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Latent variables are very useful in large-scale
structured prediction, but they complicate learning!

A naive approach is not scalable, and smarter methods
exist for discrete models only

We introduce a new method for continuous MRFs that
interleaves parameter and inference updates

Learning with Latent Variables

The maximum likelihood learning objective for models with
latent variables contains two inner inference problems:
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» At a high level, this objective has a simple structure:

Optimize W

- But repeatedly performing inference is very expensive!

» Supervised learning can be sped up by interleaving
inference and parameter updates, e.g., Taskar et al. [ICML
2005] and Meshi et al. [ICML 2010]

« Schwing et al. [ICML 2012] and Chen et al. [ICML 2015]
propose interleaving updates for discrete latent models

* Any new method for continuous variables must solve the
problems of intractable expectations and entropies
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Paired-Dual Learning

» We choose point distributions for variational families and
construct entropy surrogates to make objective tractable

 Paired-dual learning replaces both inner inferences with
augmented Lagrangians and optimizes jointly:

argmin max min min max
w Y,2,Y,z 8 Z’,Z’ o’
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Step 3

Use current state of both dual problems
.. to compute gradient with respect to W
Optlmlze w and take step in opposite direction
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Step 2

Step 1

Perform N updates
over dual problem for
conditional distribution

Perform N updates
over dual problem for
joint distribution

Hinge-Loss Markov Random Fields

 Undirected graphical models over continuous variables
with hinge-loss potential functions

P(y, z|x; w) x exp ij (max {¢;(x,y, z),0})"
j=1

where ¢, is a linear function and p; € {1, 2}
» Generalizes
Randomized algorithms for MAX SAT
Relaxed MAP for discrete, logical MRFs
Exact MAX SAT using soft logic

- Highly scalable, ADMM-based MAP inference

Code available: http://psl.cs.umd.edu
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Evaluation

 Paired-dual learning is
- Just as accurate as traditional methods
- So fast that it often converges before others make a
single parameter update

Interaction Prediction via Community Detection
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Trust Prediction in Social Networks
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Image Reconstruction
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Conclusions

 Paired-dual learning overcomes the inference bottleneck
associated with learning with latent variables

- Latent variable hinge-loss MRFs are now practical for
large-scale applications!

 Paired-dual learning is also applicable to other
continuous models and even discrete models
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