Scaling MPE Inference for Constrained Continuous
Markov Random Fields with Consensus Optimization:
Supplementary Material

Stephen H. Bach Matthias Broecheler
University of Maryland, College Park Aurelius LLC
College Park, MD 20742 matthias@thinkaurelius.com

bach@cs.umd.edu

Lise Getoor Dianne P. O’Leary
University of Maryland, College Park University of Maryland, College Park
College Park, MD 20742 College Park, MD 20742
getoor@cs.umd.edu oleary@cs.umd.edu

A Convergence of ADMM

After each iteration £ of ADMM the sizes of the primal and dual residuals are:
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where KC, is the number of copies of the variable X, [1].

It is known that if the objective is closed, proper, and convex, and strong duality holds, then
7%l — 0, ||s*|la — 0, and the objective approaches p* as k — oo, where p* is the optimal
value of the objective.

See Gabay and Mercier [2], Eckstein and Bertsekas [3], and Boyd et. al. [1] for details.
B Implementation details
B.1 Initialization

All variables in X were initialized to 0.5.

B.2 Stopping criteria

Boyd et. al. [1] suggest the stopping criteria
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where €, ¢ > 0 are user specified and K, is the number of copies of the variable X,. In all

our experiments, consensus optimization terminated when criteria (1) and (2) were satisfied with
€ = 1078 and €' = 1073,



B.3 Enconding the MPE problem as a conic program

To use an interior-point method, we encode Problem (1) in a second-order cone program (SOCP):

argmin ¢’z subject toAZ =bandz € K = K{ x -+ x KF} x K x -+ x Kk
x
where Z € R™, ¢ € R?, A € R™*" ) € R™, and K is a direct product of sets called cones. Each
cone KT is a non-negative orthant cone x > 0 and each cone KL is a t-dimensional rotated second-
order cone 27173 > ||3.]|3 (sometimes called a rotated Lorentz cone). Note that other definitions
of SOCPs which use un-rotated second-order cones are possible, but rotated second-order cones are
more convenient for our purposes.

Before continuing, there are a few shorthands we will use in describing our SOCP. The constraint
AZ = b restricts T to an affine subspace, and we will describe A and b as if they are a matrix
and a vector, respectively, since the meaning is clear. We will mention including linear equality
constraints in the SOCP. When we do, we mean that each constraint is a row in A and a component
in b acting on the components of z corresponding to the components of ;. When we mention linear
inequality constraints, we mean to first convert them to equality constraints by adding a component
to x for each such constraint to act as a “slack” variable. Each slack variable is constrained to lie in
a non-negative orthant cone. Also, each component of c is zero unless stated otherwise.

We first include an n-dimensional component Z,, in Z to represent the variables X. To enforce
X € [0,1]™ each dimension of Z, is constrained to lie in a non-negative orthant cone, and we
constrain (7, ); < 1,i=1,...,n.

We now consider encoding each hinge-loss potential function ¢;. For each we include a non-
negative orthant component Z4, in Z and include a linear inequality constraint Zo, > £;(Z,). If
p; = 1 then the objective coefficient of Ty, is A;. If p; = 2 then we include a 3-dimensional

rotated second-order cone 2% in Z, where the objective coefficient of (z£:%7); is A;, constrain
(z197)y = 1/2 and constrain (21973 = Z, .

Finally we include each linear constraint Cj,.
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