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Abstract

Probabilistic graphical models are powerful tools for analyzing constrained, con-
tinuous domains. However, finding most-probable explanations (MPEs) in these
models can be computationally expensive. In this paper, we improve the scala-
bility of MPE inference in a class of graphical models with piecewise-linear and
piecewise-quadratic dependencies and linear constraints over continuous domains.
We derive algorithms based on a consensus-optimization framework and demon-
strate their superior performance over state of the art. We show empirically that in
a large-scale voter-preference modeling problem our algorithms scale linearly in
the number of dependencies and constraints.

1 Introduction

There is a growing need for statistical models which can capture rich dependencies in structured
data. Link predication, collective classification, modeling information diffusion, entity resolution,
and viral marketing are all important tasks where incorporating structural dependencies is crucial
for good predictive performance. Graphical models [1] are an expressive class of statistical models
to address such problems, but their applicability to large datasets is often limited by impractically
expensive inference and learning algorithms.

In this paper, we focus on scaling up most-probable-explanation (MPE) inference for a particular
class of graphical models called constrained continuous Markov random fields (CCMRFs) [2]. Like
other Markov random fields (MRFs), CCMRFs define a joint distribution over a collection of ran-
dom variables and capture local dependencies through potential functions. However, unlike many
popular discrete MRFs which are defined over binary random variables, CCMRFs are defined over
continuous random variables. They also allow their domains to be constrained. This makes CCM-
RFs ideally suited to reason over continuous quantities, such as similarity, affinity, or probability,
without making assumptions about the variables’ marginal distributions.1

MPE inference for CCMRFs is tractable under mild convexity assumptions because it can be cast as a
convex numeric optimization problem, which can be solved by interior-point methods [3]. However,
for large problems, interior-point methods are impractically slow because each step takes time up to
cubic in the size of the problem.

1In contrast with Gaussian random fields where random variables are assumed to be Gaussian.
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We show how hinge-loss potential functions that are often used to model real world problems in
CCMRFs (see, e.g., [3, 2, 4, 5, 6, 7]) can be exploited to significantly speed up the numeric opti-
mization and therefore MPE inference. To do so, we rely on a consensus optimization framework [8].
Consensus optimization has recently been shown to perform well on relaxations of discrete optimiza-
tion problems, like MRF MPE inference [8, 9, 10].

The contributions of this paper are as follows: First, we derive algorithms for the MPE problem
in CCMRFs with piecewise-linear and piecewise-quadratic dependencies in Section 3. Next, we
improve the performance of consensus optimization by deriving an algorithm that exploits oppor-
tunities for closed-form solutions to subproblems, based on the current optimization iterate, before
resorting to an iterative solver when the closed-form solution is not applicable. Then, we present an
experimental evaluation (Section 4) that demonstrates superior performance of our approach over
a commercial interior-point method, the current state-of-the-art for CCMRF MPE inference. In a
voter-preference modeling problem, our algorithms scaled linearly in the number of dependencies
and constraints. In addition, compared to an exact solver, our method achieves at least 99.6% of the
optimal solution. Finally, we show that our improved consensus-optimization algorithm more than
doubles the speed of a less sophisticated approach. To the best of our knowledge, we are the first
to show results on MPE inference for any MRF variant using consensus optimization with iterative
methods to solve subproblems.

2 Background

In this section we formally introduce the class of probabilistic graphical models for which we derive
inference algorithms and present a simple running example (this is the same example used in our
experiments in Section 4). We also give an overview of consensus optimization [8], the abstract
framework we will use to derive our algorithms in Section 3.

2.1 Constrained continuous Markov random fields and the MPE problem

A constrained continuous Markov random field (CCMRF) is a probabilistic graphical model defined
over continuous random variables with a constrained domain [2]. In this paper, we focus on a
common subclass in which dependencies among continuous random variables are defined in terms
of hinge-loss functions and linear constraints:
Definition 1. A hinge-loss constrained continuous Markov random field f is a probability density
over a finite set of n random variables X = {X1, . . . , Xn} with domain D = [0, 1]n. Let φ =
{φ1, . . . , φm} be a finite set of m continuous potential functions of the form

φj(X) = [max {`j(X), 0}]pj

where `j is a linear function of X and pj ∈ {1, 2}. Let C = {C1, . . . , Cr} be a finite set of r linear
constraint functions associated with two index sets denoting equality and inequality constraints, E
and I, which define the feasible set D̃ = {X ∈ D|Ck(X) = 0,∀k ∈ E and Ck(X) ≥ 0,∀k ∈ I}.
If X /∈ D̃, then f(X) = 0. If X ∈ D̃, then, for a set of non-negative free parameters Λ =
{Λ1, . . . ,Λm},

f(X) =
1

Z(Λ)
exp

− m∑
j=1

Λjφj(X)

 ; Z(Λ) =

∫
D̃

exp

− m∑
j=1

Λjφj(X)

 dX.
Definition 1 is a special case of the definition of CCMRFs of Broecheler and Getoor [2]. It says that
hinge-loss CCMRFs are models in which densities of assignments to variables are defined by an
exponential of the negated, weighted sum of functions over those assignments, unless any constraint
is violated, in which case the density is zero.

The MPE problem is to maximize f(X) such that X ∈ D̃. In a hinge-loss CCMRF, the normal-
izing function Z(Λ) is constant over X for fixed parameters and the exponential is maximized by
minimizing its negated argument, so the MPE problem is

arg max
X

f(X) ≡ arg min
X∈[0,1]n

m∑
j=1

Λjφj(X) s.t. Ck(X) = 0,∀k ∈ E and Ck(X) ≥ 0,∀k ∈ I. (1)
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Hinge-loss CCMRFs have two main desirable properties. First, the MPE problem is convex. Second,
they are expressive. Hinge-loss functions are useful for many domains. Instances of hinge-loss
CCMRFs have been used previously to model many problems, including link prediction, collective
classification [3, 2], prediction of opinion diffusion [4], medical decision making [5], trust analysis
in social networks [6], and group detection in social networks [7].

For ease of presentation, in the rest of this paper, when we refer to CCMRFs we mean hinge-loss
CCMRFs. Next, we present a motivating CCMRF, using an example from Broecheler et. al. [4].

Example 1 (Opinion diffusion). Consider a social network S ≡ (V,E) of voters in a set V with
relationships defined by annotated, unweighted, directed edges (va, vb)τ ∈ E. Here, va, vb ∈ V
and τ is an annotation denoting the type of relationship: friend, boss, etc. To reason about
voter’s opinions towards two hypothetical political parties, liberal (L) and conservative (C), we
introduce two nonnegative random variables Xa,L and Xa,C , summing to at most one, representing
the strength of voter va’s preferences for each political party. We assume that va’s preference results
from an intrinsic opinion and the influence of va’s social group. We represent the intrinsic opinion
by opinion(va), ranging from −1 (strongly favoring L) to 1 (strongly favoring C).

The influence of the social group is modeled by potential functions that we generically denote
as φ. First we penalize deviations from intrinsic opinions. If opinion(va) < 0, then φ ≡
[max{|opinion(va)| −Xa,L, 0}]p, which penalizes preferences that are weaker than intrinsic opin-
ions. Similarly, φ ≡ [max{opinion(va) − Xa,C , 0}]p. when opinion(va) > 0. These hinge-loss
potential functions are weighted by a fixed parameter Λopinion.

Next we penalize disagreements between voters in a social group. For each edge (va, vb)τ we
introduce potential functions φ ≡ [max{Xb,L − Xa,L, 0}]p and φ ≡ [max{Xb,C − Xa,C , 0}]p,
penalizing preferences of va that are not as strong as those of vb. These potential functions are
weighted by parameters Λτ defining the relative influence of the τ relationship. For example, we
expect more influence from a close friend than from a co-worker.

We consider p = 1, meaning that the model has no preference between distributing the loss and
accumulating it on a single potential function, and p = 2, meaning that that the model prefers to
distribute the loss among multiple hinge-loss functions. To illustrate the choice, consider a single
voter in a CCMRF with two equally-weighted potential functions φ1 ≡ [max{0.9−Xa,L, 0}]p and
φ2 ≡ [max{0.6 −Xa,C , 0}]p. Let 0.9 and 0.6 represent the preferences of the voter’s two friends.
If p = 1, then any assignment Xa,L, Xa,C with Xa,L ∈ [0.4, 0.9] and Xa,C = 1 − Xa,L is a
MPE. However, if p = 2, then only the assignment Xa,L = 0.65, Xa,C = 0.35 is a MPE. We see
that, all else being equal, squared potential functions “respect” the minima of individual potential
functions if they cannot all be minimized. However, this useful modeling feature generally increases
the computational cost. As we demonstrate in Section 4, scaling MPE inference for CCMRFs with
piecewise-quadratic potential functions is one of the contributions of our work.

2.2 Consensus optimization

Consensus optimization is a framework that optimizes an objective by dividing it into independent
subproblems and then iterating to reach a consensus on the optimum [8]. In this subsection we
present an abstract consensus optimization algorithm for Problem (1), the MPE problem for CCM-
RFs. In Section 3 we will derive specialized versions for different potential functions.

Given a CCMRF (X, φ, C, E , I,Λ) and parameter ρ > 0, the algorithm first constructs a modified
MPE problem in which each potential and constraint is a function of different variables. The vari-
ables are constrained to make the new and original MPE problems equivalent. We let xj be a copy
of the variables in X that are used in the potential function φj , j = 1, . . . ,m and xk+m be a copy
of those used in the constraint function Ck, k = 1, . . . , r. We also introduce an indicator function
Ik for each constraint function where Ik [Ck(xk+m)] = 0 if the constraint is satisfied and∞ if it is
not. Finally, let Xi be the variables in X that are copied in xi, i = 1, . . . ,m+ r.

Consensus optimization solves the new MPE problem

arg min
xi∈[0,1]ni

m∑
j=1

Λjφj (xj) +

r∑
k=1

Ik [Ck (xk+m)] subject to xi = Xi (2)
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Algorithm Consensus optimization

Input: CCMRF (X, φ, C, E , I,Λ), ρ > 0

Initialize xj as a copy of the variables in X that appear in φj , j = 1, . . . ,m
Initialize xk+m as a copy of the variables in X that appear in Ck, k = 1, . . . , r.
Initialize yi at 0, i = 1, . . . ,m+ r.
while not converged do

for i = 1, . . . ,m+ r do
yi ← yi + ρ(xi −Xi)

end for
for j = 1, . . . ,m do

xj ← arg minxj∈[0,1]nj Λjφj(xj) + ρ
2‖xj −Xj + 1

ρyj‖
2
2

end for
for k = 1, . . . , r do

xk+m ← arg minxk+m∈[0,1]nk+m Ik [Ck (xk+m)] + ρ
2‖xk+m −Xk+m + 1

ρyk+m‖
2
2

end for
Set each variable in X to the average of its copies

end while

where i = 1, . . . ,m + r and ni is the number of components of xi. Inspection shows that Prob-
lems (1) and (2) are equivalent.

We use the alternating direction method of multipliers (ADMM) [11, 12, 8] to solve Problem (2).
ADMM can be viewed as an approach to combining the scalability of dual decomposition and the
convergence properties of augmented Lagrangian methods [8]. We outline the algorithm in the
above pseudocode. At each step in the iteration, it solves m+ r independent optimization problems,
one for each φj and each Ck. It then averages the copies of variables to get the consensus variables
X for the next iteration. Lagrange multipliers yi for each xi ensure convergence. The objective is
known to converge to its optimum and the iterates to approach feasibility under mild assumptions
[13, 14, 8]. See Boyd et. al. [8] or this paper’s supplementary material for more information. In the
next section we derive algorithms with specific methods for updating each xj .

3 Solving the MPE problem with consensus optimization

We now derive algorithms to update xj for each potential function φj . At this point we drop the
more complex notation and view each update as an instance of the problem

arg min
x∈[0,1]n

Λ[max {cTx+ c0, 0}]p + (ρ/2)‖x− d‖22 (3)

where c, d ∈ Rn, c0 ∈ R, Λ ≥ 0, p ∈ {1, 2}, and ρ > 0. To map an update to Problem (3) for a
potential function φj and parameter Λj , let n = nj , cTx+ c0 = `(xj), d = Xj − (1/ρ)yj , Λ = Λj ,
p = pj , and keep ρ the same.

Our first algorithm, CO-Linear, solves the MPE problem when p = 1 and n ≤ 2 in each instance
of Problem (3), i.e., each potential function has at most two unknowns and is piecewise-linear. We
present the update in terms of the intermediate optimization problems it solves. (We use variables
α with parenthetical superscripts to easily refer to the solutions of intermediate problems, but im-
plementations should not treat them as separate variables.) It first finds α1, which is easy to do by
inspection. For each component α(1)

j of α(1)

α
(1)
j =


0 if dj < 0

dj if 0 ≤ dj ≥ 1

1 if dj > 1

where j = 1, . . . , n. We refer to this procedure as clipping the vector d to the interval [0, 1].
In this section, when we refer to clipping to [a, b], we mean an identical vector except that any
component outside a bound a or b is changed to that bound. α2 is also easy to find: clip the vector
d − (Λ/ρ)c to [0, 1]. There are two cases when finding α(3). If n = 1, clip the scalar −c0/c1 to
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Algorithm Update for CO-Linear

Input: c, d ∈ Rn where n ≤ 2, c0 ∈ R, Λ ≥ 0, ρ > 0

Output: x? = arg minx∈[0,1]n Λ[max {cTx+ c0, 0}] + (ρ/2)‖x− d‖22
α(1) ← arg minx∈[0,1]n(ρ/2)‖x− d‖22 (by inspection)
if cTα(1) + c0 ≤ 0 then
x? ← α(1)

else
α(2) ← arg minx∈[0,1]n ΛcTx+ (ρ/2)‖xi − d‖22 (by inspection)
if cTα(2) + c0 ≥ 0 then
x? ← α(2)

else
x? ← α(3) ← arg minx∈[0,1]n s.t. cT x+c0=0(ρ/2)‖x−d‖22 (by substitution and inspection)

end if
end if

[0, 1]. If n = 2, solve cTx = −c0 for one of the components of x, substitute to eliminate that
component in the objective, and compute the interval [min,max] on which x ∈ [0, 1]2 when the
remaining component is in [min,max] and cTx = −c0. Inspect the reduced objective and clip the
unconstrained minimizer to [min,max]. Substitute the result back into cTx = −c0 to find the other
component.

To verify that the CO-Linear update is correct, first consider the case when cTα(1) + c0 ≤ 0. Since
α(1) minimizes (ρ/2)‖x − d‖22 and Λ[max {cTx+ c0, 0}] ≥ 0, each term of the update objective
is minimized at α(1), so x? = α(1). In the second case, if cTα(1) + c0 > 0, but cTα(2) + c0 ≥ 0,
then observe that α(2) minimizes an objective which bounds the update objective below, but the two
objectives are equal at α(2). Therefore, x? = α(2). Finally, in the third case, cTα(1) + c0 > 0 and
cTα(2) + c0 < 0. We know ∃x ∈ [0, 1]n such that cTx + c0 = 0, so the problem can be split into
two feasible problems:

β(1) ≡ arg min
x∈[0,1]n s.t. cT x+c0≤0

(ρ/2)‖x− d‖22

β(2) ≡ arg min
x∈[0,1]n s.t. cT x+c0≥0

ΛcTx+ (ρ/2)‖x− d‖22 .

Either x? = β(1) or x? = β(2) (or both). We use Lemma 4 of Martins et. al. [9] which states that
given a convex, feasible optimization problem over a nonempty convex subset of Rn with a convex
constraint, if that constraint is violated by the minimizer to a relaxed problem without that constraint
over the same set, then that constraint will be active at the minimizer to the original problem. Since
cTα(1) + c0 > 0 and cTα(2) + c0 < 0, we conclude that cTβ(1) + c0 = 0 and cTβ(2) + c0 = 0.
Therefore x? = β(1) = β(2) = α(3).

CO-Linear is sufficient to solve many useful and interesting models. Unfortunately, the piecewise-
quadratic case (p = 2) is more difficult. If n > 1 and it cannot be established that cTx? + c0 ≤ 0,
then the approach of CO-Linear is not applicable, because minimizing ΛcTxxT c + 2Λc0c

Tx +
(ρ/2)‖x−d‖22 over [0, 1]n does not have a (known) closed-form solution in general. That motivates
us to derive an algorithm for the piecewise-quadratic case that can resort to a sufficiently general
iterative solver if necessary. Obviously, a naive algorithm could use an iterative method immediately
if n > 1. However, CO-Linear still offers some insight into the problem. If clipping d to [0, 1] gives
a vector α(1) such that cTα(1) + c0 ≤ 0, then again it is the minimizer.

Our second algorithm, CO-Quad, first tries to find x? by clipping d to [0, 1] for any n. If it does
not succeed and n = 1, then α(2) can be found by inspection. If n > 1, then an iterative method
is required. Note that now after concluding that cTx? + c0 ≥ 0 we can just minimize ΛcTxxT c +
2Λc0c

Tx+(ρ/2)‖x−d‖22 to find x? since ΛcTxxT c+2Λc0c
Tx is symmetric about the hyperplane

cTx+ c0 = 0, (ρ/2)‖x− d‖22 is minimized for some x such that cTx+ c0 ≥ 0, and the objective is
the same as the subproblem on that region.
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Algorithm Update for CO-Quad

Input: c, d ∈ Rn, c0 ∈ R, Λ ≥ 0, ρ > 0

Output: x? = arg minx∈[0,1]n Λ[max {cTx+ c0, 0}]2 + (ρ/2)‖x− d‖22
α(1) ← arg minx∈[0,1]n(ρ/2)‖x− d‖22 (by inspection)
if cTα(1) + c0 ≤ 0 then
x? ← α(1)

else
if n = 1 then
x? ← α(2) ← arg minx∈[0,1]n ΛcTxxT c+ 2Λc0c

Tx+ (ρ/2)‖x− d‖22 (by inspection)
else
x? ← α(3) ← arg minx∈[0,1]n ΛcTxxT c+2Λc0c

Tx+(ρ/2)‖x−d‖22 (by iterative method)
end if

end if

To update xk+m for each constraint Ck, both CO-Linear and CO-Quad use the method proposed by
Martins et. al. [9], which handles the case when Ck(xk+m) = 0 is a probability simplex. This is
sufficient for the purposes of this work.

4 Experiments

We evaluated the scalability of CO-Linear and CO-Quad by generating social networks of varying
sizes, constructing CCMRFs with them, and measuring the running time required to find a MPE.
We compared our approach to the previous state-of-the-art approach for finding MPEs in CCMRFs,
which uses an interior point method implemented in MOSEK, a commercial optimization package
(http://www.mosek.com). Next we describe the social-network and CCMRF generation procedure,
the implementations and setup, and then present the results.

4.1 Social-network and CCMRF generation

Our social-network generation process follows Example 1 and is based on the procedure described
by Broecheler et. al. [4] to generate social networks using power-law degree distributions. Given
a desired number of vertices N (which the procedure matches approximately) and a list of edge
types, along with parameters γ and α for each type, the procedure samples in- and out-degrees
for each node for each edge type from the power-law distribution D(k) ≡ αk−γ . Incoming and
outgoing edges of the same type are then matched randomly to create edges until no more matches
are possible. Vertices with no incoming or outgoing edges are removed from the network. We used
six edge types with various parameters to represent relationships in social networks with different
combinations of abundance and exclusivity, choosing γ between 2 and 3, and α between 0 and 1, as
suggested by Broecheler et. al. We then annotated each vertex with a value in [−1, 1] uniformly at
random to represent intrinsic opinions as described in Example 1.

We generated social networks with between 22,050 and 66,150 vertices, which induced CCMRFs
with between 130,082 and 397,494 total potential functions and constraints. In all the CCMRFs,
between 83% and 85% of those totals were potential functions and between 15% and 17% were
constraints. For each social network, we created both a CCMRF to test CO-Linear (p = 1 in
Definition 1) and one to test CO-Quad (p = 2). We chose Λopinion = 0.5 and chose Λτ1 , . . . ,Λτ6
between 0 and 1 to model both more and less influential relationships.

4.2 Implementation

We implemented CO-Linear and CO-Quad in Java. We used the interior-point method in MOSEK
to find α3 in the update for CO-Quad when necessary by passing the problem via MOSEK’s Java
native interface wrapper. We also compared with MOSEK’s interior-point method by encoding the
entire MPE problem as a linear program or a second-order cone program as appropriate, and passing
the encoded problem via the Java native interface wrapper.
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Figure 1: Average running times to find a most probable explanation (MPE) in CCMRFs.

All experiments were performed on a single machine with 2 6-core 3.06 Ghz Intel Xeon X5675
processors with 48GB of RAM. Each optimizer used a single thread. All results are averaged over 3
runs. All differences between CO-Linear and the interior-point method are significant at p = 0.0005.
All differences between CO-Quad and the interior-point method are significant at p = 0.005 on
problems with more than 175,000 potential functions and constraints. (The interior-point method
exhibited much higher variance in running times on piecewise-quadratic problems.) All differences
between CO-Quad and Naive CO-Quad are significant at p = 0.0005.

4.3 Results

We first evaluated the scalability of CO-Linear and compared with MOSEK’s interior-point method.
Figure 1a shows the results. The running time of the interior-point method quickly exploded as
the problem size increased. Although we do not show it in the figure, the average running time
on the largest problem was about 4,900 seconds (over 1 hour, 20 minutes). This demonstrates the
limited scalability of the interior-point method. In contrast, CO-Linear displays excellent scalability.
The average running time on the largest problem was about 130 seconds (2 minutes, 10 seconds).
Further, the running time grows linearly in the number of potential functions and constraints in the
CCMRF, i.e., the number of subproblems that must be solved at each iteration. The line of best
fit has R2 = 0.99834. Combined with Figure 1a, this shows that CO-Linear scaled linearly with
increasing problem size. We emphasize that the implementation of CO-Linear is research code
written in Java and the interior-point method is a commercial package running as native code. The
dramatic differences in running times illustrate the superior utility of CO-Linear for these problems.

We then evaluated CO-Quad. Figure 1b shows the results (note the 2-orders-of-magnitude increase
on the vertical axis between CO-Linear and CO-Quad). Again, the running time of the interior-
point method quickly exploded. We could only test it on the three smallest problems, the largest of
which took an average of about 56,500 seconds to solve (over 15 hours, 40 minutes). Consensus
optimization again scaled linearly to the problem. The line of best fit has R2 = 0.9842. To compare
with the interior-point method, on the third-smallest problem, CO-Quad took an average of about
5,250 seconds (under 1 hour, 28 minutes). We also evaluated a naive variant of CO-Quad which
immediately updates xj via the interior-point method when there are two unknowns. As Figure 1b
shows, the difference is significant. This demonstrates that CO-Quad is a further improvement on a
less sophisticated approach over the previous state-of-the-art.

One of the advantages of interior-point methods is great numerical stability and accuracy, Consensus
optimization, which treats both objective terms and constraints as subproblems, often returns points
that are only optimal and feasible to moderate precision for non-trivially constrained problems [8].
Although this is often acceptable, we quantified the mix of infeasibility and suboptimality by repair-
ing the infeasibility and measuring the resulting total suboptimality. We first projected the solutions
returned by consensus optimization onto the feasible region, which took a negligible amount of com-
putational time. Let pC be the value of the objective in Problem (1) at such a point and let pIPM be
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the value of the objective at the point returned by the interior-point method. Then the relative error
on that problem is (pC − pIPM )/pIPM . The relative error was consistently small. For CO-Linear,
it varied between 0.2% and 0.4%, and did not trend upward as the problem size increased. For
CO-Quad, when the interior-point method also returned a solution, the relative error was always less
than 0.05% and also did not trend upward. This shows that consensus optimization was accurate,
in addition to being dramatically faster (lower absolute time) and more scalable (smaller growth in
time with problem size).

5 Discussion and conclusion

In this paper we advanced the state-of-the-art in solving the MPE problem for CCMRFs. With spe-
cialized algorithms, consensus optimization offers far superior scalability. In our experiments the
computational cost grew linearly with the number of potential functions and constraints. This is cru-
cially important if models are to scale to the sizes of data now available. As we build bigger models,
it will be important to understand the trade-off between speed and accuracy. The well-understood
theory of consensus optimization can help here. It is a major difference between our work and that
of Broecheler et. al. [4], which used heuristics to solve the MPE problem by partitioning CCMRFs,
fixing values of variables at the boundaries, solving relatively large subproblems with interior-point
methods, and repeating with different partitions. A direction for future work is studying how to
enforce desired combinations of speed and accuracy when solving MPE problems.

Such work could have a broader impact for research on solving the MPE problem for MRFs using
decomposition-based approaches, which is an active area of research. Much work has studied dual
decomposition for solving relaxations of discrete MPE problems [15]. Martins et. al. [9], and Meshi
and Globerson [10] recently studied using consensus optimization to solve convex relaxations of the
MPE problem for discrete MRFs. They solved the problem for MRFs which induced subproblems
with closed-form solutions. Meshi and Globerson [10] also showed advantages of solving the dual
of the relaxation and decoding the values of the discrete primal variables, but such an approach
is not applicable to our work. Other recent approaches include that of Ravikumar et. al. [16], an
algorithm for solving a relaxed MPE problem by solving a sequence of subproblems in a process
called proximal minimization.

There are a number of remaining research problems. The first is to expand the number of unknowns
in subproblems that can be solved in closed form. Another is analyzing the Karush-Kuhn-Tucker
optimality conditions for the subproblems to eliminate variables when possible and solve them more
efficiently. While all (hinge-loss) CCMRF subproblems could be solved with a general-purpose
algorithm, such as an interior-point method, we showed that even in cases when an algorithm might
have to resort to an interior-point method, exploiting opportunities for closed-form solutions greatly
improved speed.
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