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• Paired-dual learning overcomes the inference bottleneck 
associated with learning with latent variables

• Latent variable hinge-loss MRFs are now practical for 
large-scale applications!

• Paired-dual learning is also applicable to other 
continuous models and even discrete models

Introduction

• Latent variables are very useful in large-scale 
structured prediction, but they complicate learning!

• A naive approach is not scalable, and smarter methods 
exist for discrete models only

• We introduce a new method for continuous MRFs that 
interleaves parameter and inference updates

Hinge-Loss Markov Random Fields

• Undirected graphical models over continuous variables 
with hinge-loss potential functions

    where      is a linear function and

• Generalizes
       Randomized algorithms for MAX SAT
       Relaxed MAP for discrete, logical MRFs
       Exact MAX SAT using soft logic

• Highly scalable, ADMM-based MAP inference

Evaluation

Learning with Latent Variables

• The maximum likelihood learning objective for models with 
latent variables contains two inner inference problems:

• At a high level, this objective has a simple structure:

• But repeatedly performing inference is very expensive!

• Supervised learning can be sped up by interleaving 
inference and parameter updates, e.g., Taskar et al. [ICML 
2005] and Meshi et al. [ICML 2010]

• Schwing et al. [ICML 2012] and Chen et al. [ICML 2015] 
propose interleaving updates for discrete latent models

• Any new method for continuous variables must solve the 
problems of intractable expectations and entropies

• Paired-dual learning is
  •  Just as accurate as traditional methods
  •  So fast that it often converges before others make a 

single parameter update

Conclusions

Paired-Dual Learning

• We choose point distributions for variational families and 
construct entropy surrogates to make objective tractable 

• Paired-dual learning replaces both inner inferences with 
augmented Lagrangians and optimizes jointly:
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Preferred colors

Th e preferred version of the university logo includes 
the maroon shield symbol in PMS 208 or the 
four-color process equivalent with solid black logo-
type. 
 
8

One-color logo

Reversed white, solid black, or solid maroon logos 
are acceptable for one-color process printing.

To give a two-color eff ect when printing using black, 
the shield may be printed in a 60-percent screen of 
black, while the logotype remains in solid black.

9
Printing on color backgrounds

When printing the logo on light backgrounds, use the 
primary logo.

When reproducing on a darker background, use a 
reversed, white version of the logo.

Other color usage

Th e logo can be produced in copper, gold, or silver inks 
or foils. In special cases, the logotype may be printed 
in maroon and the shield in copper or silver, embossed 
foil. Th e logo may also be blind embossed.

university seal in 
maroon and orange

university seal in maroon

university seal in black and white

university seal in orange

1
Secondary logo (Restricted use)

Use of this alternative confi guration is limited to for-
mats where space constraints make it diffi  cult to use the 
primary logo. 

2
University seal

Th e formal university seal is reserved for ceremonies, 
watermarks for offi  cial documents, diplomas, and 
building plaques.

3
Athletic logo and the HokieBird

Th e athletic logo and/or the HokieBird are not 
approved for use by colleges, departments, institutes, 
centers, or programs. 

If you have permission to use the HokieBird, do 
not change its color or appearance.

This work is supported by NSF grant IIS1218488 and IARPA via DoI/NBC contract number D12PC00337. Boyd-Graber is supported by NSF grants 
IIS1320538, IIS1409287, and NCSE1422492. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes 
notwithstanding any copyright annotation thereon. Disclaimer: The views and conclusions contained herein are those of the authors and should not be 
interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of IARPA, DoI/NBC, or the U.S. Government.Code available:   http://psl.cs.umd.edu
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Step 1

Perform N updates 
over dual problem for 
joint distribution

Step 2

Perform N updates 
over dual problem for 
conditional distribution

Step 3

Use current state of both dual problems 
to compute gradient with respect to        
and take step in opposite direction

w

0 500 1000 1500 2000 25000

0.1

0.2

0.3

0.4

ADMM iterations

Au
PR

Twitter (One Fold)

 

 

PDL, N=1
PDL, N=10
EM
Primal

0 500 1000 1500 2000 25000

0.1

0.2

0.3

0.4

ADMM iterations

Au
PR

Twitter (All Folds)

 

 

PDL, N=1
PDL, N=10
EM
Primal

0 500 1000 1500 2000 2500

2

3

4

5

x 104

ADMM iterations

O
bj

ec
tiv

e

Twitter (One Fold)

 

 

PDL, N=1
PDL, N=10
EM
Primal

0 500 1000 1500 2000 25000

0.2

0.4

0.6

ADMM iterations

Au
PR

Epinions (All Folds)

 

 

PDL, N=1
PDL, N=10
EM
Primal

0 500 1000 1500 2000 25000

0.2

0.4

0.6

ADMM iterations

Au
PR

Epinions (One Fold)

 

 

PDL, N=1
PDL, N=10
EM
Primal

0 1000 20002000

4000

6000

8000

10000

12000

ADMM iterations

O
bj

ec
tiv

e

Epinions (One Fold)

 

 

PDL, N=1
PDL, N=10
EM
Primal

0 1000 2000 3000 40001200

1400

1600

1800

ADMM iterations

M
SE

Image Reconstruction

 

 

PDL, N=1
PDL, N=10
EM
Primal

0 1000 2000 3000 40003500

4000

4500

5000

ADMM iterations

O
bj

ec
tiv

e

Image Reconstruction

 

 

PDL, N=1
PDL, N=10
EM
Primal

Image Reconstruction

Trust Prediction in Social Networks

Interaction Prediction via Community Detection
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