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Abstract

Probabilistic models with latent variables
are powerful tools that can help explain re-
lated phenomena by mediating dependencies
among them. Learning in the presence of la-
tent variables can be difficult though, because
of the difficulty of marginalizing them out, or,
more commonly, maximizing a lower bound
on the marginal likelihood. In this work, we
show how to learn hinge-loss Markov ran-
dom fields (HL-MRFs) that contain latent
variables. HL-MRFs are an expressive class
of undirected probabilistic graphical models
for which inference of most probable expla-
nations is a convex optimization. By incor-
porating latent variables into HL-MRFs, we
can build models that express rich dependen-
cies among those latent variables. We use a
hard expectation-maximization algorithm to
learn the parameters of such a model, lever-
aging fast inference for learning. In our ex-
periments, this combination of inference and
learning discovers useful groups of users and
hashtags in a Twitter data set.

1. Introduction

Hinge-loss Markov random fields (HL-MRFs) are a
powerful class of probabilistic graphical models, which
combine support for rich dependencies with fast, con-
vex inference of most-probable explanantions (MPEs).
They achieve this combination by expessing dependen-
cies among variables with domain [0,1] as hinge-loss
potentials, which can generalize logical implication to
continuous variables. While recent advances on infer-
ence and learning for HL-MRFs allows these models to
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produce state-of the-art performance on various prob-
lems with fully-observed training data, methods for
parameter learning with latent variables are currently
less understood. In particular, there is need for latent-
variable learning methods that leverage the fast, con-
vex inference in HL-MRFs. In this work, we introduce
a hard expectation-maximization (EM) strategy for
learning HL-MRFs with latent variables. This strat-
egy mixes inference and supervised learning (where
all variables are observed), two well-understood tasks
in HL-MRFs, allowing learning with latent variables
while leveraging the rich expressivity of HL-MRFs.

HL-MRFs are the formalism behind the probabilis-
tic soft logic (PSL) modeling language (Broecheler
et al., 2010), and have been used for collective classifi-
cation, ontology alignment (Broecheler et al., 2010),
social trust prediction (Huang et al., 2013), voter
opinion modeling (Bach et al., 2012; Broecheler &
Getoor, 2010), and graph summarization (Memory
et al., 2012). PSL is one of many tools for designing
relational probabilistic models, but is perhaps most re-
lated to Markov logic networks (Richardson & Domin-
gos, 2006), which use a similar syntax based on first-
order logic to define models.

When learning parameters in models with hidden, or
latent, variables, the standard approach is to maxi-
mize the likelihood of the observed labels, which in-
volves marginalizing over the latent variable states. In
many models, directly computing this likelihood is too
expensive, so the variational method of expectation
maximization (EM) provides an alternative (Demp-
ster et al., 1977). The variational interpretation of
EM iteratively updates a proposal distribution, min-
imizing the Kullback-Leiber (KL) divergence to the
empirical distribution, interleaved with estimating the
expectation of the latent variables. The variational
view allows the possibility of EM with a limited but
tractable family of proposal distributions and provides
theoretical justification for what is commonly known
as “hard EM”. In hard EM, the proposal distribution
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comes from the family of point distributions: distri-
butions where the probability is one at a single point
estimate and zero otherwise. Since HL-MRFs admit
fast and efficient MPE inference, they are well-suited
for hard EM.

We demonstrate our approach on the task of group de-
tection in social media data, extending previous work
that used fixed-parameter HL-MRFs for the same task
(Huang et al., 2012). Group detection in social media
is an important task since more and more real-world
phenomena, such as political organizing and discourse,
take place through social media. Group detection has
the potential to help us understand language, political
events, social interactions, and more.

2. Hinge-loss Markov Random Fields

In this section, we review hinge-loss Markov random
fields (HL-MRFs) and probabilistic soft logic (PSL).
HL-MRFs are parameterized by constrained hinge-loss
energy functions. The energy function is factored into
hinge-loss potentials, which are clamped linear func-
tions of the continuous variables, or squares of these
functions. These potentials are weighted by a set of
parameter weights, which can be learned and can be
templated, i.e., many potentials of the same form may
share the same weight. Additionally, HL-MRFs can
incorporate linear constraints on the variables, which
can be useful for modeling, for example, mutual exclu-
sion between variable states. For completeness, a full,
formal definition of HL-MRFs is as follows.

Definition 1. Let Y = (Y1, . . . , Yn) be a vector of
n variables and X = (X1, . . . , Xn′) a vector of n′

variables with joint domain D = [0, 1]n+n
′
. Let φ =

(φ1, . . . , φm) be m continuous potentials of the form

φj(Y,X) = [max {`j(Y,X), 0}]pj

where `j is a linear function of Y and X and pj ∈
{1, 2}. Let C = (C1, . . . , Cr) be linear constraint func-
tions associated with index sets denoting equality con-
straints E and inequality constraints I, which define
the feasible set

D̃ =

{
Y,X ∈ D

∣∣∣∣ Ck(Y,X) = 0,∀k ∈ E
Ck(Y,X) ≥ 0,∀k ∈ I

}
.

For Y,X ∈ D̃, given a vector of nonnegative free
parameters, i.e., weights, λ = (λ1, . . . , λm), a con-
strained hinge-loss energy function fλ is defined as

fλ(Y,X) =

m∑
j=1

λjφj(Y,X) .

Definition 2. A hinge-loss Markov random field P
over random variables Y and conditioned on random
variables X is a probability density defined as follows:
if Y,X /∈ D̃, then P (Y|X) = 0; if Y,X ∈ D̃, then

P (Y|X) =
1

Z(λ)
exp [−fλ(Y,X)] ,

where Z(λ) =
∫
Y

exp [−fλ(Y,X)].

Thus, MPE inference is equivalent to finding the min-
imizer of the convex energy fλ.

Probabilistic soft logic (Broecheler et al., 2010; Kim-
mig et al., 2012) provides a natural interface to repre-
sent hinge-loss potential templates using logical con-
junction and implication. In particular, a logical con-
junction of Boolean variables X ∧ Y can be general-
ized to continuous variables using the hinge function
max{X+Y −1, 0}, which is known as the Lukasiewicz
t-norm. Similarly, logical implication X ⇒ Y is re-
laxed via 1−max{Y −X, 0}. PSL allows modelers to
design rules that, given data, ground out possible sub-
stitutions for logical terms. The groundings of a tem-
plate define hinge-loss potentials that share the same
weight. PSL rules take the form of these soft logical
implications, and the linear function of the HL-MRF
potential is the ground rule’s distance to satisfaction,
max{Y −X, 0}. We defer to Broecheler et al. (2010)
and Kimmig et al. (2012) for further details on PSL.

Inference of the most probable explanation (MPE) in
HL-MRFs is a convex optimization, since the hinge-
loss potentials are each convex and the linear con-
straints preserve convexity. Currently, the fastest
known method for HL-MRF inference uses the al-
ternating direction method of multipliers (ADMM),
which decomposes the full objective into subproblems
each with their own copy of the variables and uses aug-
mented Lagrangian relaxation to enforce consensus be-
tween the independently optimized subproblems (Bach
et al., 2012). The factorized form of the HL-MRF en-
ergy function naturally corresponds to a subproblem
partitioning, with each hinge-loss potential and each
constraint forming its own subproblem.

A number of methods can be used to learn the
weights of an HL-MRF. Currently, two main strate-
gies have been studied: approximate maximum likeli-
hood (Broecheler et al., 2010) and large-margin esti-
mation (Bach et al., 2013). In this work, we focus on
approximate maximum likelihood using voted percep-
tron gradient ascent. The gradient for the likelihood of
training data contains the expectation of the log-linear
features, which we approximate via the MPE solution.
Thus far, these learning methods require all unknown
variables to have labeled ground truth during train-
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ing. In the next section, we describe one method to
relax this restriction and learn when only part of the
unknown variables have observed labels.

3. Learning with Latent Variables

Probabilistic models can have latent variables for a
number of reasons. In some cases, large models have
many unknowns to the point that it is impractical to
collect ground truth for them all. In other cases, the la-
tent variables represent values that can never be mea-
sured, since they are inherently latent and may have
no real-world analogue. In both of these scenarios, the
standard strategy is to maximize the likelihood of the
available labeled data. Let X be the observed vari-
ables, Y be the target variables (i.e., labels), and Z
be latent variables, which are available for inference
but for which we have no ground-truth labels. The
standard learning objective for learning parameters λ
is

max
λ

P (Y|X;λ).

Evaluating this objective function in many graphical
models, including HL-MRFs, is intractable in general,
so direct optimization is often not an available option.

3.1. Expectation Maximization

Expectation maximization (EM) is a general frame-
work for learning in the presence of latent variables
(Dempster et al., 1977). EM maximizes a lower
bound on the marginal likelihood P (Y|X;λ). For
models where evaluating P (Y|X;λ) is intractable; it
is often possible to work with the original distribu-
tion P (Y,Z|X;λ). Thus, EM alternates between fit-
ting a distribution q(Z) to the posterior distribution
P (Z|Y,X;λ) and maximizing Eq(Z) [P (Y,Z|X;λ)],
the expected complete data likelihood with respect to
q(Z).

For general, undirected graphical models, this max-
imization is intractable. One way to make it more
tractable is to use a “hard” variant of EM, in which
q(Z) is restricted to the family of delta distributions
which place all mass on a single assignment to the
variables. With zero density assigned to all points ex-
cept one, maximizing the expected complete data like-
lihood is equivalent to supervised learning using the
assignment to the latent varaibles with non-zero den-
sity. Hard EM is attractive, especially in models such
as HL-MRFs, because it alternates between inference
and supervised learning, two tasks we have efficient
algorithms to solve. While hard EM also maximizes
a lower bound on the marginal likelihood, the delta
distribution restriction makes it prone to finding local

Algorithm 1 Hard Expectation Maximization

Input: model P (Y,Z|X;λ), initial parameters λ0

t← 1
while not converged do

Zt = arg maxZ P (Z|Y,X;λt−1)
λt = arg maxλ P (Y,Zt|X;λ)
t← t+ 1

end while

optima. This makes initializing the model wit reason-
able parameters important. For example, parameters
can be initialized with expert seed knowledge. The
hard EM algorithm is summarized in Algorithm 1.

4. Evaluation

To evaluate our proposed approach, we build a model
over a rich social-media data set collected from South
American users in the 48 hours around the 2012
Venezuelan presidential election. The data set is col-
lected from the social medium Twitter and is com-
posed of short, public messages or tweets written
by users. Some tweets express opinions, some men-
tion other users, some are retweets (rebroadcast mes-
sages), and many contain hashtags (user-specified an-
notations). Such social-media data sets can contain
a wealth of information about public opinions, social
structures, and language. We extract some of this
information by including in our model the notion of
latent user groups which mediate probabilistic depen-
dencies between hashtag usage and social interactions
such as retweets and mentions.

Our goal is to learn model parameters that explain
a set of users’ interactions with a smaller set of top
users of interest, e.g., political figures, news organi-
zations, and entertainment accounts, given the users’
hashtag usage and their interactions with others out-
side the set of top users. Since our data set focuses on
a presidential election, we assume that their are two
latent groups, one associated with each major candi-
date, and we will interpret the learned parameters as
the strengths of associations between each group and
particular hashtags or top users.

4.1. Data Set

Our data set is roughly 4,275,000 tweets collected from
about 1,350,000 Twitter users via a query that focused
on South American users. The tweets were collected
from October 6 to October 8, 2012, a 48-hour window
around the Venezuelan presidential election on Octo-
ber 7. The two major candidates in the election were
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Hugo Chávez, the incumbent, and Henrique Capriles.
Chávez won with 55% of the vote.

To learn a model relating hashtag usage and interaca-
tions with top users, we first identify 20 users as top
users based on being the most retweeted or, in the case
of the state-owned television network’s account, being
of particular interest. We then identify all other users
that either retweeted or mentioned at least one of the
top users and used at least one hashtag in a tweet that
was not a mention or a retweet of a top user. Filtering
by these criteria, the set contains 1,678 regular users
(i.e., users that are not top users).

Whether each regular user tweeted a hashtag is
represented with the PSL predicate UsedHashtag.
Tweets that mention or retweet a top user are
not counted. For example, if we observe that
User 1 tweeted a tweet that contains the hashtag
#hayuncamino then UsedHashtag(1, #hayuncamino)
has an observed truth value of 1.0. The PSL predicate
RegularUserLink represents whether a regular user
retweeted or mentioned any user in the full data set
that is not a top user, regardless of whether that men-
tioned or retweeted user is a regular user. Whether
a regular user retweeted or mentioned a top user is
represented with the PSL predicate TopUserLink.
Finally, the latent group membership of each regular
user is represented with the PSL predicate InGroup.

4.2. Latent Group Model

We now describe our model for predicting the in-
teractions of regular users with top users via la-
tent group membership. We describe the HL-MRF
in terms of PSL rules and constraints. (See Sec-
tion 2.) We implement the hard EM algorithm (Al-
gorithm 1) by treating atoms with the UsedHashtag
or RegularUserLink predicate as the set of condi-
tioning variables X, atoms with the TopUserLink
predicate as the set of target variables Y, and atoms
with the InGroup predicate as the set of latent vari-
ables Z.

When defining our model, we will make reference to
the set H of hashtags used by at least 15 different
regular users (|H| = 33), the set T of top users (|T | =
20), and the set of latent groups G = {g0, g1}.

We first include rules that relate hashtag usage to
group membership. For each hashtag in H and each
latent group, we include a rule of the form

wh,g : UsedHashtag(U, h)→InGroup(U, g)

∀h ∈ H,∀g ∈ G

so that there is a different rule weight governing how

strongly each commonly used hashtag is associated
with each latent group.

Next, we leverage one the advantages of our approach
to learning with latent variables: the ability to eas-
ily include interesting dependencies among latent vari-
ables. We use the rule

wsocial : RegularUserLink(U1, U3)

∧RegularUserLink(U2, U3) ∧ U1 6= U2

∧ InGroup(U1, G)→ InGroup(U2, G)

to encode the intuition that regular users who interact
with the same people on Twitter are more likely to
belong to the same latent group.

Third, we include rules of the form

wg,t : InGroup(U, g)→TopUserLink(U, t)

∀g ∈ G,∀t ∈ T

for each latent group and each top user so that there is
a parameter governing how strongly each latent group
tends to interact with each top user.

Finally, we include a simple rule that acts as a prior
penalizing strong assignments of regular users to either
group.

wprior : ¬InGroup(U,G)

Since the potentials defined by all our rules are
squared, this prior indicates that given little or weak
evidence, users belong to all groups evenly. I.e., the
model will only infer strong group assignments if there
is strong evidence.

In addition to our rules, we include two sets of con-
straints. The first set constrains the InGroup atoms
for each regular user to sum to 1.0, making InGroup
a mixed-membership assignment. The second set con-
strains the TopUserLink atoms for each regular user
to sum to the number of interactions with top users
observed for that regular user. This makes the infer-
ence task to predict which interactions occurred, since
the constraint fixes how many interactions occurred.

All that remains to use the hard EM algorithm is to
specify initial parameters λ0. We initialize wprior to
3.0. We initialize wh,g, wsocial, and wg,t to 2.0 for
all hashtags, groups, and top users, except two hash-
tags and two top users which we initially assign as
seeds. We initially associate the top user hayuncamino
(Henrique Capriles’s campaign account) and the hash-
tag for Capriles’s campaign slogan #hayuncamino with
Group 0 by initializing the parameters associating
them with Group 0 to 10.0 and those associating
them with Group 1 to 0.0. We initially associate
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Figure 1. Learned parameters associating latent groups
with hashtags. Shown is the value wh,g0 − wh,g1 for each
hashtag h ∈ H.

Figure 2. Learned parameters associating latent groups
with interactions with top users. Shown is the value
wg0,t − wg1,t for each target user t ∈ T .

the top user chavezcandanga (Hugo Chávez’s ac-
count) and the hashtag for Chávez’s campaign slogan
#elmundoconchávez with Group 1 in the same way.

4.3. Results

To learn associations between latent groups and hash-
tags or interactions with top users, we perform ten it-
erations of hard EM on the HL-MRF defined in the
previous subsection over the entire data set. Each
maximizer for P (Z|Y,X;λ) is easy to find exactly via
convex optimization. To find each λ, we perform ten
steps of voted-perceptron gradient ascent approximat-
ing the expected values of the log-linear features by
their values in the MPE state. This approximate max-
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imization works well because as long as it improves
the log-likelihood of Y and Z, the marginal likelihood
P (Y|X;λ) will improve.

Figure 1 shows the learned parameters associating
hashtag usage with latent groups (excluding the two
seeded hashtags). The hashtags are sorted by differ-
ences in parameter values from Capriles to Chávez.
Our assignment of seeds associated pro-Capriles users
with Group 0 and pro-Chávez users with Group 1.
The results show a very clean ordering of hashtags
based on ideology. Many of the hashtags most
strongly associated with the latent Capriles group are
explicitly pro-Capriles, e.g., #mivotoesxcapriles,
#votemosdeprimeroxcapriles, and #hayuncamimo,
an alternative spelling of Capriles’s cam-
paign slogan. Others are also clearly anti-
Chávez: #venezueladeluto (“Venezuela in
mourning” after Chávez’s reelection) and
#hugochávezfrı́astequeda1dı́a (roughly “Hugo
Chávez has one day left”). One surprising result
is that #6a~nosmas (“six more years”) is strongly
associated with the latent Capriles group despite
superficially appearing to support the incumbent.
However, upon inspection of the tweets that use
this hashtag, most in our dataset use it ironically,
predicting “six more years” of negative outcomes of
Chávez’s reelection. On the other hand, the hashtags
strongly associated with the Chávez group are all
explicitly pro-Chávez or just his name. Interestingly,
the semantically neutral hashtags promoting voter
turnout, such as #tuvoto, #vota, and #vo7a, are
inferred to favor the Capriles group. We hypothesize
that these may be because the social media campaign
for increasing voter turnout was stronger from the
Capriles side.

Figure 2 shows the learned parameters associating in-
teractions with top users with latent groups (again
excluding the two seeded top users). According to
the learned model, users in the latent Capriles group
are most likely to interact with hcapriles (Capriles’s
personal account) and independent media outlets
and journalists such as globovision, la patilla,
nelsonbocaranda, luischataing, and eluniversal.
On the other side of the spectrum, users in the la-
tent Chávez group are most likely to interact with
vtvcanal8, the Twitter account of the state-owned
television network.

Our results include both obviously correct and sur-
prising, but verifiable, elements. The learned param-
eters are useful for understanding the language used
by and the social associations among people with dif-
ferent political opinions. They are also easy to com-

pute. This experiment uses an HL-MRF with approx-
imately 37,000 variables and 146,000 potentials and
constraints, but ten iterations of hard EM takes only
a few minutes on a workstation.

5. Conclusion

By learning a model that orders top hashtags and top
users according to associations with two latent politi-
cal groups, we show the power of HL-MRFs for under-
standing rich, real-world data. We advance the state
of the art by learning an HL-MRF that includes latent
variables, using a hard EM procedure that benefits
from the fast, convex inference available for HL-MRFs.
These latent variables are made interpretable by their
construction with PSL, demonstrating the utility of
HL-MRFs for many fields, including computational
social science. Directions for future work include de-
veloping richer proposal distribution families compati-
ble with HL-MRFs, modeling latent variables in other
tasks, and quantifying the effects of modeling latent
variables on prediction tasks.
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