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A Convergence of ADMM

After each iteration k of ADMM the sizes of the primal and dual residuals are:
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where Kg is the number of copies of the variable Xg [1].

It is known that if the objective is closed, proper, and convex, and strong duality holds, then
‖rk‖2 → 0, ‖sk‖2 → 0, and the objective approaches p? as k → ∞, where p? is the optimal
value of the objective.

See Gabay and Mercier [2], Eckstein and Bertsekas [3], and Boyd et. al. [1] for details.

B Implementation details

B.1 Initialization

All variables in X were initialized to 0.5.

B.2 Stopping criteria

Boyd et. al. [1] suggest the stopping criteria
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where εabs, εrel > 0 are user specified and Kg is the number of copies of the variable Xg . In all
our experiments, consensus optimization terminated when criteria (1) and (2) were satisfied with
εabs = 10−8 and εrel = 10−3.
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B.3 Enconding the MPE problem as a conic program

To use an interior-point method, we encode Problem (1) in a second-order cone program (SOCP):

arg min
x̄

cT x̄ subject toAx̄ = b and x̄ ∈ K ≡ K+
1 × · · · × K

+
q1 ×KL1 × · · · × KLq2

where x̄ ∈ Rn̄, c ∈ Rn̄, A ∈ Rm̄×n̄, b ∈ Rm̄, and K is a direct product of sets called cones. Each
cone K+ is a non-negative orthant cone x ≥ 0 and each cone KL is a t-dimensional rotated second-
order cone 2x1x2 ≥ ‖x3:t‖22 (sometimes called a rotated Lorentz cone). Note that other definitions
of SOCPs which use un-rotated second-order cones are possible, but rotated second-order cones are
more convenient for our purposes.

Before continuing, there are a few shorthands we will use in describing our SOCP. The constraint
Ax̄ = b restricts x̄ to an affine subspace, and we will describe A and b as if they are a matrix
and a vector, respectively, since the meaning is clear. We will mention including linear equality
constraints in the SOCP. When we do, we mean that each constraint is a row in A and a component
in b acting on the components of x̄ corresponding to the components of xi. When we mention linear
inequality constraints, we mean to first convert them to equality constraints by adding a component
to x̄ for each such constraint to act as a “slack” variable. Each slack variable is constrained to lie in
a non-negative orthant cone. Also, each component of c is zero unless stated otherwise.

We first include an n-dimensional component x̄v in x̄ to represent the variables X. To enforce
X ∈ [0, 1]n each dimension of x̄v is constrained to lie in a non-negative orthant cone, and we
constrain (x̄v)i ≤ 1, i = 1, . . . , n.

We now consider encoding each hinge-loss potential function φj . For each we include a non-
negative orthant component x̄φj

in x̄ and include a linear inequality constraint x̄φj
≥ `j(x̄v). If

pj = 1 then the objective coefficient of x̄φj
is Λj . If pj = 2 then we include a 3-dimensional

rotated second-order cone x̄L,φj in x̄, where the objective coefficient of (x̄L,φj )1 is Λj , constrain
(x̄L,φj )2 = 1/2 and constrain (x̄L,φj )3 = x̄φj

.

Finally we include each linear constraint Ck.
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