In some cases, these methods required be-
tween 10 and 50 base learners to obtain high accuracy on
the problems considered, but our method used two. Iron-
ically, for one problem, we obtained the best performance
for two methods when their ensembles had two members.

We find the notion of paired learning appealing because



of how directly the method addresses desiderata for learn-
ers for concept drift: reactivity and stability. While present
in all algorithms—in weighting procedures, in maintaining
alternative hypotheses, in storing previous examples from
the stream—paired learning achieves these desiderata ex-
plicitly by using a reactive learner and a stable learner. We
anticipate that the method’s simplicity and the clarity it pro-
vides will give researchers additional insight into the prob-
lem of learning concepts that change over time. Indeed,
since paired learning stands in marked contrast to recently
proposed ensemble methods that require upwards of 50 base
learners to achieve high accuracy on commonly used data
sets, the outcome of this study has implications not only for
the design of algorithms for concept drift, but also for the
problems used to evaluate such algorithms.

2. Related work

Researchers have introduced a number of ensemble
methods for concept drift. We review those algorithms in-
cluded in our experimental study, which we selected be-
cause, like paired learning, the base learners train on dif-
ferent sequences of examples from the stream. The stream-
ing ensemble algorithm [15], orSEA, maintains a fixed-
capacity, unweighted collection ofm batch learners.SEA

builds a classifier using a batch ofp examples. In addition
to the classifiers in the ensemble, it maintains two classi-
fiers in reserve,Ci, constructed from the current batch, and
Ci−1, constructed from the previous batch. If space exists
in the ensemble, thenSEA addsCi−1. Otherwise,SEA re-
places a poorer performing classifier in the ensemble with
Ci−1, as measured on the current batch, provided that such
a classifier exists.SEA predicts the majority prediction of
the members of the ensemble. UsingC4.5 [13] as the base
learner, the authors evaluatedSEA on a problem of their de-
sign, which we refer to as the “SEA concepts.”

Dynamic weighted majority [9], orDWM, maintains a
dynamically sized, weighted collection of online learners.
It predicts based on a weighted-majority vote of the learn-
ers’ predictions and decreases the weights of those learners
that predict incorrectly. If the algorithm’s global prediction
is incorrect, then it adds a new online learner to the ensem-
ble. Also, it removes a learner if its weight falls below a
threshold. Consequently, the size of the ensemblem can
vary. Its parameterp specifies the period over which it trains
the members of the ensemble, but does not update weights
or add or remove learners. The authors evaluatedDWM with
naive Bayes as the base learner on the Stagger concepts [14]
and on theSEA concepts [15]. (See Section 4).

Accuracy-weighted ensemble [16], orAWE, maintains
a fixed-capacity, weighted collection ofm batch learners.
AWE builds a classifier from a batch ofp examples and com-
putes the error rate of the classifier on the examples using

cross-validation. It then derives a weight for the classifier
using either costs or mean-squared error; our implementa-
tion uses the latter.AWE then evaluates each member of
the ensemble on the new batch and adjusts its weight. It
forms a new ensemble by storing them highest-weighted
classifiers.AWE predicts the weighted-majority prediction
of the members of the ensemble. Using credit-card fraud
data and a shifting hyperplane of their own design, the au-
thors conducted an extensive evaluation that included using
AWE with naive Bayes as the base learner.

Other learners for concept drift include Stagger [14], the
FLORA systems [17], winnow [2, 10], weighted majority [2,
11], the concept-drifting very fast decision tree learner [6],
additive experts [7],1 ultra-fast forest of trees [4], and online
rank [1].

3. An algorithm for paired learning

A paired learner (Algorithm 1) consists of the stable
learnerS that predicts based on all of its experience and
the reactive learnerRw that predicts based on its most re-
cent experience over a window of lengthw. It usesS to
predict and usesRw as a lagging indicator of drift. Input to
the algorithm (line 1) is a collection ofT training examples,
the window’s lengthw, and the thresholdθ for creating a
new stable learner. To classify an instance, the algorithm
usesS’s prediction as its prediction (lines 9 & 10). Learn-
ing entails passing a new example to the learning elements
of S andRw (lines 22 & 23). To cope with concept drift,
at timet, if S incorrectly classifies an example andRw cor-
rectly classifies it (line 12), then the paired learner sets bit t

in the circular listC of w bits (line 13); otherwise, it unsets
the bit (line 15). If the proportion of bits set inC surpasses
the thresholdθ (line 17), then the paired learner replacesS

with a new stable learner (line 18) and sets its initial concept
description to that ofRw (line 19). It also clears the bits of
C (line 20).

A learner for concept drift must incorporate new exam-
ples into its model when the target concept is stable and
replace an outdated model or portions of the model when
the target concept changes. We designed the algorithm for
paired learning to detect change by comparing the perfor-
mance of a stable learner to that of a reactive one. Since the
only difference between the two is that the stable learner has
learned from all examples since the last replacement and the
reactive learner has learned from thew most recent exam-
ples, when the reactive learner outperforms the stable one,
it suggests that the examples older thant − w areharming
the performance of the ensemble.

The method attempts to determine a recent point in the
data stream at which the target concept changed so the

1This method is similar toDWM; in practice, we have found thatDWM

can perform better, so we used it in this study.
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learner can focus on acquiring a new model with the most
recently received examples. To do so, however, we discov-
ered through pilot studies that it is not sufficient to consider
only the accuracy ofS andRw on the lastw examples. To
illustrate, consider the case in whichS correctly classifies
the firstw

2
examples, misclassifies the nextw

2
examples, and

Rw does the opposite (i.e., classifies the firstw
2

incorrectly,
and classifies the nextw

2
correctly). BothS andRw have

an accuracy of 50% over the window, but their comparative
performance indicates that the accuracy ofS is decreasing
and the accuracy ofRw is increasing. This suggests that
the target concept may have changed, but accuracy gives no
information to this effect.

To identify such situations, paired learning measures
how frequentlyS misclassifies an example thatRw classi-
fies correctly over the lastw examples. If this event occurs
frequently enough overw, then the method replacesS with
Rw and learning continues. This replacement mechanism is
advantageous because it preserves inS whatRw has learned
from the lastw examples, and as a consequence, the method
can useS immediately to classify observations. Crucially,
in contrast to methods that accumulate batches of examples,
paired learning can apply this mechanism at any point in the
stream.

Note that one can use any online algorithm as a base
learner for paired learning. For this study, we used naive
Bayes, which we discuss in the next section.

3.1. Paired learner with naive Bayes

We implemented a paired learner using an online ver-
sion of naive Bayes (NB) as the base learner. As its concept
description,NB stores distributions for each class,Ci, and
for each attribute given the class. For symbolic attributes,
it stores frequency counts of each value. For numeric at-
tributes, it stores the sum of the values and the sum of
the squared values, under an assumption of normality. The
learning element estimates these distributions from training
data. Given the instance~x, the performance element uses
the distributions to compute prior and conditional probabil-
ities for each class,P (Ci) andP (xj |Ci), assumes attributes
are conditionally independent, and uses Bayes’ rule to pre-
dict the most probable classC:

C = argmax
Ci

P (Ci)

n∏

j=1

P (xj |Ci) .

We refer to this learner asPL-NB, and we implemented
two versions usingWEKA [18]. Both implementations use
as the stable learner the online version ofNB, but their re-
active learners are different. The first rebuilds the learner’s
model with the arrival of each new training example from it
and lastw−1 examples. An advantage of this scheme is that

Algorithm 1 Paired Learner

1: Input: {~xt, yt}
T
t=1

, w, θ

2: {~xt, yt}
T
t=1

: training data
3: w: window size for the reactive learner
4: θ: threshold for creating a new stable learner

5: Let S be a stable learner
6: Let Rw be aw-reactive learner
7: Let C be a circular list ofw bits, each initially0
8: for t← 1 to T do
9: ŷS ← S.Classify(~xt)

10: output ŷS

11: ŷR ← Rw.Classify(~xt)
12: if ŷS 6= yt ∧ ŷR = yt then
13: C.set(t)
14: else
15: C.unset(t)
16: end if
17: if θ < C.proportionOfSetBits() then
18: S ← new StableLearner()
19: S ← Rw.getConceptDescription()
20: C.unsetAll()
21: end if
22: S.Train(~xt, yt)
23: Rw.Train(~xt, yt)
24: end for

it is general and works for all learners (batch and online). A
disadvantage is that running time increases withw, but this
is also true forSEA [15] andAWE [16] and the parameterp.

The second version uses as the reactive learner what
we call aretractable learner, for it can unlearn an exam-
ple. The retractable learner also maintainsw examples, but
when a new example arrives, the learner retracts the last ex-
ample in the window from the model, removes the example
from the window, and then adds the new example to the
model and to the window.

For naive Bayes, these operations are easy and efficient
to implement and involves subtracting and adding counts
and values from and to the appropriate distributions. An
advantage of the retractable learner is that it is significantly
faster than the first version. (We discuss timing and com-
plexity issues in Sections 5.1 and 5.2.) The disadvantage is
that it is not general, for not all online methods will have
a retractable version. Both versions perform identically in
terms of accuracy and require the same amount of memory.

4. Experimental study

To evaluate paired learning for concept drift, we con-
ducted a number of experiments involving three other en-
semble methods for concept drift and five problems and data
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sets that have appeared previously in the literature. For the
base learner, as mentioned, we implemented an online ver-
sion of NB. For ensemble methods, we implementedSEA

[15], DWM [9], and AWE [16]. To identify an ensemble
method and base learner, we write the method’s name fol-
lowed by the base learner’s name. For example,SEA-NB

refers toSEA with NB as the base learner.
For the purpose of experimentation, the choice of naive

Bayes as the base learner is an important one.SEA [15] and
AWE [16] use batch methods as their base learners, whereas
paired learners andDWM [9] use online methods. When
evaluating and comparing ensemble methods, it is impor-
tant to control for confounding experimental factors due to
the base learners. The advantage of using naive Bayes is
that its batch and online versions produce the same model
from a given set of training examples irrespective of their
order, since the addition operations that update its model
are commutative.

In the following sections, we organize discussion around
problems and data sets, which we selected because they
have been used in previous evaluations of learners for con-
cept drift. The malware data set is an exception, but we
included it as another example of a real-world data set.
The real-world data sets have no ground truth, so we can-
not make strong claims about the presence or type of drift,
although correlational evidence suggests that the drops in
performance for theCAP data set correspond to semester
boundaries [12]. Nonetheless, we concluded that the ben-
efit of evaluating the methods on these real-world data sets
justified their inclusion.

We present only the best results for each method, and
determined the best performing parameters using a grid
search. We searched over two parameters by defining
ranges and increments for each method and its parameters.
We ran the methods on all combinations of these param-
eters, and measured performance using accuracy or area
under the performance curve, as described in the follow-
ing sections. To better understand the parameter space, we
plotted three-dimensional graphs and used this information
to expand the grid over which we searched if it seemed that
performance might improve. Naturally, we make no claims
that these parameters are optimal, but they are consistent
with those published previously. In one instance, we found
better parameter settings than did the original authors.

4.1. Stagger concepts

The Stagger concepts [14, 17] consist of three attributes,
each taking three values, and three target concepts presented
over 120 time steps. The attributes and their values are
shape∈ {triangle, circle, rectangle}, color ∈ {red, green,
blue}, andsize∈ {small, medium, large}. For the first 40
time steps, the target concept iscolor = red∧ size= small.

Table 1. Results for the Stagger concepts.
Measures are average normalized area under
the curve (AUC) after the first drift point and
95% confidence intervals.

Learner and Parameters AUC

NB, on each concept 0.914±0.007
DWM-NB, p = 1, m = 5 0.868±0.007
PL-NB, θ = .1, w = 6 0.865±0.010
AWE-NB, p = 10, m = 5 0.808±0.010
SEA-NB, p = 8, m = 2 0.732±0.011
NB, on all examples 0.516±0.011

For the next 40 time steps, the target concept iscolor =
green∨ shape= circle. And for the last 40 time steps, the
target concept issize= medium∨ size= large.

While this may seem like a simple problem, we must
note that the first target concept is conjunctive, the second
is disjunctive, and the third is internally disjunctive (i.e., one
attribute takes multiple values). Moreover, the first and sec-
ond target concepts share only one positive example, and
so it is almost a concept reversal. Crucially, it is not al-
ways the size of the feature space or the number of exam-
ples that makes a learning problem difficult. A number of
researchers have used this problem to evaluate methods of
concept drift (e.g., [7, 9, 14, 17]).

At each time step, one presents a single, random exam-
ple to the learner and then tests it on a set of 100 random
examples. We evaluated each algorithm using this protocol,
repeated 50 times. We measured accuracy on the test set
and computed average accuracy and 95% confidence inter-
vals at each time step.

We also computed the average normalized area under the
performance curves (AUC) after the first drift point (with
95% confidence intervals). We computedAUC using the
trapezoid rule on adjacent pairs of accuracies and normal-
ized by dividing by the total area of the region. The ar-
eas under the entirety of the curves were similar, but we
chose to computeAUC after the first drift point because most
learners perform well on the first concept, and we are most
interested in performance after drift occurs. AlthoughAUC

is a convenient measure, it may not represent important as-
pects of performance, such as slope and asymptote, and so
we center discussion on the plots of the performance curves.

Figure 1 shows the effect of paired learning on naive
Bayes’ performance. We comparedPL-NB to NB trained on
all examples and on examples of each individual concept.
These latter two conditions represent the worst- and best-
case scenarios, respectively. The areas under these curves
appear in Table 1.PL-NB (with an AUC of .865) performed
almost as well asNB trained on each individual concept
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(with an AUC of .914) and performed much better than did
NB trained on all examples (with anAUC of .516).

That the paired learner outperformed the base learner
trained on all examples is not surprising, but one must keep
in mind that, compared to the base learner, which is a sta-
ble learner, the paired learner adds only a reactive learner
and basic control policies for replacing the stable learner’s
knowledge with that of the reactive learner. We found these
results encouraging and supportive of our approach.

Figure 2 shows the best performances forPL-NB, DWM-
NB, SEA-NB, and AWE-NB. In terms of accuracy,PL-NB

performed comparably toDWM-NB, the best performing
method overall.AWE-NB and SEA-NB did not perform as
well asPL-NB on this problem because they had to wait to
accumulate examples into a batch before learning. Observe
the “stair steps” in their performance curves. Smaller values
for p did not improve performance. Also, notice thatSEA-
NB performed best when its ensemble had two members.

4.2. SEA concepts

To evaluateSEA, Street and Kim [15] introduced what
we call theSEA concepts, which consist of four target con-
cepts presented over 50,000 time steps. The target concept
changes every 12,500 time steps, and one generates a sin-
gle test set for eachconceptconsisting of 2,500 examples.
There is 10% class noise for the training examples, and we
evaluated the learners every 100 time steps. Each example
consists of numeric attributesxi ∈ [0, 10], for i = 1, . . . , 3.
The target concepts are hyperplanes, such thaty = + if
x1 + x2 ≤ θ, whereθ ∈ {7, 8, 9, 9.5} for each of the four
target concepts, respectively; otherwise,y = −. Thus,x3

is an irrelevant attribute. We conducted 10 trials and aver-
aged accuracy on the test set. We also computed the average
normalized area under the curve after the first drift point.
We computed 95% confidence intervals for both measures.
(Several researchers have used a shifting hyperplane to eval-
uate learners for concept drift [6, 7, 9, 15, 16].)

Table 2 presents the learners, their parameters, and their
AUCs with 95% confidence intervals. In Figure 3, we
present results forPL-NB, NB trained on all examples, and
NB trained on the examples of each individual concept.PL-
NB performed as well as didNB trained on each concept. As
shown in Figure 4, all of the methods performed well. There
is virtually no difference in the performances ofPL-NB,
SEA-NB, andNB trained on each concept (see Table 2). No-
tice, however, thatDWM-NB performed well, but required
50 base learners to achieve this performance, whereasPL-
NB required only two. Also,SEA-NB with two base learners
resulted in notably better performance on this task than that
reported by Street and Kim [15]. Indeed, thatSEA-NB and
AWE-NB performed best with two members in their ensem-
bles is supportive of our approach.
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Figure 1. Results for PL-NB on the Stagger
concepts. Measures are accuracy with 95%
confidence intervals.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100  120

P
re

di
ct

iv
e 

A
cc

ur
ac

y 
(%

)

Time Step (t)

PL-NB, θ = .1, w = 6
DWM-NB, p = 1, m = 5

SEA-NB, p = 8, m = 2
AWE-NB, p = 10, m = 5

Figure 2. Results for PL-NB, SEA-NB, DWM-
NB, and AWE-NB on the Stagger concepts.
Measures are accuracy with 95% confidence
intervals.
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Figure 3. Results for PL-NB on the SEA con-
cepts. Measures are accuracy with 95% con-
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Figure 5. Accuracy on the duration task for
PL-NB, NB, and DWM-NB. Measures are aver-
ages of the previous 100 predictions.
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Figure 6. Accuracy on the duration task for
PL-NB, SEA-NB, and AWE-NB. Measures are
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Table 2. Results for the SEA concepts. Mea-
sures are average normalized area under the
curve (AUC) after the first drift point and 95%
confidence intervals.

Learner and Parameters AUC

PL-NB, θ = .03, w = 500 0.972±0.003
SEA-NB, p = 500, m = 2 0.971±0.002
NB, on each concept 0.971±0.001
DWM-NB, p = 50, m = 50 0.969±0.002
AWE-NB, p = 500, m = 2 0.966±0.002
NB, on all examples 0.890±0.002

4.3. Calendar scheduling

For a real-world application, we evaluated the meth-
ods on the calendar-apprentice (CAP) data set [2, 12], a
calendar-scheduling task. Based on a subset of 34 sym-
bolic attributes, the task is to predict a user’s preferencefor
a meeting’s location, duration, start time, and day of week.
There are 12 attributes for location, 11 for duration, 15 for
start time, and 16 for day of week. We processed online the
1,685 examples for User 1 by testing on each new example,
measuring accuracy, and then using it to train each learner.

We present the results for theCAP data set in Table 3.
Overall,PL-NB performed comparably toDWM-NB and out-
performed the other methods.DWM-NB performed slightly
better than didPL-NB in terms of accuracy, but required 20
base learners to do so. Not only didDWM require more
memory than didPL-NB, but also it required considerably
more time, since it trained each of the 20 learners in the
ensemble on each new instance.

Figure 5 shows the performance curves on the duration
task forPL-NB, NB, andDWM-NB, and Figure 6 shows these
curves forPL-NB, AWE-NB, andSEA-NB. We suspect that
PL-NB, NB, and DWM-NB had an advantage on this task
since they immediately learned from each new example, in-
stead of accumulating examples into a batch, as didSEA-
NB andAWE-NB. We did try smaller ensembles and shorter
periods for these learners, but the settings did not produce
higher accuracy on this task.

4.4. Electricity prediction

The electricity-prediction data set consists of 45,312 ex-
amples collected at 30-minute intervals between 7 May
1996 and 5 December 1998 [5]. The task is to predict
whether the price of electricity will go up or down based on
five numeric attributes: the day of the week, the 30-minute
period of the day, the demand for electricity in New South

6



Table 3. Accuracy on the CAP data set using 1,685 examples for User 1.
PL-NB SEA-NB DWM-NB AWE-NB

Prediction Task NB
θ = .2, w = 12 p = 30, m = 25 p = 1, m = 20 p = 25, m = 5

Location 62.93 66.16 58.95 66.90 58.36
Duration 63.25 65.13 59.29 65.90 59.56

Start Time 33.24 38.19 27.07 38.87 27.31
Day of Week 52.29 51.48 40.95 51.70 40.58

Average 52.92 55.24 46.57 55.84 46.17

Table 4. Results for the electricity-prediction
task. Measures are accuracy averaged over
45,312 predictions.

Learner and Parameters Accuracy (%)
DWM-NB, p = 1, m = 5 82.81
PL-NB, θ = .8, w = 1 81.26
AWE-NB, p = 18, m = 5 65.84
SEA-NB, p = 72, m = 5 64.89
NB 62.34

Wales, the demand in Victoria, and the amount of electricity
to be transferred between the two. Roughly 39% of the ex-
amples have unknown values for either demand in Victoria
or the transfer amount.

To evaluate the methods, we processed the examples on-
line in their temporal order by testing on a new example,
measuring accuracy, and then training on the example. We
computed average accuracy, which we present in Table 4,
and we produced performance curves by plotting the av-
erage accuracy of the previous 2,352 predictions. These
curves appear in Figure 7.

As one can see,PL-NB performed almost as well as
DWM-NB did on this task. Both achieved overall accura-
cies above 80%. Both required reactive parameter settings:
w = 1 for PL-NB and p = 1 for DWM-NB. (For PL-
NB, sincew = 1, θ was irrelevant.) SEA-NB and AWE-
NB, again, may have been disadvantaged on this task be-
cause they accumulated examples into a batch for learn-
ing. Indeed, if the environment changes quickly enough, it
may change before such a learner can produce a new batch
for learning. One could reduce the size of the batch, but
such a reduction may result in poor performing classifiers.
Although DWM-NB performed slightly better than didPL-
NB, PL-NB maintained only two learners, whereasDWM-NB

maintained five. Finally, notice the large dip inNB’s per-
formance around time step 38,000. The methods designed
for concept drift were either unaffected (e.g.,SEA-NB and
AWE-NB) or affected little (e.g.,PL-NB and DWM-NB) by
the phenomenon that produced this drop inNB’s accuracy.
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Figure 7. Results for the electricity-prediction
task. Measures are accuracy averaged over
the previous 2,352 predictions.

4.5. Malware detection

The malware-detection task involves determining
whethern-grams extracted from executables are from a
benign executable or a malicious executable [9]. There
are 3,622 examples, and each consists of 500 Boolean
attributes indicating the presence or absence of a 4-gram of
bytes. We processed the examples online by shuffling the
order of the examples, testing on each example, measuring
accuracy, and training on the example. We repeated this
process 200 times for each of the five methods.

In Table 5, we present average accuracy, and Figure 8
shows performance curves for the five methods. As shown,
all of the methods performed comparably, butPL-NB was
more efficient in terms of space. Notice thatSEA-NB, DWM-
NB, andAWE-NB maintained 10 base learners and thatSEA-
NB andAWE-NB each accumulated a batch of 50 examples
for learning. In contrast,PL-NB maintained 2 base learners
and only 9 examples.

We found it interesting thatPL-NB andNB achieved the
same accuracy on this problem. Subsequent analysis con-
firmed that, over the 200 trials,PL-NB never replaced its
stable classifier, and so the two methods produced identical
results. While this suggests an absence of drift and sam-
pling effects, we consider it a positive outcome that, on such
a task,PL-NB performed no worse than did its base learner.
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Figure 8. Results for the malware-detection
task. Measures are accuracy averaged over
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Figure 10. Number of replacements for PL-NB
on the Stagger concepts over 50 runs.

Table 5. Results for the malware-detection
task. Measures are accuracy with 95% con-
fidence intervals

Learner and Parameters Accuracy (%)
NB 87.4±0.1
PL-NB, θ = .2, w = 9 87.4±0.1
DWM-NB, p = 50, m = 10 87.2±0.1
SEA-NB, p = 50, m = 10 86.0±0.2
AWE-NB, p = 50, m = 10 85.7±0.2

5. Analysis and discussion

The paired learner is one of the most direct and efficient
algorithms proposed thus far for coping with concept drift.
It consists of two online learners, a stable learner and a re-
active learner. The paired learner uses the stable learner’s
prediction as its global prediction. The algorithm createsa
new stable learner when, over a short window of time, the
reactive learner is correct and the stable learner in incorrect
sufficiently often. The method performed comparably to or
better than other ensemble methods designed for concept
drift on five different problems, and generally did so in less
time and space.

Paired learners performed well on the problems consid-
ered because its combination of stable and reactive learners
is an accurate lagging indicator of concept drift. To sup-
port this assertion, we consider the algorithm’s performance
on the Stagger concepts, which allows for careful analysis.
Figure 9 shows the accuracy over 50 runs ofPL-NB, win-
dowedNB, and NB trained on all examples. Clearly, the
standard version ofNB trained on all examples cannot cope
with changes in the target concept and performs poorly af-
ter the first drift point. In contrast, the windowed version
of NB is too reactive and learns a model with only limited
accuracy. However, both versions have advantages for dif-
ferent parts of the problem. The standard version is better at
learning stable (i.e., individual) concepts (see Figure 1), and
the reactive version is better at learning immediately after a
drift point.

We contend that a reactive learner outperforming a sta-
ble learner is rare,unlessdrift has occurred. Our experi-
mental results support this assertion, but to illustrate further,
Figure 10 shows the number of times thatPL-NB replaced
S at each time step on the Stagger concepts. Note that if
a replacement occurs at time stept, then the new stable
learnerS will learn from the examples received from time
stept− w + 1 onward. The optimal replacement times for
w = 6 on the Stagger concepts aret = 46 andt = 86 (with
no other replacements). As one can see,PL-NB tended to
replaceS around these optimal times. If the paired learner
replacesS near these times, then it should classify subse-
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quent examples more accurately. Figures 1, 9, and 10 show
that PL-NB more closely approached optimal replacement
performance on the third target concept than on the second,
which resulted in accuracy closer to that of the base learner
trained on each concept.

5.1. Timing results

To characterize the relative running times of the meth-
ods in our study, we measured combined training and test-
ing times on theSEA concepts, the most time-consuming
task considered. All problem and learning parameters are
the same as those reported in Section 4.2. We performed
the evaluations on a workstation with a two-core, 2.8 GHZ

Intel PentiumD CPU with 3.5 GB of RAM using Sun’s Java
Runtime Environment 6 andWEKA version 3.5.7.

For PL-NB, the average running time for five trials was
59.8 seconds. WhenPL-NB used a retractable learner for
Rw, rather than retraining, the average running time was
12.3 seconds. The average running time over five trials for
AWE-NB was 24.5 seconds, forSEA-NB was 29.5 seconds,
and forDWM-NB was 204.9 seconds. These timing results
are consistent with those we observed for other problems.

5.2. Complexity analysis

Let f(n) be the running time required to train a base
learner onn examples, and letg(n) be the running time
required for that base learner to classifyn observations. The
time to train a paired learner onn examples isO(n ·f(w)+
n · g(1)), wherew is the size ofRw ’s window. If the base
learner retracts examples, then the time required isO(n ·
f(1) + n · g(1)). The time to classifyn instances for both
versions isO(n · g(1)).

For SEA, the training time isO(n
p
· f(p) + mn

p
· g(p)),

and the classification time isO(mn · g(1)), wherem is
the number of experts in the ensemble, andp is the num-
ber of examples in each batch. ForDWM, the training
timeO(mn · f(1) + mn · g(1)), whereas the classification
time is O(mn · g(1)). Finally, for AWE, training requires
O(n

p
· fcv(p) + mn

p
· g(p)), wherefcv(n) is the time re-

quired to train the base learner onn examples using cross-
validation. Its classification time isO(mn · g(1)).

In terms of space, iff(n) is the space required for a
base learner to store a model built fromn examples, then
the space required for paired learning isO(f(n) + w).
DWM requiresO(m · f(n)), and SEA and AWE require
O(m ·f(p)+p). We should note that the bound forDWM is
overly pessimistic for base learners with models that grow
with n. DWM dynamically adds and removes learners, and
so it is unlikely that any base learner will learn from alln

examples. However, this bound is accurate for base learners
with constant memory, such as naive Bayes.

5.3. Results with other base learners

As we have mentioned, one can use any online learner
for paired learning. We have evaluated paired learning with
other base learners, such as Hoeffding trees (HT), an on-
line method for building decision trees [3]. On the Stagger
concepts,DWM-HT (p = 1, m = 10) achieved anAUC of
.851, but PL-HT had anAUC of .835. On theCAP data set,
DWM-HT (p = 1, m = 10) achieved 50.68%, whereasPL-
HT (θ = .4, w = 12) obtained 55.83%. On the malware data
set,PL-HT (θ = .2, w = 9) obtained 90.3%, whereasSEA-
J48 (p = 50, m = 10) achieved 92.9%,HT alone achieved
92.9%, andAWE-J48 (p = 50, m = 10) achieved 92.7%.
(J48 is the implementation ofC4.5 [13] in WEKA [18].)

As before, the paired learner achieved higher or compa-
rable accuracy, while requiring less time and space than the
other methods. We plan to expand our study to include ad-
ditional ensemble methods, base learners, and data sets in
an effort to better characterize and understand trade-offsin
performance between paired learning and other methods for
concept drift.

5.4. Robustness to noise and varying drift points

We conducted two additional experiments that were in-
teresting, but require further study, and we plan to report
more detailed conclusions in future publications. Firstly,
we were concerned that the paired learner would be more
sensitive to noise than wouldSEA, DWM, and AWE, even
though we saw no such sensitivity to the 10% noise present
in the SEA concepts and in other problems. To investigate,
we varied the level of class noise from 0% to 70% in in-
crements of 10% for both the Stagger concepts and theSEA

concepts, measuringAUC. As expected, the performance of
all of the methods decreased with increasing noise, but they
degraded at roughly the same rate, suggesting thatPL-NB

was equally robust to noise.
Secondly, we were interested in the extent to which the

relationship between the parameter settings of the algo-
rithms and the drift points of the problems affected accu-
racy. In evaluations, critical parameters, such asp or w, are
often factors of the problem’s drift points, which could in-
fluence a method’s overall accuracy. We investigated by se-
lecting the Stagger concepts [14] and varying over all com-
binations of drift points in{20, . . . , 60} for the first drift
point and in{60, . . . , 100} for the second. (The drift points
for the Stagger concepts are 41 and 81.) We ranPL-NB and
the other methods, and the accuracy of these methods was
generally consistent across all combinations of drift points.
The relatively short periods between the drift points may
have been insufficient to produce a measurable effect, and
we plan to study this issue further with other problems.

We contend that the paired learner is of less concern
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in this regard since its window slides. Moreover, compo-
nents of the paired learner are not “dormant” as some are in
SEA, DWM, andAWE. For example,DWM does not update
weights or add or remove experts during its period, andSEA

andAWE accumulate examples during periods to build new
classifiers. We intend to develop further this experiment and
report its results elsewhere.

6. Concluding remarks

We introduced the notion of a paired learner, which uses
the difference in performance between a reactive learner
and a stable learner to cope with concept drift. It has a
minimal ensemble in that it maintains and trains only two
learners, in contrast to other ensemble methods that use an
unweighted or weighted collection of batch learners or a
weighted collection of online learners.

We anticipate that the method’s directness and the clar-
ity it provides will give researchers further insight into the
problem of learning concepts that change over time. We
hope the outcome of this study has implications not only for
the design of algorithms for concept drift, but also for the
problems used to evaluate such algorithms. Results on five
previously published problems suggest that paired learners
perform comparably to or better thanDWM, SEA, andAWE,
while requiring less time and space.

Questions remain about ensemble methods for concept
drift. We hope to better understand the problems for which
large weighted and unweighted ensembles are warranted,
although it is not clear if problems or data sets presently ex-
ist to support such an investigation. We also plan to study
further the properties of reactive learners and their use as
indicators of concept drift. We will expand our empirical
investigation to include single-model methods for concept
drift, such as winnow and Stagger, and other instance gen-
erators, such as that used to evaluateAWE. We have already
begun to characterize how paired learners and other meth-
ods respond to varying drift points and varying amounts of
class noise; preliminary results are encouraging.
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